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A B S T R A C T

Brain-computer-interfaces (BCI) provide a means of using human brain activations to control devices for communication. Until now this has only been demonstrated in
primary motor and sensory brain regions, using surgical implants or non-invasive neuroimaging techniques. Here, we provide proof-of-principle for the use of higher-
order brain regions involved in complex cognitive processes such as attention. Using realtime fMRI, we implemented an online ‘winner-takes-all approach’ with
quadrant-specific parameter estimates, to achieve single-block classification of brain activations. These were linked to the covert allocation of attention to real-world
images presented at 4-quadrant locations. Accuracies in three target regions were significantly above chance, with individual decoding accuracies reaching upto 70%.
By utilising higher order mental processes, ‘cognitive BCIs’ access varied and therefore more versatile information, potentially providing a platform for communication
in patients who are unable to speak or move due to brain injury.
Introduction

Brain-computer interfaces (BCIs) attempt to link measures of brain-
related physiological activity with control of a device for communica-
tion or movement. A standard approach is to target brain activations
produced in primary sensory or motor cortex (Jackson and Zimmermann,
2012), mapping the function of the target brain region with BCI output in
a one-to-one fashion e.g. using motor cortical activations to control a
hand prosthesis, or using retinotopic representations in primary visual
cortex to direct a cursor on a screen (Andersson et al., 2013a; Birbaumer
et al., 2008; Golub et al., 2016; Lebedev and Nicolelis, 2006; Miranda
et al., 2015; Murphy et al., 2015). Cognitive BCIs seek to advance this
premise by engaging higher-order brain regions, which control or
combine basic afferent sensory information to produce behaviourally
meaningful actions, or target regions which are involved in overarching
processes such as attention (Richard et al., 2011; Tankus et al., 2014;
Vansteensel et al., 2010; Wullimann et al., 2004). Visual attention is
closely linked to visual awareness, acting to identify the location and
semantic value of visual information. For cognitive BCIs linking
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higher-order mental processes with environmental interaction, attention
provides an accessible cognitive process (Astrand et al., 2016, 2014;
Daliri, 2014; Tremblay et al., 2015). We used realtime fMRI (rt-fMRI) to
test whether brain activations in higher-order visual cortex could be
accurately classified in real-time (see also Data-in-Brief articles 1 & 2).
Specifically, we examined brain activations that occur in relation to the
control of covert shifts of spatial attention to stimuli representing
real-world objects. In addition to utilising information linked to the
control of attentional-shifts to spatial location and object category, we
also added information related to the timing of the presentation of
stimuli, by using m-sequences in each of the quadrants. We purposefully
combined these different sources of information to enrich the BOLD
signal produced by covert shifts of attention. By explicitly doing this, we
sought to optimise classification accuracy, in line with our objective of
providing proof-of-principle for a cognitive BCI.

Rt-fMRI enables concurrent analysis and online visualisation of fMRI
data, a process normally performed offline (Cox et al., 1995). Once a
particular cognitive process has been linked with a defined brain acti-
vation, neural activations can be converted into bits of information which
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serve as information transfer units for the BCI (Tehovnik et al., 2013).
From here, there is no requirement for an explicit behavioural output, as
the imaging data acts as a communication surrogate. An early example of
this approach used brain activations produced by motor imagery, mental
calculation and inner speech, to control letter selection on a virtual
keyboard (Sorger et al., 2012). A more intuitive and attractive approach
might be to identify brain activation produced by cognitive command
signals, which specify a particular plan or action (Esterman et al., 2009).

We were specifically interested in identifying top-down signals, pro-
duced in higher-order visual cortex in relation to the control of attention.
Top-down control is classically linked with spatial attention. It is enacted
upon visual cortex by enhancing populations of neurones associated with
retinotopically-represented regions of space in the outside world (Carra-
sco, 2011; Noudoost et al., 2010). Control of the allocation of visuospatial
attention may additionally incorporate the biological importance of the
stimulus being attended to (Vossel et al., 2014), with neural responses in
brain regions lower down the visual hierarchy being modulated by
contextual influences (Gilbert and Li, 2013; Gilbert and Sigman, 2007a).
We examined 3 brain regions; parietal lobe, lateral occipital cortex (LOC),
and fusiform face area (FFA), all of which have been suggested to contain
salience maps (Gottlieb, 2007; Zenon et al., 2010), and have roles in
integrating position and category-specific information (Carlson et al.,
2011). LOC and FFA have been traditionally recognised as being
object-selective cortex. They have also been shown to demonstrate reti-
notopy (Cichy et al., 2011a; Halgren et al., 1999; Kim and Biederman,
2011; Kim and Kastner, 2013; Saygin and Sereno, 2008a), as well as
modulation by attention (Reddy et al., 2007; Yi et al., 2006). Parietal
cortex has been suggested tohave amore explicit role in top-downcontrol,
including mediating shifts of attention, control of salience maps, and ob-
ject discrimination (Bressler et al., 2008; Chiu et al., 2012; Esterman et al.,
2009; Gmeindl et al., 2016; Koenigs et al., 2009; Yantis et al., 2002). These
regions may therefore act as sites of top-down modulation, or serve as
‘binding’ points for multiple sources of information, including object and
spatial information. As a result, the neural activity produced in these re-
gions may offer a high signal-to-noise ratio (Gattass et al., 2005; Sclar
et al., 1990; Serences and Yantis, 2007) for the successful implementation
of a BCI decoding command signals modulating higher order visual in-
formation linked to the allocation of visual attention (Andersson et al.,
2011, 2009; Astrand et al., 2014; Bahramisharif et al., 2010).

We hypothesised that signals linked to the covert allocation of spatial
attention could be amplified by the inclusion of information related to
the stimulus being attended to (i.e. object and feature-based informa-
tion), and the timing of its presentation. To further increase BCI effi-
ciency, we introduced quadrant-specific alterations of the temporal
presentation of the stimuli. M-sequences, or maximum shift L-level register
sequences, are pseudorandom sequences of integers which can be used to
optimise stimulus presentation (Bura�cas and Boynton, 2002). They
ensure that signals related to stimulus events presented close together in
time can be optimally separated. We implemented this in order to further
separate brain activations produced by attention to stimulus streams in a
specific quadrant. Brain activations were separately extracted from
bilateral FFA, LOC and parietal cortex. Quadrant-based parameter esti-
mates were used in a winner-takes-all approach, to evaluate on a
single-block basis, which location was being attended to. This work
provides proof-of-principle for a real-time fMRI ‘attention-based’ BCI
using higher order brain regions.

Methods

Participants

Eight healthy adult volunteers (24–32 years of age; mean age¼ 28
years, 4 females) with normal or corrected-to-normal visual acuity were
recruited to participate in the experiment. Each participant provided
written informed consent and the study was approved by the local ethics
committee.
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Stimuli

The visual stimuli consisted of four categories: faces, houses, body
parts, and food/drink. Faces and house stimuli were obtained from an in-
house repository. Stimuli for body parts and food items were created
using stock images. There were 16 unique exemplars per category per
quadrant. Each stimulus subtended 2 degrees of visual angle in diameter,
and was presented at an eccentricity of 6� from the centre of the screen.
All images were rendered to ensure identical greyscale values, and mean
luminance using a custom designed MATLAB (Mathworks, Natick, USA)
script.

fMRI scanning

Experiments were performed on a 3 T Allegra head-only scanner,
using a standard transmit–receive head coil. Functional data were ac-
quired with a single-shot gradient echo planar imaging sequence (matrix
size, 64_64; field of view, 192_192mm; isotropic resolution,
3� 3� 3mm; 32 slices with ascending acquisition; slice thickness,
2 mm; slice gap, 1 mm; echo time (TE), 30ms; repetition time (TR),
1920ms; flip angle, 90�; receiver bandwidth, 3551Hz/pixel). In the
middle of each scanning session, double-echo fast, low-angle shot
sequence (FLASH) field maps (TE1, 10ms; TE2, 12.46ms; resolution,
3� 3� 2mm; slice gap, 1mm) were acquired and used to correct geo-
metric distortions in the images attributable to field inhomogeneities.

Real-time set up

We used Turbo Brain Voyager (TBV, Brain Innovations, Maastricht,
the Netherlands) with custom real-time image export tools programmed
in ICE VA25 (Weiskopf et al., 2004a,b), and custom scripts running on
MATLAB. The real-time data preprocessing was performed in Turbo
Brain Voyager and encompassed 3D motion correction with realignment
to a preselected template, smoothing (6mm FWHM Gaussian kernel),
incremental linear detrending of time series (128s high pass filter) and
statistical parametric mapping. Participants’ brain activations blood ox-
ygen level-dependent (BOLD) as region-of-interest (ROI) time course(s)
were extracted from prescribed ROI masks. These were averaged and
exported by TBV with a delay of 2s from the acquisition of the image.
Images were corrected for the effects of head motion in realtime. Signal
drift, spikes and high frequency noise were further removed in real time
from the exported time courses with the custom MATLAB scripts (Koush
et al., 2012).

Optimising the timing of stimulus presentations using M-sequences

The timing of presentations for the stimuli in each quadrant was
prepared using a quadrant specific m-sequence (Bura�cas and Boynton,
2002). Within a block each stimulus presentation represented an event,
with each one lasting for 500ms. The stimulus presentations for each
quadrant were interspersed with a set number of blank stimuli in keeping
with a quadrant-specific m-sequence (Fig. 2). The m-sequences were
prepared to ensure maximum orthogonality, providing 32 stimulus pre-
sentation slots per quadrant per block, and optimising placement of
‘blank’ stimuli. Attention to each quadrant-specific stimulus stream
would therefore produce quadrant-specific neural activity with distin-
guishable haemodynamic responses (Bura�cas and Boynton, 2002).

Prior to running the experiment, a simulation was used to confirm
that expected BOLD signals for each quadrant could be distinguished as
being different from the other three. The simulations were based on
convolving m-sequence based stimuli with noise and the haemodynamic
response function (HRF; Fig. 1). This was performed by generating four
m-sequences that were uncorrelated, and convolving them with a ca-
nonical HRF. The frequencies were sampled down to the typical TR (i.e.
approximately 2s, 15 data points for a 32s sequence). The response
function produced simulated the BOLD signals during the localiser run



Fig. 1. Graphs showing the modeled brain responses to m-sequences by convolving the HRF with the delta functions for the m-sequence for each quadrant. (a) Timeseries for each
quadrant, showing the relative orthogonality for each quadrant. (b) Degree of correlation between the timeseries from the ‘localiser’ session with the ‘attended’ quadrant (red line) versus
the other three simultaneous presented quadrant-based stimulus streams. By introducing a weighting to each of the quadrant time series, we examined if it would make it more discrete
from the other three. The introduction of weighting served to mimic the effect of attention.

Fig. 2. ‘Cued attention’ session schematic. Participants were cued to attend stimuli pre-
sented in one quadrant per block. The directional cue stimulus was a stick man pointing
towards the quadrant to be attended (first screen). During stimulus presentation in the 4
quadrants (i.e. second screen), blank stimuli (shown as black images) were interspersed
with stimuli from the other four categories (i.e. faces, houses, body parts, food/drink),
enabling quadrant-specific m-sequences to be used for stimulus presentation. During the
rest block (i.e. third screen) participants maintained central eye fixation, facilitated by a
white dot at the centre of the screen.
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i.e. when stimuli were being presented in one quadrant per block. This
was repeated for each quadrant, and then put together to confirm that the
simulated ‘timeseries’ were uncorrelated (Fig. 1).

The random noise was initially generated from pseudorandom values
drawn from a standard normal distribution, with a mean level of zero and
standard deviation of 1. The standard deviation of the noise was then
scaled by the ratio of the contrast to the noise level of the simulated
response function to the contrast to the noise level of the simulated noise
(assuming the same standard deviation for both response and noise).
Finally the scaled noise was added to the response function.

The correlation coefficient between the individual simulated times-
eries from the ‘localiser’ session and the combined simulated ‘timeseries
for the ‘BCI’ sessions were calculated. The weighting of the contribution
of one sequence (i.e. the 'attended sequence') to the total response was
increased in small steps. These weights were normalised and acted to
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model the effect of attention on one of the quadrant-related timeseries in
a BCI session. The correlation coefficient between the individual
quadrant-specific timeseries from the localiser session and the same
quadrant in the presence of the combined timeseries from the BCI session
were calculated. The higher the correlation for a specific quadrant be-
tween the localiser session and the BCI session, the more separable the
neural activity linked to the allocation of attention to that quadrant in the
presence of competing stimulus streams.We performed this sequence one
hundred times for each weighting level with the addition of random
noise. The average response frequency was then calculated. Fig. 1b il-
lustrates the modeled BOLD responses for each quadrant and the effect of
‘attention’ (i.e. increased weighting on a specific quadrant). This
confirmed that the modeled BOLD responses for each quadrant could be
distinguished as being different from the other three, motivating the
choice of each of the 4 quadrant specific m-sequences.
Experimental procedure

There were 5 sessions per participant. The structure of each session
was the same. There were 8 blocks in each session, lasting 6min 24s. The
duration of one block was 48s, made up of 3s cue presentation, 32s of
stimulus presentations, and 13s of rest. During the 32s of stimulus pre-
sentations, 32 stimuli were shown, together with 32 interspersed ‘blank’
intervals (400ms per image, 100ms inter-stimulus interval, 500ms
stimulus onset asynchrony). During this block of stimulus presentations,
two ‘mini-blocks’were shown each composed of 16 exemplars belonging
to one of the 4 object categories (Figs. 2 and 3). The order of the category
of the mini-blocks was counter-balanced between and across sessions,
and category exemplars were presented in a pseudo-random manner.

Participants were explicitly instructed to attend one quadrant per
block. During the cued session, the sequence of cues was different each
time for the first four blocks; this sequence was then repeated for the
remaining 4 blocks. During the un-cued sessions (3–5), they were
instructed to attend a different quadrant each time for the first four
blocks, and to repeat this sequence in the subsequent four blocks.



Fig. 3. ‘Non-cued’ sessions schematic. Participants were instructed to fixate centrally, and
attend to one of four quadrants stimulus presentations for the duration of the block. They
disclosed which quadrant they had attended at the end of each block using a button-box.
Stimuli included four categories (faces, houses, household objects, body parts). ‘Blank’
stimuli (represented by black icons) appeared in a quadrant-specific fashion in keeping
with a quadrant-specific m-sequence.
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Session 1- localiser

During the first session, stimulus streams were presented in one
quadrant of the screen for the duration of one block, with each quadrant
hosting stimulus blocks twice per session. Participants were instructed to
maintain central eye fixation throughout the session, and attend to the
quadrant showing stimuli.

Defining functional regions of interest

ROIs were selected using the TBV ROI selection option. For each
participant, regressors for each stimulus category were placed at the
onset of a stimulus block, for the duration of the bock, and were then
convolved with the canonical HRF. The resulting parameter estimates
were used to calculate a t-statistic at each voxel, indicating evidence of
task-related activation. We used a t-threshold of 3. To define bilateral
fusiform face area (FFA) voxels we contrasted parameter estimates
evoked by faces against rest (t-contrast: faces> rest), and delineated the
ROI in relation to ventral and lateral surfaces of the temporal lobe in
proximity to the fusiform gyrus. To define bilateral lateral occipital
cortex (LOC) voxels we contrasted parameter estimates evoked by objects
against rest (t-contrast: everyday objects> rest), and delineated the ROI
along the posterolateral aspect of the fusiform gyrus, extending ventrally
and dorsally. For bilateral parietal regions we contrasted parameter es-
timates evoked by all stimuli versus rest. Using the Juelich histological
atlas to provide anatomical landmarks (Eickhoff et al., 2006, 2005), we
selected voxels in the superior parietal lobe (SPL) and those on the dorsal
and ventral banks of intraparietal sulcus (IPS; both regions which have
been shown to demonstrate object-sensitivity (Kim and Biederman,
2011; Serences et al., 2004;Wojciulik and Kanwisher, 1999)). The t-maps
were overlaid onto cortical hemispheres using TBV. Participant-specific
functional ROIs were delineated manually and resulted in discrete se-
lection of non-overlapping voxels in bilateral parietal cortex, FFA and
LOC. (Please also see Supplementary results for ROI centroids).

Session 2 - cued attention

During stimulus presentation blocks, stimuli were presented repeat-
edly and simultaneously in all four visual quadrants (Fig. 2). Attention to
a particular quadrant was indicated using a directional cue presented
during the cue interval. Each quadrant was cued twice per session. Par-
ticipants were instructed to maintain central eye fixation throughout the
session. To ensure participants remained engaged in all sessions, a button
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press was required if two successive exemplars were identical (i.e. one-
back task). This occurred between one to three times per mini-block.
All quadrants, in addition to the attended one had repeated stimuli.
The n-back task was included to help attentional engagement through the
presentation of stimuli. All button presses were taken to be associated
with the attended quadrant.

Sessions 3–5–BCI ‘decoding’ sessions

Stimuli were presented as described in the previous paragraph. Par-
ticipants were now instructed to covertly attend a quadrant of their
choice for the duration of a whole block while maintaining central eye
fixation. They were further instructed to use a strategy that would enable
them to attend all quadrants twice over the course of the scanning ses-
sion. They disclosed the attended quadrant using a button press during
the rest period at the end of each of block (Fig. 3).

Eye tracking

Eye-tracking during fMRI was not performed in this experiment, due
to the complexity of the experimental set-up. Eye movements could
represent a potential confound – eye movement-related brain activations
in the cortical oculomotor network may overlap with those produced by
covert shifts of spatial attention (Corbetta et al., 1998). However, eye
movements typically disturb decoding of attention, reducing classifica-
tion accuracy to below chance (Gunduz et al., 2012; Treder et al., 2011).
We used eye tracking in a non-realtime fMRI version of this experiment
and obtained similar classification accuracies in the same brain regions to
those generated with online decoding, with an absence of excessive eye
movements (see data in brief article 2). Eye position was found not to
vary in a consistent manner during the experiment, precluding fixations
on attended quadrants.

Analysis of main experiment (sessions 2 to 5)

We investigated the extent to which functionally delineated higher-
order visual cortex ROIs could be used to predict the direction of
spatial attention. The inclusion of unique temporal information in the
presentation of stimuli at each of the four quadrant spatial locations was
applied to improve decoding accuracy. The resulting accuracies for in-
dividual ROI based classifications were based on comparing the highest
quadrant specific parameter estimate with the disclosed covertly atten-
ded quadrant during a task block.

Cortical responses to the four attentional conditions were specified
using HRF-convolved regressors at the onset times of the images,
together within a given m-sequence. Each m-sequence was unique and
specific to each of the four quadrants; the same m-sequence for a given
quadrant was used across all sessions, irrespective of the object category.
A general linear model (GLM) modeled each of the quadrant parameter
estimates over each block consisting of 24 vol ‘Decoding’was carried out
at the end of each block in a ‘winner-takes-all’ approach, based on which
one of the four parameter estimates had the greatest mean value. Data
were read by the script and lagged behind image acquisition by
approximately 2s.

The attended quadrant, during a specific block, was the one with the
highest representative parameter estimate. A prediction was made on a
block-by-block basis, which could then be compared to the actual
quadrant attended to by the participant (as indicated by the button-
response at the end of each block) allowing decoding accuracies to be
calculated across all sessions and blocks for all ROIs.

Reaction times

The potential effects of the time taken during BCI usage and its effect
on decoding accuracy are an important consideration for ensuring ac-
curacy in a BCI. A possible effect of time might be to decrease decoding



Fig. 4. Participant-averaged decoding accuracy for the three ROIs averaged across ses-
sions and blocks. Chance-level decoding at 25% (horizontal red line). Error bars indicate
�1 SEM. Dotted horizontal grey lines indicate confidence intervals. Asterisks indicate
when decoding accuracy was significantly above chance.

Fig. 5. Decoding accuracies during each session, shown as pairs of bar graphs, comparing
the first four blocks with the second four blocks. Chance is at 25% (horizontal red line).
The columns in dark/solid colours represent decoding accuracy over the first four blocks,
averaged across all sessions; the lighter columns represent decoding accuracy over the
second four blocks, averaged across all sessions. Decoding accuracy in bilateral LOC and
bilateral parietal ROIs was significantly higher during the first half of each session, as
compared to the second half of each session. Error bars indicate �1 SEM. Dotted hori-
zontal grey lines indicate confidence intervals. Asterisks indicate significant differences in
decoding accuracy, comparing the first four with the second four blocks.
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accuracy as a result of increasing fatigue with task performance over
time. We therefore further examined the changes in decoding accuracy
over time. We did this by dividing each session into the first four blocks
and the second four blocks, and compared reaction times during the
performance of an n-back task between the first half and the second half
of the session. The reaction time data from two participants was cor-
rupted, and was therefore not analysed.

Results

Decoding accuracies

We first examined decoding accuracies across all sessions and blocks,
for each of the three bilateral ROIs (Fig. 4), to establish whether the
quadrant to which attention was being directed could be decoded at
above chance levels from signals evoked in each ROI. For each ROI (FFA,
LOC, parietal), decoding accuracy was significantly above chance levels
(25%): FFA (Decoding accuracy¼ 49.61, SD¼ 5.65, t (7)¼ 12.32,
p< .001); LOC (Decoding accuracy¼ 43.36, SD¼ 5.40, t (7)¼ 9.63,
p< .001); Parietal (Decoding accuracy¼ 39.06, SD¼ 7.83, t (7)¼ 5.08,
p< .01).

We had an a priori hypothesis that decoding accuracies would
decrease with time as a result of fatigue. We hypothesised that this would
be more likely to occur within sessions, rather than across sessions, which
allowed for a rest between sessions (Figs. 5 and 6). A paired t-test (2-
tailed) comparing decoding accuracy over the first four blocks as
compared to the second four blocks revealed a significant decline in
decoding accuracy for bilateral LOC (t¼ 3.16, p¼ .016) and bilateral
parietal ROIs (t¼ 2.94, p¼ .022). There was no significant decline in
decoding accuracy for bilateral FFA (t¼ 1.92, p¼ .097) (Fig. 5).
Data-driven assessment of statistical significance

We performed permutation testing to confirm the statistical signifi-
cance of the classification accuracies for ROIs averaged across subjects.
Predictions were repeatedly shuffled and compared with the correct
allocation of attention in order to generate a data-driven distribution of
classification accuracies under the null hypothesis. Permutation p-
values were derived using percentiles. 10,000 permutations were car-
ried per ROI per subject. Classification accuracies for all 3 ROIs were
found to be statistically significant e.g. Bilateral FFA p¼ .0019 (indi-
vidual participants p< .0025); Bilateral LOC p¼ .014 (individual par-
ticipants p< .017); Bilateral Parietal p¼ .035 (individual participants
p< .045).
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N-back task

Average accuracy for n-back task performance (e.g. number of accu-
rate identifications of repeats in the attended quadrant) across the 6
participants on whom data was obtained was 64% (SD¼ 14%). The
average false alarm rate was 17% (SD¼ 14%).

An assessment of reaction times on the n-back task was also per-
formed on the 6 participants on whom data was obtained, using an
ANOVA across sessions (2–5) and blocks (averaged over first 4 blocks,
averaged over second 4 blocks) (Fig. 7). A change in reaction times
affecting task performance either across and/or within sessions (i.e.
across blocks) would be suggestive of fatigue as a result of time. A main
effect of block was observed (F (1,5)¼ 7.751, p¼ .04), with an increase
in reaction times over the blocks (Fig. 7). There was no effect of sessions
(F (3,15)¼ 1.00, p¼ .42), nor was there an interaction of blocks with
sessions (F (3,15)¼ 0.49, p¼ .70).

Offline eye-tracking

We used eye tracking in a non-realtime fMRI ‘offline’ version of this
experiment. Similar classification accuracies were obtained in the same
brain regions to those used in the current study, with a concurrent
absence of excessive eye movements (see Data in brief article 2).

Participants were instructed to maintain central eye fixation
throughout all the 8 task blocks, for each of four ‘decoding’ sessions. A
repeated measures ANOVA was performed on the X and Y eye position
data separately, and the factors of horizontal attention (left, right) and
vertical attention (up, down) demonstrated no main effect of horizontal
or vertical attention, and no interaction between them: for X-position
data: left vs. right, F (1,7)¼ 0.697, p¼ .431; up vs. down, F
(1,7)¼ 0.387, p¼ .554, interaction, F (1,7)¼ 1.164, p¼ .316; for
Y–position data: left vs. right, F (1,7)¼ 0.697, p¼ .431, up vs. down, F
(1,7)¼ 0.387, p¼ .554, interaction, F (1,7)¼ 1.164, p¼ .316. Partici-
pants therefore did not significantly move their eyes in a consistent
manner over the experiment. Furthermore, we found overall decoding
accuracies in the standard fMRI version of this experiment were com-
parable (Bilateral parietal 39% cf. 39%; Bilateral LOC 50% cf. 43%;
Bilateral FFA 47% cf. 50%).

We further investigated whether there were systematic differences in



Fig. 6. Decoding accuracies for individual participants, comparing the first four blocks (Figure. A), with the second four blocks (Figure. B), averaged across all sessions. Chance is at 25%
(horizontal red line). Dotted horizontal grey lines indicate confidence intervals.
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eye position in relation to the attended quadrant. A two-way ANOVA
with factors of quadrant (four levels, upper left, upper right, lower left,
lower right) and sessions (four levels, 2–5) revealed no main effect of
session or quadrant for the X and Y eye positions and X and Y standard
deviations (see Table 1).

Discussion

We report a novel rt-fMRI-based cognitive BCI based on the online
classification or ‘decoding’ of the voluntary deployment of covert
attention to spatially distinct streams of real-world stimuli. This study
was inspired by the seminal work conducted with electroencephalog-
raphy (EEG)-based BCIs using the P300 signal, a neurophysiological
correlate of attention (Birbaumer et al., 2000; Donchin et al., 2000;
Farwell and Donchin, 1988; Piccione et al., 2006). Here, we exploited the
increased spatial resolution of fMRI. We sought to optimise quadrant-
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specific decoding for the purposes of an operational BCI, which might
work by providing different user-options at each of the 4 quadrant lo-
cations. Classification or ‘decoding’ of the visual responses in the three
target brain regions was therefore driven by combined contributions
from top-down attentional modulation signals, as well as category-
specific stimulus information, and the timing of stimulus presentation.
M-sequences were used to optimally distinguish BOLD signals, by pro-
ducing quadrant-specific timing for the stimulus streams (see also sup-
plementary discussion, and Data in brief articles 1 & 2 for preceding
work). A novel algorithm was implemented with a ‘winner-take all’ de-
cision rule using quadrant-specific parameter estimates. Decoding accu-
racies in selected higher-order visual ROIs (i.e. FFA, LOC, parietal cortex)
were significantly above chance in all 3 ROIs (p's< 0.001); individual
decoding accuracies reached between 60% and 70% during the first half
of each experimental session. Participant reaction times on an interposed
n-back task increased in the second half of each session, suggesting



Fig. 7. Graph showing average reaction times averaged across participants for n-back task performance, for each session. Sessions were divided further into the first 4 and second 4 blocks
to show the effects of experimental time on task performance. Matched average reaction times for individual participants are shown for first 4 blocks and second 4 blocks of each session,
using coloured connected lines for each participant.

Table 1
Table showing results of statistical tests performed on eye position data taken during an offline experiment with the same procedural set-up as the reported online experiment examining
realtime decoding of attention. Greenhouse-Geisser corrections were applied following violation of sphericity.

Session Quadrant Session�Quadrant

X-mean
position

P¼ 0.23
F (1.29, 9.09)¼ 1.69

P¼ 0.41
F (1.25, 8.76)¼ 0.86

P¼ 0.19
F (2.02,1.50)¼ 0.19

Y- mean
position

P¼ 0.55
F (2.03, 14.22)¼ 0.63

P¼ 0.12
F (1.59,11.15)¼ 2.66

P¼ 0.30
F (1.33,1.46)¼ 1.33

X-standard deviation P¼ 0.51
F (1.26, 8.89)¼ 0.58

P¼ 0.34
F (3.90,3.40)¼ 0.34

P¼ 0.41
F (2, 14.01)¼ 0.41

Y-standard deviation P¼ 0.39
F (1.01, 7.08)¼ 0.83

P¼ 0.13
F (1.63,11.38)¼ 2.54

P¼ 0.32
F (1.14, 7.95)¼ 1.18
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fatigue may have contributed to the observed reduction in decoding
accuracies towards the end of each experimental session.

Attention enables focused processing of sensory signals evoked by
environmental stimuli. Specific populations of neurones respond to the
volitional direction of attention to circumscribed regions of space (which
are retinotopically represented), or to real-world objects. Objects may
also spatiotopically activate category-specific cortex (Saygin and Sereno,
2008b). Although specific cortical circuits subserve different aspects of
attentional control (Corbetta et al., 2000; Hopfinger et al., 2000; Kastner
et al., 1999; Pinto et al., 2013), there is a significant degree of overlap
(Cichy et al., 2011b; Larsson and Heeger, 2006). This may enable one or
more higher-order regions to generate an ‘attentional command signal’,
biasing spatial and non-spatial features, and integrating emotional and
motivational valence via an attentional priority map (Bisley, 2011). The
outside world is spatially represented by internally maintained reti-
notopic maps, demonstrated throughout the visual hierarchy, including
the dorsal (IPS) (Saygin and Sereno, 2008b) and ventral processing
streams (e.g. LOC; Cichy et al., 2011a,b). An attention map is likely to be
based on retinotopic representations, with specific top-down weighting
of salient locations (Baluch and Itti, 2011), and an interaction between
top-down and bottom-up influences (Bisley, 2011; Corbetta and Shul-
man, 2002). The increase in the functional weighting of the attended
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location by higher order brain regions may itself be linked to suppression
of salient but behaviourally distracting stimuli at non-attended locations
(Ipata et al., 2006).

Topographical information linking object position with retinotopic
maps can be identified in higher-order regions traditionally associated
with feature and category-based attention, e.g. FFA, LOC (Schwarzlose
et al., 2008). Therefore, object category and retinotopy may be jointly
coded in higher-order visual cortex (Corbetta et al., 1998; Gunduz et al.,
2012; Larsson and Heeger, 2006). Allocation of a top-down attention
command signal in these regions could act to co-ordinate separate cate-
gory and spatial properties of a stimulus, in preparation for a behav-
iourally relevant action.

We used stimuli that would be relevant for day-to-day communication
in a BCI for assistive communication (see also Data in brief article 2).
Users would potentially be able to ‘indicate’ their requests to carers via
images on a visual display e.g. a particular body part that needed medical
attention, to request a food item, or ask for an individual using a facial
image. In our study each quadrant provided a specific stream of infor-
mation, which the participant could direct their attention to as required.
These stimuli activated category-specific neural representations in
higher-order visual cortex, specifically LOC, FFA and parietal lobe,
making an additional contribution to brain activations produced by
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attentional shifts. Of note, previous rt-fMRI based decoding of category-
based attention only used whole brain classifiers (Niazi et al., 2014). We
also added a temporal element to help further distinguish haemodynamic
responses produced by deploying attention to quadrant-specific streams
of stimuli. Blank stimuli were interspersed with stimulus presentations,
enabling the application of m-sequences to specify optimal event
ordering. M-sequences are nearly orthogonal to cyclically time-shifted
versions of themselves (Bura�cas and Boynton, 2002), affording
maximal statistical efficiency for separating different stimulus events.

Our study provides proof-of-principle for a cognitive BCI, delivering
classification accuracies for four-quadrant spatial attention deployment
at approximately twice chance (i.e.25%)- FFA (50% accuracy, SD 5.65),
LOC (43% accuracy, SD 5.40), Parietal lobe (39% accuracy, SD 7.83).
Most BCIs use binary classifications e.g. left versus right (Kelly et al.,
2005). The choice of rt-fMRI for a non-invasive BCI was based on its
superior spatial specificity as compared to other non-invasive imaging
modalities e.g. magnetoencephalography (MEG)/EEG (Sitaram et al.,
2007). Andersson et al. used primary retinotopic cortex for a rt-fMRI BCI,
decoding spatial attention at 7 T. Participants covertly directed attention
to a high contrast grating or a high luminescence arrow (Andersson et al.,
2013b, 2012, 2011, 2010, 2009). Accuracy for four-quadrant decoding
reached 79% on average. However this was with simple high contrast
stimuli. An important distinction with our BCI set-up was the use of
higher-order brain regions and real-world stimuli. Higher order cognitive
processes may be harnessed for a more versatile BCI (Friedrich et al.,
2014; Tankus et al., 2014; Vansteensel et al., 2010). This may be
necessary for BCI use in certain clinical populations. These include pa-
tients with amyotrophic lateral sclerosis (ALS) (Marchetti et al., 2013), a
progressive disease of lower and upper motor neurones which ultimately
leads to complete paralysis, and brain injury patients (Chen et al., 2011),
where damage may only involve primary somatosensory cortex. Cogni-
tive function and central control is preserved in these patients.

Previous BCI approaches utilising higher-order brain regions have
focused on using brain activations that are unrelated to the task. Instead,
they have been used as a surrogate for navigation e.g. through a virtual
maze, or letter selection on an online keyboard (Sorger et al., 2012; Yoo
et al., 2004). We targeted a cognitive process - spatial attention, which
can be used to intuitively bypass explicit movement. Further, we spe-
cifically selected putative control regions with the aim of identifying
concentrated neural populations in discrete cortical locations which may
have multiple functional outputs (i.e. ‘multiplexing’; Gilbert and Sigman,
2007b; Ipata et al., 2006; Moxon and Foffani, 2015). In contrast to the use
Fig. 8. Proposed pipeline using a non-invasive BCI interface with rt- fMRI to prime and prep
implantable BCI. 1) Realtime-fMRI decoding pathway (e.g. as used in this study) 2) A. Implan
B, C. 3D reconstruction showing final placement of temporal and inferior temporal subdural (EC
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of large areas of brain to extract signal for a BCI, using smaller cortical
areas engaged in cognitive control processes (Hauschild et al., 2012) may
enable a higher signal-to-noise ratio by reducing the incidence of unre-
lated brain activations. A alternative approach would be to use pattern
recognition techniques to improve information extraction i.e. whole
brain classifiers (Niazi et al., 2014). However in the ultimate translation
to a surgically implanted BCI (see Fig. 8), using a smaller region of brain
facilitates use of a smaller prosthesis, minimising surgical exposure,
reducing operative time, surgical risk and inpatient stay.

Implantable BCIs (e.g. extradural or intradural surface electrode
strips, microelectrode arrays (MEAs)) offer advantages in terms of higher
fidelity signal extraction and portability (Allison et al., 2007; Daly and
Wolpaw, 2008; Wolpaw, 2012). More specifically, a ‘hybrid’ approach,
combining use of a non-invasive BCI, such as rt-fMRI to allow tailoring of
parameters prior to implantation with an intracranial BCI device, might
provide an important means of optimisation of BCI performance. This is
particularly important for the successful uptake and use of BCIs in clinical
populations (e.g. ALS), where patients are more frail, and prone to fatigue
during learning associated with BCI use (Riccio et al., 2013; van Gerven
et al., 2009).

Recent work with implanted interfaces in primates has demonstrated
sustained BCI use is associated with significant cortical reorganisation,
resulting in the alteration of directional neuronal tuning properties of
BCI-specific brain regions, and concurrent reduced modulation in BCI-
adjacent neuronal populations (Ganguly et al., 2011; Orsborn and Car-
mena, 2013). Data extraction from a specific cortical location using a rt-
fMRI based BCI could therefore be optimised by training with a non-
invasive BCI such as that described in this study. This could then be
followed by surgical implantation of a prosthesis in the target brain re-
gion with a higher likelihood of success. Fig. 8 illustrates a possible
operational pipeline.

Recent proof-of-principle for this type of pipeline using primary
sensory regions was demonstrated, using a rt-fMRI BCI to train reti-
notopic regions prior to intracranial recordings with electro-
corticography (ECoG), for spatial attention deployment (Andersson et al.,
2011). ECoG BCIs recording from primary visual cortex in non-human
primates have demonstrated classification accuracy of >90% for atten-
tion to two spatial locations, and 67–79% for four locations (Astrand
et al., 2014; Rotermund et al., 2013). MEAs have been used to classify a
two-position spatial attention task using local field potentials from Ma-
caque areaMT (Esghaei and Daliri, 2014; Seif and Daliri, 2015). However
MEAs cause brain tissue reactions, which limit the size of the implant that
are specific brain regions with a BCI task, prior to surgery for placement of longer-term
tation of subdural electrodes (Image courtesy of Anna Miserocchi and Andrew McEvoy)
oG) grids for recording of relevant cortical activity, as part of a long-term implanted BCI.
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can be used, and affect signal stability and implant lifetime. Implantable
BCIs can provide potential benefits as a result of closer proximity to the
brain, although challenges remain with regards to long-term use and
signal optimisation (Murphy et al., 2015; Obien et al., 2015).

In our study, classification accuracies for deployment of four-quadrant
spatial attention were between 40 and 50% across subjects, but reached
just above or just below70% in individual participants. The latter is a level
previously suggested as the operational accuracy required for use of BCIs
in communication (Halder et al., 2013; Kübler et al., 2004, 2001, 1999).
This level of accuracy (or near it) was only achieved during thefirst half of
the experimental sessions, and only by some participants. There was a
significant reduction in decoding accuracy during the second half of the
experimental sessions. A majority of participants exhibited above chance
classification in the first half of each scanning session, across the three
ROIs (e.g. Participant 4, Fig. 6A), but performed less well during the sec-
ond half of the experiment (Fig. 6B). Possible reasons for this decline in
within-session decoding accuracies may have been related to fatigue
(Assmus et al., 2003; Coull and Nobre, 1998). Reaction times were
examined as a surrogate for fatigue, and were found to significantly in-
crease within a session. Mental fatigue, linked to impairment in complex
task performance, has been associatedwith reductions in BOLD activation
(Assmus et al., 2005). Additionally, fatigued individuals are prone to
distraction (Faber et al., 2012), as might have been caused by the use of
multiple streams of stimuli. Therefore, ensuring sessions are short, e.g.
3–4min may help to improve rt-BCI user-performance. Other potential
experimental details, which may have affected decoding accuracy, relate
to the visual stimuli themselves. We controlled for specific stimulus
properties such as luminescence and grey scale values. On the other hand,
local contrast differences between stimuli were not explicitly controlled
for. Although this may have acted to reduce decoding accuracy, it was felt
tomore accurately represent the conditions and constraints of a real-world
operational BCI set-up. Finally placing the quadrant-based stimuli more
eccentrically may have helped to improve decoding accuracy.

Variations in decoding accuracy between individuals were observed
among the three different ROIs used in the study, with some participants
performing better with one ROI during the first half of the experiment,
and another ROI during the second half of the experiment. The order of
presentation of category of stimuli was balanced across quadrants, and
over sessions to prevent biasing towards a particular category in a
particular quadrant. The need to optimise ROI selection for classification
in relation to communication-based BCIs using realtime fMRI has
recently been addressed through the use of automated ROI selection on a
per participant basis, combining a localiser, together with unsupervised
machine learning algorithms (Lührs et al., 2017). Further
participant-specific factors such as strategies used to allocate, control and
maintain attention to particular quadrants are likely to vary, in addition
to intrinsic differences in cognitive capacities and arousal (Ghose and
Maunsell, 2002; Matthias et al., 2010; Willems et al., 2015). Other
sources of variance may arise from unrelated fluctuations in the
measured BOLD signal e.g. participant movement in the scanner.

A more sophisticated means of ensuring optimal BCI performance
might be to actively feedback a measure of performance as an operant
goal e.g. decoding accuracy (deBettencourt et al., 2015), or the level of
brain activation in BCI-relevant regions (Andersson et al., 2012, 2011).
This type of closed-loop adaptive BCI may allow the user to monitor
successful use of the BCI within a session, while facilitating instrumental
neuroprosthetic learning, leading to improved BCI performance with
successive use.

Conclusions

This study demonstrates accurate decoding of attention-based infor-
mation, using realtime fMRI. We accessed internal, higher-order pro-
cesses which are not dependent on motor or primary sensory cortex
activation and achieved decoding which reached 70% accuracy in some
participants.
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For a BCI to have perfect ecological validity it needs to satisfy two
conditions–1/a user environment that reflects real world decisions and/
or utilises common themes or stimuli 2/an operational mechanismwhich
mimics or is similar to an actual neural process. We have attempted to
address both of these requirements by i) using an overarching cognitive
process (category-based and spatial attention) which can produce uti-
lisable output in the context of a BCI and ii) accessing this process in a
behaviourally meaningful way though the use of stimuli with real-word
significance. (e.g., the selection of an item such as a glass of water
from several objects that are presented in a spatially distributed manner).
The application of m-sequences served to take advantage of underlying
patterns in timing-related changes in cerebral blood flow. It is a statistical
adjunct that enhanced our decoding approach, without acting as the
principal driver. This study embodies the principles that are essential for
the creation of an ecologically valid BCI, serving as the basis for further
development.

A non-invasive BCI approach may provide a necessary first step to
accessing important higher order brain regions in the pathway to
implementing long-term implantable BCIs for applications such as aiding
with communication in patients lacking the ability to move or speak.
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