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After a quench in a quantum many-body system, expectation values tend to relax towards long-time
averages. However, temporal fluctuations remain in the long-time limit, and it is crucial to study the
suppression of these fluctuations with increasing system size. The particularly important case of
nonintegrable models has been addressed so far only by numerics and conjectures based on analytical
bounds. In this work, we are able to derive analytical predictions for the temporal fluctuations in a
nonintegrable model (the transverse Ising chain with extra terms). Our results are based on identifying a
dynamical regime of “many-particle dephasing,” where quasiparticles do not yet relax but fluctuations are
nonetheless suppressed exponentially by weak integrability breaking.
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Introduction.—The relaxation dynamics of quantum
many-body systems has come under renewed scrutiny in
the past years, due to its relevance for the foundations of
thermodynamics and the availability of isolated systems,
like cold atoms. The simplest case considers the evolution
after a sudden quench of parameters [1]. Typically, one then
analyzes local physical observables (like particle density,
magnetization, currents), and asks about the time evolution
of expectation values. The most basic question concerns the
long-time averages after the quench: are they correctly
described by a thermal state at some effective temperature
related to the initial energy after the quench [2–17]? On the
next, more refined level of analysis, we can study the time-
dependent fluctuations of expectation values around their
temporal average. For any finite system, these persist even
at infinite time. In principle, these represent a kind of long-
term memory, since they are reproducible (the same for
each repetition of the quench) and depend both on the exact
time of the quench and on details of the initial state.
A crucial question for the foundations of statistical

physics is, how are these fluctuations suppressed as a
function of system size N, when approaching the thermo-
dynamic limit? This is also relevant for experiments in
equilibration, like analog quantum simulations carried out
in finite (“mesoscopic”) lattices.
These fluctuations around the time average are com-

monly characterized by σ2A ¼ ½hÂðtÞi − hÂieq�2 [5,18–20].
The overbar denotes a time average and h ˆAieq ¼ hÂðtÞi.
Note that this is different from the quantum fluctuations
VarÂðtÞ ¼ h½ÂðtÞ − hÂðtÞi�2i, which are usually much
larger and would be present even in a perfect thermal
equilibrium state (where σ2A vanishes).
The finite-size scaling of persistent temporal fluctuations

after a quench has been approached so far from several
angles: (i) in the context of the eigenstate thermalization
hypothesis, justifying the neglect of off-diagonal

contributions to expectation values [21–24]; (ii) based on
the former, general mathematical bounds supplemented by
physical arguments for generic interacting, nonintegrable
systems [18,19,25,26]; (iii) calculations for simple inte-
grable systems (which have, however, special properties
that strongly differ from the generic case) [20,27–30];
(iv) numerics [31].
Here, we will provide exact analytical results for the

suppression of fluctuations in a nonintegrable system,
confirming the hypothesized exponential decay with sys-
tem size. Our analysis rests on identifying a general
dynamical regime which we term “many-particle dephas-
ing,” relevant for weak integrability breaking. The advan-
tage over having purely numerical results will be that we
can provide a complete description of how the result
depends on the quench, the initial state, and parameters.
The advantage vs analytical bounds is that the bounds are
not guaranteed to be close to the true results.
Integrable transverse Ising model.—We start from the

well-known integrable quantum Ising chain. We review,
briefly, its properties and its quench dynamics, as they
will be important for our analytical solution of the non-
integrable evolution later on. The quantum (transverse)
Ising chain is an exactly solvable model for quantum phase
transitions [32–37]:

Ĥ0 ¼
Ω
2

XN
j¼1

σ̂z;j − J
XN
j¼1

σ̂x;jσ̂x;jþ1: ð1Þ

Here σ̂x;j and σ̂z;j are spin-1=2 operators acting on site j.
We will assume periodic boundary conditions, with
σ̂x;Nþ1 ¼ σ̂x;1. For J < Ω=2, the model is paramagnetic
(where hσ̂z;ji < 0), while at J ¼ Ω=2 there is a quantum
phase transition into a ferromagnetic phase, with spins
aligning either in the þx or −x direction. The model can
be solved exactly by mapping to free fermions, via
σ̂þ;j ¼ ĉ†j expðiπ

Pj−1
l¼1 ĉ

†
l ĉlÞ. This results in a quadratic
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fermionic Hamiltonian that does not conserve particle
number and can be solved by Bogoliubov transformation
in k space:

Ĥ0 ¼
X
k

½Ω − 2J cosðkÞ�ĉ†kĉk − Ji sinðkÞðĉ†kĉ†−k − ĉ−kĉkÞ:

ð2Þ
For definiteness wewill assumeN is even. The quantization
of wave numbers is slightly changed from the textbook case
(due to an extra sign that enters when coupling site N to
site 1), with k ¼ 2π=Nðlþ 1

2
Þ, where l is an integer and k

ranges over the Brillouin zone ½−π; π½. The Hamiltonian
decomposes into independent sectors ðk;−kÞ.
For this as well as other integrable models, it has been

found that the temporal variance of many single-particle
observables scales like 1=N [20,28]. However, there are
important exceptions where there is no such suppression
with N [29]. In particular, one has to distinguish interacting
systems mappable to noninteracting ones (the present case)
and purely noninteracting systems. Only in the former, the
complete one-particle density matrix relaxes [15].
In a quench of the coupling strength J out of the

prequench ground state, during the evolution we will have
ðk;−kÞ either occupied by two particles or unoccupied.
This can be viewed as an artificial spin 1=2 system. We take
Ŝzk ¼ −1 to correspond to j0−k; 0ki and Ŝzk ¼ þ1 repre-
senting j1−k; 1ki ¼ Ŝþk j0−k; 0ki, with Ŝþk ≡ ĉ†kĉ

†
−k. In that

notation, the Hamiltonian, Eq. (2), becomes a set of
decoupled effective spin-1=2 systems:

Ĥ0 ¼
1

2

X
k>0

Ωk
~bk ~̂Sk: ð3Þ

We introduced the two-particle excitation frequencies
Ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2Ω − 4J cosðkÞ�2 þ ½4J sinðkÞ�2

p
, and the field

direction ~bk ¼ ½0; 4J sinðkÞ; 2Ω − 4J cosðkÞ�T=Ωk. The
ground and excited state, j�ki, have energies �Ωk=2,

and h�kj~̂Skj�ki ¼ �~bk. In this picture, a quench corre-

sponds to a sudden change of Ωk and ~bk, such that for each
k the Bloch vector starts to precess around the new field

direction: dh~̂Ski=dt ¼ Ωk
~bk × h~̂Ski.

An example for an observable is the projector for the
spin pointing along þz at some site j: Â ¼ σ̂þ;jσ̂−;j.
Because of translational invariance, hÂðtÞi is independent
of j. One finds hÂðtÞi ¼ N−1P

k>0ðhŜzki þ 1Þ, resulting in
an expression of the form hÂðtÞi ¼ N−1P

k>0½A0kþ
Ack cosðΩktÞ þ Ask sinðΩktÞ�. At sufficiently long times,
all the oscillatory terms dephase, producing seemingly
random time-dependent fluctuations. This process can be
termed “single-particle dephasing,” since it results from the
superposition of different oscillation frequencies whose
number scales linearly with system size.
Thus, the temporal variance ends up being

σ2A ¼ N−2P
k>0ðA2

ck þ A2
skÞ=2. In the limit of large N, this

becomes

σ2A ¼ N−1
Z

π

0

dk
2π

ðA2
ck þ A2

skÞ=2; ð4Þ

i.e., σ2A ∼ N−1, confirming the result of Ref. [20].
Quench in the nonintegrable model.—The general

physical expectation for nonintegrable systems is that the
long-time steady state after a quench has fluctuations that
are exponentially suppressed in particle number (system
size) N, in contrast to the power-law suppression in the
integrable case displayed above. This was made explicit
first in Ref. [18]. There, an upper bound was derived,
σ2A ≤ ðamax − aminÞ2. IPR. Here, amax and amin are the
maximum and minimum eigenvalues of Â. IPR ¼P

njhΦnjΨð0Þij4 denotes the inverse participation ratio,
which decreases if the initial state jΨð0Þi spreads over more
energy eigenstates jΦni. It was then argued on general
physical grounds that the IPR usually decreases exponen-
tially with system size. However, an argument of this kind
does not reveal how fast the decay is for any concrete system
or quench scenario, or whether the upper bound displays the
correct parameter dependence at all, since it will not be tight
in general. More recently, it was reported that numerical
simulations for a variety of models and quench scenarios
indeed reveal an exponential suppression with system size,
for the finite-size systems that could be addressed [31].
Our goal here is to go beyond bounds and numerics,

and to find an analytical expression for a nonintegrable
case. We break the integrability of the quantum Ising
model by adding next-nearest-neighbor (NNN) coupling
ĤNNN ¼ −JNNN

P
jσ̂x;jσ̂x;jþ2. In the fermion representa-

tion, this gives rise to two-particle interactions. Other
choices for integrability breaking are possible, which we
will address later. A direct numerical simulation [Fig. 1]
indeed reveals a stronger suppression of fluctuations, that
seems to be consistent with an exponential decay in N.
We now come to an important question: What is the

physical origin of this strong suppression? Initially, one
might suspect “true thermalization,” in the sense of inelastic
scattering of quasiparticles leading to a redistribution of
quasiparticle populations. This process could then be

(a) (b)

FIG. 1. Many-particle dephasing in a chain with N ¼ 12. The
quench jumps from Jpre=Ω ¼ 0 to J=Ω ¼ 0.8. Without pertur-
bation (blue) the fluctuations at early and late times are similar.
A weak NNN coupling of strength JNNN=J ¼ 0.01 leads to a
significant additional relaxation for t → ∞. (b) The temporal
variance Nσ2A for two different observables shows an exponential
decay in N. [Analytical result from Eq. (6).]
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described using a kinetic equation, and the final state would
be thermal. However, the simulation shows that this is not
the case, the quasiparticle distribution remains practically
unchanged. There is further numerical evidence that we are
not witnessing thermalization: The fluctuations decay to
their steady-state long-time limit during a time scale τ� that
scales linearly in the inverse perturbation: τ� ∼ jJNNNj−1.
This is in contrast to the behaviour expected from a kinetic
equation, where the relaxation rate would be set by J2NNN.
Many-particle dephasing.—Instead, we have identified a

mechanism that could be termed “many-particle dephasing.”
First, we note that, for weak interactions, the many-body
energy eigenstates still coincide to a very good approxima-
tion with those of the integrable model. This explains the
absence of thermalization in the occupations of quasipar-
ticles. At the same time, however, the energies are changed.
This lifts the exponentially large degeneracies of the
integrable model and gives rise to dephasing. The number
of frequencies involved is now exponentially large in N,
which is the reason we term the resulting dynamics “many-
particle dephasing.” The generic situation, including the
different time scales, is shown schematically in Fig. 2.
An effect similar to the many-particle dephasing mecha-

nism has been predicted for a chain of harmonic oscillators
that are perturbed weakly by an anharmonic interaction
[38]. In this bosonic model, the weak anharmonicity leads
to an exponential number of available frequencies, causing
an exponential decay of the fluctuation strength.
It can be shown easily (e.g., Ref. [18]) that fluctuations

in the long-time limit obey σ2A ¼ P
Δ≠0j

P
Δα¼ΔAαj2. Here

α ¼ ðf; iÞ denotes a transition between two energy eigen-
states i and f where Δα ¼ Ef − Ei is the transition energy,
and Aα ¼ Ψ�

fAfiΨi combines the transition matrix element
of the observable with the amplitudes Ψl ¼ hΦljΨð0Þi of
the initial state with respect to the postquench energy
eigenbasis Φl.
We now consider an arbitrary transition i → f that is

induced by Â. Suppose the observable just affects a single
quasiparticle at a time, or (in our case) it affects only a

single ðk;−kÞ pair of states. All other quasiparticles (or k
pairs) are merely spectators. Such a structure is typical for
single-particle observables. It is at this point that the weak
integrability-breaking interactions impose a crucial differ-
ence. For the integrable (effectively noninteracting) case,
there is an exponentially large number of other transitions
that have the same transition energy. These are obtained
by picking all possible configurations of the remaining
“spectator” degrees of freedom (which are identical in the
initial and final state). In contrast, for the nonintegrable
(weakly interacting) case, there is a correction to the
transition energies which lifts this massive degeneracy.
For the present model, the transition energy correction
δΔfi ∼ JNNN turns out to be a sum over contributions that
depend on pairs of occupation numbers, nk and nk0 (see
Supplemental Material [39]). Given a change in one of the
occupation numbers, the correction thus depends on the
configuration of all the “spectator” degrees of freedom.
Therefore, barring any (rare) accidental degeneracies, the
initial degeneracy is completely lifted. That statement is
confirmed by direct numerical inspection of δΔfi.
Assuming that all the transition energiesΔα have become

nondegenerate, we find σ2A ¼ P
f≠ijΨ�

fAfiΨij2. In general,
it would still be an impossible task to evaluate this
expression analytically. At this stage, however, the impor-
tant observation is that the Δα do not enter any more, even
though their modification by the weak interaction was
crucial to lift the degeneracies. Our strategy will be to
evaluate this expression for the matrix elements calculated
with respect to the unperturbed integrable many-particle
eigenfunctions. In this way, we will arrive at analytical
insights into the suppression of fluctuations for the non-
integrablemodel. The requirement for this towork is that the
perturbation JNNN is still weak, such that the eigenfunctions
have not been changed appreciably. Later we will check the
results against numerics.We note that a similar approach has
been used before by Rutkevich for a chain of harmonic
oscillators with weak anharmonic interactions [38].
Each energy eigenstate of the integrable transverse

Ising model can be written as a product state:
jΦni ¼ Πk>0jφðn; kÞi. Each configuration n is described
by N=2 bits φðn; kÞ ∈ f−1;þ1g, where −1 denotes the
ground state j−ki andþ1 the excited state jþki in the ðk;−kÞ
sector. The observable we focused on in the numerical
example was Â ¼ ðσ̂z;j¼0 þ 1Þ=2, which, in fermionic
language, is equal to Â ¼ N−1P

k;k0 ĉ
†
kĉk0 exp½−iðk − k0Þx�.

For this observable, we find

hΦmjÂjΦni ¼
2

N

X
k>0

hφðm; kÞjŜþk Ŝ−k jφðn; kÞiIk; ð5Þ

where Ik ≡ Πk0≠kδφðm;k0Þ;φðn;k0Þ enforces the initial and final
configurations of spectators k0 ≠ k to match.
In evaluating the general formula for σ2A, we have to sum

over all possible many-particle transitions i → f. However,
the Kronecker delta in Eq. (5) enforces the configurations
φði; k0Þ and φðf; k0Þ to be equal except at k0 ¼ k. We still

FIG. 2. Schematic overview of different dynamical regimes
after a quench in a finite-size system that is weakly perturbed
away from an integrable, effectively noninteracting model (dis-
played for a local observable in the perturbed transverse Ising
model, but valid more generally). First, revivals occur. Second, a
transient steady-state with fluctuations σA ∼ 1=

ffiffiffiffi
N

p
is observed,

as predicted for the integrable case. Finally, after a time that scales
as the inverse of the integrability-breaking perturbation, the final
steady state is reached. There, fluctuations are reduced exponen-
tially in the system size, due to many-particle dephasing.
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have to sum over exponentially many configurations,
though that can be handled by regrouping terms and a
bit of combinatorics (see Supplemental Material [39]). In
doing this, we exploit the fact that the initial state can be
written as a product state over the different k sectors (since
it is an eigenstate of the prequench Hamiltonian).
Analytical results.—The final analytical result for the

long-term, steady-state fluctuations in the weakly non-
integrable model (small JNNN ≠ 0) is

σ2A ¼ C
N
exp ð−2κNÞ: ð6Þ

Here the exponential is equal to the IPR. We find explicitly
2κ¼−ð1=NÞPk>0 lnIPRðkÞ, where IPRðkÞ ¼jhþkjΨkij4þ
jh−kjΨkij4 is the IPR for the initial state jΨki in sector k.
In the limit of large N, κ becomes N independent:
2κ →

R
π
0 ðdk=2πÞ ln IPRðkÞ, giving us analytical access to

the exponential suppression of fluctuations.
The prefactor in σ2A contains a further 1=N suppression,

and a constant C, which can be given explicitly as well:

C ¼ 8

N

X
k>0

wðkÞ ≈ 8

Z
π

0

dk
2π

wðkÞ; ð7Þ

where

wðkÞ ¼ IPR−1ðkÞjhþkjŜþk Ŝ−k j−kij2Pkð1 − PkÞ; ð8Þ
and Pk ¼ jhþkjΨkij2.
Writing the Ising Hamiltonian in the form of Eq. (3), we

can give explicit expressions in terms of the “magnetic

field” directions before (~b0k) and after (~bk) the quench:

IPRðkÞ ¼ 1

2
½1þ ð~bk~b0kÞ2� ð9Þ

wðkÞ ¼ ð1 − b2zkÞ½1 − ð~bk~b0kÞ2�
16IPRðkÞ : ð10Þ

We find a very good agreement between these analytical
expressions and numerical results for finite system sizes

(Fig. 4). The prefactor and the decay coefficient are shown
in Fig. 3. Note that both behave nonanalytically at the
quantum critical point.
For other observables, similar calculations can be done.

For example, for σx;jσx;jþ1, the result is the same up to the
change Ŝþk Ŝ

−
k↦2 cosðkÞŜþk Ŝ−k − sinðkÞŜyk in Eq. (8).

Time scale.—The many-particle dephasing rate is
expected to be proportional to the transition energy split-
ting, which in the above case is of order JNNN. Numerical
results are compatible with this expectation. Moreover, they
indicate that the corresponding time scale is approximately
independent of N, as far as we could ascertain (an increase
of the chain length by a factor of more than two leaves
this time scale approximately constant; see Supplemental
Material [39]). Once the system size becomes large enough
such that quasiparticles can mix, we anticipate the onset of
Boltzmann dynamics at a time scale ∼J−2NNN, which will be
much larger for weak integrability breaking.
Other variants and models.—We expect our approach

to work for a very general class of integrability breaking
terms: they only have to lift the single-particle degeneracy.
The case of long-range coupling is discussed in the
Supplemental Material [39] and fits well with our analytical
prediction. Furthermore we considered a weak longitudinal
field V̂x ¼ Jx

P
N
j¼1 σx;j. In the paramagnetic phase, this

yields good agreement with our prediction, see Fig. 4.
Exceptions occur when the inversion symmetry is sponta-
neously broken in the ferromagnetic phase (see the
Supplemental Material [39] for a general discussion on
the applicability in the case of spontaneous symmetry
breaking).
Other examples include systems of free bosons or

fermions in any dimension. Introducing a weak interaction
will lift the initial massive degeneracy, leading to many-
particle dephasing as described here.

(a) (b)

FIG. 3. Analytical predictions, depending on the postquench
parameter J. (a) Decay constant κ for the decay of fluctuations
with system size, and (b) prefactor C (see main text, in the formal
limit N → ∞). The quench assumed here jumps from a coupling
Jpre to J.

(a) (b)

FIG. 4. Temporal variance σ2A forN ¼ 8 and different prequench
parameters. The squares show results from numerical exact
diagonalization. Integrability is weakly broken by JNNN=Ω ¼
0.01 (blue) or a longitudinal magnetic field Jx=Ω ¼ 0.01 (red).
The black line shows the analytical predictions. With the pre- or
postquench parameters in the ferromagnetic phase and nonzero Jx,
stronger deviations due to the spontaneous symmetry breaking
occur. For smaller fields, the agreement is restored (orange
crosses) [Jx=Ω ¼ 2 × 10−4 in (a) and Jx=Ω ¼ 5 × 10−4 in (b)].
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Our theory may also provide insights into disordered
systems. If they display Anderson localization in the
integrable case and remain many-body localized after
switching on the interaction, we conjecture that the
evolution after a quench can also show signs of many-
particle dephasing. The system size would be replaced by
the localization length, such that we are effectively dealing
with many independent finite-size mesoscopic systems.
Experimental implementation.—Our predictions might

be tested in both chains of trapped ions and superconduct-
ing qubit arrays. We have estimated that such tests are
within the reach of feasible experimental parameters (see
Supplemental Material [39], especially Fig. 4), and the
long-range coupling in ions in particular offers a new
variation on the scenario described here.
Conclusions.—Exploring time-dependent fluctuations

represents the important next step beyond the discussion
of long-time averages. We discovered both a new dynami-
cal regime and an analytical way of predicting such
fluctuations and their dependence on system size. The
underlying mechanism should apply whenever one starts
from an effectively free model, where the many-particle
energies are highly degenerate, which are then split by
weak integrability-breaking interactions.
We expect our results to encourage experimentalists, in

particular ones using trapped ions or superconducting
qubits, to address the outstanding experimental problem
of systematically studying the decay of fluctuations and
comparing them to both numerical and analytical
predictions.

We thank Marcos Rigol, Lea Santos, and Aditi Mitra for
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excitations.”
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