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The NODDI-DTI signal model is a modification of the NODDI signal model that

formally allows interpretation of standard single-shell DTI data in terms of biophysical

parameters in healthy human white matter (WM). The NODDI-DTI signal model contains

no CSF compartment, restricting application to voxels without CSF partial-volume

contamination. This modification allowed derivation of analytical relations between

parameters representing axon density and dispersion, and DTI invariants (MD and FA)

from the NODDI-DTI signal model. These relations formally allow extraction of biophysical

parameters from DTI data. NODDI-DTI parameters were estimated by applying the

proposed analytical relations to DTI parameters estimated from the first shell of data, and

compared to parameters estimated by fitting the NODDI-DTI model to both shells of data

(reference dataset) in the WM of 14 in vivo diffusion datasets recorded with two different

protocols, and in simulated data. The first two datasets were also fit to the NODDI-DTI

model using only the first shell (as for DTI) of data. NODDI-DTI parameters estimated from

DTI, and NODDI-DTI parameters estimated by fitting the model to the first shell of data

gave similar errors compared to two-shell NODDI-DTI estimates. The simulations showed

the NODDI-DTI method to be more noise-robust than the two-shell fitting procedure.

The NODDI-DTI method gave unphysical parameter estimates in a small percentage of

voxels, reflecting voxelwise DTI estimation error or NODDI-DTI model invalidity. In the

course of evaluating the NODDI-DTI model, it was found that diffusional kurtosis strongly

biased DTI-based MD values, and so, making assumptions based on healthy WM, a

novel heuristic correction requiring only DTI data was derived and used to mitigate this

bias. Since validations were only performed on healthy WM, application to grey matter

or pathological WM would require further validation. Our results demonstrate NODDI-DTI

to be a promising model and technique to interpret restricted datasets acquired for DTI

analysis in healthy white matter with greater biophysical specificity, though its limitations

must be borne in mind.
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1. INTRODUCTION

The white matter (WM) of the human brain consists of dense
bundles of neuronal axons connecting the brain’s functional
areas. Neural circuits thus formed allow these areas to work
together as a coherent entity. Changes in WM impact these
neural circuits, and are thus the subject of studies investigating
pathology (Acosta-Cabronero et al., 2010; Meinzer et al., 2010;
Freund et al., 2013b), and cognition and learning (Scholz et al.,
2009; Zatorre et al., 2012).

Diffusion tensor imaging (DTI; Basser et al., 1994; Jones,
2014) is, at present, the most commonly used method to
observe WM changes in-vivo (Scholz et al., 2009; Fields,
2010; Zatorre et al., 2012). This is because DTI is simply
implemented and time efficient while allowing robust estimation
of complementary parameters [e.g., “fractional anisotropy” (FA)
and “mean diffusivity” (MD), Pierpaoli et al., 1996] sensitive to
microstructural WM changes (Beaulieu, 2014), even in clinical
contexts (see e.g., Meinzer et al., 2010; Freund et al., 2013a).
Despite its microstructural sensitivity, the model underlying DTI
(gaussian anisotropic diffusion; Jones, 2014) is unspecific to
biological changes. Numerous studies show MD and FA change
in white matter [e.g., due to learning a new skill (Scholz et al.,
2009) or the pathology of Alzheimer’s disease (Acosta-Cabronero
et al., 2010)], but cannot, in the absence of further information,
distinguish e.g., changes in axon density from changes in axon
arrangement.

In order to estimate parameters of direct neurobiological
relevance from diffusion MRI, we need biophysical
models (Beaulieu, 2014; De Santis et al., 2014; Seunarine and
Alexander, 2014). The majority of biophysical models (including
the model introduced below) are “multicompartment” diffusion
models. Such models assume voxelwise diffusion contrast arises
from linear combination of diffusion signals from distinguishable
water compartments. Numerous multicompartment diffusion
models have been proposed (see e.g., Stanisz et al., 1997;
Jespersen et al., 2007, 2012; Fieremans et al., 2011; Panagiotaki
et al., 2012; Sotiropoulos et al., 2012; Zhang et al., 2012; Jelescu
et al., 2015; Kaden et al., 2016; Tariq et al., 2016), but the
complexity and lack of robustness of most of these models hinder
their routine use in neuroscientific and clinical studies.

The NODDI (neurite orientation dispersion and density
imaging) model (Zhang et al., 2012) is a multicompartment
model allowing robust and time-efficient estimation of maps
of parameters representing neurite (in WM: axon) density
and dispersion, and represents a trade-off between complexity,
robustness, and acquisition-time duration. Robustness is
achieved by fixing the values of several model parameters
from earlier models (Zhang et al., 2011; Jespersen et al., 2012),
reducing the number of fitted parameters. As a result, the
amount of data required to invert the model is reduced, giving
acquisition-time durations approaching those available in clinical
settings (Zhang et al., 2012). NODDI is thus gaining popularity
in diffusion application studies (Owen et al., 2014; Chang et al.,
2015; Grussu et al., 2015; Jelescu et al., 2015; Wen et al., 2015;
Tariq et al., 2016; Campbell et al., 2017), though the potential of
fixed parameters to lead to bias in the fitted parameters has been

a source of criticism (Jelescu et al., 2015, 2016; Kaden et al., 2016;
Novikov et al., 2016).

Herein, we investigate a modification of the NODDI model
in which the cerebrospinal fluid (CSF) compartment is not
included, and derive explicit relations between the remaining
parameters of this model and MD and FA. We call this
modified version of the NODDImodel the “NODDI-DTI”model
because these relations formally allow extraction of neurite
orientation and dispersion parameters using MD and FA from
DTI. The existence of relations between NODDI-DTI and DTI
parameters explains previously observed correlations between
NODDI parameters and MD and FA (Zhang et al., 2012; Kunz
et al., 2014; Grussu et al., 2015; Deligianni et al., 2016;Mayer et al.,
2017). Practical application of the relations requires correction of
the estimated DTI parameters for bias due to diffusional kurtosis,
and so we derive and use a novel heuristic correction using only
the DTI parameters to correct for this bias. We then examine the
accuracy and limitations of estimating NODDI-DTI parameters
from DTI parameters in WM.

2. MATERIALS AND METHODS

2.1. NODDI-DTI Relations
The NODDI signal model supposes three compartments:
intraneurite water, extraneurite water, and free water (Zhang
et al., 2012). The biophysical parameters fitted in the model
are neurite density (volume fraction of the intraneurite
compartment), ν; a measure of neurite dispersion, κ ; a vector
giving the main neurite orientation; and a volume fraction
accounting for partial-volume effects with free water (nominally
CSF; Vos et al., 2011; Metzler-Baddeley et al., 2012; Zhang et al.,
2012). An important fixed parameter is the intrinsic diffusivity of
the intraneurite compartment, d = 1.7× 10−3 mm2 s−1 (Zhang
et al., 2012). The primary neurite orientation (Zhang et al., 2012)
is formally equivalent to the principal eigenvector of the diffusion
tensor (DT; see Appendix A), as Daducci et al. (2015) previously
observed empirically.

The NODDI-DTI model is a reduced form of the NODDI
model with no CSF volume fraction; this model has been
previously observed to give reasonable estimates of ν and κ from
single-shell data (Magnollay et al., 2014). For ease of computation
in the following we use τ instead of κ as our measure of
dispersion, where (Jespersen et al., 2012; Zhang et al., 2012;
Jelescu et al., 2015)

τ =
1

√
πκ exp(−κ)erfi(

√
κ)

−
1

2κ
, τ ∈ [1/3, 1], (1)

and erfi is the imaginary error function. The parameter τ
ranges from 1/3 (isotropically distributed neurites) to 1 (perfectly
aligned neurites)—increasing τ corresponds to increasing neurite
alignment—and is the average of cos2(ψ) over the neurite
distribution, where ψ is the angle between a given neurite and
the main neurite orientation (Jelescu et al., 2015).

By expanding the NODDI-DTI signal model in moments, one
can derive a corresponding DT (Jespersen et al., 2012). As shown
in Appendix A, appropriate combination of the eigenvalues of
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this DT allows expression of ν and τ in terms of MD and FA of
this DT:

ν = 1−

√

1

2

(

3MD

d
− 1

)

, (2)

τ =
1

3

(

1+
4

∣

∣d −MD
∣

∣

MD · FA
√
3− 2FA2

)

. (3)

We note that Equation (2) has been independently derived
by Lampinen et al. (2017).

Equations (2) and (3) demonstrate a one-to-one mapping
from (MD, FA) to (ν, τ ), implying that, formally, NODDI-DTI
parameters can be extracted from DTI data. We can predict
domains within which MD and FA should lie if the NODDI-DTI
model provides a valid representation: substituting ν ∈ [0, 1] and
τ ∈ [1/3, 1] into Equations (2) and (3) gives the domains

MD ∈ [d/3, d], FA ∈

[

0,

√

3

2

∣

∣d −MD
∣

∣

√

2MD2 + (d −MD)2

]

. (4)

Values of MD and FA lying outside of these bounds will give
rise to unphysical ν and τ estimates, and could result either
from errors in quantifying the DT (i.e., the first moment of
the diffusion signal), or from the invalidity of the NODDI-DTI
model as a representation in a given voxel.

2.2. Heuristic Correction for Diffusional
Kurtosis
The experimental diffusion signal contains contributions from
moments higher than the diffusion tensor. These higher order
moments bias MD estimates from typical (single-shell) DTI
data (Veraart et al., 2011), meaning that the experimentally
determined MD is not completely analogous to the theoretical
MD in Equations (2) and (3). The bias can be strongly mitigated
using datameasured atmore than two b-values (multi-shell data),
but this extra measurement is usually not practical (Veraart et al.,
2011). In order to mitigate this bias without requiring extra data,
we define the heuristically corrected MD,

MDh = MD+
b

6





3
∑

i,j=1

1+ 2δij

15
λiλj



 , (5)

where λi is the ith eigenvalue of the measured DT and δij
is the Kronecker delta. Equation (5), derived in Appendix B,
pragmatically assumes that only the first higher moment,
diffusional kurtosis (Jensen and Helpern, 2010), contributes; that
the square of the apparent diffusion coefficient is uncorrelated
with the apparent diffusional kurtosis; that the mean diffusional
kurtosis can be taken to be unity [approximately true over much
healthy human brain WM (Jensen and Helpern, 2010; Lätt et al.,
2013; André et al., 2014; Mohammadi et al., 2015)]; and that
the effect of diffusional kurtosis on each individual eigenvalue
is negligible. Substituting Equation (5) into Equation (2) then

gives the relation used in the following to estimate ν from
experimentally determined DT invariants:

ν = 1−
√

3MDh

2d
−

1

2

= 1−

√

√

√

√

√

3

2d



MD+
b

6





3
∑

i,j=1

1+ 2δij

15
λiλj







−
1

2
. (6)

The effect of failing to correct for diffusional kurtosis is
much less pronounced for FA (Veraart et al., 2011), and
preliminary experiments (data not shown) showed that applying
diffusional kurtosis correction to only MD in Equation (3)
resulted in a modest increase in the number of unphysical τ
parameter estimates. This latter observation can be explained
using Equation (4): whenever heuristic diffusional kurtosis
correction leads to overestimation of MD, the upper bound for
allowed FA values is artificially decreased, potentially leading
to unphysical τ estimates. We therefore apply no correction to
Equation (3).

2.3. Data Collection and Preprocessing
All data were collected by scanning healthy volunteers in
a MAGNETOM Tim Trio 3 T MRI system (Siemens AG,
Healthcare Sector, Erlangen, Germany). The investigation
involving the first 2 subjects was carried out in accordance with
the recommendations of “Quality assurance and optimization
of magnetic resonance imaging sequences and processing for
non-invasive neuroimaging in human subjects,” approved by the
NRES Committee London - Queen Square. The investigation
involving the group of 12 subjects was carried out in accordance
with the recommendations of ethics agreement number PV5141,
approved by the Ärztekammer Hamburg. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

The data from subjects 1 and 2 were used to validate the
heuristic diffusional kurtosis correction and provide preliminary
validation of the stability of the NODDI-DTI model and method.
The data from subjects 3–14, recorded with a different protocol,
complemented the analyses of the data from subjects 1 and 2 by
allowing insight into whether the behaviour of the NODDI-DTI
method is stable over a wider number of subjects.

The first two datasets (subjects 1 and 2) were recorded using
a 2D multiband spin-echo echo-planar imaging (EPI) sequence
supplied by the Center for Magnetic Resonance Research,
University of Minnesota (Moeller et al., 2010; Setsompop et al.,
2012; Xu et al., 2013). Sequence parameters: field of view (FoV):
220×220 mm2, 81 slices, 1.7 mm isotropic resolution, echo time:
TE = 112 ms, volume repetition time: TR = 4,835 ms, partial
Fourier factor: 6/8, multiband factor (Setsompop et al., 2012):
3, total 4 × 66 EPI images with 60 diffusion weighted images
per shell using b-values of b = {1,000; 2,500} s mm−2, and 6
non-diffusion weighted (b = 0) images per shell interleaved
between the weighted acquisitions, 2×phase encoding polarities
(Anterior→ Posterior/Posterior→ Anterior).

The last 12 datasets (subjects 3–14) were recorded using
a twice-refocused spin-echo EPI sequence also supplied by
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the Center for Magnetic Resonance Research, University
of Minnesota (Reese et al., 2003). These datasets were
previously used by Ellerbrock andMohammadi (2018). Sequence
parameters: FoV: 224 × 224 × 138 mm3, 86 slices, 1.6 mm
isotropic resolution, TE = 122 ms, TR = 7,100 ms, parallel
imaging factor (Griswold et al., 2002): 2, partial Fourier factor:
7/8, multiband factor (Setsompop et al., 2012): 2, total 4 × 66
EPI images with 60 diffusion weighted images per shell using b-
values of b = {1,000; 2,000} s mm−2, and 6 interleaved b =
0 images per shell, 2 × phase encoding polarities (Anterior →
Posterior/Posterior→ Anterior).

For subjects 1 and 2, subject motion, eddy currents,
and susceptibility distortions were corrected for using the
ACID toolbox (http://www.diffusiontools.com/); for details see
Mohammadi et al. (2010), Mohammadi et al. (2015), Ruthotto
et al. (2012), and Ruthotto et al. (2013). The corrected data from
the two phase encoding directions were then summed for use in
subsequent analysis.

Subjects 3–14 were preprocessed by using the ACID toolbox
to perform the following four step procedure:

1. For each shell, the first b = 0 image with reversed phase
encoding was coregistered to the b = 0 image of the original
phase encoding direction, and the resulting transformation
was applied to all data with reversed phase encoding.

2. The data were then subjected to motion correction using
a multi-target registration approach similar to that in
Mohammadi et al. (2015). Eddy current distortion correction
was not performed because the acquisition protocol employed
parallel imaging and a twice-refocused spin echo scheme such
that these distortions were negligible.

3. The data were corrected for susceptibility distortion artifacts
by using the b = 0 images acquired with opposed phase
encoding directions to estimate the fieldmap, and then using
this fieldmap to unwarp all images (Ruthotto et al., 2012, 2013;
Macdonald and Ruthotto, 2016).

4. As a final step, the mean of the corrected data from the two
phase encoding directions was taken for use in subsequent
analysis.

2.4. Parameter Estimation and Comparison
Parameters were estimated only in WM voxels determined to
be largely unaffected by CSF or grey matter partial volume
effects. This determination was made by thresholding at 50%
probability a WM probability map obtained by segmenting the
first b = 0 image of each respective preprocessed dataset in
SPM12 (Wellcome Trust Centre for Neuroimaging, London,
UK).

The ACID toolbox was used to estimate FA, MD, and
the eigenvalues of the DT from the low b-value shell of
each dataset, and in-house SPM scripts were then used to
generate ν and τ using Equations (3) and (6), respectively,
from these DT parameters; we refer to these as the “NODDI-
DTI method” results. For subjects 1 and 2, the ACID toolbox
was also used to simultaneously estimate the diffusion and
kurtosis tensors (Mohammadi et al., 2015), giving silver standard
mean diffusivity estimates (MDDKI) less biased by the effects of

diffusional kurtosis (Veraart et al., 2011), allowing evaluation of
the validity of Equation (5).

The effect of noise on NODDI-DTI parameter estimates
was investigated using MATLAB (R2013a, MathWorks, Natick,
Mass., USA) simulations. Data S(ν, τ ) were simulated with
the NODDI toolbox v0.9 (http://www.nitrc.org/projects/noddi_
toolbox/) using the diffusion protocol of subjects 1 and 2 for
parameters typical of the corpus callosum (Jelescu et al., 2015):
ν = 0.5, τ = cos2(18◦) ≈ 0.9. The main fibre orientation
was taken to be along (0, 0, 1) t, where · t denotes the transpose
operation. Rician noise (Henkelman, 1985; Gudbjartsson and
Patz, 1995) was then added to the data such that the data
became S′(ν, τ ) =

∣

∣S(ν, τ )+ l+ im
∣

∣, where l and m were
each drawn from a Gaussian distribution of mean zero and
standard deviation 1/[5, 20, 40], and i is the imaginary unit.
Because the intensity of the simulated b = 0 signals was
unity, this choice of standard deviation gave a respective
signal to noise ratio (SNR) ≈ [5, 20, 40] for the b = 0
signals (Henkelman, 1985); these are typical SNR values for
data used in diffusion imaging experiments (Jones and Basser,
2004).

Parameters were estimated from the noise-corrupted
simulated data by linearly fitting a diffusion tensor to the log-
transformed first shell of data and then applying Equations (3)
and (6), and also by using the NODDI toolbox to fit the
NODDI-DTI model to both shells of data [converting the fitted
kappa to τ using Equation (1)]. In order to test whether the
NODDI-DTI method ν estimate could be improved by taking
into account the diffusional kurtosis bias explicitly, both shells
of data were also fit to log(S′(ν, τ )) = −bMD + b2C by solving
log(S′(ν, τ )) = (−b, b2)(MD,C) t using MATLAB’s backslash
function; this gave an MD estimate less biased by higher
order diffusion moments. Estimation of spherically averaged
diffusion parameters in such a manner has been reported
previously (Kaden et al., 2016; Novikov et al., 2016). This MD
estimate was converted to an estimate of ν using Equation (2).
The above procedure was repeated 1 × 103 times for each SNR
value, and the parameter estimations were also carried out for
the noiseless original data. Histograms were then plotted of the
parameter estimates from these repetitions in MATLAB (R2017a)
to allow analysis of the accuracy of the various methods in the
presence and absence of noise. Histogram widths were those
chosen by MATLAB’s histogram function for the SNR ≈ 5
NODDI-DTI method parameter estimates. Unphysical NODDI-
DTI method parameter estimates are given as percentages of the
total number of trials, and were not included when plotting the
histograms.

For each subject, NODDI-DTI silver-standard results were
obtained by fitting both shells of data using the NODDI
toolbox with CSF volume fraction fixed at zero, followed
by conversion of κ into τ using an in-house SPM script
implementing Equation (1). We refer to these results as the
“two-shell NODDI toolbox fitted” results, and they represent
a silver-standard because two shells of data are sufficient
to make inversion of multi-compartment signal models well-
posed (Taquet et al., 2015). We exclude the CSF compartment
in all cases in order to avoid the known overestimation
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FIGURE 1 | Log density Bland–Altman plots comparing MDDKI estimated via simultaneous fit of the kurtosis tensor and DT using both shells of data, and mean

diffusivity from a DT fit of the low-b-value shell without (MD, left) and with (MDh, right) heuristic diffusional kurtosis correction. Red lines show mean difference, blue

lines show ± two standard deviations of the difference (Bland and Altman, 1986). Simultaneous fit of the kurtosis tensor and DT was performed as per Mohammadi

et al. (2015). Differences are defined as MDDKI − (MD or MDh). Each row shows a different subject as labelled.

FIGURE 2 | Log density scatter plots comparing DTI invariants (estimated using only the low b-value shell of data) and NODDI toolbox fitted parameters (fitted using

both shells of data). Each row shows a different subject as labelled. Overlaid red lines in the first and second columns show values of ν for given values of MD and

MDh, respectively, estimated using Equation (2). The overlaid red lines in the third column show τ estimated using Equation (3) for given FA, with MD set to the mean

value in the WM of each subject.
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of CSF volume fraction in WM found when using the
NODDI model (Zhang et al., 2012; Cercignani and Bouyagoub,
2017).

In order to investigate the magnitude of the differences
between NODDI-DTI method- and the NODDI toolbox fitted-
results, for subjects 1 and 2 fits were also made using the
NODDI toolbox of the subset of the diffusion data used for the
DTI fitting. The designation “one-shell NODDI toolbox fitted”
distinguishes these results from the NODDI-DTI method- and
two-shell NODDI toolbox fitted-results. The NODDI toolbox
has been shown previously to give reasonable results fitting
single-shell data when the CSF compartment fraction is fixed at
zero (Magnollay et al., 2014).

Parameter estimate comparisons were quantified using means
and standard deviations of the differences, visualised using
Bland–Altman plots (Bland and Altman, 1986). Estimates of ν
and τ from Equations (3) and (6) which were unphysical (i.e., ν /∈
[0, 1], τ /∈ [1/3, 1]) were excluded from these statistical analyses.
For subjects 1 and 2, Bland–Altman plots were generated for each
dataset and parameter. Data from subjects 3–14 were combined
in one Bland–Altman plot in order to investigate the stability of
the differences over a larger group. The number of unphysical
parameter estimates is given as a percentage of the total number
of WM voxels for each subject.

Images of the mean difference between the NODDI-DTI
method- and the NODDI toolbox fitted-results were also

FIGURE 3 | Simulations demonstrating the effect of noise and diffusional kurtosis on NODDI-DTI parameter estimates. Different coloured histograms represent the

distribution of the results from repetitions of simulations with different SNR values as given in the legend. In addition, the red line labelled “exact” marks the ground

truth value and the dashed black line labelled “SNR = ∞” marks the noise-free result in each case. (A,B) were estimated by applying the NODDI-DTI method to the

simulated data. (C,D) were estimated by fitting the simulated data using the NODDI toolbox. (E) was estimated by estimating an MD value from the simulated data

that was, through explicit estimation of the diffusional kurtosis contribution, less biased by higher order moments, and then inserting this MD into Equation (2).
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generated in order to provide a compact visual representation
of the behaviour of the NODDI-DTI method in subjects 3–
14. In order to facilitate warping the data to a standard group
space, unphysical parameter estimates in the maps derived using
the NODDI-DTI method were replaced with the average from
the six closest voxels, excluding other unphysical parameter
estimates and voxels outside each subject’s WM mask. The
replacement process was iterated until there was no change in
the number of unphysical parameters; the remaining unphysical
estimates (representing unconnected voxels in the WM mask)
were arbitrarily replaced with 0 in ν maps and 1/3 in τ maps.
Using the SPM12 normalisation tool, the first b = 0 image of each
dataset was then used to generate transformations between the
diffusion data and the ICBM European standard template at an
isotropic resolution of 2 mm, which were subsequently applied to
the NODDI-DTI method- and the NODDI toolbox fitted-maps
to transform all maps into the standard group space. The mean
difference over the whole group was then computed voxelwise for
each parameter. Non-WM voxels were masked out for plotting
by requiring that the WM probability for a given voxel be greater

than 0.5 in the standard-space tissue probability mask provided
by SPM12.

3. RESULTS

The Bland–Altman plots in Figure 1 show that the heuristically
corrected MD, MDh, is less biased than the uncorrected MD.
The numerical values (mean ± one standard deviation) of the
differences in Figure 1 confirm this: for subject 1: 0.117 ±
0.040 (MD), 0.025 ± 0.046 (MDh); and for subject 2: 0.119 ±
0.041 (MD), 0.029 ± 0.041 (MDh). The effect of this bias on
NODDI-DTI estimates is evidenced in Figure 2, where the main
bulk of the MD values lies below the red line representing the
ν vs. MD prediction of Equation (2). The heuristically corrected
values estimated using Equation (5) showmuch better agreement
(Figure 2), implying that we are justified in using Equation (6)
to estimate ν. The effect of diffusional kurtosis is much less
pronounced for FA in Figure 2, as expected based upon Veraart
et al. (2011), implying that we are justified in using Equation (3)
to estimate τ .

FIGURE 4 | Comparison of maps of parameters estimated using the NODDI-DTI method and fitting two-shells using the NODDI toolbox for subjects 1 and 2. Voxels

where the NODDI-DTI method gave an unphysical parameter estimate are shown in blue. Windows are as per the limits of the colour scales beside each map, and the

slice number is given at the top left of the row for each subject to allow for cross-referencing with Figures 8, 9.
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Simulations allowed further insight into the behaviour of the
NODDI-DTI relations. Shown in Figure 3 are histograms of
parameter estimates from data simulated with typical corpus
callosum parameters. The ν estimated using Equation (6) showed
a bias (Figure 3A). Using an estimate of MD less biased by
higher order moments strongly reduced the bias in the ν

estimates (Figure 3E), implying that the ν bias in Figure 3A

is due to residual diffusional kurtosis effects. The inadequacy
of the heuristic diffusional correction for data generated using
typical corpus callosum parameters can be explained using
previous experimental observations: the corpus callosum is a
region of WM where mean diffusional kurtosis is greater than
unity (Jensen and Helpern, 2010; Lätt et al., 2013), in contrast
to the value of unity assumed in the derivation of Equation (5).
Estimates of ν from Equation (2) that did not make any
correction for diffusional kurtosis (data not shown) showed a
much greater bias, in line with the results shown in Figure 2.
At low SNR, the ν estimate from the two-shell fit became biased
(Figure 3C), likely because the second shell is strongly affected by
noise at low SNR (André et al., 2014). A similar bias can be seen in
the ν estimated in parallel with an estimate of diffusional kurtosis
(Figure 3E). In contrast, the ν estimated using Equation (6)
remained much more robust (Figure 3A). The estimate of τ

from Equation (3) showed little bias (Figure 3B), and again the
estimates were more robust to noise than for the two-shell fit
estimates (Figure 3D). Noise caused unphysical τ estimates when
using the NODDI-DTImethod: these constituted 1.2% of SNR ≈
20 estimates and 8.6% of SNR ≈ 5 estimates. There were no
unphysical ν estimates.

The similarity of parameters estimated using the NODDI-DTI
method to the silver standard results can be seen in Figure 4,
which shows parameter maps estimated with each method,
along with maps showing the differences between the parameter
estimates. Differences between the parameter estimates are
further presented in several complementary ways: Bland–Altman
plots in Figure 5 show general behaviour, plots of the means
and standard deviations of the differences in Figures 6, 7

compare this general behaviour across subjects, and the series
of slices in Figures 8, 9 show the behaviour of NODDI-DTI
method parameter estimates throughout the WM. The higher ν
differences observed in the corpus callosum of all subjects, and
at the base of the brain in subjects 3–14 are discussed in the next
section. Within protocol comparisons show the best agreement,
but all subjects behave similarly, demonstrating the robustness of
the NODDI-DTI method. The diagonal line visible to the right
of the ν Bland–Altman plot for subjects 3–14 in Figure 5 is due

FIGURE 5 | Log density Bland–Altman plots comparing NODDI-DTI-method and two-shell NODDI toolbox fitted results. Red lines show mean difference, blue lines

show ± two standard deviations of the difference (Bland and Altman, 1986). Differences are defined as (two-shell NODDI toolbox fitted parameter) − (NODDI-DTI

method parameter). Parameter differences for subjects 3–14 have been concatenated into one plot for each parameter. Numerical values of the means and standard

deviations of the differences for subjects 1 and 2 are given in Figure 6, and the means and standard deviations of the differences for subjects 3–14 are shown in

Figure 7. Axis ranges show bounds of means and differences in each case.
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FIGURE 6 | Plots of the mean differences between NODDI-DTI method and

two-shell NODDI toolbox fitted (×), and between one-shell NODDI toolbox

fitted (using the NODDI toolbox to fit the low b-value data) and two-shell

NODDI toolbox fitted (o) parameter estimates for subjects 1 and 2. Error bars

show ± one standard deviation of the differences. Differences are defined as

(two-shell NODDI toolbox fitted parameter)− (estimated parameter).

Numerical mean values are given beside each plotted point, and numerical

values for the standard deviations are given beside the upper error bar. The

dotted lines mark the line of zero bias in each plot.

to voxels where the ν estimate of the two-shell fit is estimated to
be unity while the NODDI-DTI method gives a more biologically
plausible value. The number of such voxels is low, and so they
only appear clearly in the combined plot from multiple subjects.

Equations (3) and (6) gave unphysical parameter estimates for
some voxels. For subjects 1 and 2 such unphysical ν estimates
constituted 2.07% and 2.19% of the total WM voxels respectively;
for τ such estimates constituted 0.27% and 0.74%. Subjects 3–14
showed more variation in terms of the numbers of failed voxels,
constituting 3.65%–13.39% of WM voxels for ν, and 0.07%–
0.37% of WM voxels for τ . Generally, then, the proportion of
unphysical parameter estimates was higher for ν than for τ , and
a strong variability in the proportion of failed voxels was evident
between the different subjects.

The magnitudes of the means and standard deviations of the
differences between the NODDI-DTI parameter estimated using
a single shell of data and the two-shell NODDI toolbox fits
are shown in Figure 6. One-shell NODDI toolbox fitting gave
stable fits in this case because the CSF compartment fraction was
fixed at zero (Magnollay et al., 2014). The NODDI-DTI method
showed smaller mean differences and one-shell NODDI toolbox
fitting showed smaller standard deviations of the differences.
Overall, however, both methods of parameter estimation were
comparable, further demonstrating the validity of the NODDI-
DTI method.

4. DISCUSSION

This work has demonstrated that, with caveats to be discussed
below, parameters of potential neurobiological relevance can be

estimated from DTI parameters in healthy white matter using
the NODDI-DTI relations, Equations (3) and (6). Correction
of the estimated DTI parameters for diffusional kurtosis
proved essential in relating these experimental parameters
quantitatively to the underlying biology. Importantly, the
improved interpretability gained through the NODDI-DTI
relations is not only applicable to future DTI studies, but also to
existing DTI studies.

As an example of the potential use of the NODDI-DTI
method in reinterpreting existing DTI studies, we apply the
method superficially to the study of Scholz et al. (2009), who
demonstrated a statistically significant FA increase in WM
“underlying the intraparietal sulcus” after participants learned to
juggle. Assuming no consistent concomitant change in MD (as
suggested by the authors not reporting any significant change),
this FA increase could be interpreted, using Equation (3), as an
increase in τ , i.e., an increase in alignment of neuronal axons
in this area with training. This result is much more specific
than a change in FA. We note, however, that confirmation of
this observation would require reanalysis of the original data,
especially since our assumption of no consistent concomitant
change in MDmay be unwarranted. A follow up study recording
multi-shell data, combined with proper mechanistic analysis of
the WM plasticity mechanisms, would allow investigation of this
effect in more detail.

Unfortunately, the NODDI-DTI method did not always
give physically plausible parameter estimates for the datasets
studied herein. We posit four overlapping explanations for these
unphysical estimates, related to NODDI-DTI assumptions.

Assumption 1: DTI parameters can be accurately estimated
from the diffusion signal. Errors in DTI parameter estimation
will lead to errors in parameters estimated using Equations (3)
and (6), potentially giving unphysical parameter estimates. The
b-values used likely resulted in overestimates of FA in regions
of high anisotropy due to poor estimates of the smallest DT
eigenvalue (Pierpaoli et al., 1996; Jones and Basser, 2004),
explaining why many of the unphysical τ estimates were found
in the highly anisotropic corpus callosum (Figure 9).

It should be noted that while noise can give rise to bias in the
estimated DTI parameters, and thus the estimated biophysical
parameters, Figure 3 demonstrates that in low SNR conditions
the reliance of the NODDI-DTI method on only the first shell
of data makes it more robust than two-shell based approaches.
As SNR varies across the WM of the brain in most practical
acquisitions, this implies that the differences observed relative
to the two-shell fit could, in some regions, be due to noise
adversely affecting the second shell of data, and so biasing the
parameters estimated using the NODDI toolbox two-shell fitting
procedure. This explains the greater ν differences for subjects 3–
14 (Figure 8): the smaller voxel size decreases SNR, causing
bias and increased variance in the NODDI toolbox-fitted and
NODDI-DTI method-estimated parameters. This effect is seen
to be especially prominent in the WM at the base of the brain,
where SNR is low due to the comparatively large distance from
the receiver coil elements (Wiggins et al., 2006) and the strong
influence of physiological noise sources (Brooks et al., 2013;
Sclocco et al., 2017).
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FIGURE 7 | Plots of the mean differences between NODDI-DTI method and two-shell NODDI toolbox fitted parameter estimates for subjects 3–14. Error bars show ±
one standard deviation of the differences. Differences are defined as (two-shell NODDI toolbox fitted parameter)− (NODDI-DTI method parameter). The blue dotted

lines show the mean difference over the whole group, and the red dotted lines show ± one standard deviation of the differences over the whole group. For ν the mean

difference over the group is 0.032 and the standard deviation of the difference is 0.056. For τ the mean difference over the group is −0.026 and the standard

deviation of the difference is 0.031.

Assumption 2: CSF can be ignored in voxels with a high
probability of being WM. NODDI-DTI could give unphysical
parameter estimates whenever a voxel contains a significant
amount of CSF: the high diffusivity of CSF (Zhang et al., 2012)
can take MDh outside the limits of NODDI-DTI (Equation 4).
Figures 8, 9 show that many of the voxels where NODDI-
DTI gave unphysical parameter estimates are close to the edge
of the WM mask, in line with partial volume effects being
important. Because CSF volume fraction was fixed at zero in our
NODDI toolbox fits, residual partial volume effects may also have
affected those parameter estimates. The variability in the number
of unphysical parameter estimates evidenced by the group of
subjects 3–14 likely reflects the variable success of our method
of thresholding for determining which voxels are WM voxels.

Assumption 3:MD can be heuristically corrected for diffusional
kurtosis bias. Figures 1–3 show that diffusional kurtosis affects
our estimates of MD; such effects could take MD estimates
out of the range of applicability for NODDI-DTI. While our
heuristic correction (Equation 5) substantially mitigates this issue
(Figure 2), it does not completely eliminate it (Figure 3). This is
evident in the ν Bland–Altman plots (Figure 5), where the mean
and standard deviation of the differences visibly vary with the
mean ν estimate, implying (via Equation 6) residual correlation
between the errors and the corrected MD.

Residual bias in the region around the corpus callosum
of the ν difference maps in Figure 8 can be explained by
incomplete diffusional kurtosis correction. Here, the mean
diffusional kurtosis is greater than unity (Jensen and Helpern,
2010; Lätt et al., 2013), and the low DT eigenvalues are poorly
estimated (see Assumption 1), meaning that the assumptions of
the heuristic correction are not met. Simulations using corpus
callosum-like ν and τ parameters showed that using a less-biased
estimate of the MD in Equation (2) could improve the ν estimate
substantially (Figure 3E).

Assumption 4: The NODDI-DTI signal model is a valid

representation of the diffusion signal. Several criticisms have
been levelled in the literature against assumptions made by the
NODDI model (Zhang et al., 2012). Because the NODDI-DTI
model inherits these assumptions, these criticisms also apply to
the NODDI-DTI model:

1. WM voxels containing perpendicularly crossing fibre bundles
cannot formally be represented (Jeurissen et al., 2013),

2. The tortuosity model constraining the extraneurite
diffusivity may be unrealistic (Jelescu et al., 2016; Kaden
et al., 2016), though swapping the NODDI tortuosity model
from Zhang et al. (2012) for that given by Kaden et al. (2016)
would engender no changes to Equations (2) and (3),
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FIGURE 8 | Absolute value maps of the difference between ν estimated by using the NODDI-DTI method and by fitting two-shells with the NODDI toolbox. For

subjects 3–14, the absolute value of the mean difference over the spatially normalised images in group space is shown. Slice numbers are given for each row (slice)

and column (subject). The extent of the colour scale at the top right shows the windowing for all slices. Blue denotes voxels where the NODDI-DTI method gave an

unphysical parameter estimate. Subjects 3–14 show no unphysical parameter estimates here because of the procedure followed to facilitate warping to standard

space (see section 2.4). As discussed in the main text, the larger differences visible in the corpus callosum are likely due to incomplete diffusional kurtosis correction,

and the larger differences at the base of the brain in subjects 3–14 are likely due to reduced SNR in this region.

3. The value of d, far from being constant as assumed
by NODDI-DTI, varies throughout the brain (Kaden
et al., 2016), and between the intra- and extra-neurite
compartments (Jelescu et al., 2016).

Unphysical parameter estimates are likely to arise when applying
the NODDI-DTI method to voxels where the NODDI-DTI

signal model is not a valid representation. Such failures are not
immediately apparent in the NODDI toolbox fitted parameters
because constraints in the fitting procedure mean parameters
outside the physical range can never be returned, regardless of
whether the model is biologically plausible for a given voxel.
Examples of biologically implausible parameter estimates being
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FIGURE 9 | Absolute value maps of the difference between τ estimated by using the NODDI-DTI method and by fitting two-shells with the NODDI toolbox. For

subjects 3–14, the absolute value of the mean difference over the spatially normalised images in group space is shown. Slice numbers are given for each row (slice)

and column (subject). The extent of the colour scale at the top right shows the windowing for all slices. Blue denotes voxels where the NODDI-DTI method gave an

unphysical parameter estimate. Subjects 3–14 show no unphysical parameter estimates here because of the procedure followed to facilitate warping to standard

space (see section 2.4).

returned by the fitting procedure are voxels estimated to have
ν ≈ 1, which give rise to the stripe evident in Figure 5 for the
combined data from subjects 3–14. It is beyond the scope of
this article to examine these problems in more depth; we simply
emphasise here that one must take stock of the assumptions of

a model before placing too much emphasis on interpreting the
results of applying it.

The greater number of unphysical NODDI-DTI method
parameter estimates for ν as compared to τ can be explained by ν
estimation being more sensitive to partial volume and diffusional
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kurtosis effects. This is borne out by the locations of the failures
(Figure 8): mainly either close to the edge of the WM mask
(implying partial volume effects), or in regions of high anisotropy
(implying residual diffusional kurtosis effects).

Pathology could further undermine the assumptions
underlying NODDI-DTI: pathological processes can lead to
free water located far from CSF compartments (Pasternak
et al., 2009), can affect mean kurtosis values (Guglielmetti et al.,
2016), and could affect the “true” value of d (Jelescu et al.,
2015). We thus recommend that NODDI-DTI not be applied
to non-healthy appearing WM without further adaptation and
validation. It should be noted that ageing can also lead to changes
in mean kurtosis (Falangola et al., 2008), implying a need to vary
the fixed value used for mean diffusional kurtosis in the heuristic
correction (see Appendix B) in order to apply this correction to
older subjects; this is the subject of future work.

In this work, the NODDI-DTI method was only applied to
WM. We refrained from applying the method to other brain
tissues, e.g., cortical grey matter, as recent research has suggested
that the underlying NODDI assumptions need to be modified for
different tissue types (Kaden et al., 2016). Further development
and validation is thus needed before applying NODDI-DTI in
brain tissue other than WM.

NODDI-DTI could be improved and made more appropriate
for clinical studies through investigation of the following
points. Unphysical parameter estimates could be pragmatically
eliminated by constraining DT fitting using Equations (4)
(appropriately corrected using Equation 5). The lack of a CSF
volume fraction could potentially be mitigated without requiring
extra data acquisition by incorporating the free water elimination
method (Pasternak et al., 2009; Metzler-Baddeley et al., 2012; van
Bruggen et al., 2013) into NODDI-DTI. Use of more stringent
thresholds for determining which voxels are classified as WM
and improved tissue segmentation procedures (Lorio et al., 2016)
could also limit the influence of partial volume effects. Known
values of mean diffusional kurtosis in WM (Jensen and Helpern,
2010; Lätt et al., 2013; André et al., 2014;Mohammadi et al., 2015)
could be used to construct mean diffusional kurtosis Bayesian
priors (Taquet et al., 2015; Alexander et al., 2017), or diffusional
kurtosis corrected MD and FA could be measured directly using
time-efficient methods (Hansen et al., 2016). Importantly, the
latter scheme also provides a mean diffusional kurtosis parameter
which could, in principle, allow the NODDI-DTI assumptions
to be relaxed by allowing estimation of a further biophysical
parameter, e.g., d (Kaden et al., 2016) or the CSF volume
fraction (Zhang et al., 2012).

We finish by providing practical recommendations for a
minimal NODDI-DTI acquisition scheme. Results at b =
1,000 s mm2 were reasonable, and so we would recommend
this as a lower b-value bound. An upper bound on b-value
comes from ensuring diffusional kurtosis does not constitute the
majority of the diffusion contrast. Equation B.3 in Appendix
B shows that [assuming the apparent diffusional kurtosis is
approximately unity (Jensen and Helpern, 2010; André et al.,
2014;Mohammadi et al., 2015)] choosing b≪6/d ≈ 3,500 smm2

means that the DT dominates diffusion contrast, giving an upper
b-value bound. High resolution acquisitions which maintain

sufficient SNR for estimation of DT parameters (Jones and
Basser, 2004) are recommended to reduce partial volume effects,
though decreases in voxel size should not come at the expense
of too much loss of SNR. Accurate DT estimation requires
measurement of at least 30 distinct diffusion directions (Jones,
2014); we recommend at least this number for application of
NODDI-DTI, although the lowest number of orientations tested
here was 60.

5. CONCLUSIONS

We have estimated biophysical parameters representing neurite
density and dispersion with reasonable accuracy from diffusion
tensor parameters estimated from single-shell diffusion data.
Heuristic kurtosis correction of MD was necessary to remove
diffusional kurtosis bias; use of corrections such as that derived
here could improve other analyses of single-shell diffusion data
requiring quantitative MD estimates.

NODDI-DTI potentially opens up two new opportunities:
(a) more specific neurobiological interpretation of observed
microstructural changes in DTI data (including interpretation of
existing datasets), and (b) simple and time efficient estimation
of biophysical parameters from smaller diffusion datasets,
despite limitations due to the underlying model and difficulties
estimating accurate diffusion tensors.
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