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Quantum-coherent phase oscillations in synchronization
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Recently, several studies have investigated synchronization in quantum-mechanical limit-cycle oscillators.
However, the quantum nature of these systems remained partially hidden, since the dynamics of the oscillator’s
phase was overdamped and therefore incoherent. We show that there exist regimes of underdamped and even
quantum-coherent phase motion, opening up new possibilities to study quantum synchronization dynamics. To
this end, we investigate the Van der Pol oscillator (a paradigm for a self-oscillating system) synchronized to an
external drive. We derive an effective quantum model which fully describes the regime of underdamped phase
motion and additionally allows us to identify the quality of quantum coherence. Finally, we identify quantum
limit cycles of the phase itself.
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Introduction. Synchronization is commonly studied in
so-called limit cycle (LC) oscillators that arise from an
interplay of linear and nonlinear effects [1]. For instance, linear
amplification causes an instability, whereas nonlinear damping
limits the oscillator’s dynamics to a finite amplitude. Notably,
the phase remains free, which allows synchronization of the
oscillator to an external periodic drive or other LC oscillators.
A transition from the intrinsic LC motion toward synchronized
oscillations occurs depending on the coupling strength to (and
frequency mismatch of) the external reference.

Quantum synchronization, i.e., the study of quantum
systems whose classical counterparts synchronize, has recently
attracted increasing theoretical attention. So far, studies of
quantum synchronization have only explored overdamped
phase motion. This implies that the dynamics, although taking
place in quantum systems, remains always incoherent and
classical-like, ruling out the observation of interesting effects
like quantum tunneling or superposition states of different
synchronization phases. In the present Brief Report, we
discover quantum-coherent phase dynamics.

Theoretical studies of quantum synchronization have been
performed for different platforms, including optomechanics
[2,3], atoms and ions [4,5], Van der Pol (VdP) oscillators
[6–10], and superconducting devices [11,12]. Measures of
synchronization in the presence of quantum noise have been
proposed in Refs. [5,13,14].

On the experimental side, only classical synchronization
has been studied so far for a wide range of systems [15],
including more recently optomechanical systems [16–19].
In the well-developed field of classical synchronization,
overdamped phase motion is the standard ingredient both
of phenomenological equations and microscopically derived
models. For example, locking to an external force is described
by the so-called Adler equation, a first-order differential equa-
tion for the phase. Similarly, synchronized optomechanical
systems are described by the first-order phase equation of the
Hopf-Kuramoto model [2,20,21]. However, it has been noticed
that classical synchronization also allows for underdamped
phase dynamics. For instance, the classical VdP oscillator
features underdamped phase motion and even (synchronized)
phase self-oscillations [1,22–24]. Both regimes have recently
been observed experimentally using a nanoelectromechanical

system [25]. Classical phase self-oscillations, also called phase
trapping, have also been observed with coupled laser modes
[26]. Furthermore, synchronized Josephson junction arrays
can be mapped to the Kuramoto model including inertia
[15,27].

Here we will show that a regime of quantum-coherent
dynamics exists and that underdamped phase dynamics is
a necessary but not sufficient condition to observe this
regime. Rather, it is the dynamically generated nonequilibrium
dephasing rate that has to become smaller than the oscillation
frequency. Additionally, we identify phase self-oscillations in
the quantum regime.

We obtain these insights for a paradigmatic model, the
quantum version of the VdP oscillator subject to an external
drive. The synchronization of the VdP oscillator to this external
drive is an excellent test case to investigate universal synchro-
nization behavior. We derive an effective quantum model that
captures the regime of underdamped phase dynamics. This
allows us to identify a quality factor for the quantum coherence.
We illustrate the potentially long coherence times by showing
that initial negativities of a Wigner density vanish slowly.
Finally, we briefly discuss possible experimental realizations.

Quantum model. The quantum VdP oscillator subject to an
external drive is described by the master equation (h̄ = 1)

˙̂ρ = −i[−�b̂†b̂ + iF (b̂ − b̂†),ρ̂] + γ1D[b̂†]ρ̂ + γ2D[b̂2]ρ̂ ,

(1)

with D[Ô]ρ̂ = Ôρ̂Ô† − {Ô†Ô,ρ̂}/2. Here, � = ωd − ω0 is
the detuning of the oscillator’s natural frequency ω0 from the
frequency of the external drive ωd and F is the driving force.
The two dissipative terms in Eq. (1) describe gain and loss of
one and two quanta at rates γ1 and γ2, respectively.

In Fig. 1 we show the steady-state Wigner function along
with the corresponding phase probability distribution P (φ) =∑∞

n,m=0
ei(m−n)φ

2π
〈n|ρ̂ss |m〉 [5] by numerically solving Eq. (1)

for its steady state ρ̂ss . In the absence of an external force
(F = 0), the two competing dissipation rates γ1 and γ2 lead to
LC motion of the VdP oscillator, Fig. 1(a). For a finite applied
force (F �= 0) and sufficiently small detuning �, the VdP
oscillator synchronizes to the external force and a fixed phase
relation between the VdP oscillator and the force is present.
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FIG. 1. Quantum synchronization. Steady-state Wigner density
Wss(x,p) and phase probability distribution P (φ) of (a) an undriven
(F/γ1 = 0) and (b) an externally driven (F/γ1 = 10) VdP oscillator.
(a) The ring-shaped Wigner function indicates LC motion. (b)
With increasing detuning �/γ1, the synchronization phase changes
and synchronization becomes weaker. Parameters: γ2/γ1 = 5×10−3,
(a) �/γ1 = 0, (b) 1, 2, 3 correspond to �/γ1 = 0,0.5, and 1.

In the rotating frame, this corresponds to a localized Wigner
density and a phase distribution P (φ) with a distinct peak. With
increasing detuning, the VdP oscillator is less synchronized to
the external force [related to the height and width of P (φ)] and
the synchronization phase [peak position of P (φ)] is shifted
[Fig. 1(b)].

These steady-state properties do not provide any informa-
tion on the underlying synchronization dynamics, especially if
we are trying to discover possible underdamped and quantum-
coherent phase dynamics. To test for these regimes, we now
derive an effective quantum model.

Effective quantum model. In the synchronized regime, the
classical equation of motion for 〈b̂〉 = β = Reiφ ,

β̇ = i�β + γ1

2
β − γ2|β|2β − F , (2)

has a stable fixed point βss = Rsse
iφss . We linearize Eq. (1)

around βss by defining b̂ = βss + δb̂, where δb̂ describes
fluctuations around βss . Neglecting terms of order O(δb̂3) and
higher, we obtain

˙̂ρeff = −i[Ĥeff,ρ̂eff] + γ1D[δb̂†]ρ̂eff + 4γ2|βss |2D[δb̂]ρ̂eff ,

(3)

with the effective Hamiltonian

Ĥeff = −�δb̂†δb̂ − i
γ2

2

(
β2

ssδb̂
†δb̂† − β∗2

ss δb̂δb̂
)
. (4)

This effective model captures the major features of the full
quantum model and thus allows at least qualitative predictions
about the behavior of the system, while quantitative agreement
varies with parameters. A comparison of the outcomes of
Eqs. (1) and (3) can be found in the Supplemental Material
[28]. The effective model is a squeezing Hamiltonian where
the amount of squeezing depends on the classical steady-state
solution βss .

Diagonalizing Eq. (4) leads to

Ĥdiag = −
effĉ
†ĉ + const. (5)
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FIG. 2. Classical phase diagram and squeezing. (a) Overview
of the classical synchronization regimes with sketches of typical
phase-space trajectories. (b) Asymmetry of the steady-state squeezing
ellipses, max(λcov)/min(λcov), obtained from the effective model [30].
At the black crosses we show the squeezing ellipses (not to scale) with
their radial direction aligned along �e1. Two cuts at different forcing
are shown below the figure. Parameters: γ2/γ1 = 0.1.

Here, δb̂e−iθ/2 = cosh(χ )ĉ + sinh(χ )ĉ†, Aeiθ := −iγ2β
2
ss/2,

tanh(2χ ) = 2A/�, and 
eff = √
�2 − 4A2 is the effective

frequency. The corresponding master equation reads

˙̂ρdiag = −i[Ĥdiag,ρ̂diag] + �↑D[ĉ†]ρ̂diag + �↓D[ĉ]ρ̂diag , (6)

with �↑ = 4γ2|βss |2sinh2(χ ) + γ1cosh2(χ ), �↓ = 4γ2|βss |2
cosh2(χ ) + γ1sinh2(χ ), and neglecting fast rotating terms,
such as ĉĉρ̂eff. The diagonalized, effective model is a damped
harmonic oscillator with frequency 
eff and damping � =
�↓ − �↑. This unambiguously allows us to identify an un-
derdamped phase dynamics regime following the standard
procedure for a harmonic oscillator; i.e., we require �2 > 4A2,
which leads to a real-valued effective frequency 
eff. This is
consistent with the corresponding classical dynamics derived
from Eq. (3), leading to a second-order differential equation
of the phase,

δφ̈ + �δφ̇ + 
2δφ = 0. (7)

Here, δφ = φ − φss describes phase deviations
from the steady-state phase φss and 
 =√

�2 + (γ2R2
ss − γ1/2)(3γ2R2

ss − γ1/2) is the bare
frequency which is related to the effective frequency 
eff =√


2 − �2/4 =
√

�2 − γ 2
2 |βss |4; cf. [25,28].

Before we discuss results from our effective quantum
model, we briefly review the relevant features of the cor-
responding classical “phase diagram” of synchronization,
Fig. 2(a). This phase diagram and its quantum analog will
help us to identify the parameter regime of underdamped phase
motion, where we then can check for quantum coherence. We
obtain the boundaries between the regimes of the classical
phase dynamics from a linear stability analysis of Eq. (2);
cf. [1,28]. Notably, we distinguish two qualitatively different
transitions from synchronization to no synchronization: At
small forces, a saddle-node bifurcation characterizes the
transition from synchronized (overdamped) dynamics directly
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FIG. 3. Quantum coherence. Wigner densities W (x,p,t) of (a) the initial state |�(t = 0)〉 ∼ (|βss + 2〉 + |βss − 2〉) and (b) at a later time.
The underdamped phase dynamics rotates the state around the classical steady-state solution (yellow cross). (c) Wigner density W (p,x = 0,t)
with negativities that remain visible for many oscillations. (d) Effective temperature in the underdamped regime, indicated by neff. The left
white area corresponds to the overdamped regime. (e) Quality factor 
eff/�deph in the underdamped regime. Panels (f) and (g) show the
effective oscillation frequency 
eff (dashed blue), damping � (dash-dotted green), and dephasing rate �deph (red) as a function of the detuning
�. (f) At small force F/γ1 = 1.5 the dephasing remains the dominant rate. (g) In contrast, at larger force F/γ1 = 103 the frequency 
eff can
significantly exceed both the dephasing and the damping (quantum-coherent regime). Parameters: γ2/γ1 = 0.1, and (a)–(c) F/γ1 = 1.5×103

and �/γ1 = 7×102. Panels (a)–(c) show numerical solutions to the full model Eq. (1), while panels (d)–(g) show the rates obtained from our
effective quantum model which characterize the behavior of the full system.

to the LC regime. At larger forces, a regime of underdamped
phase motion opens up before a Hopf bifurcation marks
the onset of a LC, which does not necessarily encircle the
origin.

Since we are actually interested in a quantum regime, it
is worthwhile to see that these two qualitatively different
transitions have also important consequences for the quantum
dynamics. In particular, we find a qualitative change of
behavior in the squeezing properties of the steady state. Since
Ĥeff is quadratic in δb̂ the system is fully characterized by its
covariance matrix σij = Tr[ρ̂eff{X̂i,X̂j }/2] with the quadra-
tures X̂1 = (δb̂ + δb̂†)/

√
2 and X̂2 = −i(δb̂ − δb̂†)/

√
2. The

eigenvalues λcov of the covariance matrix determine the shape
of the squeezing ellipse [29]. Their ratio (the asymmetry
of the ellipses) is shown in Fig. 2(b). Notably, at small
forces, it increases with larger detuning. In contrast, at larger
forces where we predict underdamped phase dynamics, the
ellipses become more circular while increasing the detuning
�. Thus, the squeezing behavior can be used as an indicator
for the existence of a quantum regime of underdamped phase
motion. The effective model becomes unstable if � = 0,
which corresponds to the classical fixed point losing its
stability. Additional details on squeezing can be found in the
Supplemental Material [28].

Quantum coherence. Studying the effective model, we have
identified the quantum regime of underdamped phase motion.
Now we demonstrate that within this regime, it is possible to
preserve quantum coherence for a significant time. To this end,
we choose an initial state which possesses negativities in its
Wigner function, Fig. 3(a), and show that these negativities
persist for a long time compared to the characteristic time
scale of the dynamics 
−1

eff . The dynamics due to Eq. (1)
leads to a rotation of the state around the classical steady
state βss , Fig. 3(b). Notably, this dynamical evolution has little
influence on the coherence and the negativities of the Wigner
density survive many oscillations of the system [Fig. 3(c)].
After the loss of coherence, the state remains in a classical
mixture of two displaced states and settles into the steady
state only on an even longer timescale; see Ref. [28] for a
complete overview. All Wigner densities in Figs. 3(a)–3(c)

are obtained by numerically solving the full master
equation (1).

This behavior is successfully predicted by our effective
model, which allows us to quantify quantum coherence within
the underdamped regime and eventually identify a quantum-
coherent regime. The time scale on which the quantum system
approaches the steady state is approximately given by the
damping �. Thus, a necessary condition to observe quantum-
coherent motion is 
eff > �. Approaching the classical Hopf
bifurcation, the damping � becomes arbitrarily small. How-
ever, a small damping does not imply a small dephasing rate
�deph = �↑ + �↓. The dephasing rate ultimately determines
the lifetime of negativities, i.e., quantum coherence. With
�↑ = �neff and �↓ = �(neff + 1), the dephasing rate �deph

depends on both the damping � and the effective occupation
of the VdP oscillator neff. This effective occupation comes
about due to the driven-dissipative character of the quantum
oscillator even at zero environmental temperature, also called
quantum heating [31]. It increases towards the boundaries
of the underdamped regime, Fig. 3(d), counteracting the
decreasing damping. Additional insight is obtained by iden-
tifying a quality factor for quantum coherence, 
eff/�deph,
which determines the lifetime of negativities in the Wigner
density. Close to the instability and, more importantly, at large
forcing and detuning, 
eff/�deph increases and can become
significantly larger than 1 [Fig. 3(e)]. This is the quantum-
coherent regime where negativities of the Wigner density can
survive many oscillations of the system [Fig. 3(c)]. Regarding
Fig. 3(e), the only remaining dimensionless parameter (apart
from the normalized force and detuning) is the ratio of the
damping rates γ2/γ1. It influences the region of stability of
the effective model. For instance, increasing γ2/γ1 shifts the
instability (� = 0) to larger detuning. This allows to achieve
a comparable quality factor 
eff/�deph at smaller forcing
but similar detuning—mainly because 
eff increases with
�. In Figs. 3(f) and 3(g) we show all relevant rates in the
underdamped regime at small and large forcings, respectively.
In both cases 
eff increases, while � and �deph decrease with
larger detuning. At small force [Fig. 3(f)], the dephasing rate
remains the largest rate in the entire underdamped regime.
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FIG. 4. Spectrum. Panels (a) and (b) show the spectrum S(ω)
of a synchronized VdP oscillator for different detunings �/γ1 = 0
(upper black spectrum), �/γ1 = 2×104 (middle blue spectrum), and
�/γ1 = 5×104 (lower red spectrum). In the overdamped regime
(upper black) the spectrum shows a single peak at ω = 0, while
in the underdamped regime (middle blue and lower red) double
peaks at ±
eff emerge. Parameters: γ2/γ1 = 2×103,F/γ1 = 2×104.
(c) Steady-state Wigner density Wss(x,p) and phase probability
distribution P (φ) of a VdP oscillator showing phase self-oscillations,
i.e., a ring-like Wigner density not encircling the origin (indicated
by the dashed black line). The corresponding spectrum (d) shows
multiple peaks at higher harmonics. Parameters for panels (c) and
(d): γ2/γ1 = 5×10−3,F/γ1 = 10,�/γ1 = 1.55. All subfigures (a)–
(d) show numerical solutions of the full model Eq. (1).

Notably, for large F [Fig. 3(g)], we find that 
eff can become
significantly larger than both � and �deph, thus entering the
quantum-coherent regime. This is the key element to observing
long-lived quantum coherence.

Spectrum. To shed more light on the possibility to
experimentally observe the transition from overdamped to
underdamped synchronization dynamics, we investigate the
spectrum S(ω) = ∫ ∞

−∞ dteiωt 〈b̂†(t)b̂(0)〉. We obtain S(ω) from
the steady state of Eq. (1) by applying the quantum regression
theorem or analytically from the effective model; see Sup-
plemental Material [28]. The spectrum carries information
on the frequencies of the driven VdP oscillator. Figure 4(a)
shows S(ω) for a fixed external force and various detunings,
corresponding to the overdamped (upper black spectrum) and
underdamped (middle blue, lower red spectra) regime. In
the overdamped regime the spectrum shows a single peak
close to ω = 0, indicating synchronization to the external
force. With increasing detuning, the spectrum develops from
a single peak to two peaks which now sit at approximately
±
eff. A small remainder of the central peak at ω = 0
becomes visible for a larger splitting of the main peaks. The
emerging double peaks clearly indicate the transition from
overdamped to underdamped phase dynamics [Fig. 4(b)]. The
increasing asymmetry of S(ω) results from the coupling of
amplitude and phase dynamics. For even larger detuning,
synchronization is lost which ultimately leads to a single peak
in the spectrum at ω = �. A recent experiment synchronized
two nanomechanical oscillators by coupling to a common
cavity mode [17]. Curiously, the cavity output spectrum
showed sidebands next to the common frequency of the
locked oscillators. These sidebands were suggested to arise
from (classical) underdamped phase motion of the oscillators,
which is also consistent with the classical limit of our
theory.

Interestingly, we find that the phase can even undergo
self-oscillations. In the quantum regime, these phase self-

oscillations appear (in analogy to the classical scenario) at
the boundary of underdamped phase motion just before the
loss of synchronization occurs. A circular LC opens up around
the former stable fixed point. In the quantum regime this is
smeared by quantum fluctuations and becomes visible only
once the LC is large enough. If that LC expands even further, it
will eventually come to resemble the original unsynchronized
state: The LC encircles the origin of phase space and the
corresponding phase distribution is flat [Fig. 1(a)]. However,
in Fig. 4(c), this is not yet the case, i.e., the LC does not
encircle the origin. The oscillator has still a tendency to
be locked to the phase of the external force. This is also
reflected in the corresponding phase distribution P (φ) which
becomes asymmetric and shows the onset of a double peak
structure. Notably, phase self-oscillations are accompanied by
the appearance of a series of peaks in the spectrum [Fig. 4(d)],
representing higher harmonics of the main phase-oscillation
frequency.

Experimental realization. The regime of underdamped
quantum phase motion and even quantum phase self-
oscillations could be experimentally studied in a variety of
systems. For instance, trapped ions are promising candidate
systems for studying synchronization in the quantum regime
[6,8]. The possibility to prepare nonclassical states experi-
mentally [32] allows for probing the quantum-coherent nature
of the underdamped phase dynamics. Based on parameters
for trapped 171Yb+ ions [6,33,34], we estimate that it should
be possible to observe significant quantum coherence. In this
scenario, the negative and nonlinear damping are both of the
order of kHz, with γ2/γ1 ∼ 1. To observe quantum-coherent
underdamepd phase dynamics the detuning � and the external
force F should be a few hundred kHz each. This is realistic,
with frequencies of the motional state in the MHz regime.
Furthermore, mechanical self-oscillations in cavity optome-
chanics have been discussed theoretically [35] and observed
experimentally [36,37]. Thus, they are well suited to study
synchronization, and classical synchronization phenomena
have already been demonstrated experimentally [16–19]. Yet
another possible platform to observe quantum-coherent phase
motion are superconducting microwave circuits. These are
exceptional and highly tuneable platforms for experimentally
investigating quantum systems. In principle, arbitrary quantum
states can be realized [38–40]. Even, the faithful engineering
of two-photon losses in such systems has been demonstrated
[41]. This makes them very interesting for studying quantum-
coherent phase motion and phase self-oscillations of a quantum
VdP oscillator.

Conclusion. We have shown that the phase of a syn-
chronized quantum Van der Pol oscillator exhibits intriguing
underdamped and even quantum-coherent phase dynamics
around the synchronized steady state. In order to explore this
interesting regime, we have developed an effective quantum
model and identified where the dephasing rate becomes
sufficiently small to observe quantum-coherent phase motion.
As a direct consequence, we have shown that this preserves
a nonclassical quantum state for many phase oscillations.
We estimate that this could readily be observed in state-of-
the-art experiments. While we have analyzed the simplest
synchronization phenomenon, to an external drive, the regime
identified here will also show up in the quantum phase
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dynamics of two coupled oscillators or even lattices [2]. In
the latter case, phenomena such as quantum motion of phase
vortices may potentially become observable.
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