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Summary statement 

We combined genome-guided gene prediction and whole transcriptome assembly from RNA 

sequencing data to improve the chicken genome annotation. This method may be also 

applicable to other imperfectly annotated genomes. 
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Abstract 

The sequence of the chicken genome, like several other draft genome sequences, is presently 

not fully covered. Gaps, contigs assigned with low confidence and uncharacterized 

chromosomes result in gene fragmentation and imprecise gene annotation. Transcript 

abundance estimation from RNA sequencing (RNA-seq) data relies on read quality, library 

complexity and expression normalization. In addition, the quality of the genome sequence 

used to map sequencing reads and the gene annotation that defines gene features must also be 

taken into account. Partially covered genome sequence causes the loss of sequencing reads 

from the mapping step, while an inaccurate definition of gene features induces imprecise read 

counts from the assignment step. Both steps can significantly bias interpretation of RNA-seq 

data. Here, we describe a dual transcript-discovery approach combining a genome-guided 

gene prediction and a de novo transcriptome assembly. This dual approach enabled us to 

increase the assignment rate of RNA-seq data by nearly 20% as compared to when using only 

the chicken reference annotation, contributing therefore to a more accurate estimation of 

transcript abundance. More generally, this strategy could be applied to any organism with 

partial genome sequence and/or lacking a manually-curated reference annotation in order to 

improve the accuracy of gene expression studies.  
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Introduction 

Since its first release in 2004 and despite significant improvements over the last past decade, 

the Gallus gallus genome is presently incomplete and highly fragmented (Hillier et al., 2004). 

The chicken karyotype is composed of 38 autosomal chromosomes (1-38) and 2 additional 

sex chromosomes (W, Z) (Bloom et al., 1993). Out of these autosomal chromosomes, 10 are 

macrochromosomes (1-10), with lengths similar to those in mammals, and 28 are 

microchromosomes (11-38), with lengths ranging from 2 to 25 Mb (Hillier et al., 2004). 

Chicken microchromosomes display a high recombination rate, contain an elevated number 

of repetitive elements and are GC-rich, which induces significant bias and sequencing errors 

when using high-throughput technologies (Chen et al., 2013; Dohm et al., 2008). In addition, 

microchromosomes are gene dense and enriched in CpG islands, which is the result of short 

intronic sequences (McQueen et al., 1998; Smith et al., 2000). The fourth version of the 

Gallus gallus genome (galGal4) released in November 2011 has not fully overcome these 

issues. Out of the 40 chromosomes, 31 are sequenced (1-28, 32, W, Z) and contain more than 

9,000 gaps, while 9 chromosomes remain missing (29-31, 33-38). The genome is also 

composed of about 16,000 additional contigs that are not assigned to any chromosome or 

assigned with low confidence. In total, the galGal4 genome sequence has a size of 1.05 Gb. 

RNA sequencing (RNA-seq) data processing and results are highly dependent on the quality 

of the genome sequence and the associated gene annotation model. Read mapping is one of 

the critical steps that will further influence sample normalization, gene expression 

quantification and the identification of relevant genes. Gene expression profiles rely on the 

alignment of RNA-seq reads along the available reference genome or transcriptome, followed 

by their assignment to gene features. An incomplete genome sequence coupled with an 

inaccurate definition of gene features induce a bias in the gene expression quantification and 

transcript abundance estimation (Jiang and Wong, 2009; Trapnell et al., 2010). Whole 
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transcriptome sequencing offers valuable resources to detect novel genes and transcripts as 

well as to identify alternative splicing variants (Denoeud et al., 2008; Wang et al., 2008). 

Depending on the context, two main strategies are widely used to analyse RNA-seq data 

(Garber et al., 2011). One approach consists of the mapping of reads along the reference 

genome followed by gene prediction (Guttman et al., 2010; Trapnell et al., 2010; Yassour et 

al., 2009). This method can be combined with an existing reference annotation in order to 

detect new transcripts with respect to the provided gene annotation model (Roberts et al., 

2011). The second approach aims at reconstructing the whole transcriptome independently of 

the reference genome (Birol et al., 2009; Grabherr et al., 2011; Robertson et al., 2010). This 

method is particularly suitable to study models with partial or missing genome sequence. The 

choice between these approaches greatly depends on the biological question and whether a 

reference genome is available (Conesa et al., 2016). 

When analysing RNA-seq data obtained from chick embryonic limb cell cultures (so-called 

micromass cultures) by using the galGal4 reference genome and annotation, we observed that 

only 62.2% of sequencing read pairs were assigned to gene features, while 86.7% of the read 

pairs were mapped against the genome sequence. By comparison with the human genome, 

which has been nearly completely sequenced and accurately annotated, a similar analysis of 

RNA-seq data obtained from human blood samples depicted an assignment rate to gene 

features of 81.8% with a mapping rate of 92.3% (Zhao et al., 2015). We hypothesized that 

information was lost during the analysis of chick RNA-seq data: (i) at the mapping step, 

either due to low-quality sequencing reads, or due to missing genome sequence; and (ii) at 

the read assignment to gene features, which can be due to missing or partially annotated 

transcripts. To address both issues, we performed a dual transcript-discovery approach by 

means of genome-guided gene prediction and de novo transcriptome assembly. The approach 

described here enabled us to increase the assignment rate of RNA-seq data by nearly 20% as 
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compared to when using the chicken reference annotation, thus contributing to a more robust 

quantification of gene expression profiles. 

Results 

We performed RNA-seq of two independent biological replicates of chick micromass 

cultures infected for 5 days with empty RCAS-BP(A) replication-competent retroviral 

particles. 61.3 and 70.3 million of strand-specific read pairs were generated and mapped 

against the galGal4 version of the chicken genome by using TopHat2 (Kim et al., 2013) 

(Table 1). Read assignment was performed by using featureCounts (Liao et al., 2014) and a 

gene annotation model composed of 17,318 genes resulting from the combination of both 

UCSC and Ensembl reference annotations that were available at the time of analysis. 

Surprisingly, while 86.7% of read pairs were mapped against the chicken genome, only 

62.2% of read pairs were assigned to gene features (Table 1). Therefore, 28.3% of mapped 

read pairs were not counted, including 93.7% of these read pairs that were not overlapping 

with any gene feature (Table 1). Close investigation of these unassigned read pairs 

highlighted genes that seemed to be absent or partially covered by the UCSC and Ensembl 

reference annotations (Fig. 1A,B), as well as transcripts with missing or partial exon features 

(Fig. 1C). 

In order to improve the read assignment rate, we first performed a genome-guided transcript 

discovery by using Cufflinks (Trapnell et al., 2010). This approach was intended to determine 

more accurately exon-intron junctions, to correct or to complete existing annotated genes, 

and to identify unannotated gene candidates from the UCSC/Ensembl gene annotation model 

(Fig. 1D,E). Following this approach, 77.9% of the sequencing read pairs were assigned to 

gene features, corresponding to 89.8% of the read pairs that were mapped against the genome 

(Table 1). Therefore, the genome-guided transcript discovery enabled us to raise the read 
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assignment rate by 15.7% as compared to when using both UCSC and Ensembl reference 

annotations (Table 1). In contrast to genome-guided transcript prediction, de novo 

transcriptome reconstruction relies on overlaps between the sequencing reads to build 

consensus transcripts, independently of the genome sequence. We therefore applied a 

genome-independent strategy by using Trinity (Grabherr et al., 2011) in combination to the 

genome-guided approach in order to detect transcripts or regions that were not recovered 

from the genome sequence, such as those located within gaps or uncharacterized 

chromosomes (Fig. 1D,E). Reconstructed transcripts thus generated were then compared to 

the gene candidates obtained with the genome-guided approach in order to remove redundant 

sequences. Full-length transcripts or transcript regions of at least 400 bp that were not 

assigned to any gene candidate were extracted and grouped as an artificial chromosome. 

4.0% of read pairs were found to map against this additional chromosome and 90.2% of these 

mapped read pairs were assigned to gene features (Table 1). By considering both transcript-

discovery approaches, 90.7% of total read pairs were mapped against the galGal4 chicken 

genome (86.7%) and reconstructed chromosome (4.0%) (Table 1). 77.9% and 3.6% of read 

pairs were assigned to gene features from the genome-guided and de novo transcript-

discovery approaches, respectively (Fig. 2A, Table 1). Therefore, 81.5% of read pairs were 

assigned to gene features by using this newly established gene annotation model. Given that 

62.2% of sequencing read pairs were assigned to gene features by using both UCSC and 

Ensembl reference annotations, our transcript reconstruction model enabled us to assign 

19.3% more read pairs to gene features (Fig. 2A, Table 1). 

The genome-independent transcript assembly also enabled us to correct for gene 

fragmentation by gathering gene regions located on multiple chromosomes and contigs 

together (Fig. 1D,E). In contrast to genome-guided transcript discovery, de novo 

reconstruction of transcripts was not limited by the quality of the reference genome sequence. 
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By comparing transcripts generated from both reconstruction approaches, we were able to 

group dispersed gene features belonging to a same gene candidate together. Although 19,376 

(90.8%) gene candidates were found exclusively on a single chromosome or unplaced contig, 

1,971 (9.2%) gene candidates were identified as being fragmented (Fig. 2B). These 

fragmented gene candidates included 478 (2.2%) gene candidates that were located on 

multiple ordered chromosomes, 462 (2.2%) gene candidates split among multiple unplaced 

contigs, and 1,031 (4.8%) gene candidates with regions located on an ordered chromosome 

and additional unplaced contigs (Fig. 2B). 

Transcript prediction and reconstruction approaches did not provide any information on gene 

name and function. Therefore, gene candidates identified by the dual transcript-discovery 

approach were then annotated by database comparison and protein domain prediction (Fig. 

1E). Gene candidates were first compared to bird gene sequences, taking advantage of the 

recent increase of available genomic data within avian species and their high DNA sequence 

conservation (Dalloul et al., 2010; Huang et al., 2013; Jarvis et al., 2014; Schmid et al., 2015; 

Shapiro et al., 2013; Warren et al., 2010; Zhan et al., 2013; Zhang et al., 2014). Undefined 

gene candidates were then compared at the protein level to mouse and human databases. 

Finally, prediction of open reading frames (ORFs) and protein domains was performed on 

remaining unannotated gene candidates by using homology search against SwissProt and 

Pfam databases, and sequence analysis tools to identify transmembrane domains and signal 

peptides. Overall, the computed gene annotation model was mostly constituted of protein-

coding gene candidates (16,716, 78.3%) (Fig. 2C). However, 672 (3.1%) gene candidates 

were only partly annotated (putative proteins having at least one protein domain detected), 

while 1,410 (6.6%) gene candidates remained unannotated (uncharacterized proteins with no 

protein domain identified but an ORF of at least 100 amino acids). Remaining gene 

candidates corresponded to miscellaneous genes (213, 1.0%; such as spliceosome complex 
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members, ribosomal RNAs and pseudogenes) and non-coding RNAs (ncRNAs; 4,418, 

20.7%) for which no sufficient ORF could be predicted (Fig. 2C). 

The resulting gene annotation model was composed of 21,347 unique gene candidates, 

encompassing 5,989 additional gene candidates as compared to the UCSC and Ensembl 

reference annotations associated with the galGal4 genome version. We then compared our 

results with the most recent version of the chicken genome (galGal5), released in December 

2015, which includes 200 additional Mb, three previously missing chromosomes (30, 31, 33) 

and 23,400 unplaced contigs (Warren et al., 2017). Firstly, Strand-specific read pairs were 

mapped against the galGal5 genome version by using TopHat2 (Kim et al., 2013), and 

assigned to gene features by using featureCounts (Liao et al., 2014) according to a gene 

annotation model combining both UCSC and Ensembl annotations. This gene annotation 

model contained 6,280 additional genes as compared to the galGal4 UCSC/Ensembl 

annotations. Surprisingly, we did not observe any significant improvement of read pair 

mapping (+1.5%) and assignment (-0.9%) rates despite the increased genome size (Table 2). 

This indicated that when using galGal5, similar issues will be encountered as with galGal4. 

Indeed, a comparable number of reads pairs (25.5%) was not associated with any gene 

feature when mapped against galGal5 (Table 2). Secondly, we compared the predicted gene 

candidates from our annotation model to the RefSeq annotated galGal5 transcripts. We found 

that only 52.7% of gene candidates were covered by at least 50% of their total length by 

galGal5 reference genes (Table 3). In addition, 3,958 (18.5%) gene candidates were not 

detected at all in galGal5 reference genes (Table 3). 3,151 (79.6%) of these corresponded to 

gene candidates absent from galGal4 UCSC/Ensembl annotations. Lastly, we compared the 

gene names assigned to gene candidates with galGal5 reference genes that matched at least 

50% of their length. Out of the 15,358 gene candidates that were identified in the galGal4 

UCSC/Ensembl annotations, 74.1% had a concordant gene name, while 17.9% did not 
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significantly match any galGal5 reference gene (Table 4). Regarding the 5,989 additional 

gene candidates, most of these were not significantly detected among galGal5 reference 

genes (76.8%) or matched an undefined gene (12.7%) (Table 4). However, 223 (1.0%) gene 

candidates remaining partly annotated with the dual transcript-discovery approach could be 

successfully assigned (Table 4). 

Altogether, this dual transcript-discovery approach enabled us to define an annotation model 

of 21,347 gene candidates that includes additional genes as compared to the reference 

annotation of the chicken genome. Most importantly, it enabled us to retrieve 19.3% more 

information from the RNA-seq data. 

Discussion 

The work presented here describes a dual transcript-discovery approach combining genome-

guided gene prediction and de novo transcriptome reconstruction, which was applied to 

improve the assignment rate of RNA-seq data obtained from chicken samples. For the first 

approach, sequencing read pairs are mapped along the genome followed by a genome-

dependent transcript discovery, which computes read coverage and exon-intron junctions 

from gapped alignments, and distance between both reads of each pair. By contrast, the 

second approach is carried out independently of the reference genome. Sequencing reads are 

de novo assembled by relying on their overlaps to reconstruct full-length transcripts. 

Genome-guided transcript discovery is more sensitive than de novo transcript reconstruction, 

but requires a reference genome along which RNA-seq reads are mapped for gene prediction 

(Garber et al., 2011; Roberts et al., 2011). Therefore, the choice of the latter method is 

obvious when no or incomplete genome sequence is available. In the case of the chicken 

model with its partial and fragmented genome sequence, the choice of a complementary 

transcript-discovery approach, combining both genome-guided and -independent methods, 
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appears suitable to improve RNA-seq data quantification and analysis. While the genome-

guided approach contributes to correct existing annotated genes and to identify novel gene 

candidates, the de novo transcript reconstruction compensates for gene fragmentation by 

associating gene parts located on multiple chromosomes or contigs together; and it identifies 

gene regions or complete gene candidates that do not belong to the genome sequence due to 

the presence of gaps or uncharacterized fragments. The new annotation model is composed of 

21,347 gene candidates, accounting for 5,989 additional gene candidates as compared to the 

UCSC and Ensembl reference annotations associated with the galGal4 genome version. 1,971 

(9.2%) gene candidates have parts spread on multiple locations, while 3,340 (15.6%) gene 

candidates are identified among the 16,000 unplaced contigs that are not assigned to any 

ordered chromosome. In addition, the resulting gene annotation model increased the 

assignment rate of RNA-seq read pairs by 19.3% as compared to when using both galGal4 

reference annotations (UCSC and Ensembl), thus contributing to a more accurate estimation 

of transcript abundance. 

It is noteworthy to take into consideration that de novo assembly of short reads is prone to 

cause artefacts and to generate false chimeric transcripts (Yang and Smith, 2013). Such errors 

can be corrected for instance by comparing reconstructed transcripts with transcripts/proteins 

of the same organism, closely related organisms, or more accurately annotated organisms. In 

addition, transcriptome assemblers tend to create multiple transcript sequences per gene, 

which would cause reads to map at multiple locations and be subsequently ignored during 

read counting. Several programs have been developed in order to cluster transcript sequences 

into genes and to remove redundancy. TGICL (Pertea et al., 2003) and CD-HIT-EST (Fu et 

al., 2012), which were originally designed for clustering of expressed sequence tags (EST), 

can be used to create consensus gene sequences. However, since both programs perform their 

clustering based on all transcript sequences, paralogous genes may be erroneously merged. In 
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contrast, Corset (Davidson and Oshlack, 2014) identifies sequence similarity between 

transcripts by identifying multi-mapped reads resulting from re-mapping of reads against the 

reconstructed transcriptome. Although this program accurately clusters transcripts into genes, 

it falls short of building consensus genes from transcript sequences. To overcome these 

limitations, we applied a strategy that consists in a pairwise comparison of transcript 

sequences belonging to the same gene candidates followed by incremental concatenation of 

identical and unique transcript sequences to build full-length gene candidates. Very recently, 

a similar approach has been reported under the name of superTranscripts (Davidson et al., 

2017). We observed that 99.95% of consensus gene sequences generated by superTranscripts 

were identical to our results. However, we note that superTranscripts tends to remove 

sequences specific to a unique transcript that do not overlap with any other transcript 

sequences although being indicated as belonging to the same gene candidates. 

Approaches combining genome-dependent and -independent gene prediction have already 

been proposed before and reported to better recover the transcriptome of a given organism 

(Davidson et al., 2017; Jain et al., 2013; Visser et al., 2015). However, the approach 

presented here also includes a method to assign a putative name or function to the gene 

candidates resulting from gene prediction, which helps with the identification of relevant 

target genes in downstream analysis. The recent genome sequencing of the zebra finch 

(Warren et al., 2010), the turkey (Dalloul et al., 2010), the pigeon (Shapiro et al., 2013), the 

falcon (Zhan et al., 2013), the duck (Huang et al., 2013), and a wide range of additional avian 

species (Jarvis et al., 2014; Zhang et al., 2014) have provided extensive insights into 

evolutionary and adaptive traits within birds. DNA conservation of protein-coding genes 

among avian species considerably facilitated the annotation of the 21,347 gene candidates 

identified by the dual transcript-discovery approach. By combining DNA sequence 

comparison against avian genes with protein sequence comparison against mammal species 
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and protein domain prediction, 14,847 (69.6%) gene candidates could be assigned and 672 

(3.1%) putative protein-coding gene candidates could be identified. The 5,828 (27.3%) 

remaining gene candidates were divided between uncharacterized proteins and ncRNAs 

depending on the length of the predicted ORF. However, gene candidates encoding 

uncharacterized proteins could be also potentially non-coding since none of the protein 

domains investigated was detected within their putative ORF. On the other hand, ncRNAs 

remain challenging to annotate according to a recent study comparing an extensive repertoire 

of long multi-exonic ncRNAs across 11 tetrapods separated by up to 370 million years 

(Necsulea et al., 2014). Besides their overall weak conservation as compared to protein-

coding sequences, long ncRNAs display high tissue specificity and rapidly diverge through 

evolution, which renders their annotation difficult by comparing with other species. 

Since the first draft released in 2004, considerable efforts have been made to improve the 

Gallus gallus reference genome and its annotation (Hillier et al., 2004; Kuo et al., 2017; 

Schmid et al., 2015; Thomas et al., 2014; Warren et al., 2017). In December 2015, the fifth 

version of the chicken genome (galGal5) was released (Warren et al., 2017). As compared to 

the fourth version, this release is 200 Mb longer and includes three additional chromosomes 

(30, 31, 33) but remains highly fragmented. Indeed, this fifth version is still composed of 

15,400 unassigned contigs and 8,000 contigs assigned with low confidence, accounting for 

about 17% of the total genome size. While we found that some gene candidates still remain 

missing or partly annotated in this new release, our gene prediction is consistent with other 

comparisons identifying novel genes absent from galGal4 reference annotation but present in 

galGal5 reference annotation or other birds (Bornelöv et al., 2017; Hron et al., 2015; Lovell 

et al., 2014; Warren et al., 2017). Improvement of the chicken genome is an on-going project 

and a new version should be released within the next few years. It is reasonable to believe 

that continuing efforts will contribute to elucidate the full sequence of the chicken genome in 
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a near future. Until then, applying the dual transcript-discovery approach described here prior 

to the analysis of RNA-seq data per se enhances the sensitivity of gene expression profiles. 

This is particularly relevant considering that genes and splicing variants are specifically 

expressed in certain cell types or tissues, at different developmental stages and conditions 

within a single organism. For instance, we used the gene annotation model presented here as 

guide in a recent study, where we aimed at identifying genes that were regulated upon 

overexpression of connective tissue-associated transcription factors in chick micromass 

cultures (Orgeur et al., in preparation). More broadly, this approach could be also employed 

to analyse RNA-seq data of other organisms lacking manually-curated, high-quality reference 

annotation. 

Materials and methods 

A complete description of tools, command lines, parameters and database links used for this 

study is provided as Supplementary Methods. The gene annotation model and Python scripts 

are accessible via SourceForge: https://dualtranscriptdiscovery.sourceforge.io/. 

Chick embryos 

Fertilized chick eggs were obtained from VALO BioMedia (Lohmann Selected Leghorn 

strain, Osterholz-Scharmbeck, Germany). Chick embryos were staged according to the 

number of days in ovo at 37.5°C. 

Chick micromass cultures 

Two independent biological replicates of micromass cultures were prepared from limb buds 

of E4.5 chick embryos, infected with RCAS-BP(A) retroviruses carrying no recombinant 

protein and cultivated for 5 days as described previously (Solursh et al., 1978; Ibrahim et al., 

2013). Briefly, ectoderm was dissociated by using a Dispase solution (Gibco) at 3 mg/mL 

and limb mesenchyme was digested by using a solution composed of 0.1% Collagenase type 
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Ia (Sigma-Aldrich), 0.1% Trypsin (Gibco) and 5% FBS (Biochrom) in DPBS (Gibco). Prior 

to seeding, mesenchymal cells were mixed with retroviruses (1:1) and maintained in culture 

for 5 days at 37°C in DMEM/Ham’s F-12 (1:1) medium (Biochrom) supplemented with 10% 

FBS, 0.2% chicken serum (Sigma-Aldrich), 1% L-glutamine (Lonza) and 1% 

penicillin/streptomycin (Lonza). 

RNA sequencing 

For both replicates, RNA extracts were obtained by harvesting 6 micromass cultures with 

RLT buffer (Qiagen). Total RNAs were purified by using the RNeasy mini kit (Qiagen) in 

combination to a DNase I (Qiagen) treatment to prevent genomic DNA contamination. RNA 

libraries were prepared by using the TruSeq Stranded mRNA Library Preparation kit 

(Illumina), which enables to preserve the RNA strand orientation. Strand-specific 50-bp 

paired-end reads were generated by using a HiSeq 2500 sequencer (Illumina) with a mean 

insert size of 150 bp. 

Genome-guided transcript discovery 

RNA-seq data obtained from both biological replicates of micromass cultures were processed 

independently. Strand-specific read pairs were mapped against the chicken genome galGal4 

(Hillier et al., 2004) by using TopHat2 v0.14 (Kim et al., 2013) (parameters: -r 150; -N 3; --

read-edit-dist 3; --library-type fr-firststrand; -i 50; -G). UCSC (galGal4) and Ensembl 

(release 75) annotations were downloaded from Illumina iGenomes 

(http://support.illumina.com/sequencing/sequencing_software/igenome.html) and compared 

by using Cuffcompare from the Cufflinks suite v2.1.1 (Trapnell et al., 2010). Identical genes 

were retrieved only once and merged with the unique genes from each annotation. In case of 

discordant genes, the gene annotation with the best coverage was selected. The resulting gene 

annotation model composed of 17,318 genes was used as input for TopHat2 mapping. 
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Transcript discovery was performed for each replicate by using Cufflinks v2.1.1 (Trapnell et 

al., 2010) (parameters: -b; -u; -library-type, fr-firststrand; -g) and the combined gene 

annotation model as guide. Resulting annotations were merged into a single model by using 

the Cufflinks tool Cuffmerge v2.1.1 (Trapnell et al., 2010). 

De novo transcript discovery 

A second transcript-discovery approach was led independently of the genome sequence. 

Low-quality RNA-seq reads from each replicate of micromass cultures were first filtered out 

by using the FASTX-Toolkit v0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/). Reads with a 

median quality value lower than 28 were discarded. Filtered read pairs were then trimmed by 

using Trimmomatic v0.32 (Bolger et al., 2014) (parameters: ILLUMINACLIP TruSeq3 

paired-end for HiSeq, seedMismatches 2, palindromeClipThreshold 30, simpleClipThreshold 

10; LEADING 5; TRAILING 5; MINLEN 36). Complete read pairs were then assembled by 

using Trinity r20140717 (Grabherr et al., 2011) (default parameters except for the strand-

specific library orientation set at RF). 

Gene fragmentation correction 

Contigs resulting from the de novo assembly were compared to the gene candidate sequences 

obtained by the first approach by using BLASTN from BLAST+ v2.2.31+ (Camacho et al., 

2009) (parameters: -strand plus; -dust no; -soft_masking no). Contigs were assigned to a 

given gene candidate if they matched at least 40 bp that were not covered by a previous hit 

with a percentage of identities higher than 90%. Assigned contigs that were not fully covered 

by a given gene candidate were further processed to extract continuous uncovered regions of 

at least 400 bp. Remaining contigs were mapped against the galGal4 genome by using 

BLASTN (parameters: -perc_identity 90; -dust no; -soft_masking no). Contigs were assigned 

to a given gene candidate if they were located between two gene features, potentially 
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corresponding to an exon missed by Cufflinks, or in the vicinity of a first or last exon, 

potentially corresponding to a missing 5’- or 3’-untranslated region (UTR), respectively. 

Remaining unmapped contigs were retrieved as they could correspond to non-defined 

genomic regions. Unmapped, unassigned and non-covered contigs or regions of at least 400 

bp were further processed to remove redundant sequences between multiple isoforms. This 

step was necessary to prevent read pairs to be mapped on multiple gene features and to be 

consequently discarded during fragment counting. Isoforms belonging to the same gene 

candidates defined by Trinity were compared to the longest isoforms by using BLASTN 

(parameters: -perc_identity 90; -strand plus; -dust no; -soft_masking no; -ungapped). 

Sequence alignments were then examined to build consensus gene sequences by merging 

identical sequences between two isoforms and by adding sequences unique to each isoform. 

Pairwise sequence comparison was performed until all isoforms of the same gene candidates 

were processed and concatenated. Resulting contig sequences were gathered together as an 

artificial chromosome and separated to each other by 250 bp of nucleotides N, corresponding 

to the total length of read pairs (50 bp for each read and 150 bp as insert size). 

Functional annotation 

Gene candidate sequences retrieved from both transcript-discovery approaches were then 

compared to existing databases for gene name assignment. First, gene candidates were 

compared to the NCBI RefSeq transcript database by using BLASTN (parameters: -strand 

plus; -dust no; -soft_masking no). Comparison was limited to Aves (birds) sequences (taxid 

8782). Gene candidates with a percentage of identities higher than 90% for chicken genes or 

75% for bird genes, and bidirectionaly covered on at least 50% of their length were assigned 

to the corresponding hits. Gene candidates matching several discordant gene names, such as 

chimeric and fused gene candidates, were manually investigated and corrected. Non-

annotated gene candidate sequences were then compared to the NCBI human (taxid 9606) 
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and mouse (taxid 10090) non-redundant protein database by using BLASTX from BLAST+ 

v2.2.31+ (Camacho et al., 2009) (parameters: -strand, plus; -seg, no). Gene candidates with a 

percentage of homology of at least 30% and covered by at least 50% of their length were 

filtered. Matching protein accession numbers were converted into gene accession numbers by 

using the Hyperlink Management System (Imanishi and Nakaoka, 2009). ORF prediction was 

finally performed on remaining gene candidates by using TransDecoder v2.1.0 (Haas et al., 

2013) (strand specificity parameter: -S). ORFs of at least 100 amino acids were annotated by 

using Trinotate v3.0.1 (https://trinotate.github.io/). Functional annotation was based on the 

following protein predictions: (i) BLASTX and BLASTP homology search against the 

SwissProt database (Bairoch et al., 2004); (ii) protein domain prediction against the Pfam 

database (Punta et al., 2012) by using HMMER v3.1b2 (Finn et al., 2011); (iii) signal peptide 

prediction by using SignalP v4.1 (Petersen et al., 2011); and (iv) transmembrane domain 

prediction by using tmHMM v2.0c (Krogh et al., 2001). Resulting functional annotation was 

divided into three categories: (i) putative proteins, for which at least one protein domain 

could be identified; (ii) uncharacterized proteins, corresponding to ORFs for which no protein 

domain could be identified; and (iii) ncRNAs, corresponding to genes with an ORF shorter 

than 100 amino acids. 

Comparison with galGal5 

UCSC (galGal5) and Ensembl (release 89) reference annotations associated with the galGal5 

genome version were downloaded from the UCSC browser and merged by using the 

Cufflinks tool Cuffmerge v2.1.1 (Trapnell et al., 2010). RNA-seq strand-specific read pairs 

were mapped against the chicken genome galGal5 (Warren et al., 2017) by using TopHat2 

v0.14 (Kim et al., 2013) (parameters: -r 150; -N 3; --read-edit-dist 3; --library-type fr-

firststrand; -i 50; -G) and the merged reference annotations as guide. Sequences of annotated 

galGal5 transcripts were retrieved from the RefSeq database 
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(ftp://ftp.ncbi.nih.gov/genomes/Gallus_gallus/RNA/) and compared to the predicted gene 

candidates by using BLASTN (parameters: -perc_identity 90; -strand plus; -dust no; -

soft_masking no). On one hand, the total length coverage of predicted gene candidates was 

assessed by identifying all regions matching with galGal5 gene sequences. On the other hand, 

gene name assignment between predicted gene candidates and annotated galGal5 genes was 

compared by retrieving only the hits that matched at least 50% of their length. 

Fragment counting 

Strand-specific read pairs mapped against the chicken genome and the artificial chromosome 

generated from the de novo transcript discovery were first split by strand by using SAMtools 

v1.2 (Li et al., 2009) according to their FLAG field (strand plus: -f 128 -F 16, -f 80; strand 

minus: -f 144, -f 64 -F 16). Fragments (both reads of a pair) mapped on gene features were 

counted by using featureCounts v1.4.6-p3 (Liao et al., 2014) (parameters: -p; -s 2; --

ignoreDup; -B; -R). Chimeric fragments aligned on different chromosomes were taken into 

consideration to overcome the gene fragmentation due to the location of gene parts on 

multiple chromosome contigs.  
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Tables 

Table 1. RNA-seq read pair assignment. 

  
RCAS-BP(A) 

genome 
Chicken reference genome (galGal4) De novo assembly (Trinity) Total gain 

of read 

assignment 

  

Sample Read pairs Mapped pairs Mapped pairs 
Assigned pairs 

[UCSC/Ensembl] 

Assigned pairs 

[Cufflinks] 

Gain of 

assigned pairs 
Mapped pairs Assigned pairs 

  

Rep1 61.3 M 1.7 M 53.1 M 38.0 M 47.6 M +9.6 M 2.4 M 2.2 M +11.8 M   

   
Mapped pairs with 

no gene feature 
14.2 M 4.6 M       

Rep2 70.3 M 2.1 M 61.0 M 43.9 M 55.0 M +11.1 M 2.9 M 2.6 M +13.7 M   

   
Mapped pairs with 

no gene feature 
16.0 M 5.0 M       

Average (Rep1/2) 2.9% 86.7% 62.2% 77.9% +15.7% 4.0% 3.6% +19.3% total pairs 

  Assigned mapped pairs 71.7% 89.8%   90.2%   total 

mapped 

pairs 

  Unassigned mapped pairs 28.3% 10.2%   9.8%   

  Mapped pairs with no gene feature 26.5% 8.4%      

Abbreviation: M, million of read pairs.  
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Table 2. RNA-seq read pair assignment against galGal5. 

  Reference genome (galGal5) Reference annotations (UCSC/Ensembl)   

Sample Read pairs Mapped reads 
As compared 

to galGal4 
 Assigned pairs 

As compared 

to galGal4 
  

Rep1 61.3 M 53.9 M +0.8 M  37.3 M -0.6 M   

    
Mapped pairs with 

no gene feature 
13.9 M -0.3 M   

Rep2 70.3 M 62.2 M +1.2 M  43.4 M -0.5 M   

    
Mapped pairs with 

no gene feature 
15.6 M -0.4 M   

Average (Rep1/2) 88.2% +1.5%  61.3% -0.9% total pairs 

   Assigned mapped pairs 69.5% -2.2%  total 

mapped 

pairs 

   Unassigned mapped pairs 30.5% +2.2%  

   Mapped pairs with no gene feature 25.5% -1.0%  

Abbreviation: M, million of read pairs. 
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Table 3. Length coverage of gene candidates as compared to galGal5 reference genes. 

Length coverage 
Number of gene 

candidates 

Cumulative 

number 

Cumulative 

percentage 

100% 3,620 3,620 17.0% 

 75% and < 100% 4,822 8,442 39.5% 

 50% and < 75% 2,801 11,243 52.7% 

 25% and 50% 3,282 14,525 68.0% 

> 0% and < 25% 2,864 17,389 81.5% 

0% 3,958 21,347 100% 

 

 

 

 

Table 4. Comparison of galGal4 gene candidates to galGal5 reference genes. 

Gene candidates Number Percentage 

galGal4 reference genes 15,358  

 - concordant assignment 11,384 74.1% 

 - concordant and undefined assignments a 368 2.4% 

 - partly annotated with assignment b 41 0.3% 

 - assigned with different gene symbol 126 0.8% 

 - undefined assignment c 441 2.9% 

 - discordant assignment d 244 1.6% 

 - without assignment 2,754 17.9% 

galGal4 additional genes 5,989  

 - concordant assignment 376 6.3% 

 - concordant and undefined assignment a 29 0.5% 

 - partly annotated with assignment b 182 3.0% 

 - assigned with different gene symbol 28 0.5% 

 - undefined assignment c 760 12.7% 

 - discordant assignment d 16 0.3% 

 - without assignment 4,598 76.8% 

a Gene candidates matching a correct gene and one or several undefined genes (LOC, ORF). 

b Gene candidates resulting from ORF and protein domain prediction. 

c Gene candidates matching one or several undefined genes (LOC, ORF). 

d Includes highly repeated genes such as those encoding histone proteins and myosin heavy chains.  
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Figures 

 

 

 

Fig. 1. Dual transcript-discovery approach. (A) Region surrounding the genes RABEP1 

and HSD3B7 on chromosome 19. RNA-seq signal on strand plus (green), which does not 

overlap any gene from UCSC and Ensembl reference annotations, corresponds to the gene 

COL26A1. (B) RNA-seq signal (orange) on strand minus of an uncharacterized contig 

delimitating 3 exons of the gene FLNA. (C) Region of the gene WNT11 on chromosome 1. As 

visible from the RNA-seq signal on strand plus (green), both UCSC and Ensembl reference 

annotations lack an exon of the 5’-UTR and display a shorter 3’-UTR. (D) The dual 

transcript-discovery approach combined a genome-guided gene prediction with a de novo 

transcriptome reconstruction. This dual approach enabled us to correct for gene fragmentation 

B
io

lo
gy

 O
pe

n 
• 

A
cc

ep
te

d 
m

an
us

cr
ip

t

 by guest on January 9, 2018http://bio.biologists.org/Downloaded from 

http://bio.biologists.org/


 

(orange), to identify missing gene candidates (red) and to adjust existing annotated genes 

(green), thus improving the assignment rate of RNA-seq read pairs. (E) Workflow to design 

the comprehensive gene annotation model. 
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Fig. 2. Characteristics of the new gene annotation model. (A) The dual transcript-

discovery approach combining genome-guided gene prediction (light green) and de novo 

transcriptome reconstruction (dark green) raised the read-pair assignment rate by 19.3% as 

compared to when using the UCSC and Ensembl reference annotations (red). The proportion 

of read pairs coming from the RCAS-BP(A) replication competent retroviruses is depicted in 

black. (B) Proportion of gene locations on chromosomes and contigs of the chicken reference 

genome galGal4. 9.2% of identified gene candidates are fragmented due to their location on 

multiple chromosomes and contigs. (C) Proportion of annotated gene biotypes. Most of the 

annotated gene candidates potentially encode proteins (78.3%). Putative proteins correspond 

to gene candidates for which at least one protein domain could be detected (3.1%). 

Uncharacterized proteins are gene candidates with an ORF of at least 100 amino acids without 

protein domain identified (6.6%). Gene candidates with no sufficient predicted ORF (less 

than 100 amino acids) are classified as non-coding RNAs (20.7%). Gene candidates encoding 

spliceosome complex members and ribosomal RNAs, as well as pseudogenes are classified as 

miscellaneous genes (1.0%). 
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A	dual	transcript-discovery	approach	to	improve	the	delimitation	of	gene	features	

from	RNA-seq	data	in	the	chicken	model:	Supplementary	Methods	

1)	Requirements:	

§ TopHat2	v0.14	
§ Cufflinks	v2.1.1	
§ FASTX-toolkit	v0.0.13	
§ Trimmomatic	v0.32	

§ Trinity	r20140717	
§ BLAST+	v2.2.31+	
§ BEDtools	v2.24.0	
§ TransDecoder	v2.1.0	

§ HMMER	v3.1b2	
§ SignalP	v4.1	
§ tmHMM	v2.0c	
§ Trinotate	v3.0.1	

§ Python	v2.7	(scripts	are	available	at:	https://dualtranscriptdiscovery.sourceforge.io/)	

2)	Datasets:	

Strand-specific	paired-end	reads	(length	of	50	bp,	mean	insert	size	of	150	bp)	were	generated	by	
using	a	HiSeq	2500	sequencer	(Illumina).	Datasets	used	for	this	study	are	available	at:	
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2685833	
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2685834	
The	reference	sequence	of	the	chicken	galGal4	genome	can	be	downloaded	from	the	UCSC	browser	
via	the	following	link:	http://hgdownload.soe.ucsc.edu/goldenPath/galGal4/bigZips/galGal4.fa.gz.	
Length	of	each	chromosome	and	contig	associated	with	the	chicken	gaGal4	genome	are	available	
at:	http://hgdownload.soe.ucsc.edu/goldenPath/galGal4/bigZips/galGal4.chrom.sizes.	
Ensembl	and	UCSC	gene	annotation	models	related	to	galGal4	are	accessible	via	Illumina	iGenomes:	
https://support.illumina.com/sequencing/sequencing_software/igenome.html.	

3)	Genome-guided	transcript	discovery:	

3.1)	Read	mapping:	TopHat2	
With	a	reference	gene	annotation	model	
$ tophat -r 150 -N 3 --read-edit-dist 3 --library-type fr-firststrand -i 50 \ 

-G genes.gtf genome reads_R1.fq.gz reads_R2.fq.gz 
Without	a	reference	gene	annotation	model	
$ tophat -r 150 -N 3 --read-edit-dist 3 --library-type fr-firststrand -i 50 \ 

genome reads_R1.fq.gz reads_R2.fq.gz 

3.2)	Gene	prediction:	Cufflinks	
With	a	reference	gene	annotation	model	
$ cufflinks -b genome.fa -u -library-type fr-firststrand -g genes.gtf \ 

accepted_hits.bam 
Without	a	reference	gene	annotation	model	
$ cufflinks -b genome.fa -u -library-type fr-firststrand accepted_hits.bam 

3.3)	Merge	gene	annotation	models:	Cuffmerge	
Create	a	file	listing	the	name	of	the	gene	annotation	models	generated	for	each	replicate	
./transcripts_Rep1.gtf 
./transcripts_Rep2.gtf 

Biology Open (2017): doi:10.1242/bio.028498: Supplementary information
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Create	a	single	gene	annotation	model	
$ cuffmerge list_models.txt 

4)	De	novo	transcript	discovery:	

4.1)	Merge	reads	from	both	replicates	
$ cat reads_R1_Rep1.fq reads_R1_Rep2.fq > reads_R1.fq 
$ cat reads_R2_Rep1.fq reads_R2_Rep2.fq > reads_R2.fq 

4.2)	Filter	reads	by	quality:	FASTX-Toolkit	
$ fastq_quality_filter -q 28 -p 50 -i reads_R1.fq -o reads_R1.filtered.fq 
$ fastq_quality_filter -q 28 -p 50 -i reads_R2.fq -o reads_R2.filtered.fq 

4.3)	Trim	reads	by	quality:	Trimmomatic	
$ java -jar trimmomatic-0.32.jar PE reads_R1.filtered.fq reads_R2.filtered. \ 
 reads_R1.trimmed.fq reads_R1.unpaired.fq \ 

reads_R2.trimmed.fq reads_R2.unpaired.fq \ 
ILLUMINACLIP:TruSeq3-PE:2:30:10 LEADING:5 TRAILING:5 MINLEN:36 

4.4)	De	novo	assembly:	Trinity	
$ $TRINITY_HOME/Trinity.pl --seqType fq --JM 10G --SS_lib_type RF \ 

--left reads_R1.trimmed.fq --right reads_R2.trimmed.fq 

5)	Gene	fragmentation	correction	

5.1)	Retrieve	transcript	sequences	
Upload	 the	 gene	 annotation	 model	 “merged.gtf”	 resulting	 from	 the	 genome-guided	 transcript	
discovery	on	the	UCSC	browser.	Transcript	sequences	can	be	retrieved	by	using	the	Table	Browser	
tool.	

5.2)	Create	a	BLAST	database:	BLAST+	
$ makeblastdb -in transcripts.fa -dbtype nucl 

5.3)	Compare	Trinity	contigs	to	transcripts:	BLAST+	
$ blastn -query contigs.fa -db transcripts.fa -perc_identity 90 \ 

-strand plus -dust no -soft_masking no -outfmt "7 std qlen slen sstrand" \ 
-out contigs_vs_transcripts.blastn 

5.4)	Convert	transcript	IDs	into	gene	IDs	in	the	BLAST	output	file:	Python	script	
$ python convert_tids_into_gids.py \ 

merged.gtf contigs_vs_transcripts.blastn contigs_vs_genes.blastn 

5.5)	Assign	Trinity	contigs	to	genes:	Python	script	
The	minimum	number	 of	 overlapping	 base	 pairs	 not	 covered	 from	previous	 hits	 can	 be	 fixed	 by	
adjusting	the	parameter	“t_aln_length=40”.	
$ python assign_contigs_to_genes.py \ 

contigs_vs_genes.blastn 40 \ 
assigned_contigs.txt 

Biology Open (2017): doi:10.1242/bio.028498: Supplementary information
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5.6)	Extract	unassigned	Trinity	contigs:	Python	script	
$ python extract_unassigned_contigs.py \ 

contigs.fa assigned_contigs.txt unassigned_contigs.fa 

5.7)	Create	a	BLAST	database:	BLAST+	
$ makeblastdb -in genome.fa -dbtype nucl 

5.8)	Compare	unassigned	Trinity	contigs	to	genome:	BLAST+	
$ blastn -query unassigned_contigs.fa -db genome.fa -perc_identity 90 \ 

-dust no -soft_masking no -outfmt "7 std qlen slen sstrand" \ 
-out unassigned_contigs_vs_genome.blastn 

5.9)	Filter	hits	based	on	cumulative	alignment	length:	Python	script	
The	minimum	number	 of	 overlapping	 base	 pairs	 not	 covered	 from	previous	 hits	 can	 be	 fixed	 by	
adjusting	 the	 parameter	 “t_aln_length=40”.	 The	 minimum	 percentage	 of	 cumulative	 alignment	
length	can	be	fixed	by	adjusting	the	parameter	“p_cumul_length=50”.	
$ python parse_blast_hits_genome.py \ 

unassigned_contigs_vs_genome.blastn 40 50 \ 
unassigned_contigs_vs_genome.blastn.txt 

5.10)	Extract	genome	coordinates	from	filtered	hits:	Python	script	
$ python extract_genome_coordinates.py \ 

unassigned_contigs_vs_genome.blastn.txt \ 
unassigned_contigs_vs_genome.blastn.bed 

5.11)	Sort	genome	coordinates:	sort	
$ sort -k1,1 -k2,2n unassigned_contigs_vs_genome.blastn.bed \ 

> unassigned_contigs_vs_genome.blastn.sort.bed 

5.12)	Extract	gene	coordinates:	Python	script	
$ python extract_gene_coordinates.py \ 

merged.gtf genes.bed 

5.13)	Extend	gene	boundaries	by	1000	bp:	BEDtools	
$ bedtools slop -i genes.bed -g galGal4.chrom.sizes -b 1000 \ 

> genes.extended.bed 

5.14)	Sort	gene	coordinates:	sort	
$ sort -k1,1 -k2,2n genes.extended.bed > genes.extended.sort.bed 

5.15)	Compare	unassigned	Trinity	contigs	to	genes:	BEDtools	
$ bedtools intersect -a unassigned_contigs_vs_genome.blastn.sort.bed \ 

-b genes.extended.bed -wo -s > unassigned_contigs_vs_genes.bed 

5.16)	Assign	Trinity	contigs	to	genes:	Python	script	
$ python assign_unassigned_contigs_to_genes.py \ 

unassigned_contigs_vs_genes.bed \ 
unassigned_contigs.txt 

5.17)	Extract	unmapped	Trinity	contigs:	Python	script	
$ python extract_unmapped_contigs.py \ 

contigs.fa assigned_contigs.txt unassigned_contigs.txt \ 
unmapped_contigs.txt 

Biology Open (2017): doi:10.1242/bio.028498: Supplementary information
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5.18)	Select	regions	of	assigned,	unassigned	and	unmapped	Trinity	contigs:	Python	script	
The	minimum	number	of	continuous	base	pairs	not	covered	can	be	fixed	by	adjusting	the	parameter	
“min_length=400”.	
$ python select_contig_regions.py \ 

contigs.fa assigned_contigs.txt \ 
unassigned_contigs.txt unmapped_contigs.txt 400 \ 
contig_regions.fa 

6)	Remove	redundant	sequences	from	selected	Trinity	contigs	

6.1)	Extract	Trinity	contigs	with	multiple	isoforms:	Python	script	
$ python extract_gene_isoforms.py \ 

contig_regions.fa \ 
contigs_with_single_isoform.fa \ 
contigs_with_multiple_isoforms.fa 

6.2)	Extract	longest	isoforms:	Python	script	
$ python extract_longest_isoforms.py \ 

contigs_with_multiple_isoforms.fa \ 
0_contigs_longest_isoforms.fa \ 
0_contigs_longest_isoforms.index 

6.3)	Create	a	BLAST	database:	BLAST+	
$ makeblastdb -in 0_contigs_longest_isoforms.fa -dbtype nucl 

6.4)	Compare	Trinity	contigs	with	multiple	isoforms	to	longest	isoforms:	BLAST+	
$ blastn -query contigs_with_multiple_isoforms.fa \ 

-db 0_contigs_longest_isoforms.fa \ 
-perc_identity 90 -strand plus -dust no -soft_masking no -ungapped \ 
-outfmt "7 std qlen slen sstrand" \ 
-out 0_contigs_with_multiple_isoforms_vs_longest_isoforms.blastn 

6.5)	Parse	BLAST	hits	to	build	contig	scaffolds:	Python	script	
$ python build_scaffolds.py \ 

0_contigs_longest_isoforms.index \ 
0_contigs_with_multiple_isoforms_vs_longest_isoforms.blastn \ 
0_contigs_longest_isoforms.scaffolds 

6.6)	Build	contig	sequences	based	on	scaffolds:	Python	script	
$ python build_consensus_sequences.py \ 

contigs_with_multiple_isoforms.fa \ 
0_contigs_longest_isoforms.scaffolds \ 
0_contigs_longest_isoforms.fa 0_contigs_longest_isoforms.index \ 
1_contigs_longest_isoforms.fa 1_contigs_longest_isoforms.index 

6.7)	Incremental	Trinity	contig	concatenation:	Python	script		
The	four	previous	steps	are	executed	to	include	sequences	that	were	not	processed	before	until	all	
contig	sequences	are	concatenated.	
$ python concatenate_gene_sequences.py \ 

contigs_with_multiple_isoforms.fa \ 
contigs_with_multiple_isoforms_vs_longest_isoforms.blastn \ 
contigs_longest_isoforms 

Biology Open (2017): doi:10.1242/bio.028498: Supplementary information
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7)	Functional	annotation:	birds	

7.1)	Download	the	latest	release	of	the	NCBI	nucleotide	sequence	database	
$ wget ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz 

7.2)	Retrieve	taxonomy	data	to	build	the	custom	database	
Download	taxonomy	IDs	related	to	the	class	Aves	(birds,	taxid	8782):	
https://www.ncbi.nlm.nih.gov/taxonomy/?term=txid8782[Subtree].	
Download	taxid	mapping	for	nucleotide	sequence	records:	
ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/nucl_gb.accession2taxid.gz.	
Download	taxonomy	information	for	the	database:	
ftp://ftp.ncbi.nlm.nih.gov/blast/db/taxdb.tar.gz.	

7.3)	Create	taxid	map	of	Birds	accession	IDs:	Python	script	
$ python create_taxid_map.py \ 

Birds_taxids.txt nucl_gb.accession2taxid \ 
Birds_taxid_map.txt 

7.4)	Parse	Birds	sequences	from	NCBI	nt	database:	Python	script	
$ python parse_db_seqids.py \ 

Birds_taxid_map.txt nt \ 
nt_Birds 

7.5)	Create	a	BLAST	database:	BLAST+	
$ makeblastdb -in nt_Birds -dbtype nucl \ 

-taxid_map Birds_taxid_map.txt -parse_seqids -hash_index 

7.6)	Merge	all	transcripts	and	contigs	
$ cat transcripts.fa contigs_with_single_isoform.fa \ 

contigs_longest_isoforms.fa > all_gene_candidates.fa 

7.7)	Compare	transcripts	and	contigs	with	Birds	nucleotide	sequences:	BLAST+	
$ blastn -query all_gene_candidates.fa -db nt_Birds \ 

-perc_identity 75 -strand plus -dust no -soft_masking no \ 
-outfmt "7 std qlen slen sstrand sallseqid salltitles staxids sscinames" \ 
-out all_gene_candidates_vs_Birds.blastn 

7.8)	Parse	BLAST	hits	for	Birds	gene	assignment:	Python	script	
The	minimum	percentages	of	identities	for	chicken	genes	and	for	other	bird	genes	can	be	fixed	by	
adjusting	 the	 parameters	 “ggal_pcid=90”	 and	 “other_pcid=75”,	 respectively.	 The	 minimum	
percentages	 of	 matching	 cumulative	 length	 for	 the	 query	 and	 for	 the	 subject	 can	 be	 fixed	 by	
adjusting	the	parameters	“q_clen=50”	and	“s_clen=50”,	respectively.	
$ python parse_blast_hits_birds.py \ 

all_gene_candidates_vs_Birds.blastn 90 75 50 50 \ 
all_gene_candidates_vs_Birds.hits.txt 

7.9)	Retrieve	gene	information	from	the	NCBI	RefSeq	database:	
Download	RefSeq	gene	report:	ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2accession.gz.	

Biology Open (2017): doi:10.1242/bio.028498: Supplementary information
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7.10)	Convert	Birds	nucleotide	accession	IDs	into	gene	symbols:	Python	script	
$ python get_gene_symbols.py \ 

Birds_taxids.txt gene2accession nucl \ 
all_gene_candidates_vs_Birds.hits.txt \ 
all_gene_candidates_vs_Birds.assignment.txt 

8)	Functional	annotation:	human	and	mouse	

8.1)	Download	the	latest	release	of	the	NCBI	protein	sequence	database	
$ wget ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz 

8.2)	Retrieve	taxonomy	data	to	build	the	custom	database	
Create	a	file	listing	the	taxonomy	IDs	related	to	Homo	sapiens	(9606)	and	Mus	musculus	(10090)	
species.	
Download	taxid	mapping	for	protein	sequence	records:	
ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz	

8.3)	Create	taxid	map	of	human/mouse	accession	IDs:	Python	script	
$ python create_taxid_map.py \ 

Mammals_taxids.txt prot.accession2taxid \ 
Mammals_taxid_map.txt 

8.4)	Parse	human/mouse	sequences	from	NCBI	nr	database:	Python	script	
$ python parse_db_seqids.py \ 

Mammals_taxid_map.txt nr \ 
nr_Mammals 

8.5)	Create	a	BLAST	database:	BLAST+	
$ makeblastdb -in nr_Mammals -dbtype prot \ 

-taxid_map Mammals_taxid_map.txt -parse_seqids -hash_index 

8.6)	Extract	unannotated	transcripts	and	contigs	from	comparison	with	Birds:	Python	script	
$ python extract_nonannotated_genes.py \ 

all_gene_candidates_vs_Birds.assignment.txt \ 
all_gene_candidates.fa \ 
Birds_nonannotated_gene_candidates.fa 

8.7)	Compare	transcripts	and	contigs	with	human/mouse	protein	sequences:	BLAST+	
$ blastx -query Birds_nonannotated_gene_candidates.fa \ 

-db nr_Mammals -strand plus -seg no \ 
-outfmt "7 std qlen slen qframe sallseqid salltitles staxids sscinames" \ 
-out Birds_nonannotated_gene_candidates_vs_Mammals.blastx 

8.8)	Parse	BLAST	hits	for	Mammals	gene	assignment:	Python	script	
The	minimum	 percentage	 of	 identities	 for	 human/mouse	 proteins	 can	 be	 fixed	 by	 adjusting	 the	
parameters	“mam_pcid=30”.	The	minimum	percentage	of	matching	cumulative	length	for	the	query	
can	be	fixed	by	adjusting	the	parameters	“q_clen=50”.	
$ python parse_blast_hits_mammals.py \ 

Birds_nonannotated_gene_candidates_vs_Mammals.blastx 30 50 \ 
Birds_nonannotated_gene_candidates_vs_Mammals.hits.txt 

Biology Open (2017): doi:10.1242/bio.028498: Supplementary information
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8.9)	Convert	Mammals	protein	accession	IDs	into	gene	symbols:	Python	script	
$ python get_gene_symbols.py \ 

Mammals_taxids.txt gene2accession prot \ 
Birds_nonannotated_gene_candidates_vs_Mammals.hits.txt \ 
Birds_nonannotated_gene_candidates_vs_Mammals.assignment.txt 

9)	Functional	annotation:	ORF	and	protein	domain	prediction	

Remaining	unassigned	transcripts	and	contigs	were	annotated	according	to	the	Trinotate	pipeline.	
Procedure	including	tools	and	database	links	is	described	at:	http://trinotate.github.io/.	

9.1)	Extract	unannotated	transcripts	and	contigs	from	comparison	with	Mammals:	Python	script	
$ python extract_nonannotated_genes.py \ 

Birds_nonannotated_gene_candidates_vs_Mammals.assignment.txt \ 
Birds_nonannotated_gene_candidates.fa \ 
Mammals_nonannotated_gene_candidates.fa 

9.2)	ORF	prediction:	TransDecoder	
$ TransDecoder.LongOrfs -t Mammals_nonannotated_gene_candidates.fa -S 

9.3)	Create	the	BLAST	UniProt	database:	BLAST+	
$ makeblastdb -in uniprot_sprot.pep -dbtype prot 

9.4)	Compare	transcripts	and	contigs	to	UniProt	database:	BLAST+	
$ blastx -query Mammals_nonannotated_gene_candidates.fa \ 

-db uniprot_sprot.pep -strand plus -seg no \ 
-max_target_seqs 1 -outfmt 6 \ 
-out Mammals_nonannotated_gene_candidates_vs_UniProt.blastx 

9.5)	Compare	predicted	ORFs	to	UniProt	database:	BLAST+	
$ blastp -query TransDecoder_predicted_ORFs.pep \ 

-db uniprot_sprot.pep -seg no -max_target_seqs 1 -outfmt 6 \ 
-out TransDecoder_predicted_ORFs_vs_UniProt.blastp 

9.6)	Create	the	HMMER	Pfam	database:	HMMER	
$ hmmpress Pfam-A.hmm 

9.7)	Pfam	protein	domain	prediction:	HMMER	
$ hmmscan --domtblout TransDecoder_predicted_ORFs_vs_Pfam.out \ 

Pfam-A.hmm TransDecoder_predicted_ORFs.pep \ 
> TransDecoder_predicted_ORFs_vs_Pfam.log 

9.8)	Signal	peptide	prediction:	SignalP	
$ signalp -f short -n TransDecoder_predicted_ORFs_vs_SignalP.out \ 

TransDecoder_predicted_ORFs.pep \ 
> TransDecoder_predicted_ORFs_vs_SignalP.log 

9.9)	Transmembrane	domain	prediction:	tmHMM	
$ tmhmm --short TransDecoder_predicted_ORFs.pep \ 

TransDecoder_predicted_ORFs_vs_tmHMM.out 
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9.10)	Create	gene-to-transcript	mapping	file:	Python	script	
$ python create_gene_transcript_map.py \ 

Mammals_nonannotated_gene_candidates.fa \ 
Mammals_nonannotated_gene_candidates_transcript.map 

9.11)	Functional	annotation	and	analysis:	Trinotate	
# Initialize database 
$ Trinotate Trinotate.sqlite init \ 

--gene_trans_map Mammals_nonannotated_gene_candidates_transcript.map \ 
--transcript_fasta Mammals_nonannotated_gene_candidates.fa \ 
--transdecoder_pep TransDecoder_predicted_ORFs.pep 

# Load BLASTX transcript hits 
$ Trinotate Trinotate.sqlite \ 

LOAD_swissprot_blastx 
Mammals_nonannotated_gene_candidates_vs_UniProt.blastx 

# Load BLASTP protein hits 
$ Trinotate Trinotate.sqlite \ 

LOAD_swissprot_blastp TransDecoder_predicted_ORFs_vs_UniProt.blastp 
# Load Pfam protein domain prediction 
$ Trinotate Trinotate.sqlite \ 

LOAD_pfam TransDecoder_predicted_ORFs_vs_Pfam.out 
# Load SignalP signal peptide prediction 
$ Trinotate Trinotate.sqlite \ 

LOAD_signalp TransDecoder_predicted_ORFs_vs_SignalP.out 
# Load tmHMM transmembrane domain prediction 
$ Trinotate Trinotate.sqlite \ 

LOAD_tmhmm TransDecoder_predicted_ORFs_vs_tmHMM.out 
# Export Trinotate annotation report 
$ Trinotate Trinotate.sqlite report > Trinotate_report.xls 
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