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Synchronization of an optomechanical system to an external drive
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Optomechanical systems driven by an effective blue-detuned laser can exhibit self-sustained oscillations of
the mechanical oscillator. These self-oscillations are a prerequisite for the observation of synchronization. Here,
we study the synchronization of the mechanical oscillations to an external reference drive. We study two cases of
reference drives: (1) an additional laser applied to the optical cavity; (2) a mechanical drive applied directly to the
mechanical oscillator. Starting from a master equation description, we derive a microscopic Adler equation for
both cases, valid in the classical regime in which the quantum shot noise of the mechanical self-oscillator does
not play a role. Furthermore, we numerically show that, in both cases, synchronization arises also in the quantum
regime. The optomechanical system is therefore a good candidate for the study of quantum synchronization.
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I. INTRODUCTION

Synchronization is the phenomenon in which a limit-cycle
oscillator, i.e., an oscillator with fixed amplitude and free
phase, develops a phase preference when weakly coupled to
a drive or to other self-oscillating systems [1,2]. This phe-
nomenon is prevalent in all the natural sciences, manifesting
itself in, for example, adjustment of the circadian rhythm in
many living systems or fireflies blinking in unison [3].

In recent years there has been considerable interest in the
topic of quantum synchronization [4–21], i.e., the synchroniza-
tion of self-oscillators operating in the quantum regime. There
has been extensive research done on the paradigmatic example
of a van der Pol oscillator [4–12]. Other platforms have been
used to study quantum synchronization as well, among which
are micromasers [13], atomic ensembles [14,15], interacting
quantum dipoles [16], trapped ions [6,17], and optomechanical
systems [18–20].

In an optomechanical system electromagnetic cavity modes
are coupled to mechanical motion. In its most basic setup, an
optomechanical system is made of a single laser-driven cavity
mode which couples to a single mechanical mode via, e.g.,
radiation pressure [22]. The dynamics of the system crucially
depends on the frequency of the laser driving the cavity. A
laser field tuned to the red side of the cavity frequency is used
for backaction cooling as well as for state transfer [23–25],
while resonant driving is used, e.g., for position sensing [26].
When blue detuned, the laser drive can induce the parametric
instability, leading, in turn, to self-sustained oscillations of the
mechanical oscillator. These self-sustained oscillations have
been studied in both the classical and the quantum regimes
[27–32]. For that reason, the optomechanical system may
exhibit synchronization when coupled to an external drive (an
additional external drive, in contrast to the laser driving the
self-oscillations) or another optomechanical system or as part
of an array of optomechanical systems, as was theoretically
shown in the classical regime [33,34]. Synchronization of
an optomechanical system to an external drive [35], of two
optomechanical systems [36], and even of small arrays of
up to seven such systems [37] have been demonstrated
experimentally. In the quantum regime the synchronization

of two optomechanical systems has been studied theoretically
[18], and the synchronization of an array of such systems [19]
within a mean-field approach was used.

In this work, we theoretically study the synchronization of
the mechanical self-oscillator to an external reference drive.
We examine two different reference drives. (1) The first is
where an additional laser is applied to the optical cavity. Under
an appropriate rotating-wave approximation, this may also be
implemented by modulating the power of the laser inducing
the mechanical self-oscillations, as was experimentally done
in Ref. [35]. (2) The second is a mechanical drive applied
directly onto the mechanical oscillator, which could, for
instance, be realized with a piezoelectric element attached to
the mechanical oscillator.

For both cases, our starting point of the analysis is the
microscopic master equation. We then use the laser theory
for optomechanical limit cycles [30] to derive an equation of
motion (EOM) for the phase distribution of the mechanical
self-oscillator. We show that in both cases, in a relevant
parameter regime, the Adler equation emerges from the EOM.
The Adler equation is a differential equation for the phase
difference between the self-oscillator and the reference drive,
known to describe synchronization. For the optical reference
drive, this is the first time a microscopically derived Adler
equation is discussed. For the mechanical reference drive, it
reproduces a result in Ref. [33]. We then continue to show
numerically, for both cases, that in the quantum parameter
regime an “Arnold tongue” exists, a standard signature of
synchronization [1,2]. This suggests that the optomechanical
system is a good candidate for the study of synchronization in
the quantum regime.

This paper is organized as follows. We describe the system
under investigation, composed of an optomechanical system
and an additional reference drive, in Sec. II. Section III contains
the analytical derivation of the microscopic Adler equations.
A major part of this derivation is done by applying the laser
theory for optomechanical limit cycles [30] to this problem.
This is presented in the appendixes. In Sec. IV we demonstrate
numerically that synchronization is expected also in a quantum
parameter regime.

2469-9926/2017/95(5)/053858(9) 053858-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.053858


AMITAI, LÖRCH, NUNNENKAMP, WALTER, AND BRUDER PHYSICAL REVIEW A 95, 053858 (2017)

FIG. 1. Schematics of a generic optomechanical system. In a
rotating frame with frequency ωL, obtained by applying the unitary
transformation Û = exp (iωLta†a), the cavity with frequency −� is
driven by a time-independent laser, depicted by the black arrow to
the left of the cavity. In the self-oscillatory regime of the mechanical
oscillator with natural frequency ωm, the mechanical oscillator may
synchronize to an additional optical drive with frequency ωop

e as
depicted in dashed box (a), or to a mechanical drive with frequency
ωm

e as depicted in dashed box (b). Note that ωop
e is given in the rotating

frame, while the application of Û leaves both ωm
e and ωm identical in

both frames.

II. THE SYSTEM

The standard Hamiltonian of an optomechanical system in
which the position of the mechanical oscillator parametrically
modulates the frequency of an electromagnetic cavity is given
in a frame rotating with the frequency of the laser drive, ωL,
by [22]

H = ωmb†b − �a†a − g0a
†a(b + b†) − iAL(a − a†), (1)

where a† and a are the creation and annihilation operators of
photons in the cavity, b† and b are the creation and annihilation
operators of phonons in the mechanical resonator, ωm is
the mechanical frequency of oscillation, � = ωL − ωc is the
detuning from cavity resonance at ωc of the driving field with
strength AL, g0 is the single photon coupling constant, and
we have set h̄ = 1. A schematic figure of the system is shown
in Fig. 1. The frame rotating with laser drive ωL is obtained
by applying the unitary transformation Û = exp (iωLta†a),
which generates the Hamiltonian ÛHoldÛ

† − iÛ∂Û †/∂t .
The dissipation of the two oscillators (the mechanical

resonator and the optical cavity) can be described via the
master equation,

dρ

dt
= −i[H,ρ] + Lmρ + Lcρ, (2)

with the Lindblad operators

Lmρ = γm(nth + 1)D[b]ρ + γmnthD[b†]ρ (3)

and

Lcρ = γcD[a]ρ, (4)

where γm and γc are the amplitude damping rates of the
mechanical oscillator and the electromagnetic cavity cor-
respondingly, nth is the mean phonon number in thermal
equilibrium, and D[x]ρ = xρx† − (ρx†x + x†xρ)/2.

FIG. 2. Wigner function representation of (a) self-sustained
oscillations in the mechanical oscillator and of (b) tendency towards
phase locking of the mechanical oscillator to the phase of a
synchronizing reference drive. The parameters used for both plots
are (g0,γc,γm,AL,�,nth) = (0.3,0.3,0.015,0.4,0,0) × ωm, where the
parameters of the external optical drive in (b) are (Aop

e ,ωop
e ) =

(0.08,0.98) × ωm.

In this work we would like to study the synchronization of
the mechanical element of the optomechanical system to an
external drive. We consider two cases.

Case (1): Optical laser drive. We introduce an additional
optical laser reference field, with frequency ω

op
e , given in a

frame rotating with frequency ωL, and strength A
op
e , by adding

the term

H op = −iAop
e

(
eiω

op
e t a − e−iω

op
e t a†) (5)

to the Hamiltonian appearing in Eq. (2). This is depicted in
dashed box (a) in Fig. 1. This Hamiltonian can be realized by
an additional optical laser, or, if the mechanical frequency ωm

is large enough such that a rotating-wave approximation can
be used, by periodically modulating the power of the optical
laser causing the mechanical self-oscillations, as seen in
Ref. [35].

Case (2): Mechanical drive. A mechanical reference drive
with frequency ωm

e and strength Am
e can be applied directly

onto the mechanical oscillator, e.g., by introducing a piezo-
electric component as depicted in dashed box (b) in Fig. 1. In
analogy to case (1), we add the term

Hm = −iAm
e

(
eiωm

e t b − e−iωm
e t b†

)
(6)

to the Hamiltonian appearing in Eq. (2).
Self-oscillations in the optomechanical system. An optome-

chanical system driven by an effective blue-detuned laser
may give rise to self-sustained oscillations in the mechanical
oscillator [27–32]. These self-oscillations are a prerequisite
for studying synchronization. They can be illustrated in phase
space via the Wigner function phase-space distribution. A
Wigner function representation for a specific self-sustained
oscillation in the mechanical oscillator is shown in Fig. 2(a).

Under the influence of a reference drive, the mechanical
self-oscillator may develop a phase-preference as it tends
towards locking onto the phase of the drive. For an additional
optical laser drive, as in case (1), the Wigner representation for
a mechanical self-oscillator showing such phase-preference is
shown in Fig. 2(b) [38].
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III. SYNCHRONIZATION: ANALYTICAL CALCULATION

In the following section, it is our goal to derive an analytical
description for the synchronization of the mechanical self-
oscillator to a reference drive. To do so, we apply the laser
theory for optomechanical limit cycles [30] to the current
problem, Eq. (2), in which an additional reference drive,
Eq. (5) or Eq. (6), is influencing the optomechanical limit
cycle. This approach is based on the assumption that the
dynamics of the cavity adiabatically follows the dynamics of
the mechanical oscillator. It allows us to obtain an EOM for
the phase distribution of the self-oscillator, σ (r,φ), where r

and φ are the mechanical phase-space variables representing
the radius and the phase of the self-oscillator. To keep this
paper coherent and focused on synchronization, we shift the
derivation of the relevant EOMs to the appendixes. Here in the
main text, we will use the derived EOMs as a starting point.

Case (1): Optical laser drive. As explained in the ap-
pendixes, the EOM for σ (r,φ) is valid when the dynamics of
the cavity adiabatically follows the dynamics of the mechanical
oscillator, the optomechanical coupling is small, g0 � ωm, and
the thermal and quantum shot noise does not play a role. In a
rotating frame with frequency ωm, the EOM for σ (r,φ) is of
the form

σ̇ = −(∂rμr + ∂φμφ)σ, (7)

where the phase-drift coefficient is given by

μφ = 1

r

∞∑
n=−∞

g0AL

{
AL Re

[
JnJn−1

hnh
∗
n−1

]

+Aop
e Re

[
e−iφJnJn−2

hnh
∗
n−1

e−iεt

]

+Aop
e Re

[
eiφJn−1Jn−1

hnh
∗
n−1

eiεt

]}
, (8)

and the explicit expressions for the radius-drift coefficient is
given in Eq. (A18). In the last expression Jn := Jn(−2g0r/ωm)
is the Bessel function of the first kind of the nth order,
ε ≡ ω

op
e − ωm is the detuning between the frequencies of the

reference drive and the natural frequency of the mechanical
oscillator, and hn is defined as

hn = γc

2
+ i(nωm − �eff), (9)

where the definition for the effective detuning of the cavity
field, �eff, is given in Eq. (A10).

This EOM describes the dynamics of the mechanical oscil-
lator and, in an appropriate parameter regime, will therefore
describe the synchronization of the mechanical oscillator onto
the optical reference drive. The onset of synchronization is
characterized by the locking of the phase of the mechanical
oscillator to the phase of the optical drive, while the radius of
oscillation stays approximately constant. For that reason, we
can neglect the term describing the drift of the radius, μr , while
focusing on the drift of the phase, Eq. (8). We are therefore
left with

σ̇ = −∂φμφσ, (10)

from which we recognize that μφ = φ̇. Let us therefore focus
on μφ , Eq. (8), which completely determines the time evolution

of φ. The first term is the known amplitude-dependent
optomechanical frequency shift δω (see Ref. [32]); i.e., we
obtain

μφ = φ̇ = −δω + g0ALA
op
e

r

∑
n

Re

×
[
e−i(φ+εt)JnJn−2 + ei(φ+εt)Jn−1Jn−1

hnh
∗
n−1

]
. (11)

In the sideband-resolved regime and with a detuning close to
the mechanical frequency, i.e., γc/2 � �eff ≈ ωm, terms with
h1 in the denominator are close to resonance. For that reason,
we will keep only the terms with n = 1,2. We then find

φ̇ = −δω + Aop,eff
e sin(φ + εt), (12)

where we have shifted φ by a constant and defined the effective
drive strength as

Aop,eff
e = g0ALA

op
e

rω2
m

(
1 + γ 2

c

4ω2
m

)

×
√

(J2 + J0)2J 2
0 + 4ω2

m

γ 2
c

(
J2J0 − 2J 2

1 − J 2
0

)2
.

(13)

Adding the frequency difference ε to both sides of Eq. (12),
we obtain the Adler equation

˙δφ = (
ωop

e − ωeff
m

) + Aop,eff
e sin(δφ), (14)

where the effective mechanical frequency is ωeff
m ≡ ωm + δω,

and we have defined δφ ≡ φ + εt . Note that δφ = (φ −
ωmt) + ω

op
e t is just the difference of phase of the mechanical

oscillator (in a frame rotating with ωm) to the phase of the
external drive.

The Adler equation describes the synchronization of the
mechanical self-oscillator to the reference drive, as shown in
Fig. 3, in which we plot sin δφ as a function of (ωop

e − ωeff
m )

for different drive strengths, where the overbar refers to time
averaging. For |ωop

e − ωeff
m | < A

op,eff
e , the solution to Eq. (14)

is ˙δφ = 0. Therefore, phase locking takes place. For |ωop
e −

ωeff
m | � A

op,eff
e , sin(δφ) time averages to zero. The optome-

chanical parameters chosen in Fig. 3 can be readily obtained
in a wide range of experiments [22,24,39]. In Ref. [39] a
mechanical resonator of frequency ωm/(2π ) = 9.7 (kHz) was
studied, while in Ref. [24] a mechanical resonator of frequency
ωm/(2π ) = 3.9 (GHz) was studied. In both, the parameters
of the optomechanical system were similar to those given
in Fig. 3.

We can further test this derived Adler equation by compar-
ing it with the numerical prediction, which can be obtained
by integrating the optomechanical equations of motion for the
cavity field α and the mechanical field β [32]:

α̇ = i�α + ig0(β + β∗)α − γc

2
α + AL+Aop

e e−iω
op
e t , (15)

β̇ = ig0|α|2 − iωmβ − γm

2
β. (16)

The result is shown in the inset of Fig. 3. The synchronization
region is indicated by the colored region. There is a very good
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FIG. 3. Synchronization of the mechanical self-oscillator to an
optical reference drive. The analytically calculated time average
sin(δφ) as a function of (ωop

e − ωeff
m ) for different values of Aop

e ,
from 0.13 to 0.17. The inset compares the analytical solution
(blue line) with the numerical simulation (red dashed line) for
Aop

e = 0.15. It shows excellent agreement. The colored region
indicates the synchronization region, dδφ/dt = 0. The parameters
of the optomechanical system are taken in the classical regime,
(g0,γc,γm,AL,�,nth) = (0.015,0.5,0.0001,1.0,1.0,0) × ωm.

agreement between the prediction of the derived microscopic
equation and the numerical simulation.

Case (2): Mechanical drive. Analogously to case (1), by
applying the laser theory for optomechanical limit cycles we
obtain an EOM for the phase distribution of the self-oscillator,
σ (r,φ). This EOM has the same form as Eq. (7), but with a
phase-drift coefficient which is given by

μφ = 1

r

{∑
n

g0A
2
L Re

[
JnJn−1

hnh
∗
n−1

]

−Am
e sin

[(
ωm

e − ωm

)
t + φ

]}
, (17)

and with a radius-drift coefficient which is given in the
Appendix A, Eq. (A20). Now, taking steps identical to those
shown in case (1), one reaches an Adler equation,

˙δφ = (
ωm

e − ωeff
m

) + Am,eff
e sin(δφ), (18)

where the effective drive strength is

Am,eff
e = Am

e

r
. (19)

This form of the Adler equation agrees with [33]. In Fig. 4 we
plot sin δφ as a function of (ωop

e − ωeff
m ) for different drive

strengths, where the overbar refers to time averaging. We
can further test this analytical equation by comparing it with
the classical numerical prediction, which can be obtained by
integrating the equations of motion:

α̇ = i�α + ig0(β + β∗)α − γc

2
α + AL, (20)

β̇ = ig0|α|2 − iωmβ − γm

2
β + Am

e e−iωm
e t . (21)

FIG. 4. Synchronization of the mechanical self-oscillator to a
mechanical reference drive. The analytically calculated time average
sin(δφ) as a function of (ωm

e − ωeff
m ) for different values of Am

e ,
from 0.003 to 0.007. The inset compares the analytical solution
(blue line) with the numerical simulation (red dashed line) for
Am

e = 0.005. It shows excellent agreement. The colored region
indicates the synchronization region, dδφ/dt = 0. The parameters
of the optomechanical system are taken in the classical regime,
(g0,γc,γm,AL,�,nth) = (0.01,0.3,0.0001,1.0,1.0,0) × ωm.

The comparison is seen in the inset of Fig. 4. A very good
agreement is found between the analytical Adler equation and
the numerical simulation.

IV. QUANTUM SYNCHRONIZATION:
NUMERICAL DEMONSTRATION

The optomechanical system is theoretically suggested to
demonstrate synchronization also in a quantum parameter
regime, in which g0 � ωm does not hold anymore. In that
parameter regime, the quantum shot noise plays an important
role and cannot be neglected as in the previous section.
The quantum synchronization of two such systems was
theoretically studied in Ref. [18]. Here we show numerically
that the mechanical self-oscillator is expected to synchronize
to a reference drive in the quantum parameter regime. Before
discussing the numerical calculation and the results, we
introduce the synchronization measure used.

A. The synchronization measure

Synchronization of a self-oscillator to an external drive is
the development of phase preference for the self-oscillator as
it tends towards phase locking to the phase of the external
drive. As shown in Fig. 2, this phase preference is easily seen
in the phase-space distribution of the mechanical oscillator.
The information stored in the phase-space distribution can be
accounted for by using a single number [8],

S = | 〈b〉 |√
〈b†b〉

, (22)

where the bracket 〈· · ·〉 denotes averaging over the phase-space
distribution. The numerator holds information regarding the
spread of the phase-space distribution, while the denominator
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is introduced for the purpose of normalization. For a com-
pletely phase-independent limit cycle centered around zero,
the oscillator is obviously completely unsynchronized, and
indeed we will find S = 0. As the self-oscillator synchronizes
to an external drive, a phase preference develops. This will
reduce the phase variation, resulting in larger values of S. For
a coherent state the measure is S = 1, meaning the oscillator
is strongly synchronized to the drive. This measure cannot be
used in cases for which the self-oscillator develops multiple
preferred phases.

Note that in the optomechanical system, the self-
oscillations developing in the mechanical oscillator are cen-
tered around some point in phase space, βc, which is generally
different than the origin. This is seen in Fig. 2(a). This deviation
from the origin influences the synchronization measure,
Eq. (22). This can be easily corrected and accounted for. To do
so, we move to a displaced frame by using the displacement
operator D(−βc) = exp(−βcb

† + βcb). For the rest of this
work, we will be working in the appropriate displaced frame.

The problem of an optomechanical system with an addi-
tional reference drive, Eq. (2) with either Eq. (5) or Eq. (6),
contains a time-dependent Hamiltonian. For that reason, a
steady state does not emerge. However, in the late-time
dynamics, the system evolves into a state which is periodic
in time with periodicity τ ≡ 2π/ωi

e, where i denotes the
optical- or the mechanical-reference drive. This is true in the
synchronized state and outside the synchronized state, and it is
the result of the periodic time dependence of the Hamiltonian.
For that reason, in the late-time dynamics the synchronization
measure S is a function of time with the same periodicity,
S(t) = S(t + τ ). The variation of S over the time scale τ in the
late-time dynamics is relatively small, and is of order S ∼ 0.01
at maximum. To conveniently discuss synchronization, we use
S̄, defined as the time average of S over a period τ .

B. Numerical Results

To numerically study synchronization of the mechanical
self-oscillator to an external drive, we use QUTIP [40,41].

Case (1): Optical laser drive. In Fig. 5, the time-averaged
synchronization measure S̄ is plotted in blue as a function of
the frequency of the reference drive, ωop

e . A main synchroniza-
tion peak appears about an effective mechanical frequency,
ωeff

m , slightly shifted from ωm. This shift of the mechanical
frequency is known [31,32] to be the result of the average
dynamics of the electromagnetic cavity. Synchronization
peaks at other frequencies are found as well: A synchronization
peak about ω

op
e = ωeff

m /2 is clearly visible, and in the insets of
Fig. 5 we zoom in on the very small synchronization peaks at
ω

op
e = {ωeff

m /3,2ωeff
m }. These synchronization peaks are known

in the literature as high-order synchronization [1,2]. While
in principle high-order synchronization is always present
when synchronizing a self-oscillator to a reference drive, it
is in practice very difficult (if not impossible) to detect. The
presence of a reference drive which contains many frequency
components in its oscillation can enhance the synchronization
peaks [2]. As shown in the appendixes, the effective drive of the
mechanical self-oscillator, Eq. (A6), indeed contains multiple
frequencies. For that reason, and in contrast to case (2), we can
observe the smaller synchronization peaks. We can also notice

FIG. 5. The time-averaged synchronization measure S̄ as a
function of the external drive’s frequency, shown in blue for an
optical drive with Aop

e /ωm = 0.08 and in a red dashed line for a
mechanical drive with Am

e /ωm = 0.008. For the mechanical drive
there is only one synchronization peak at ωm

e = ωeff
m , while the

optical drive leads to multiple synchronization peaks at ωop
e =

{ωeff
m /3,ωeff

m /2,ωeff
m ,2ωeff

m }. The black dotted lines are plotted at these
frequencies. The synchronization peaks at ωop

e = {ωeff
m /3,2ωeff

m } are
hardly noticeable in the scale of the figure and are therefore shown in
the two insets. Optomechanical parameters are the same as in Fig. 2.

an asymmetry in the synchronization peak with respect to the
reference field’s frequency. This can be also be seen in Fig. 6.
While there is no reason to expect perfect symmetry, it is visible
that the case of an optical reference drive is more asymmetric.
This is due to the high-order synchronization peaks.

In Fig. 6(a) we focus on the synchronization peak for ω
op
e =

ωeff
m . This corresponds to the maximal synchronization peak

shown in Fig. 5. The synchronization measure S̄ is plotted as
a function of both A

op
e and ω

op
e . Indeed, the “Arnold tongue”

is present, a signature for synchronization.
Case (2): Mechanical drive. The reference drive synchro-

nizes the mechanical oscillator at frequency ωm
e = ωeff

m . This
is shown by the red dashed curve in Fig. 5. In contrast to the
optical case, no high-order synchronization is seen. Indeed,
as the mechanical drive is acting directly on the mechanical
self-oscillator, its influence is harmonic. Therefore, high-order
synchronization is not detected [1,2].

In Fig. 6(b) we focus on this synchronization peak. In this
figure we vary both the external frequency ωm

e and the strength
of the external drive, Am

e , and the Arnold tongue is clearly
observed.

V. CONCLUSIONS

In conclusion, our work fills a gap in the study of syn-
chronization of an optomechanical system. Starting from the
microscopic master equation, we analytically develop Adler
equations describing the synchronization of the mechanical
self-oscillator to a reference drive. This was done for two
different reference drives, an optical one and a mechanical one
(as was shown in Ref. [33]). We also show numerically that
synchronization in a quantum parameter regime is expected,
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FIG. 6. Arnold tongue. The synchronization measure S̄ is plotted
as a function of the drive frequency and strength for case (1) (a)
and for case (2) (b). S̄ has the typical shape of an Arnold tongue. The
black lines mark ωop

e = ωeff
m and ωm

e = ωeff
m in (a) and (b), respectively.

The horizontal white lines mark the cut along which Fig. 5 is plotted.
Optomechanical parameters are the same as in Fig. 2.

therefore suggesting the optomechanical system as a good
candidate for the study of quantum synchronization.
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APPENDIX A: APPLYING THE LASER THEORY
FOR OPTOMECHANICAL LIMIT CYCLES

In the following, we apply laser theory for optomechanical
limit cycles [30] to our current problem, Eq. (2), with an
additional reference drive as given by Eq. (5) or Eq. (6).
We derive an EOM for σ , the phase-space distribution of the
mechanical oscillator, for each case. In applying laser theory
to our problem, the initial steps are identical to these taken

when applying laser theory to a bare optomechanical system
(with no reference drive). We therefore do not repeat these
steps, but refer to Ref. [30] for our starting point, Eq. (A2),
which is presented below. Folllowing is a short summary of
the steps taken in this appendix.

(i) Switching to a phase-space representation for the
mechanical oscillator degree of freedom. This allows us to
use a different adiabatic reference state of the electromagnetic
cavity field for each point in the phase-space of the mechanical
oscillator.

(ii) Assuming the electromagnetic cavity dynamics fol-
lows adiabatically the dynamics of the mechanical oscillator,
we solve for an approximate solution for the cavity field.

(iii) We use the solution for the cavity field as a reference
state for the mechanical state, which allows us to obtain an
EOM for σ .

Case (1): Optical laser drive. The master equation describ-
ing our system, Eq. (2), with an optical reference drive, Eq. (5),
can be written in a phase-space picture for the mechanical
oscillator [30,42,43]. The system is then described by σ (β,β∗),
which is a density operator for the electromagnetic cavity
field and a quasiprobability distribution for the mechanical
oscillator, with β representing the mechanical phase-space
variable. This results in a dependence of the cavity detuning
on the phase-space variables of the mechanical oscillator. If
we further use the semipolaron transformation [30],

σ̃ (β,β∗,t) = eg0(β−β∗)a†a/ωmσ (β,β∗,t)e−g0(β−β∗)a†a/ωm, (A1)

this dependence is conveniently transformed into one of the
driving field.

The transformed master equation, in a mechanical frame
rotating with frequency ωm, is then

∂tσ (β,β∗,t) = (Lm + Lc + Lint)σ (β,β∗,t), (A2)

with

Lmσ = γm

2
(∂ββ + ∂β∗β∗)σ + γm(nth + 1/2)∂2

β∗βσ, (A3)

Lcσ = − i[ − �a†a − K(a†a)2

− i[E(t)∗a − E(t)a†],σ ] + γcD[a]σ, (A4)

Lintσ = −i
g0

2
(eiωmt ∂β − e−iωmt ∂β∗ )σa†a + H.c., (A5)

where the Kerr nonlinearity is K = g2
0/ωm, and E is a

generalized driving field which depends on the mechanical
state,

E(t) = (AL + Aop
e eiω

op
e t )

∞∑
n=−∞

Jn(−ηr)ein(ωmt−φ). (A6)

Here, Jn is the Bessel function of the first kind of the nth order,
r and φ are the mechanical phase-space variables β = reiφ ,
and η = 2g0/ωm. We will use the shorthand notation Jn :=
Jn(−ηr).

We will now assume that the cavity dynamics, with a
dominant time scale γ −1

c , is fast compared to all other time
scales in Lm and Lint. This means that we can solve for the
cavity field α(t), while assuming the state of the mechanical
oscillator, described by the phase-space variables β and β∗,
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is fixed. The solution for α(t) will then be considered as a
classical reference amplitude.

1. Calculating the classical reference amplitude

Under the assumption that the cavity dynamics with
characteristic time scale γ −1

c is much faster than all other
dynamics in the problem, its state is governed by Lc, while the
effect of Lint is neglected,

σ̇ = Lcσ. (A7)

This equation describes a cavity with Kerr nonlinearity, which
is driven by two amplitude- and phase-modulated fields. An
approximate solution to Eq. (A7) can be found in two limits:
the limit |α(t)| � 1, i.e., a cavity which is driven by a strong
drive to a state of large mean amplitude, and the limit |α(t)| �
1, for which the cavity is driven by a weak drive and stays
close to its ground state. In the former limit we neglect terms
up to first order in α, while in the latter we neglect terms of
third order in α.

a. |α(t)| � 1

From Eq. (A7), one can obtain an EOM for the classical
cavity field amplitude α(t),

α̇(t) = −
{γc

2
− i[� + 2K|α(t)|2]

}
α(t) + E(r,φ,t). (A8)

As a result of the form of the driving field E, Eq. (A6), we
expect the solution to be of the form

α(r,φ,t) =
∞∑

n=−∞

[
αl

n(r,φ)einωmt + αe
n(r,φ)ei(nωm+ω

op
e )t

]
, (A9)

where the amplitudes αl
n(r,φ) and αe

n(r,φ) shall be determined.
As noticeable from Eq. (A8), the effective detuning felt by
the electromagnetic cavity depends on |α(t)|2. By placing the
solution obtained for α(t), while keeping only the dominant
dc components, we obtain for the effective detuning

�eff(r,φ) = � + 2K
∑

n

× [∣∣αl
n

∣∣2 + ∣∣αe
n

∣∣2 + αl
n

(
αe

n−1

)∗ + (
αl

n+1

)∗
αe

n

]
,

(A10)

where we have assumed ω
op
e = ωm + ε, with ε � ω

op
e ,ωm.

This assumption is satisfied when studying synchronization in
the vicinity of ω

op
e ≈ ωm. We solve Eq. (A8) by assuming a

fixed effective detuning �eff. We then find

αl
n = AL

hn

Jn(−ηr)e−inφ, (A11)

αe
n = A

op
e

hn+1
Jn(−ηr)e−inφ, (A12)

hn = γc

2
+ i(nωm − �eff), (A13)

where we have used ω
op
e = ωm + ε again. We have therefore

found a solution for α(t).

b. Displaced frame for |α(t)| � 1

In this limit, Eq. (A7) dictates that α(t) should solve

α̇(t) =
[
i(� + K) − γc

2

]
α(t) + E(r,φ,t). (A14)

As compared with Eq. (A8), we see that a different effective
detuning should be defined, �K = � + K . Then, we can
proceed as was done in the |α(t)| � 1 limit. Results will
be in complete analogy, and can be obtained by changing
�eff → �K .

2. Obtaining the EOM

After finding the solution for α(t), which will serve as a
classical reference amplitude for the mechanical oscillator, our
next goal is to obtain the EOM for the phase-space distribution
of the mechanical oscillator, σ (β,β∗). We notice that the
dynamics of this phase-space distribution are governed by
Eqs. (A3) and (A5). By placing the solution for α(t) into
Eq. (A5), one obtains an EOM for the phase-space distribution
of the mechanical oscillator,

σ̇ = ig0

∑
n

∂β∗
[
αl

n

(
αl

n−1

)∗+αl
n

(
αe

n−2

)∗
e−iεt+αe

n

(
αl

n

)∗
eiεt

]
σ

+ H.c., (A15)

where we have neglected terms proportional to ∝ (Aop
e )2, kept

only dc terms, and have used ω
op
e = ωm + ε, where ω

op
e ,ωm �

ε. This allowed us to send he
n → hn+1, while keeping the

exponentials depending on ε, as they will be needed later to
describe synchronization.

In describing limit cycles and synchronization, it is more
natural to work in polar coordinates. We therefore transform
Eq. (A15) to a polar coordinate system. A more detailed
description of this transformation can be found in Ref. [30].
The transformed EOM is then

σ̇ = [−∂rμr − ∂φμφ]σ, (A16)

where the drift coefficients are given by

μφ = 1

r

∑
n

g0AL

{
AL Re

[
JnJn−1

hnh
∗
n−1

]

+ Aop
e Re

[
e−iφJnJn−2

hnh
∗
n−1

e−iεt

]

+ Aop
e Re

[
eiφJn−1Jn−1

hnh
∗
n−1

eiεt

]}
, (A17)

μr = − γm

2
r +

∑
n

g0AL

{
AL Im

[
JnJn−1

hnh
∗
n−1

]

+ Aop
e Im

[
e−iφJnJn−2

hnh
∗
n−1

e−iεt

]

+ Aop
e Im

[
eiφJn−1Jn−1

hnh
∗
n−1

eiεt

]}
, (A18)

where we have neglected terms ∝ 1/r in the equation for μr

and terms ∝ 1/r2 in the equation for μφ and have included the
effect due to Eq. (A3). In the limit of A

op
e → 0, one retrieves

the known expression from [30].
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Case (2): Mechanical drive. In applying the laser theory
for optomechanical limit cycles for this case, we take steps
completely analogous to those taken in the previous case. As
the mechanical reference drive acts directly on the mechanical
self-oscillator, it does not appear in the solution for α(t) nor in
the elimination of the electromagnetic cavity. This fact makes
calculations more straightforward in the present case, and we
do not explicitly present them here. The EOM obtained has
the same form as Eq. (A16), with drift coefficients which are
given by

μφ = 1

r

{∑
n

g0A
2
L Re

[
JnJn−1

hnh
∗
n−1

]

− Am
e sin

[(
ωm

e − ωm

)
t + φ

]}
, (A19)

μr = − γm

2
r +

∑
n

g0A
2
L Im

[
JnJn−1

hnh
∗
n−1

]

+ Am
e cos

[(
ωm

e − ωm

)
t + φ

]
. (A20)

As in the previous case, we have neglected terms ∝ 1/r in
the equation for μr and terms ∝ 1/r2 in the equation for μφ .

In the limit of Am
e → 0, one retrieves the known expressions

from [30].

APPENDIX B: FOKKER-PLANCK EQUATION
FOR THE MECHANICAL SELF-OSCILLATOR

Using laser theory for optomechanical systems allows one
to obtain a Fokker-Planck equation (FPE) describing the
dynamics of the mechanical self-oscillator. This FPE is of
the form

Ẇ = [−∂rμr − ∂φμφ + ∂2
rrDrr + ∂2

rφDrφ + ∂2
φφDφφ

]
W,

(B1)

where W (r,φ) is chosen to be the Wigner phase-space distri-
bution, μr and μφ are the drift coefficients of the phase-space
variables r and φ, respectively, and Drr , Drφ and Dφφ are
the diffusion coefficients. In Appendix A we aimed to obtain
only the drift coefficients, as they are sufficient to describe
synchronization in a parameter regime in which the diffusion
does not play a significant role. For completion and for those
interested, we give in this appendix the expressions for the
diffusion coefficients.

Case (1): Optical laser drive. The drift coefficients of the
FPE equation are given in Eqs. (A17) and (A18), while the
diffusion coefficients are given by

Dφφ = 1

r2

γm(nth + 1/2)

4
+ 1

r2

∑
n

γcg
2
0AL

8|h̃n+1|2
{
AL

J 2
n

|hn|2 + AL

J 2
n+2

|hn+2|2 + 2AL Re

[
Jn+2Jn

hnh
∗
n+2

]

+ 2Aop
e

Jn

|hn|2 (Jn+1 + Jn−1) cos(φ + εt) + 2Aop
e Re

[
eiφJn+2Jn−1

hnh
∗
n+2

eiεt

]
+ 2Aop

e Re

[
e−3iφJnJn+1

hnh
∗
n+2

e−iεt

]}
, (B2)

Drφ = −1

r

∑
n

γcg
2
0AL

2|h̃n+1|2
{
AL Im

[
Jn+2Jn

hnh
∗
n+2

]
+ Aop

e Im

[
eiφJn+2Jn−1

hnh
∗
n+2

eiεt

]
+ Aop

e Im

[
e−3iφJnJn+1

hnh
∗
n+2

e−iεt

]}
, (B3)

Drr = γm(nth + 1/2)

4
+

∑
n

γcg
2
0AL

8|h̃n+1|2
{

AL

J 2
n

|hn|2 + AL

J 2
n+2

|hn+2|2 − 2AL Re

[
Jn+2Jn

hnh
∗
n+2

]
+ 2A

op
e Jn

|hn|2 (Jn+1 + Jn−1) cos(ε + δt)

−2Aop
e Re

[
eiφJn+2Jn−1

hnh
∗
n+2

eiεt

]
− 2Aop

e Re

[
e−3iφJnJn+1

hnh
∗
n+2

e−iεt

]}
. (B4)

Case (2): Mechanical drive. The drift coefficients of the FPE equation are given in Eqs. (A18) and (A20), while the reference
field Am

e does not enter the expressions for the diffusion. The diffusion coefficients are therefore given in Eqs. (B2)–(B4), with
A

op
e = 0.
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