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1. ABSTRACT
Today, most devices have multiple network interfaces. Coupled
with wide-spread replication of popular content at multiple loca-
tions, this provides substantial path diversity in the Internet. We
propose Multi-source Multipath HTTP, mHTTP, which takes ad-
vantage of all existing types of path diversity in the Internet. mHTTP
needs only client-side but not server-side or network modifications
as it is a receiver-oriented mechanism. Moreover, the modifications
are restricted to the socket interface. Thus, no changes are needed
to the applications or to the kernel.

As mHTTP relies on HTTP range requests, it is specific to HTTP
which accounts for more than 60% of the Internet traffic [20]. We
implement mHTTP and study its performance by conducting mea-
surements over a testbed and in the wild. Our results show that
mHTTP indeed takes advantage of all types of path diversity in the
Internet, and that it is a viable alternative to Multipath TCP1 for
HTTP traffic. mHTTP decreases download times for large objects
up to 50%, whereas it does no harm to small object downloads.

2. INTRODUCTION
In today’s Internet, one of the main detriments in user experience is
completion times of data transfers that for large objects is limited
by network capacity. However, recent developments have opened
new opportunities for reducing end-to-end latencies. First, most
end-user devices have multiple network interfaces (e.g., 3G/LTE
and WiFi interfaces for smart-phones). Second, popular contents
are often available at multiple locations in the network. When com-
bined, these provide substantial path diversity within the Internet
that can be used by users to improve their quality of experience.

Previous work has taken partial advantage of this path diversity
in the Internet. Multipath TCP (MPTCP) uses the path diversity
available between a single server and a single client [13, 28]. Ap-
plication specific download managers are other examples of related
work that benefits from the path diversity between a single server

1Multipath TCP is an extension to regular TCP that allows a user
to simultaneously use multiple interfaces for a data transfer [13].

and a single client [36, 37]. Content Distribution Networks (CDNs)
provide replication of content and smart matching of users to ap-
propriate CDN server, e.g., via PaDIS [23] or ALTO [32] services,
which takes advantage of this replication. Moreover, there are ap-
plication specific video streaming protocols that try to take advan-
tage of the replication of streaming contents provided by CDNs [17,
1, 33]. Bittorrent is another sophisticated application which takes
advantage of content replication among its users [10]. The draw-
back of each of the above approaches is that they do not utilize all
of different types of path diversity in the Internet or if they do, they
are application specific.

We propose Multi-source Multipath HTTP, mHTTP, which enables
users to establish simultaneous connections with multiple servers
to fetch a single content. mHTTP is designed to combine the ad-
vantage obtained from distributed network infrastructures provided
by CDNs with the advantage of multiple interfaces at end-users.
Unlike existing proposals: a) mHTTP is a purely receiver-oriented
mechanism that requires no modification either at the server or at
the network, b) the modifications are restricted to the socket inter-
face; hence, no changes are needed to the applications or to the
kernel, and c) it takes advantage of all existing types of path diver-
sity in the Internet.

mHTTP is proposed for HTTP traffic, which accounts for more
than 60% of the total traffic in today’s Internet [20]. As stated in
Popa et al. [25], HTTP has become the de-facto protocol for de-
ploying new services and applications. This is due to the explosive
growth of video traffic and HTTP infrastructure in the Internet in
recent years. mHTTP is primarily designed to improve download
times of large file transfers (such as streaming contents). Measure-
ments results have shown that connections with large file transfers
are responsible for the bulk of the total volume of traffic in the In-
ternet [21]. Furthermore, while mHTTP decreases download times
for large objects by up to 50%, it does no harm to small object
downloads as shown in Section 7.

The key insight behind mHTTP is that HTTP allows chunking a file
via byte range requests and that these chunks can be downloaded
from different servers as long as these servers offer the identical
copies of the object2. mHTTP learns about the different servers that
host the same content by either using multiple IP addresses returned
by a regular DNS query, sending multiple queries to multiple DNS
servers, or utilizing the eDNS feature [11]. It also works with a
single server when multiple paths are available between the receiver

2The extra header added by the application might be different from
server to server. mHTTP parser, refer to Section 5, deals with the
application headers.
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(a) Regular HTTP/TCP architecture at a
client.

(b) mHTTP architecture at a client.

Figure 1: Structural differences between HTTP/TCP and mHTTP

and the server. Hence, mHTTP can also be used as an alternative
to MPTCP for HTTP traffic.

The mHTTP design consists of: (i) multiHTTP: a set of modified
socket APIs which splits a content into multiple chunks, requests
each chunk via individual HTTP range requests from the available
servers, reassembles the chunks and delivers the content to the ap-
plication. (ii) multiDNS: a modified DNS resolver that obtains IP
addresses for a server name by harvesting the DNS replies and/or
by performing multiple lookups of the same server name by con-
tacting different domain name servers.

Our key contribution is the concept of mHTTP along with a proto-
type implementation and evaluation. We evaluate the performance
of mHTTP through measurements over a testbed and in the wild.
We compare the performance of mHTTP with regular HTTP oper-
ating over single-path TCP and MPTCP. We observe that

• mHTTP indeed takes advantage of all types of path diversity
in the Internet.

• For large object downloads, it decreases download times up
to 50% compared to the single-path HTTP transmission. More-
over, it does no harm to small object downloads.

• mHTTP performs similar to MPTCP while only requiring
receiver-side modifications. As MPTCP requires changes
to the kernel, both at the sender and receiver, we consider
mHTTP to be a viable alternative when running HTTP.

The comparison with MPTCP is performed in a single-server sce-
nario as MPTCP is restricted to the use of a single server. mHTTP,
on the other hand, can be used both in single-server and in multi-
server scenarios.

This paper is structured as follows. In the next section, we provide
an overview of mHTTP from a system viewpoint. We give a de-
tailed description of our prototype implementation in Sections 4, 5,
and 6. In Section 7, we study the performance of mHTTP through
measurements. Related work is presented in Section 8. Section 9
provides a summary of our results and discusses next steps.

3. Multi-source Multipath HTTP
Content Distribution Network (CDN) provide wide-spread replica-
tion of popular content at multiple locations in the Internet. Multi-

source Multipath HTTP (mHTTP) is designed to combine the ad-
vantage obtained from such a diversity with the advantage of di-
verse network connectivity at end-users. In this section, we de-
scribe the high-level concept of mHTTP.

3.1 Regular HTTP over TCP
Before we discuss the design of mHTTP, we review various com-
ponents of HTTP communication over TCP. As illustrated in Fig-
ure 1(a), when an HTTP application tries to download an object
from a web server, it first requests to the local DNS resolver to
translate the human-friendly URL to a set of IP addresses. And
then it sends an HTTP request to establish a connection to one of
these addresses. TCP Socket API is the interface to the underlying
transport protocol (TCP). The TCP stack in the kernel ensures re-
liable data transmission and congestion control. Note that (i) one
domain name may be associated with multiple IP addresses. More-
over, (ii) different DNS servers may return different IP addresses.
This is often observed in server infrastructures which serve pop-
ular contents. (i) occurs when the load is spread across multiple
servers [23]. (ii) occurs in Content Delivery Networks (CDNs).
However, even though the content is in principle available at multi-
ple locations, traditional HTTP/TCP cannot take advantage of this.
To overcome this limitation, we propose a novel protocol, mHTTP,
built on the regular HTTP-over-TCP architecture.

3.2 mHTTP
mHTTP is designed with the following three key features in mind:

• mHTTP must take advantage of multiple built-in interfaces,
multiple paths, and multiple data sources, by establishing si-
multaneous connections via multiple interfaces to multiple
data servers where the identical content is stored.

• mHTTP must not make any modifications on the server-side
infrastructure or the protocol stack.

• The client-side implementation must be transparent to the ap-
plication, i.e., modifications must be limited to only socket
APIs.

The key idea of mHTTP is to use the HTTP range request fea-
ture to fetch different content chunks from different servers. We
define a chunk as a block of content delivered within one HTTP
response message. mHTTP includes two components, multiHTTP



Figure 2: An mHTTP, with two connections over two available
interfaces, operation in a CDN. Servers S1, S2, and S3 host
replicas of content of A.com.

and multiDNS as shown in Figure 1(b). These components extend
the functionality of HTTP and the DNS resolver. The main pur-
pose of multiHTTP is to handle chunked data delivery between the
application and multiple servers; and that of multiDNS is to collect
IP addresses of available content sources. Figure 2 illustrates the
process for a 2-connection mHTTP session in a CDN.

multiHTTP is the core component of mHTTP. It is responsible
for the management of data chunks; taking advantage of multiple
content servers and therefore of path and network diversity; and
scheduling chunk requests. multiHTTP intercepts all messages sent
from the application to the remote end-host (e.g., server). When a
TCP connection is identified as an HTTP connection, on reception
of an HTTP request from the application, the multiHTTP module
modifies the header of the HTTP request by adding a range field.
The HTTP response header includes the file size. Thus mHTTP can
issue multiple range request to multiple servers that serve the same
object and their IP addresses are known via multiDNS.

If the connection is not an HTTP connection, mHTTP falls back to
regular socket APIs. Also, for an HTTP connection, if the server
does not reply with a partial data response to the HTTP request, or
if multiDNS only returns a single IP address and the client is single
homed mHTTP may still decide to fall back to regular HTTP.

multiDNS obtains different IP addresses by performing multiple
lookups of the same server name by contacting different DNS servers
(i. e., the local DNS servers of the upstream ISPs for each of its
interfaces, a Google DNS server, an OpenDNS server, etc.). Ad-
ditionally, it can use the eDNS extension to uncover many more
servers in a CDN infrastructure.

4. IMPLEMENTATION OF multiDNS
In this section, we describe multiDNS the core element designed
for discovering IP addresses of servers that hold replicas of a con-
tent. Note that mHTTP also works with a single server when mul-
tiple paths are available between the receiver and the server (refer
to Section 7.3 for an example).

4.1 Data Source Diversity
Before we discuss details of the multiDNS implementation, we an-
alyze how many IP addresses we receive from a single query for a
hostname. We choose the top-1000 hostnames provided by Alexa.com
and request the resolution of these hostnames by sending DNS
queries to the local DNS server of a client residing in a univer-
sity campus. As illustrated in Figure 3(a), even with a single query
to the local DNS server, approximately 30 % of the total hostnames

(a) Top-1000 domain names

(b) Top-300 domain names

Figure 3: CDF of IP addresses, prefixes, and AS numbers for
top-1000/top-300 domain names obtained from a single query
to the local DNS.

are associated to more than one IP address and respectively 10 %
and 5 % of the total hostnames are in different network prefixes and
reside in different ASes (Autonomous Systems). When performing
two lookups, one query to the local DNS and another to the Google
DNS (not shown as a figure), these numbers increase to 35 % (IP
addresses), 17 % (prefixes), and 7 % (ASes). This can be seen as an
evidence that CDNs may provide a different set of IP addresses to
a user depending on the choice of a DNS server. More evidence of
the content diversity can be found in the work of Poese et al. [24].

In Figure 3 (b), we narrow down the scope to the top 300 hostnames
and our result shows that almost all hostnames are associated with
at least two IP addresses. Given the fact that the major fraction
of the total traffic originates from a small number of popular con-
tent providers [3, 8] and the fact that the top 15 domains account
for 43 % of the total HTTP traffic in a large European ISP [20],
the fraction of the traffic contributed by providers through multiple
servers should be significant.

4.2 Getting an IP address by a Hostname
When an application needs to obtain an IP address from a human-
readable URL, it invokes name resolvers such as gethostbyname()
or getaddrinfo(). The resolver, then, creates a request message and
sends it to the local DNS server usually provided by the local ISP.
Depending on the content sources, if content is only available at
a single server, the DNS returns the IP address of that particular
server so that the request can be routed to the server. However, if
content is available at multiple places (e.g., a server farm or CDNs),
DNS returns a list of IP addresses. In the case of multiple IP ad-
dresses, a typical behavior of an application is to choose the first IP



address in order to establish the connection and to discard the rest.
multiDNS, however, keeps the rest of the IP addresses for later use.

4.3 Getting more IP addresses
As mentioned above, different DNS servers may provide different
sets of IP addresses. Therefore, it is worthwhile querying multiple
DNS servers in order to obtain more IP addresses. multiDNS plays
the role of managing the identities of different resolver of different
access networks, whenever an interface is activated and the IP ad-
dress is assigned. It also handles the DNS query by validating the
availability of a local DNS server in each access network for each
interface3. If local DNS is still available at the point of a name
translation, a query to that content is made to the local DNS of that
particular access network. For each interface, multiDNS receives a
list of IP addresses from each access network, and chooses desired
number of IP addresses from every list. Hence, if the desired con-
tents are available at CDNs, mHTTP does not only retrieve them
from the CDNs accessible to the public, but from the CDN nodes
in the CDN server farm known to the local DNS resolvers.

5. IMPLEMENTATION OF multiHTTP
The main task of multiHTTP is to interpret mHTTP for regular
HTTP speakers such as web servers and client-side applications.

5.1 HTTP Byte Range Request
RFC2616 [12] specifies the use of a byte range request which en-
ables the partial delivery of content. A client initiates such a request
by adding a range field within the header of an HTTP request mes-
sage including offsets of the first byte and the last byte of the partial
content. If the server supports this operation, it replies with 206 as
the status code (on acceptance of the request message) followed by
sequences of bytes. Otherwise, the server replies with a different
status code (e.g., 200 OK on success). Note that a block of partial
content is referred to as a chunk in this paper. Although [12] de-
fines this operation as an optional feature, our tests on well-known
web servers during the development of mHTTP show that almost
all web servers accept range requests.

Partial content delivery is widely employed by HTTP-based down-
loaders in order to continuously resume fetching a transferred file.
Another common usage of this feature is multi-threaded download-
ing implemented in some software, i.e., [36] and [37]. Such soft-
ware boosts download speed by fetching different parts of the con-
tent over different connections using the partial content delivery. At
first sight, mHTTP is similar to those software; however mHTTP
operates in the Socket API thus helps existing HTTP software to
utilize the bandwidth more effectively. As mHTTP is designed to
communicate with multiple servers containing identical copies of
the content, it is clearly distinguished from multi-thread and down-
loader approaches.

5.2 mHTTP Buffer
multiHTTP initializes mHTTP buffer and creates a file descrip-
tor associated with the buffer when socket() is called by the ap-
plication. The buffer consists of a queue and a pool of content
blocks (chunks). The queue is a large memory block that is con-
tinuously read by the application. Thus, the file descriptor plays
the role of a communication channel between the application and
the mHTTP buffer (Figure 4). The pool maintains multiple con-
tent blocks in which chunked data collected from individual TCP
3The local DNS information is collected when a DHCP request is
completed

Figure 4: multiHTTP design: a) mHTTP buffer stores out-
of-order received data b) HTTP parser examines and modifies
HTTP headers c) collector gathers data from individual TCP
connection buffers.

buffers is stored. A content block can be indexed by the combi-
nation of the socket descriptor and the starting byte of the chunk.
Data within content blocks is moved to the queue as soon as it is
continuous from the last byte that is stored in the queue. The size
of the queue does not grow greatly since it is continually drained by
the application. However, the size of the pool needs to be sufficient
to store out-of-order received chunks. We study the required size of
the mHTTP buffer through measurements in Section 7. If mHTTP
decides to fall back to the regular HTTP, or if the connection is not
an HTTP connection, one of the socket descriptors replaces the file
descriptor and the mHTTP buffer is discarded.

5.3 Manipulating HTTP Headers
Once the connection is identified as an HTTP connection, multi-
HTTP enables an HTTP parser, which examines HTTP messages
during the content delivery period. The tasks of the HTTP parser
are mainly three-fold:

• HTTP request manipulation The HTTP parser adds the
range field to the end of the header with the specified chunk
size when the initial HTTP request is sent by the application.
When the response message to the initial request arrives back
to the application, multiHTTP knows the size of the file and
whether or not the server accepts a byte range request.

• Parsing HTTP headers The HTTP parser extracts and stores
important information from the request and response headers
such as availability of content, support for the partial con-
tent delivery, content size, and the byte range of the content
block.

• Response header management In order to allow applica-
tions to use mHTTP without modification, the behavior of
mHTTP must be the same as that of a regular HTTP commu-
nication from an application’s point of view. To this end, the
HTTP parser replaces the initial response header (206) with
a header that indicates the acceptance of the request (200).
All subsequent headers are discarded by the HTTP parser.

5.4 Connections
Upon confirmation of the complete delivery of the initial response
message, multiHTTP establishes additional TCP connections using
different IP addresses provided by multiDNS. In order to obtain an-
other IP address, multiHTTP invokes get_ip() from multiDNS (see
6 and 7 in Figure 1). The mechanism used by multiDNS to se-
lects IP addresses is independent of the operation of multiHTTP.



Figure 5: A bottleneck in mHTTP buffer. Chunk 4 is down-
loaded over a slow connection. Chunks 5, 6, 7 ,8 are down-
loaded over a fast connection. These chunks cannot proceed to
the queue before chunk 4 is completely received. A scheduler is
needed to better allocate chunks across different connections.

The current version of multiDNS hands IP addresses over to multi-
HTTP in the order that they are retrieved. Similarly, the number of
connections to be used is configurable.

multiHTTP operates collector, a background process that collects
data from individual TCP connection buffers. Each new connection
must be attached to the collector as soon as it is successfully estab-
lished. Likewise, a connection can be detached from the collector.

Determining what content chunk to request over each connection
is another important task of multiHTTP. It keeps track of the re-
quested chunks and decides which chunk to ask on the next request
message after the previous chunk on the same connection is com-
pletely fetched. The mechanism used for such decision is further
explained in the next section.

6. SCHEDULING
Different connections may have different qualities, in terms of la-
tency, capacity, and loss rate. This may cause reordering of the
chunks received at the mHTTP buffer. Figure 5 illustrates an ex-
ample of such reordering. We have two connections: one slow and
one fast (in terms of download time). The 4th chunk is downloaded
over the slow connection and the 5th, 6th, 7th, and 8th chunks are
downloaded over the fast connection. As the download of the 4th
chunk is not finished yet, these later chunks cannot be moved to
the queue. Hence, a mechanism that allocates chunks to different
connections plays a critical role in multiHTTP. In this section, we
explore mHTTP’s design choice with regard to chunk scheduling.

For simplicity, we assume a client with two interfaces (e.g. e0 and
e1). Let S0 = {s01, s02, · · · , s0N1} and S1 = {s11, s12, · · · , s1N1}
be respectively sets of servers available to the client through e0 and
e1. Note that S0 and S1 are not necessarily disjoint sets. N1 and
N2 are numbers of discovered servers over e0 and e1. Let P0 and
P1 denote the connections established through e0 and e1 to servers
in S0 and S1. In this paper, we limit the number of established con-
nections over each interface to one and the total number of connec-
tions to two. However, our implementation can accept an arbitrary
number of connections per interface.

We measure the instantaneous throughput of each connection by
measuring the number of bytes received at the mHTTP every 20
ms. We use a moving average to estimate the average throughput
of each connection:

THRnew = 0.8 ∗ THR+ 0.2 ∗ THRold

where THR is the instantaneous throughput measured every 20ms
and THR is the estimated average throughput. We denote by

THR0 and THR1 the estimated average throughput measured
over connections P0 and P1.

Let L denote the size of the object and C the chunk size, both
measured in bytes. We denote by N = bL/Cc + 1 the number of
chunks to be fetched by the client and by 1, 2, 3, · · · , N the chunk
numbers. Here, bxc is the largest integer not greater than x. Also,
let D be the set of chunks that have not yet been requested for
download. D is a sorted set based on the chunk numbers.

The scheduling algorithm decides what chunk to request over each
connection. For example, if a chunk is successfully fetched over
connection P0, the next chunk over this connection must be care-
fully chosen in order to avoid a bottleneck situation such as pre-
sented in Figure 5. mHTTP decides the next chunk over P0 uses
the following mechanism:

1. calculate T0 =
⌊
max (THR0, THR1)/THR0

⌋
;

2. ask for the T0’th chunk from the set D. If T0 > |D|, no
chunk is requested. |D| is the size of set D.

3. Remove the requested chunk from the set D.

T0 predicts the number of chunks that can be delivered over the
best connection among P0 and P1 while one chunk is transmitted
over P0. If P0 is the best connection, then T0 = 1. When mHTTP
needs to issue a new request over P0, it does not request the next
chunk but skips to the T0’th chunk from the set D.

mHTTP uses similar mechanism to decide the next chunk to be
requested over connection P1, with the modification that T0 is re-
placed with T0 =

⌊
max (THR0, THR1)/THR1

⌋
In Section 7, we compare the performance of our scheduler with
a baseline that multiHTTP simply requests the next chunk in D,
whenever it needs to issue a new chunk request over a connection.
We show that our scheduler can efficiently reduce the the size of
the mHTTP buffer without affecting the performance of mHTTP.

7. PERFORMANCE EVALUATION
In this section, we study the potential benefit of using mHTTP in
different indoor and outdoor scenarios through measurements. We
study how mHTTP takes advantage of different types of diversity
in the Internet and compare its performance to that of regular HTTP
operating over single-path TCP and MPTCP.

We use the download completion time as the performance met-
ric in our evaluation. It is defined as the duration between the
first SYN packet from the client and the last data packet from the
servers. The download completion times are measured for different
file sizes, i. e., 4MB, 16MB, and 64MB. We run each measurement
30 times and show the median, 25− 75% percentiles (boxes), and
dispersion (lines, 5 − 95% percentiles). In each round of mea-
surement, we randomize the configuration sequence to account for
traffic dependencies and/or correlation from time to time and from
size to size. Specifically, we randomize the order of file sizes, the
choice of protocol (e.g., single-path, mHTTP, and MPTCP), and
the choice of chunk sizes for mHTTP.

The servers run an Apache2 web server on port 80 and hold copies
of the same files. The client uses wget in order to retrieve the files



Figure 6: Scenario 1: 2 interfaces at the client; 2 servers;
2 paths (dashed lines). In our indoor testbed, AN1 and AN2
are Ethernet routers with a nominal rate of 100Mbps. In our
outdoor testbed, the client is a mobile device (laptop) with one
WiFi and one LTE interface.

from the servers and runs on the Linux operating system with the
kernel version 3.5.7. We use 10 MSS as the initial size of the con-
gestion window. Furthermore, TCP Cubic [14] is used as the de-
fault congestion control at the server. It is the default congestion
control used in the current version of the Linux kernel.

Our measurements are performed on two testbeds: an easily con-
figurable indoor testbed that emulates different topologies with dif-
ferent characteristics; and an outdoor testbed using one commercial
Internet service provider and a major cellular carrier in the US. Our
outdoor testbed represents real world scenarios.

For the scenarios in which we enable MPTCP, we use the stable
release (version v0.86) downloaded from [35]. To provide a fair
comparison between MPTCP and mHTTP, we also use uncoupled
congestion control with Cubic for MPTCP. Uncoupled Cubic rep-
resents the case where regular TCP Cubic is used on the subflows.
It increases the size of the congestion window of each subflow irre-
gardless of the congestion state of the other subflows that are part of
the MPTCP session. We set the maximum receive buffer to 6MB
to avoid potential performance degradation to MPTCP [28]. Our
testbed configuration is optimized for MPTCP. Hence, we observe
the best performance we can achieve using MPTCP. Our results
show that mHTTP performs very close to this baseline.

We first analyze the overhead of mHTTP and study its effect on
the performance of downloading small objects; we then show the
benefits of mHTTP when downloading large objects.

7.1 Overhead analysis for small objects
mHTTP suffers a performance degradation each time that a con-
nection performs a range request. We evaluate this degradation by
measuring the download completion time of a file over a single path
connection using HTTP and mHTTP. The client is connected via
an Ethernet interface to an Ethernet router with a nominal rate of
100Mbps. The server is also connected to the Ethernet router via an
Ethernet interface. A round trip time of 50ms of the round-trip time
is generated on the link using a built-in traffic control module of the
Linux kernel (qdisc [4]). We evaluate the overhead of mHTTP with
different chunk sizes assuming the transfer over regular HTTP as
the baseline. We show the results in Figure 7. We observe that
the overhead is more significant with a small chunk size such as
256KB than with a large chunk size (e.g. 512KB, 1024KB). When
the chunk size is 1024KB, we observe that the overhead is around
5−10%. The poor performance of mHTTP with small chunk sizes
is puzzling and a topic for future investigation.

We now study the performance of mHTTP for downloading small
objects. We evaluate the download completion time of download-
ing files of various sizes (from 8KB to 2MB) over mHTTP using

Figure 7: Overhead analysis: HTTP vs. mHTTP over a single
connection.

Figure 8: The performance of downloading small objects in
Scenario 1 (mHTTP chunk size: 512KB).

512KB as the chunk size. We consider a scenario where the client
has two interfaces and downloads an object from two servers as
illustrated in Figure 6. We emulate AN1 and AN2 with Ethernet
routers with a nominal rate of 100Mbps. The servers and the client
are connected via Ethernet interfaces to the routers. The round-trip
times over the connections are set to 50ms. The measurement re-
sults are depicted in Figure 8. We observe that mHTTP does not
provide any performance gain for small object downloads but does
no harm either. For object downloads larger than the chunk size
(512KB in this measurement), mHTTP provides good performance
by utilizing the diversity in the network.

Our results in this section show that mHTTP with large chunk sizes,
such as 512KB and 1024KB, provides good performance for small
file downloads and introduces negligible overhead when used over
a single-path connection. In the rest of the paper, we focus our
analysis on the performance of mHTTP for large object downloads.

7.2 mHTTP vs regular HTTP
Now, we consider a scenario where the client has multiple inter-
faces and downloads a file from multiple servers. We assume a
2-server case in this scenario. As illustrated in Figure 6, the client
is equipped with two interfaces connected to different access net-
works (ANs). Thus, the client can establish two different connec-
tions to two different servers that contain identical copies of the



Figure 9: Scenario 1 (indoor testbed): download completion time of regular HTTP vs. mHTTP for different file and chunk sizes.
mHTTP can efficiently use the bandwidth available to the client and outperforms the best performing connection among regular
HTTP connections. 1024KB of the chunk shows the optimal performance in all file sizes.

Figure 10: Scenario 1 (outdoor testbed): download completion time of regular HTTP vs. mHTTP for different file and chunk
sizes. mHTTP can efficiently take advantage of the diversity exists in the network. We observe that mHTTP shows a relatively low
performance when using small chunk sizes compared to the measurements with large chunk sizes which is due to the fact that our
server configuration is not optimized for mHTTP.

same content. Note that MPTCP cannot be used in this scenario as
it is a single-server-oriented protocol.

As the first step, we emulate the above scenario in our indoor testbed
where AN1 and AN2 are Ethernet routers with nominal rates of
100Mbps each. Each server is connected via an Ethernet interface
to a corresponding router. The client has two Ethernet interfaces
that connect to the routers. In order to emulate different link laten-
cies in the scenario, we set round-trip times to 10ms and 50ms on

the first link and the second link, respectively. The measurement re-
sults are depicted in Figure 9. We show download completion times
of file sizes 4MB, 16MB, and 64MB. Each figure compares the per-
formance of regular HTTP over a single-path connection with that
of mHTTP that uses both connections. The results are presented
for different mHTTP chunk sizes. We observe that (1) the connec-
tion over the eth0 interface has a much better performance than the
one over the eth1 connection; (2) mHTTP greatly benefits from the
existing diversity in the network, the performance gain from us-



(a) mHTTP buffer size with scheduling.

(b) mHTTP buffer size without scheduling.

Figure 11: Scenario 1: mHTTP buffer size with and without
scheduling. Measurements are done in our indoor testbed and
for file size of 16MB.

Figure 12: Scenario 1 (outdoor testbed): fraction of traffic car-
ried over a LTE connection for file size of 16MB.

ing mHTTP is larger for larger file sizes; and (3)a chunk size of
1024KB provides the best performance across different file sizes.

In Section6, we proposed a scheduler that decides what chunk to
request over each connection to avoid a bottleneck situation such
as presented in Figure 5. Here, we compare the performance of this
scheduler with a baseline that mHTTP simply requests for the next
chunk in D, whenever it needs to issue a new chunk request over
a connection. Recall that D is the set of chunks that have not yet
been requested for download. The experiment is done in our indoor
testbed and for file size of 16MB.

Measurements show that (1) mHTTP with and without scheduler
exhibit similar performance (in term of download completion time).

Figure 13: Scenario 2: 2 interfaces at the client; 1 server; 2
paths (dashed lines). As in the previous section, we emulate
this testbed both indoor and outdoor.

Hence our scheduler does not affect the performance of mHTTP. As
the results for mHTTP without scheduling are similar to Figure 9,
we do not show them in this paper. (2) Our scheduler efficiently re-
duces the mHTTP buffer size. Figure 11 depicts the CCDF (Com-
plementary Cumulative Distribution Function) of mHTTP buffer
sizes for both cases. We observe that mHTTP without scheduling
requires larger buffer sizes. The results for 2048 chunk size are
identical. As in this case we have 8 chunks to be requested over the
connections, the scheduler would not have any impact. (3) Further-
more, we observe that the mHTTP buffer size is smaller than 1MB
in more than 50% of the cases. The maximum buffer occupancy is
7 MB. Note that mHTTP buffer uses user level memory and not the
the kernel space memory.

Now, we move our measurements to a more realistic network using
our outdoor testbed. We configure two servers in a university cam-
pus and a mobile device (laptop) as the client. The servers are con-
nected to the Internet via 1Gbps Ethernet cables (i.e., the bottleneck
is not at the server). The client device is equipped with two wire-
less interfaces (WiFi and LTE) that respectively connect to a WiFi
network and a cellular network. We show the results of our mea-
surements in Figure 10 for file sizes of 4MB, 16MB, and 64MB and
for different chunk sizes. We observe from the results that (1) LTE
and WiFi exhibit very similar performance; and (2) mHTTP can
efficiently use the available bandwidth, especially when the chunk
size is 1024KB. In this case, we observe that mHTTP’s through-
put equals the sum of the throughput of LTE and WiFi. Hence,
mHTTP fully utilizes the available capacity and shows a substan-
tial performance by reducing the completion time by 50%. For
smaller chunk sizes, we observe a lower performance than that for
large chunk sizes. This is mainly due to the overhead of range re-
quests as analyzed in Section 7.1. Improving the performance of
mHTTP for small chunk sizes is a future research topic.

Figure 12 depicts the fraction of traffic carried over the LTE inter-
face using mHTTP. We show the results for different chunk sizes
and for a file size of 16MB. We observe from Figure 10 that LTE
exhibits a slightly higher throughput than WiFi. Hence, we expect
mHTTP to send more or less the same amount of traffic over LTE
and WiFi. Our results in Figure 12 confirm our expectation specif-
ically for large chunk sizes.

7.3 mHTTP vs MPTCP for a single server case
Our second scenario focuses on comparing the performance of mHTTP
and MPTCP in the multi-homed and single data source environ-
ment as illustrated in Figure 13.

As in the previous section, we first report measurements on our in-
door testbed. The topology of the testbed is slightly changed in this
scenario: there is only one server, and thus no data source diversity.
The server and the client are booted with the MPTCP-enabled ker-
nel when we measure the performance of MPTCP. The results are



Figure 14: Scenario 2 (indoor testbed): download completion time of mHTTP vs. MPTCP and regular HTTP. Our testbed config-
uration is optimized for MPTCP. Hence, MPTCP is able to fully utilize the available capacity and provide a good performance. We
observe that mHTTP perform very close to MPTCP and always outperforms regular HTTP over the best path.

Figure 15: Scenario 2 (outdoor testbed): download completion time of mHTTP vs. MPTCP and regular HTTP. We observe that
MPTCP is able to fully use the available bandwidth and mHTTP performs close to MPTCP.

shown in Figure 14. As stated before, we configure our testbed in
such a way that it is optimal for MPTCP. Hence, we expect MPTCP
with independent cubic be able to fully utilize the available capac-
ity and provide good performance. The results confirm this: the
MPTCP throughput equals to the sum of the throughput of two con-
nections. Moreover, we observe that mHTTP performs closely to
MPTCP when the chunk size is 1024KB.

Furthermore, we observe for 64MB file size, and for large chunk
sizes, that mHTTP outperforms MPTCP. This is due to the fact that
MPTCP uses a shared TCP receive buffer which can limit its per-

formance when paths have different characteristics [28]. However,
mHTTP uses a separated TCP receive buffer for different estab-
lished connections and hence can perform well in such a situation.

Now, we show measurement results from our outdoor testbed: a
server residing at a university campus and a client equipped with
LTE and WiFi network interfaces. The results are depicted in Fig-
ure 14. Again, we observe that MPTCP fully uses available capac-
ity and mHTTP performs close to MPTCP, especially for large file
sizes and 1024KB as the chunk size.



Figure 16: Scenario 2 (outdoor testbed): fraction of traffic car-
ried over a LTE connection for 16MB file using mHTTP as well
as MPTCP. We show the results for 16MB file.

Figure 16 depicts the fraction of traffic transmitted over the LTE
connection for both mHTTP and MPTCP. We show the results for
16MB file size. As WiFi and LTE connections exhibit similar per-
formance, we expect that MPTCP and mHTTP transmit more and
less the same amount of traffic over each of these connections as
observed in the results. Moreover, we observe some differences
between using different chunk sizes for mHTTP.

7.4 mHTTP in a multi-source CDN
Finally, we conduct performance measurements on an existing CDN
infrastructure. We choose a 16MB file from a well known site on
Alexa.com’s top-50 list, where the content is hosted in a CDN. We
evaluate the performance of mHTTP when multiDNS uses the fol-
lowing two approaches: to simply use Google’s public DNS or to
leverage separate local DNS resolvers. For the first approach, mul-
tiDNS queries Google’s DNS over each interface separately, and
uses the set of IP addresses returned for each interface. For the sec-
ond approach, multiDNS sends a DNS query over each interface to
the local DNS of that access network to obtain IP addresses.

We depict the download times of the file using single-path or mHTTP
with different chunk sizes in Figure 17. Note that for single-path
TCP, each interface by default queries its local DNS resolver. We
observe that mHTTP reduces download times by up to 50% when
compared to the single-path case and performs very well across a
wide range of chunk sizes. Moreover, no significant differences
are observed for both approaches that multiDNS uses. Our results
in Figure 17 confirms that mHTTP can benefit from the path diver-
sity in the Internet and can fully utilize the available bandwidth.

7.5 mHTTP is robust to the changes
Finally, we show through an example how mHTTP performs when
one of its connections experiences performance drops (due to the
congestion either on the path or at the server). We use a scenario
similar to what is depicted in Figure 6. We emulate this scenario in
our indoor testbed. AN1 and AN2 are Ethernet routers with nom-
inal rates of 100Mbps. Each server is connected via an Ethernet
interface to a corresponding router. The RTTs of both connections
are initially set to 50 ms. The RTT of the second connection is con-
figured to be changed to 100ms 3 seconds after the transfer begins.
We investigate how mHTTP reacts to this change. We show the
results for 64MB file downloads when 1024KB chunk size is used.

Figure 18(a) depicts the throughput on each of the connection of
mHTTP and the overall throughput of mHTTP. We show the re-

Figure 17: Measurement on a CDN infrastructure. The results
are shown for two cases: the first case uses IP addresses ob-
tained from DNS queries sent to Google DNS (shown with (g)
in the y-axis); and the second case that uses IP addresses ob-
tained from the local DNS of each of the interfaces networks
(shown with (l) in the y-axis).

sults for one experiment run. We observe that upon the RTT change
of the second connection, the throughput over this connection de-
creases. However, mHTTP is robust to such a change and takes
advantage of the diversity in the network.

Figure 18(b) depicts the download completion time of mHTTP and
compares its performance with when we use single-path HTTP
over each of these connections (recall that the performance of the
second connection drop after 3 second). We show the results from
30 rounds of measurement. We observe that mHTTP provides a
significant performance gain, especially when we compare it with
single-path HTTP over the second connection.

8. RELATED WORK
The goal of our study is to boost the speed of the HTTP-based con-
tent delivery. Indeed, the need for such a latency reduction in the
Internet has already been acknowledged by network communities.

Multipath Approaches One of the closest siblings of mHTTP is
MPTCP [13, 28] which is an extension of the regular TCP that en-
ables a user to spread its traffic across disjoint paths. Although
MPTCP focuses on the path diversity between a single server and a
single receiver and requires the modification at both end-hosts, the
fundamental idea behind these two protocols is the same. Further-
more, mHTTP sheds light on solving a middlebox conundrum [7]
that MPTCP currently struggles with. Kaspar [17] thoroughly stud-
ies the path diversity in the Internet and discusses use cases on the
transport layer as well as on the application layer. His work and
mHTTP have many features in common except that his work is lim-
ited on a single client/server scenario and it does not take schedul-
ing into the design consideration.

Multi-source Approaches Content Distribution Network (CDN)
is a key technology for reducing the delivery latency in today’s In-
ternet and the performance of CDN has been evaluated by many
studies [15, 16, 19, 30]. CDNs provide widely distributed servers
with multiple copies of the content available at different locations.
CDN typically selects the content server based on the IP address
of client’s DNS server and it often makes an incorrect suggestion
due to the use of a public DNS [2] or the malfunction of the IP ge-



(a) Throughput over each of the connection

(b) Download completion time

Figure 18: The RTT of the second connection is changed to
100ms after 3 second. mHTTP is robust to such a latency
change and leverages his possible resources over each of these
connections.

olocation database [24]. To improve the performance of the server
selection, mechanisms such as PaDIS [23] or ALTO [32] have been
discussed in the community. Our goal is to leverage such content
distribution infrastructures. However, mHTTP does not limit the
communication to a single server. Instead, mHTTP connects to
multiple content servers for utilizing path and server diversity of
the Internet. Tian et al. [33] has proposed a mechanism that is an
extension of DASH [1] video streaming protocol, but heavily relies
on specific features of DASH. mHTTP, on the other hand, can be
used for any HTTP-type traffic, including streaming contents.

Single Path Approaches Google has proposed a new protocol,
SPDY [6, 38], which shares the ultimate goal with mHTTP, i.e., re-
ducing the user latency. These two protocols (mHTTP and SPDY)
have a similar architecture that does not need any modifications in
existing applications. SPDY uses only one server and one interface
at a time and utilizes a single TCP connections as if there are multi-
ple connections in it. To achieve this, server-side socket APIs must
support SPDY and that clearly distinguishes SPDY from mHTTP.
However, features of mHTTP and SPDY are mutually exclusive,
thus these two protocols may even be merged in the same platform.

Application Specific Approaches Bittorrent implements a sophis-
ticated mechanism which enables users to download the same con-
tent from multiple sources [10]. However, Bittorrent is an applica-
tion specific protocol and it needs modification both at the sender’s

and at the receiver’s side. Download managers, often run as add-on
software in a web browser or as stand-alone software, can be other
examples of application specific approaches, e. g., [36, 37].

9. SUMMARY
Advantages of simultaneously utilizing multiple paths over a net-
work communication are widely evaluated and understood [5, 9,
22, 26]. Given the fact that HTTP accounts for more than 60 % [20]
of today’s Internet traffic and that the major fraction of the total web
servers are operated on content distribution infrastructures [15, 34],
it is meaningful to broaden the benefit via globally replicated con-
tent sources. However, convincing application developers and con-
tent providers to modify/update their software is practically infeasi-
ble within a reasonable amount of time. mHTTP’s key contribution
is to bring significant benefits to the end-to-end content delivery by
utilizing the path diversity in the Internet without any changes on
existing applications and the server-side network stack.

Our results show that the performance gain of mHTTP is relatively
lower when small chunk sizes are used. Part of the problem is
due to our testbed configuration. Additionally, our implementa-
tion is still in the testing phase. Optimizing the HTTP parser and
restructuring mHTTP buffer will provide substantial performance
increase. This is a topic for future investigation.

For small object downloads, we observed that mHTTP does not
provide a high performance gain, but does not harm either. More-
over, we can modify mHTTP such that it does not establish multi-
ple paths if the object size is relatively small. Hence, for the small
flows, mHTTP will fall back to regular HTTP. Furthermore, we
can integrate ideas like socket intense proposed in [31] in our im-
plementation to better deal with small flows.

In regard to the comparison with MPTCP in single server scenarios,
we observe that mHTTP exhibits similar performance as MPTCP
for large chunk sizes, e.g., 1024KB, and for downloading large ob-
jects. Moreover, previous studies show that MPTCP, similarly to
mHTTP, does not provide a high performance gain for small object
downloads [9]. Hence, we consider mHTTP to be a viable alterna-
tive when running HTTP. Note that MPTCP requires changes to the
kernel, both at the sender and receiver. mHTTP, on the other hand,
requires only receiver-side modifications which are restricted to the
socket interface.

In our current mHTTP implementation, we do not allow a user to
establish more than two connections and, in particular, not more
than one connection over an interface. However, we let the user
leverage his possible resources, that is decided by regular TCP, over
each of these connections. Hence, an mHTTP user will not be more
aggressive than a TCP user over each interface and will not use the
network bandwidth more than twice than a regular single-path user.
This provides some level of fairness in the network.

We can use similar mechanisms as MPTCP, coupled-control [27] or
OLIA [18], to provide load balancing across multiple connections
of a content download. As our design goal is not to modify servers,
this can be implemented by modifying the TCP kernel of the re-
ceiver. The idea is that we can limit/regulate the transmission rate
over a connection by adjusting the receive window size advertised
by the receiver. This is a topic for future research.

Finally, We plan to extend our study to other use cases such as
a streaming content delivery (e.g., YouTube and/or Netflix) from



multiple data sources. Specifically, we are interested in studying
if using mHTTP can reduce the start-up latency of streaming con-
tents [29]. The performance study of mHTTP in high Bandwidth-
Delay-Product environments is another future research topic.
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