
Online Strategies for Intra and Inter Provider
Service Migration in Virtual Networks

Dushyant Arora1, Marcin Bienkowski2, Anja Feldmann1, Gregor Schaffrath1, Stefan Schmid1
1 Deutsche Telekom Laboratories / TU Berlin, Germany

{darora,anja,grsch,stefan}@net.t-labs.tu-berlin.de
2 Institute of Computer Science, University of Wrocław, Poland; mbi@ii.uni.wroc.pl

Abstract—Network virtualization allows one to build dynamic
distributed systems in which resources can be dynamically
allocated at locations where they are most useful. In order to
fully exploit the benefits of this new technology, protocols need to
be devised which react efficiently to changes in the demand. This
paper argues that the field of online algorithms and competitive
analysis provides useful tools to deal with and reason about the
uncertainty in the request dynamics, and to design algorithms
with provable performance guarantees.

As a case study, we describe a system (e.g., a gaming
application) where network virtualization is used to support
thin client applications for mobile devices to improve their
QoS. By decoupling the service from the underlying resource
infrastructure, it can be migrated closer to the current client
locations while taking into account migration cost. This paper
identifies the major cost factors in such a system, and formalizes
the corresponding optimization problem. Both randomized and
deterministic, gravity center based online algorithms are pre-
sented which achieve a good tradeoff between improved QoS and
migration cost in the worst-case, both for service migration within
an infrastructure provider as well as for networks supporting
cross-provider migration. The paper reports on our simulation
results and also presents an explicit construction of an optimal
offline algorithm which allows, e.g., to evaluate the competitive
ratio empirically.

I. INTRODUCTION

In 2008, the total number of mobile web users outgrew the
total number of desktop computers with respect to Internet
users [14] for the first time. Providing high quality-of-service
(QoS) respective an excellent quality of experience (QoE) to
mobile Internet clients is very challenging, e.g., due to user
mobility. However, many applications, including such popular
applications as gaming, need a reliable, continuous network
service with minimal delay.

Network virtualization [12] is an emerging technology
which allows a service specific network to be embedded onto
a substrate network in a dynamic fashion. This includes migra-
tion of virtual nodes and links as well as virtual servers to meet
the applications demands for connectivity and performance.
To take full advantage of this flexibility it is often necessary
to know future application demands. Yet, this information
is typically not readily available and therefore neither the
network resources can be used in an optimal manner nor do
the users receive the best possible service.

This paper studies a mobile thin client application (such as
a game server [20]) that is supported by network virtualization
technology. We assume that the distribution of thin clients and

therefore the request pattern changes over time. For instance, at
1 a.m. GMT many requests may originate in Asian countries,
then more and more requests come from European users and
later from the United States. In this setting it can be beneficial
to migrate (or re-embed) the service closer to the users, e.g., to
minimize access delays for the users and to minimize network
costs for the providers [19]. Network virtualization allows us
to realize such networks.

While moving services close to clients can reduce latency,
migration also comes at a cost: the bulk-data transfer imposes
load on the network and may cause a service disruption.
In particular, the cost of migration depends on the available
bandwidth in the substrate network [9]. Moreover, if virtual
networks (VNets) are provisioned across administrative do-
mains belonging to multiple infrastructure providers, (inter-
provider) migration entails certain transit (or roaming) costs.

To gain insights into this tradeoff, we identify the main
costs involved in this system. Intuitively, the benefits from
virtualization are higher the lower the migration cost is relative
to the latency penalty. Therefore, a predictable access pattern
may ease migration. However, in practice, user arrival patterns
are hard to predict, and thus we, in this paper, explicitly
incorporate uncertainty about future arrivals.

The classic formal tool to study algorithms that deal with
inputs (or more specifically: request accesses) that arrive in
an online fashion and cannot be predicted is the competitive
analysis framework. In competitive analysis, the performance
of a so-called online algorithm is compared to an optimal
offline algorithm that has complete knowledge of the input
in advance. In effect, the competitive analysis is a worst
case performance analysis that does not rely on any sta-
tistical assumptions. We apply this framework to network
virtualization and propose—for a simplified model where, e.g.,
the main access cost is delay to the server and the main
migration cost is the available bandwidth between migration
source and destination—a competitive migration algorithm
whose performance is close to the one of the optimal offline
algorithm.

A. Related Work

Mobile Networks. The mobile web today provides browser-
based access to the Internet or web applications to millions
of users connected to a wireless network via a mobile device.
There exists a vast amount of work on the subject, and we refer

ar
X

iv
:1

10
3.

09
66

v1
 [

cs
.N

I]
 4

 M
ar

 2
01

1

the reader to the introductory books, e.g., [34]. In this project,
we tackle the question of how network virtualization can be
used to improve the quality of service for mobile devices.

Network Virtualization. Network virtualization has gained
a lot of attention recently [35] as it enables the co-existence of
innovation and reliability [31] and promises to overcome the
“ossification” of the Internet [13]. For a more detailed survey
on the subject, please refer to [12]. Virtualization allows to
support a variety of network architectures and services over a
shared substrate, that is, a Substrate Network Provider (SNP)
provides a common substrate supporting a number of Diver-
sified Virtual Networks (DVN). OpenFlow [25] and VINI [3]
are two examples that allow researchers to (simultaneously)
evaluate protocols in a controllable and realistic environment.
Trellis [4] provides a software platform for hosting multiple
virtual networks on shared commodity hardware and can be
used for VINI. Network virtualization is also useful in data
center architectures, see, e.g., [18].

Embedding. A major challenge in network virtualization is
the embedding [26] of VNets, that is, the question of how to ef-
ficiently and on-demand assign incoming service requests onto
the topology. Due to its relevance, the embedding problem has
been intensively studied in various settings, e.g., for an offline
version of the embedding problem see [23], for an online and
competitive algorithm see [15], for an embedding with only
bandwidth constraints see [16], for heuristic approaches with-
out admission control see [38], or for a simulated annealing
approach see [29]. Since the general embedding problem is
computationally hard, Yu et al. [24] advocate to rethink the
design of the substrate network to simplify the embedding; for
instance, they allow to split a virtual link over multiple paths
and perform periodic path migrations. Lischka and Karl [22]
present an embedding heuristic that uses backtracking and
aims at embedding nodes and links concurrently for improved
resource utilization. Such a concurrent mapping approach is
also proposed in [10] with the help of a mixed integer program
(a more general formulation which also includes migration
aspects can be found in [30]). Finally, several challenges of
embeddings in wireless networks have been identified by Park
and Kim [27].

In contrast to the approaches discussed above we, in this
paper, tackle the question of how to dynamically embed or
migrate virtual servers [28] in order to efficiently satisfy
connection requests arriving online at any of the network entry
points, and thus use virtualization technology to improve the
quality of service for mobile nodes. The relevance of this
subproblem of the general embedding problem is underlined
by Hao et al. [19] who show that under certain circumstances,
migration of a Samba front-end server closer to the clients can
be beneficial even for bulk-data applications.

Online Algorithms. To the best of our knowledge, [5]
and [1] (for online server migration), and [15] (for online
virtual network embeddings) are the only works to study
network virtualization from an online algorithm perspective.
The formal competitive migration problem is related to several
classic optimization problems such as facility location, k-

server problems, or online page migration. All these problems
are a special case of the general metrical task system (e.g., [7],
[8]) for which there is, e.g., an asymptotically optimal deter-
ministic Θ(n)-competitive algorithm, where n is the state (or
“configuration”) space; or a randomized O(log2 n · log log n)-
competitive algorithm given that the state space fulfills the
triangle inequality: this algorithm uses a (well separated) tree
approximation for the general metric space (in a preprocessing
step) and subsequently solves the problem on this distorted
space; unfortunately, both algorithmic parts are rather com-
plex.

In the field of facility location, researchers aim at computing
optimal facility locations that minimize building costs and
access costs (see, e.g., [17] for an online algorithm). In
[21], Laoutaris et al. propose a heuristic algorithm for a
variant of a facility location problem which allows for facility
migration; this algorithm uses neighborhood-limited topology
and demand information to compute optimal facility locations
in a distributed manner. In contrast to our work, the setting
is different and migration cost is measured in terms of hop
count. There is no performance guarantee. In the field of k-
server problems (e.g., [7]), an online algorithm must control
the movement of a set of k servers, represented as points in
a metric space, and handle requests that are also in the form
of points in the space. As each request arrives, the algorithm
must determine which server to move to the requested point.
The goal of the algorithm is to reduce the total distance that
all servers traverse. In contrast, in our model it is possible to
access the server remotely, that is, there is no need for the
server to move to the request’s position. The page migration
problem (e.g., [2]) occurs in managing a globally addressed
shared memory in a multiprocessor system. Each physical
page of memory is located at a given processor, and memory
references to that page by other processors are charged a cost
equal to the network distance. At times, the page may migrate
between processors, at a cost equal to the distance times a page
size factor. The problem is to schedule movements on-line so
as to minimize the total cost of memory references. In contrast
to these page migration models, we differentiate between
access costs that are determined by latency and migration costs
that are determined by network bandwidth.

There is an intriguing relationship between server migration
and online function tracking [6], [36]. In online function
tracking, an entity Alice needs to keep an entity Bob (ap-
proximately) informed about a dynamically changing function,
without sending too many updates. The online function track-
ing problem can be transformed into a chain network where the
function values are represented by the nodes on the chain, and
a sequence of value changes corresponds to a request pattern
on the chain. In particular, it follows from [6] that already for
some very simple linear substrate networks of size n = Θ(β),
where β is the migration cost, no deterministic or randomized
online algorithm can achieve a competitive ratio smaller than
Ω(log n/ log log n).

Other. A preliminary version of this paper was presented
at the VISA workshop [5] (a discussion of multiple server

scenarios appeared at the Hot-ICE workshop [1]). We extend
the results in [5] in several respects: First, we present a
deterministic alternative to the randomized migration strategy
derived in [5]; this deterministic online algorithm is based
on gravity centers and achieves a better competitive ratio
against adaptive adversaries. Second, we extend our model
to settings with multiple infrastructure providers, and describe
competitive intra and inter provider migration strategies. Pro-
visioning virtual network services across multiple providers
is an interesting topic which is hardly explored in literature
so far; notable exceptions are PolyVINE [11], a distributed
coordination protocol to perform cross-provider embeddings,
and V-Mart [37] that describes an auction framework for task
partitioning. Third, we conducted extensive experiments to
complement our formal analysis.

B. Contributions and Organization

This paper studies a mobile network virtualization archi-
tecture where thin clients on mobile devices access a service
that can be migrated closer to the access points to reduce user
latency. We identify the main costs in this system (Section II)
and introduce an optimization problem accordingly. Both for
networks with a single provider (Section III) as well as for
networks with multiple providers (Section IV), online migra-
tion strategies are presented that are provably competitive to an
optimal offline algorithm, i.e., that achieve a good performance
even in the worst-case. This paper also describes an optimal
offline algorithm which is useful for finding optimal strategies
at hindsight, for dealing with regular and periodic request
patterns, and for computing the competitive ratios of online
algorithms (Section V). We report on our experiments in
different scenarios in Section VI. In Section VII, the paper
concludes.

II. ARCHITECTURE

Our work is motivated by the virtualization architecture
proposed in [31] for which we are in the process of developing
a prototype implementation. The main roles of this architecture
related to this work are: The (Physical) Infrastructure Provider
(PIP), which owns and manages an underlaying physical
infrastructure called “substrate” (we will treat the terms in-
frastructure provider and substrate provider as synonyms); the
Virtual Network Provider (VNP), which provides bit-pipes and
end-to-end connectivity to end-users; and the Service Provider
(SP), which offers application, data and content services to
end-users.

We assume that a service provider is offering a service to
mobile clients which can benefit from the flexibility of network
and service virtualization. The goal of the service provider
is to minimize the round-trip-time of its service users to the
servers, by triggering migrations depending, e.g., on (latency)
measurements. Concretely, VNP and/or PIPs will react on the
SP-side changes of the requirements on the paths between
server and access points, and re-embed the servers accordingly.

In the remainder of this paper, if not stated otherwise,
the term provider will refer to the PIP role in the above

architecture. In particular, we will study multi provider sce-
narios where the service provider may decide to migrate an
application across PIP boundaries.

A. General Cost Model

Formally, we consider a substrate network G = (V,E)
managed by one or multiple substrate providers (PIP). Each
substrate node v ∈ V has certain properties and features
associated with it (e.g., in terms of operating system or CPU
power); in particular, we assume that it has a computational
capacity c(v). Similarly, each link e = (u, v) ∈ E, with
u, v ∈ V , has certain properties, e.g., it is characterized by a
bandwidth capacity ω(e), and it offers the latency λ(e). Links
between different PIPs are typically more expensive than links
within a PIP.

In addition to the substrate network, there is a set T of
external machines (the mobile thin clients or simply terminals)
that access G by issuing requests to virtualized services hosted
on a set of virtual servers by G. There is a set of services
S = {S1, S2, ...} where each service Si can be offered by
multiple servers s ∈ Si. (In the technical part of the paper we
will focus on a single-server scenario only.) Each server s has
a certain resource or capacity requirement r(s) that needs to
be allocated to s on the substrate node where it is hosted.

In order for the machines in T to access the services S, a
fixed subset of nodes A ⊆ V serve as Access Points where
machines in T can connect to G. Due to the movement
of machines in T , the access points can change frequently,
which may trigger the migration algorithm. We define σt to
be the multi-set of requests at time t where each element is
a tuple (a ∈ A,S ∈ S) specifying the access point and the
requested service S. (For ease of notation, when clear from the
context, we will sometimes simply write v ∈ σt to denote the
multi-set of access points used by the different requests.) Our
main objective is to shed light onto the trade-off between the
access costs Costacc of the mobile clients to the current service
locations and the server migration cost Costmig: while moving
the servers closer to the requester may reduce the access costs
and hence improve the quality of service, it also entails the
overhead of migration.

We can identify the following main parameters which influ-
ence the access and migration costs. A major share of Costacc
is due to the request latency, i.e., the sum of the requests’
latencies to the corresponding servers. Observe that the routing
of the requests occurs along the shortest paths (w.r.t. latency)
on the substrate network. In addition, the access cost depends
on the server load, that is, the access cost depends on the
capacity c(v) of the hosting node v and the resource demands
r(s) of the servers s hosted by v. The correlation between load
and delay can be captured by different functions, and is not
studied further here. In this paper, we assume that requests
are relatively small, and hence, we do not explicitly model
bandwidth constraints in Costacc. In conclusion, at time t and
for some function f ,

Costacc(t) =
∑
rt∈σt

f (delay(rt), load(rt)) .

In contrast to the requests, which are rather light-weight, the
server state is typically large, and hence the traffic volume of
migration cannot be neglected. The main cost of migration are
service outage periods and the migration itself. The migration
cost Costmig of a virtual server s ∈ S, or the outage period,
hence depends to a large extent on the available bandwidth
ω(p) on the migration path p : src dst (along the substrate
network) between migration source node src and destination
node dst, and the size size(s) of the application s to be
migrated. Another major cost factor is the transit costs, namely
the number k of PIPs on the path. In summary:

Costmig(t) =
∑
s∈S

f(ω(p), k, size(s))

for some function f , where the migration cost is zero if src =
dst.

Our model so far lacks one additional ingredient: terminal
dynamics (or mobility). One approach would be to assume
arbitrary request sets σt, where σt is completely independent
of σt−1. However, for certain applications it may be more
realistic to assume that the mobile nodes move “slowly” be-
tween the access points. Note that while users typically travel
between different cities or countries at a limited speed, these
geographical movements may not translate to the topology of
the substrate network. Thus, rather than modeling the users
to travel along the links of G, we consider on/off models
where a user appears at some access point a1 ∈ A at time
t, remains there for a certain period ∆t, before moving to
another arbitrary node a2 ∈ A at time t+ ∆t.

One may assume that ∆t is exponentially distributed.
However, in our formal analysis we assume a worst-case
perspective and consider arbitrary distributions for ∆t. Often,
it is reasonable to assume some form of correlation between
the individual terminals’ movement. For example, in an urban
area, workers commute downtown in the morning and return
to suburbs in the evening. Or in a planetary-scale substrate
network, demographic aspects have to be taken into account
in the sense that during a day, first many requests will originate
from Asian countries, followed by an active period in Europe
and finally America. However, as it is rather hard to describe
and characterize such movement accurately we, in the formal
part of this paper, perform a worst case analysis (w.r.t. latency)
that does not use any statistical assumptions.

To what extent the system can benefit from virtual network
support and migration depends on several factors, e.g., how
frequently the thin clients change the access points. Given
rapid changes it may be best to place the server in the middle
of the network and leave it there. On the other hand, if the
changes are slower or can be predicted, it can be worthwhile
to migrate the server to follow the mobility pattern. This
constitutes the trade-off studied in this paper.

B. Competitive Analysis

As already discussed, competitive analysis asks the ques-
tion: How well does the system perform compared to an
optimal offline strategy which has complete knowledge of

the entire request sequence in advance? In the following,
we present an online migration strategy that is “competitive”
to any other online or offline solution for virtual network
supported server migration. In order to focus on the main
properties and trade-offs involved in the virtualization support
of thin clients, we assume a simplified online framework for
our formal analysis. We consider a synchronized setting where
time proceeds in time slots (or rounds).1 In each round t, a
set of σt terminal requests arrive in a worst-case and online
fashion at an arbitrary set of access nodes A.

Thus the embedding problem is equivalent to the following
synchronous game, where an online algorithm ALG has to
decide on the migration strategy in each round t, without
knowing about the future access requests. In each round t ≥ 0:

1. The requests σt arrive at some access nodes A.
2. The online algorithm ALG decides where in G to

migrate the servers S. If positions are changed, it pays
migration costs Costmig(t).

3. The online algorithm ALG pays the requests’ access
costs Costacc(t) to the corresponding servers (e.g, hop
distance).

Note, that we allow ALG to migrate the virtual servers for
all the requests of the current time slot t. However, as we
assume that a request is much cheaper than a migration, and
if there are not too many requests arriving concurrently, our
results also apply to scenarios where the last two steps are
reordered.

We aim at devising competitive algorithms ALG that min-
imize the competitive ratio ρ: Let ALGt(σ) be the migration
and access costs incurred by ALG in round t under a request
arrival sequence σ (a sequence of access points), that is,

ALGt(σ) = Costacc(t) + Costmig(t).

Let OPT(σ) be the optimal cost of an offline algorithm OPT
for the given σ, that is, OPT has a complete knowledge of σ
and can hence optimize the server locations “offline”. ρ is the
ratio of the costs of ALG and OPT. Thus, our objective is to
minimize:

ρ = max
σ

∑
t ALGt(σ)

OPT(σ)

In case of online algorithms that use randomization, we
consider the expected costs against an oblivious adversary
without access to the outcome of the random coin flips of
the algorithm.

For our analysis, we make the following simplification: The
migration cost Costmig(t) is given by the bandwidth constraint
of the smallest edge capacity on the migration path, plus the
number of PIPs traversed times π. Let Costmig(u, v) denote the
migration cost on a path from u to v. (The path will be clear
from the context.) Thus, Costmig(u, v) = maxe size(s)/ω(e)+
k · π where size(s) is the size of the migrated server s, e is a
link on the migration path from u to v, k is the number of PIPs
traversed and π is the cost of migrating across a PIP boundary.

1Note that while this assumption simplifies the analysis, it is not critical
for our results.

Observe that given a migration path, the cost is different in
case the migration occurs once along the entire path compared
to the case where it occurs in two steps at different times.

III. COMPETITIVE INTRA-PROVIDER MIGRATION

This section presents two online protocols for server mi-
gration within a single provider (PIP). The main idea of both
algorithms is to divide time into epochs: As we will see, also
an optimal offline algorithm will have certain costs in such
an epoch, which allows us to compare its performance to the
online algorithms. While algorithm MIX uses randomization to
identify good locations to serve the current requests, algorithm
CEN deterministically migrates to the gravity centers of the
demand. Before describing these two algorithms in detail, we
briefly discuss static strategies without migration.

A. The STAT Algorithm

In order to compare the benefits of migration to a static
scenario, we derive the competitive ratio of fixed strategies
(see also [5]).

Lemma 3.1: A system without migration yields a competi-
tive ratio of

ρ ∈ Θ(Diam(G)),

where Diam(G) is the network diameter of substrate network
G. [5]
In a fixed scenario, the best static algorithm STAT hosts s is
in the network center, i.e., the location which minimizes the
worst-case distance traveled by the requests, namely at node
u for which u := arg minv∈V maxw∈V Costacc(v, w).

Note, since there is no migration in the fixed scenario,
the competitive ratio does not depend on any bandwidth
constraints (i.e., on link weights). This means that in networks
with highly heterogeneous links or with links whose capacity
changes quickly over time, a static solution without migration
may be good.

B. The MIX Algorithm

We now describe an online migration algorithm MIX (see
also [5]). The basic idea of MIX is to strike a balance
between the request latency cost CostMIX

acc and the migration
cost CostMIX

mig it incurs, and to continuously move closer to a
possible optimal position. The intuition is that after a small
number of migrations only, either MIX is at the optimal
position, or an optimal offline algorithm OPT must have
migrated as well during this time period. Either way, OPT
cannot incur much smaller costs than MIX. In other words,
by using MIX for moving to good locations in the network, a
possible offline algorithm that migrates less frequently cannot
have much lower access costs than MIX; on the other hand,
an offline strategy with frequent migrations will have similar
costs to Costmig.

Let us first consider a scenario with constant bandwidth
capacities, i.e., ω(e) = ω ∀e ∈ E and let β = size(s)/ω be
the corresponding migration cost.

The algorithm MIX divides time into epochs. In each epoch
MIX monitors, for each node v, the cost of serving all requests
from this epoch by a server kept at v. We denote this counter
by C(v). MIX keeps the server at a single node w till C(w)
reaches β. In this case, MIX migrates the server to a node u
chosen uniformly at random among nodes with the property
C(u) < β. If there is no such node, MIX does not migrate the
server, and the epoch ends in that round; the next epoch starts
in the next round and the counters C(v) are reset to zero.

Lemma 3.2: MIX is O(log n)-competitive in networks with
constant bandwidth. [5]

Proof: Fix any epoch E and let β denote the migration
cost. If OPT migrates the server within E , it pays β. Otherwise
it keeps it at a single node paying the value of the correspond-
ing counter at the end of E . By the construction of MIX, this
value is at least β, and thus in either case OPT(E) ≥ β.

The migrations performed by MIX partition E into several
phases. According to our migration strategy, the access cost
of MIX in each phase is at most β. In [5], we show that the
expected number of migrations within one epoch is at most
Hn, where Hn is the n-th harmonic number. The number of
phases is then Hn + 1, and hence MIX(E) ≤ β · Hn + β ·
(Hn + 1) = β · O(log n). This yields the competitiveness of
MIX.
Note that the analysis does not rely on access costs being
measured as the number of hops. Rather, the analysis (and
hence also the result) is applicable to any metric which ensures
that counters increase monotonically over time, i.e., with
additional requests.

For networks with general bandwidths, MIX can be adopted
in such a way that it migrates when the counter of the current
location v reaches size(s)/mine ω(e), that is, when C(v) ≥
size(s)/mine ω(e). Thus, the cost of the optimal algorithm in
each epoch is at least size(s)/maxe ω(e), while the cost of
MIX is at most size(s)/mine ω(e). Therefore, by the same
arguments as in the proof of Lemma 3.2, we immediately
obtain the following result.

Theorem 3.3: MIX is O(µ · log n)-competitive in general
networks, where µ = maxe,e′∈E ω(e)/ω(e′).

C. The CEN Algorithm
While for the analysis of MIX, we assumed an oblivious

adversary which cannot be adaptive with respect to the random
choices made by the online algorithm, we now focus on
deterministic algorithms CEN. As we will see, a logarithmic
competitive ratio can also be achieved. Again, we will first
assume ω(e) = ω ∀e ∈ E and β = size(s)/ω.

CEN divides time into epochs consisting of one or multiple
phases between which CEN migrates. Again, we have counters
C(v) for each node v that are set to zero at the beginning of an
epoch. These counters accumulate the access costs of an epoch
if the server was permanently located at v. Henceforth, we will

call all nodes v for which at time t, C(v) < β/40, active nodes
at time t. Assume that algorithm CEN is currently at some
node v. CEN remains at this node until it accumulated there
access costs of β. Then, a new phase starts, and CEN com-
putes the gravity center w, i.e., the “center” of the currently
active nodes. Formally, let d denote the shortest path metric
(w.r.t. access costs) on the network G. The gravity center of
a subset V ′ ⊆ V of nodes is defined as the (not necessarily
unique) node G(V ′) = arg minv∈V ′

∑
u∈A d(u, v), where A

is the set of access points. (Ties are broken arbitrarily.) CEN
migrates to w and a new phase starts. If there is no active
node left, the epoch ends.

In order to study the competitive ratio of CEN, we exploit
the fact that a request always increases the counter of several
nodes besides the gravity center (namely: a constant fraction)
by at least a certain value (again, a constant fraction) as well.

Lemma 3.4: Let λ1 = 1/5 and λ2 = 1/4. Fix any active
set V ′. Let r be an arbitrary requesting node (at some step).
Assume the counter at the gravity center G(V ′) increased by
F because of this request. Then there are at least λ2 · |V ′|
nodes from V ′ whose counters increased at least by λ1 · F .

Proof: Assume the contrary. It means that there are at
least (1− λ2) · |V ′| nodes from V ′ whose counter increase is
smaller than λ1 ·F . Denote this set by V ′′. We know that the
distance between the request and the center is d(G(V ′), r) =
F , and ∀u ∈ V ′′, d(u, r) < λ1 · F . Therefore, ∀u, v ∈ V ′′,
d(u, v) < 2λ1 · F : the diameter of the set V ′′ is relatively
small.

Now let ξ be any node of V ′′. We show that ξ would be
a better candidate for the gravity center than G(V ′) is. Using
triangle inequalities, we obtain

∑
u∈V ′

d(G(V ′), u) =
∑

u∈V ′′
d(G(V ′), u) +

∑
u∈V ′\V ′′

d(G(V ′), u)

≥
∑

u∈V ′′

[
d(G(V ′), r)− d(u, r)

]
+

∑
u∈V ′\V ′′

d(G(V ′), u)

> (1− λ1) · |V ′′| · F +
∑

u∈V ′\V ′′
d(G(V ′), u)

>
4

5
· |V ′′| · F +

∑
u∈V ′\V ′′

d(G(V ′), u)

because d(G(V ′), r) = F and d(u, r) ≤ λ1 · F , and
by substituting λ1 = 1/5. On the other hand, note that

|V ′ \ V ′′| ≤ |V ′|/4 ≤ |V ′′|/3 and∑
u∈V ′

d(ξ, u) =
∑

u∈V ′′
d(ξ, u) +

∑
u∈V ′\V ′′

d(ξ, u)

< 2λ1 · |V ′′| · F

+
∑

u∈V ′\V ′′

[
d(ξ, r) + d(r,G(V ′)) + d(G(V ′), u)

]
< 2λ1 · |V ′′| · F + |V ′ \ V ′′| · (1 + λ1) · F

+
∑

u∈V ′\V ′′
d(G(V ′), u)

≤
4

5
· |V ′′| · F +

∑
u∈V ′\V ′′

d(G(V ′), u)

because d(ξ, r) < λ1·F , d(r,G(V ′)) = F , and by substituting
the value of λ1 = 1/5. This contradicts that G(V ′) is the
gravity center of V ′.

From Lemma 3.4 it follows that when the counter at the
gravity center exceeds a given threshold, the counter of many
nodes besides the center must be high as well.

Lemma 3.5: Fix any threshold τ . When the counter at the
gravity center G(V ′) exceeds τ , then there exists V ′′ ⊆ V ′,
|V ′′| ≥ 1

8 · |V
′|, such that for all v ∈ V ′′, the counter at v is

at least τ/40.
Proof: Assume the contrary. This means that there exists

V ′′ ⊆ V ′, |V ′′| ≥ 7
8 ·|V

′|, such that for all v ∈ V ′′, the counter
at v is smaller than τ/40. Hence

∑
v∈V ′′ C(v) < |V ′′|·τ/40 ≤

|V ′| · τ/40. On the other hand, by Lemma 3.4, each time the
counter C(G(V ′)) increases by F , at least 1/4 · |V ′| counters
from set V ′ (and hence at least 1/8·|V ′| counters from set V ′′,
since |V ′ \ V ′′| ≤ |V

′|
8) increase by F/5. Hence, in this case,

the sum of counters from V ′′ increases at least by 1/40·|V ′|·F .
Therefore, when C(G(V ′)) ≥ τ ,

∑
v∈V ′′ C(v) ≥ |V ′| · τ/40,

which is a contradiction.
For the competitive ratio, we therefore have the following

result.
Theorem 3.6: CEN is O(log n)-competitive.

Proof: First, we consider the cost of the optimal offline
algorithm. If OPT migrates in an epoch, it has costs β.
Otherwise, due to the definition of CEN, as there are no active
nodes left at the end of an epoch, the access costs of any
node is also in the order of Ω(β). Regarding CEN, we know
that in each phase, access costs are at most β, and it remains
to study the number of phases per epoch. By Lemma 3.5, we
know that in each phase, the number of active nodes is reduced
by a factor at least 1/8. Therefore, there are at most O(log n)
many phases per epoch, and the claim follows.

Note that we did not try to optimize the constants in this
proof, and in practice (and in our simulations), alternative
thresholds can be applied yielding better (but qualitatively
equivalent) results.

Again, for networks with general bandwidths, CEN can be
adopted in such a way that it migrates when the counter of
the current location v reaches size(s)/mine ω(e), that is, when
C(v) ≥ size(s)/mine ω(e). By the same arguments as above,
this adds a factor maxe,e′∈E ω(e)/ω(e′) to the competitive
ratio.

D. Remarks
Recall that the adversarial model for MIX and CEN is

different, and hence, one has to be careful when comparing
the competitive ratios: the bound for MIX only holds against
oblivious adversaries, and we expect the center of gravity ap-
proach to perform better in worst-case scenarios with adaptive
adversaries. Our simulations show that the question which of
the two strategies is more efficient depends on the scenario.

Also note that both MIX and CEN are quite general with
respect to the measure of access costs, i.e., the derived bounds
hold for arbitrary latency functions on the links in case of MIX.
This allows us to generalize our analysis to scenarios where
the access latency, in addition to the sum of the link latencies,
depends also on the capacity of the hosting node: We simply
need to take the capacities into account when increasing the
counters. In case of CEN, the access costs must fulfill the
triangle inequality.

IV. INTER-PROVIDER MIGRATION

The flexibility offered by network virtualization is not
limited to a single PIP. Rather, a Virtual Network Provider
may have contracts with multiple infrastructure providers, and
provision a service across PIP boundaries. In the following, we
extend our model to multiple provider scenarios. In particular,
we assume that migrating a server across a PIP boundary
entails a fixed “roaming” cost π for each transit. Since we
assume that a PIP typically does not reveal its internal resource
structure, we seek to come up with migration algorithms
that pose minimal requirements on the knowledge of a PIP
topology.

In order to study the benefits of migration, we again
consider a scenario without migration (algorithm STAT). Of
course, Lemma 3.1 still applies: in a fixed scenario, the best
location for hosting s is in the network center, i.e., the location
which minimizes the distance traveled by the requests.

In the following, we present how the randomized algorithm
MIX and the deterministic algorithm CEN can be extended to
multi-PIP scenarios. We consider k PIPs, migration inside a
PIP costs β, access costs are the number of hops, and migrating
across providers costs π per crossed PIP boundary. We will
concentrate on the more realistic case where π ≥ β. (If π < β,
our single PIP algorithms could be applied without taking into
account transit costs. This yields a performance in the order
as derived for the case π ≥ β.)

It is sometimes useful to think of the PIP graph, the graph
where all the nodes of one PIP form one vertex and two PIPs
are connected if there is a connection between nodes of the
respective PIPs in the substrate graph. In particular, we will
refer to the diameter of the PIP graph, the largest number of
PIPs to be traversed on a shortest migration path, by ∆.

Algorithm MIXk generalizes MIX by moving the server to
one of the PIPs having lower costs.

The algorithm MIXk divides time into three types of epochs:
huge epochs which consist of one or several large epochs

which in turn consist of dπ/βe small epochs. For each node
u, we use two counters C(u) and CL(u) to count the access
cost during a small and a large epoch, respectively. At the
beginning of a small epoch, all nodes are active; similarly, at
the beginning of a huge epoch, we say that all PIPs are active.
During a small epoch, the server is migrated within a single
PIP only, until there is no node u left with access costs smaller
than β: MIXk monitors, for each node u, the cost of serving
all requests from this small epoch by a server kept at u; MIXk
keeps the server at a single node u till C(u) reaches β. When
this happens, MIXk migrates the server to a node v chosen
uniformly at random among nodes of the current PIP with the
property C(v) < β. If there is no such node, MIXk does not
migrate the server, and the small epoch ends in that round; the
next epoch starts in the next round and the counters C(u) are
reset to zero.

After dπ/βe small epochs a large epoch ends. Then MIXk
determines the set of PIPs that contain at least one node v
for which CL(v)< π; all other PIPs become inactive for the
remainder of the current huge epoch. If there are active PIPs
left, MIXk chooses an active PIP uniformly at random and
migrates to an arbitrary node of that PIP; otherwise the server
stays where it is, and a new huge epoch begins.

We can derive the following competitive ratio on MIXk’s
performance.

Theorem 4.1: MIXk is O(log k · (log n1 + ∆))-competitive
in networks with constant bandwidth and k PIPs, where n1 is
the size of the largest PIP, and ∆ is the “diameter of the PIP
graph”.

Proof: From Lemma 3.2, we know that during a small
epoch, MIXk accumulates a cost of at most O(β log n1): There
is at most a logarithmic number of migrations, and the access
costs per phase is at most β. Recall that a large epoch consists
of at most dπ/βe many small epochs, and subsequently, a
remaining active PIP is chosen uniformly at random. Thus,
similarly to Lemma 3.2, it holds that there are at most O(log k)
many large epochs, yielding a total access cost of O(log k ·
log n1 · π/β · β) = O(π log k · log n). The migration costs
within PIPs are of the same order. The transit costs to move the
server between PIPs amounts to at most O(∆π log k). Thus,
the overall cost of MIXk per huge epoch is in the order of
O(π log k ·(log n1+∆)). On the other hand, an optimal offline
algorithm must have had costs of at least π as well during
this huge epoch: if the optimal algorithm migrates between
PIPs, the claim follows trivially. Otherwise, the optimal offline
algorithm is located at a single PIP during the entire huge
epoch; by the construction of MIXk, there must exist a large
epoch in which the optimal offline algorithm incurred a cost
of at least Ω(π): per small epoch the (access or migration)
costs are at least β, and there are dπ/βe many small epochs
in a large epoch. The claim follows.
Note that the proof of Theorem 4.1 is overly pessimistic, as
it assumes several large migration distances that the optimal

offline algorithm can avoid. We believe that MIXk performs
better, also in the worst-case, a conjecture that is also mani-
fested by our experiments.

A similar extension also works for the deterministic variant.

The algorithm CENk divides time into three types of epochs:
a huge epoch consists of multiple large epochs, and a large
epoch consists of 40dπ/βe small epochs. Again, we use
counters C(u) to accumulate the access costs of a node u
during a small epoch; in addition, a counter CL(u) is used to
accumulate access costs during a large epoch. In the beginning,
all PIPs are set to active. At the beginning of a small epoch,
the C(u) values are set to zero for all nodes within the current
PIP. CENk then monitors, for each node u, the cost of serving
all requests from this small epoch by a server kept at u. CENk
leaves the server at a single node u till C(u) reaches β. In this
case, CENk migrates the server to a node v which constitutes
the center of gravity among the active nodes of the current
PIP, i.e., the nodes w of the current PIP for which it still holds
that C(w) < β/40. If there is no active node left within the
current PIP, a small epoch ends in that round; the next small
epoch starts in the next round. After 40dπ/βe small epochs,
a new large epoch starts, and all nodes u in the network with
CL(u)≥ π/40 become inactive with respect to the large epoch.
Among all remaining active nodes of the large epoch, CENk
determines the center of gravity of all nodes and moves the
server to the corresponding PIP, and a new large epoch begins.
Otherwise, if there is no PIP left that contains active nodes,
the server stays where it is, and a new huge epoch starts.

We can show the following result.
Theorem 4.2: CENk is O(log n(log n1+∆))-competitive in

networks with constant bandwidth and k PIPs, where n1 is the
size of the largest PIP, and ∆ is the diameter of the PIP graph.

Proof: First we compute the total cost of CENk in a
huge epoch. It follows from Theorem 3.6 that a large epoch
consists of 40dπ/βe small epochs of O(β log n1) access costs
and at a logarithmic number of migrations amounting to cost
O(β log n1) as well, yielding a total cost per large epoch of
O(π log n1). Now observe that there is at most a logarithmic
number of large epochs per huge epoch: CENk guarantees that
the server is not migrated to another PIP as long as there is a
node left in the current PIP with access costs smaller than π; in
particular, for the center of gravity u of the current large epoch
PIP, CL(u)≥ π, and hence, again by Theorem 3.6, a constant
fraction of nodes in the entire network must become inactive
per large epoch. Summing up over the large epochs and adding
the transit cost of at most O(∆π log n), the total cost is at
most O(log n ·π(log n1 + ∆)). The cost of the optimal offline
algorithm can be analyzed similar to the proof of Theorem 4.1:
If the offline algorithm migrates during a huge epoch, it has a
cost of at least π; otherwise, it has either access or migration
costs of at least β/40 per small epoch and hence Ω(π) per
large epoch, and the claim follows.
Again, we believe that the actual ratio is better, even in the

worst-case, as our analysis is pessimistic.

A. Remarks

Note that MIXk has the attractive property that it poses
minimal assumptions on the knowledge of the infrastructure
topology and allow for a large autonomy on the PIP level.
Typically, substrate providers are known for their secrecy on
traffic matrices as well as topology information. All informa-
tion needed by MIXk is the set of providers that could have
served the requests of a certain time period at lower cost, e.g.,
the set of providers that could make “a better offer”. CENk
on the other hand requires more knowledge of the topology.
It assumes that gravity centers can be computed across PIP
boundaries, which is unrealistic. However, while this facilitates
the formal analysis, we believe that pragmatic implementations
that move the service, e.g., to the PIP which lies “at the center”
of the active providers, yield good approximations and justify
the validity of concept and analysis.

V. OPTIMAL OFFLINE ALGORITHMS

In the competitive analysis of our online algorithms we often
argued about a hypothetical optimal offline algorithm to which
we compare our costs; there was no need to find or describe
the offline algorithm explicitly. However, while the decisions
when and where to migrate servers typically needs to be done
online, i.e., without the knowledge of future requests, there can
be situations where it is interesting to study which migration
pattern would have been optimal at hindsight. For example,
if it is known that the requests follow a regular pattern (e.g.,
a periodic pattern per day or week), it can make sense to
compute an optimal migration strategy offline and apply it
in the future. Another reason for designing optimal offline
algorithms explicitly is that an optimal solution is required to
compute the competitive ratio in our simulations.

This section is based on the ideas described in the VISA
workshop version of this paper [5]. We present an optimal
offline algorithm for our server migration problems. It turns
out that offline strategies can be computed for many different
scenarios, and we describe a very general algorithm here.
Similarly to the online algorithms, offline strategies can be
computed efficiently both for intra and inter provider migra-
tion.

It exploits the fact that migration exhibits an optimal sub-
structure property: Given that at time t, the server is located
at a given node u, then the most cost-efficient migration path
that leads to this configuration consists solely of optimal sub-
paths. That is, if a cost minimizing path to node u at time t
leads over a node v at time t′ < t, then there cannot be a
cheaper migration sub-path that leads to v at time t′ than the
corresponding sub-path.

OPT essentially fills out a matrix opt[time][node] where
opt[t][v] contains the cost of the minimal migration path
that leads to a configuration where the server satisfies the
requests of time t from node v. Assume that initially, the
service is located at node v0. Thus, initially, opt[0][u] =

Costmig(v0, u) +
[∑

v∈σ0
Costacc(v, u)

]
as the migration ori-

gin is v0, and as a request needs to travel on the access
link from the terminal to v and from there to u (w.l.o.g., we
assume that the cost Costacc contains the first wireless hop
from terminal to substrate network).

For t > 0, we find the optimal values opt[t][u] by consid-
ering the optimal migration paths to any node v at time t− 1,
and adding the migration cost from v to u. That is, in order to
find the optimal cost to arrive at a configuration with server
at node u at time t:

min
v∈V

[
opt[t− 1][v] + Costmig(v, u) +

∑
w∈σt

Costacc(w, u)

]

where we assume that Costacc includes the first (wireless) hop
of the request from the terminal to the substrate network, and
where Costmig(v, v) = 0 ∀v.

We have the following runtime result.
Theorem 5.1: The optimal offline migration policy OPT can

be computed in O(n3 + n2
∑
t∈Γ |σt|) time, where Γ is the

set of rounds in which events occur.
Proof: Note that we can constrain ourselves to optimal

offline algorithms where migration will only take place in
“active” rounds Γ with at least one request. This is useful
in case of sparse sequences with few requests. The opt[·][·]-
matrix contains |Γ| · n entries. In order to compute a matrix
entry, we need to consider each node v ∈ A from which a
migration can originate; for each such node, the access cost
from all the requests in σt need to be computed. Both the
shortest access paths and the migration costs can be looked
up in a pre-computed table (pre-computation in time at most
O(n3), e.g., by Floyd-Warshall’s algorithm) and require a
constant number of operations only, which implies the claim.

Note that OPT is not an online algorithm. Although opt[t]
does not depend on future requests, in order to reconstruct the
optimal migration strategy at hindsight, the configuration of
minimal cost after the last request is determined, and from
there, the optimal path is given by recursively finding the
optimal configuration at time t − 1 which led to the optimal
configuration at time t.

VI. SIMULATIONS

In order to complement our formal insights and in order to
study the behavior of our algorithms in different environments,
we implemented a simulation framework. In the following, we
report on some of our results in more detail.

A. Set-Up

We conducted experiments on both artificial Erdös-Rényi
graphs random graphs (with connection probability 1%) as
well as more realistic graphs taken from the Rocketfuel
project [32], [33] (including the corresponding latencies for
the access cost).

If not stated otherwise, we assume that link bandwidths
are chosen at random (either T1 (1.544 Mbit/s) or T2 (6.312
Mbit/s)), that the server size is 2048MB, that β equals the
server size divided by the average bandwidth, and π = 3β.

Note that our the runtime of the optimal offline algorithm
and hence the computation of the competitive ratio is expen-
sive in large networks; therefore, the scale of our experiments
is typically limited. However, as our online algorithms have a
much lower runtime than OPT, experiments that do not rely on
optimal offline results can be conducted for much more nodes.
Moreover, to gain insights into the behavior of our algorithms
in networks of this size, we use a threshold τ = 1/3 (rather
than τ = 1/40) to inactivate nodes in CEN. This value is more
practical and does not change the qualitative results for large
networks.

As our real traffic patterns are subject to confidentiality, we
consider two different simplified, artificial scenarios. Our sce-
narios assume that the substrate topology does not reflect the
geographic situation or user pattern at all. This is conservative
of course, and online migration algorithms typically perform
better if requests move along the topology.

Time Zones Scenario: This scenario models an access
pattern that can result from global daytime effects. We divide
a day into T time periods. At each time t, p% of all requests
originate from a node chosen uniformly at random from the
substrate network (pessimistic assumption). The sojourn time
of the requests at a given location is distributed exponentially
with parameter λ as well. In addition, there is background
traffic: the remaining requests originate from nodes chosen
uniformly at random from all access points.

We also studied an alternative scenario, capturing traffic
from commuters.

Commuter Scenario: This scenario models an access pat-
tern that can result from commuters traveling downtown for
work in the morning and returning back to the suburbs in
the evening. We use a parameter T to model the frequency
of the changes. At time t mod T < T/2, there are 2t mod T

requests originating from access points chosen uniformly at
random around the center of the network. In the second half
of the day, i.e., for t ∈ [T/2, ..., T], the pattern is reversed.
Then a new day starts. The commuter scenario can come
in different flavors, e.g., where the total number of requests
remains constant over time, or where the load is changing.
We use the static load scenario in our simulations. The total
number of requests per round is fixed to 2T/2. At time
ti < T/2, the requests originate from p = 2ti mod T of all
access points including the network center (2T/2/p requests
per access point), until single requests originate from 2T/2

access points. Then, the same process is reversed until all
2T/2 requests originate from a single access point: the network
center. We assume that the time period between ti and ti+1 is

Fig. 1. Competitive ratio of CEN as a function of network size and p in a
time zone scenario. Results are averaged over 10 runs, we use λ = 10 and
collected data over a period of 400 rounds.

Fig. 2. Same experiment as Figure 1 for MIX.

distributed exponentially with parameter λ.

B. Intra Provider Migration

A first set of experiments studies the competitive ratio as
a function of the number of nodes. Figure 1 reports on the
impact of different correlations of the requests in the time
zone scenario. First, we can observe that the competitive ratios
are generally quite low, and more or less independent of the
network size. In order to take into account that larger networks
typically come with a larger requests set, we assume that the
number of requests per round is one fifth of the network size.
We can see that the competitive ratios of CEN are again quite
low, but the optimal offline algorithm can do relatively better
if p is large, which meets our intuitions.

The same results for MIX can be seen in Figure 2. Again,
larger p yield higher ratios, and generally the performance is
worse than the one of CEN.

Due to the high time complexity of the optimal offline
algorithm, we conducted some experiments with absolute costs

Fig. 3. Absolute costs in time zone scenario: p = 40%, λ = 10, averaged
over 10 runs and studying a runtime of 500 rounds.

Fig. 4. Competitive ratio in time zone scenario (with p = 60%) as a function
of λ and averaged over 10 runs and in a network of 60 nodes. We ran the
experiment for 200 rounds.

only, see Figure 3. Again, the number of requests per round
is one fifth of the network size. This reveals an interesting
phenomena, namely that in this time zone scenario, MIX
becomes better and gets close to the performance of CEN in
large networks.

Another interesting question regards how the competitive
ratio depends on the dynamics, i.e., on λ. Figure 4 presents
our results for MIX and CEN. Although the variance is quite
high (this is typical, especially for MIX), we can see a trend
that in case of very high dynamics and very low dynamics,
the competitive ratio is slightly lower than for λ values in-
between (λ is the mean stay duration). This can be explained
by the fact that OPT can optimize relatively more in scenarios
where the online migration decisions are not obvious.

Generally, in the random graphs of the size used in our
experiments, the diameter is relatively low and hence STAT
typically has a good performance as well. In the commuter
scenario, it is worse than in the time zone scenario. Figure 5
shows that both online algorithms perform very good (and

Fig. 5. Commuter scenario with T = 3, server size 30MB λ = 10, runtime
200 rounds and averaged over 20 runs.

Fig. 6. ATT network AS-7018 with 115 nodes.

better than in the time-zone scenario). One takeaway from
our experiments with the different scenarios is that migration
is relatively more beneficial in these instances of the commuter
scenario compared to the time zone instances studied.

Finally, a note on experiments on Rocketfuel topologies.
Also there, the competitive ratios were low. For instance, on
the autonomous system AS-7018 of ATT which consists of
115 nodes (see Figure 6), and averaging over 50 runs at a
runtime of 100, the optimal offline cost is 477.905648298,
MIX has cost of 1179.85 and CEN has cost 825.81, which
implies a competitive ratio is around 2.4 and 1.7, respectively.
Also STAT performs quite well: without migration the cost lies
between MIX and CEN: 1091.51.

C. Inter Provider Migration

We also conducted some experiments with multiple PIPs.
Generally, we used the same random topologies to model
a single PIP network, and connected different PIPs in a
circular manner using a random connection between adjacent
providers.

As in the intra provider scenario, we first report on scal-

Fig. 7. Competitive ratio in time zone scenario (with p = 0%) with three
providers, server size 30MB, λ = 2 and a runtime of 50 rounds. We average
the ratio over five runs.

Fig. 8. Time zone scenario with three PIPs, λ = 5, runtime 200 rounds:
competitive ratio of CENk as a function of provider size and p.

ability. Figure 7 plots the competitive ratio as a function of
the total number of nodes per provider, given that there are
three providers. The ratios are similar to the single PIP case,
MIXk is slightly worse than CENk, and constant bandwidth
scenarios yield lower ratios.

Figure 8 shows the effect of different correlation (p values)
for CENk, and Figure 9 studies the analogous situation for
MIXk.

In terms of dynamics, we also have a similar picture as in
the single provider case, see Figure 10.

It turns out that both MIXk and CENk are relatively robust
to x = π/β, the relative cost of transit compared to migration,
although MIXk slightly benefits from lower migration costs,
as we would expect (see Figure 11).

Finally, we have studied the competitive ratio as a function
of the total number of PIPs. Interestingly, as can be observed
in Figure 12, a medium number of providers is slightly worse
than scenarios with very few or many providers, but the ratio
is pretty robust here as well.

In an experiment with Rocketfuel topologies (network

Fig. 9. Like Figure 8 but for MIXk .

Fig. 10. Time zone scenario (p = 60%) for three providers with 20 nodes
each, runtime 200 and averaged over 10 runs.

shown in Figure 13), averaging over ten runs, we obtain a
total cost of 105.86 for OPT, 356.89 for MIX, and 226.66 for
CEN, yielding a competitive ratio of around four for MIX and
two for CEN.

VII. CONCLUSION

At the heart of network virtualization lies the ability to react
to changing environments in a flexible fashion. In order to
optimally exploit the benefits from virtualization, algorithms
need to be designed that adapt dynamically to the current
demand; this is typically difficult as future demand is hard to
predict. We believe that competitive analysis is an important
tool to devise and understand such online algorithms.

This paper studied the cost-benefit tradeoff of online mi-
gration in a system supported by network virtualization, and
compared our system to a setting without migration. We
derived the first migration algorithms, both for inter and intra
provider scenarios, which are competitive even in the worst-
case.

We understand our work as a first step towards a better
understanding of competitive virtual service migration, and

Fig. 11. Ratio as a function of x = π/β. Time zone scenario (p = 50%) with
3 PIPs, runtime 400, PIP size 20 nodes, λ = 5, averaged over 10 iterations.

Fig. 12. Time zone scenario (p = 50%) runtime 400, PIP size 10 nodes,
λ = 5, averaged over 10 iterations.

there are several interesting directions for future research. For
instance, we believe that the bounds on the competitive ratio
for multiple PIPs are overly pessimistic and can be improved.
We also plan to study (simplified versions of) our algorithms
in the wild, i.e., in our prototype [31] architecture.

Finally, we emphasize that while our formal considerations
may give insights into the benefits of this new technology,
e.g., in terms of improved quality of service, whether and
how mobile network provider will adapt such an approach
also depends on many economic factors that are not taken
into account in our model.

ACKNOWLEDGMENTS

A preliminary version of this paper appeared at the 2010
ACM SIGCOMM workshop VISA [5].

Part of this work was performed within the 4WARD project,
which is funded by the European Union in the 7th Framework
Programme (FP7), the Virtu project, funded by NTT DO-
COMO Euro-Labs and the Collaborative Networking project
funded by Deutsche Telekom AG. We would like to thank our

Fig. 13. Multi-PIP network with four U.S. providers (217 nodes in total)
Genuity (AS-1), PNW-GPOP (AS-101), Qwest (AS-209), and ATT (AS-
7018).

colleagues in these projects for many fruitful discussions; in
particular: Dan Jurca (now at Huawei Technologies Duessel-
dorf GmbH), Wolfgang Kellerer, Ashiq Khan, Kazuyuki Kozu,
and Joerg Widmer (now at Institute IMDEA Networks).

Special thanks go to Ernesto Abarca who was a great help
during the prototype implementation. We also thank Johannes
Grassler and Lukas Wöllner for their help with the prototype
and the migration demonstrator. M. Bienkowski is supported
by MNiSW grants number N N206 368839, 2010–2013 and
N N206 257335, 2008–2011.

REFERENCES

[1] D. Arora, A. Feldmann, G. Schaffrath, and S. Schmid. On the benefit
of virtualization: Strategies for flexible server allocation. In Proc.
USENIX Workshop on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services (Hot-ICE), 2011.

[2] Y. Bartal. Distributed paging. In Dagstul Workshop on On-line
Algorithms, pages 97–117, 1996.

[3] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In
vini veritas: Realistic and controlled network experimentation. In ACM
SIGCOMM, 2006.

[4] S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius, A. Bavier,
N. Feamster, L. Peterson, and J. Rexford. Hosting virtual networks on
commodity hardware. Technical Report GT-CS-07-10, Georgia Tech,
2008.

[5] M. Bienkowski, A. Feldmann, D. Jurca, W. Kellerer, G. Schaffrath,
S. Schmid, and J. Widmer. Competitive analysis for service migration
in vnets. In Proc. 2nd ACM SIGCOMM VISA, 2010.

[6] M. Bienkowski and S. Schmid. Online function tracking with general-
ized penalties. In Proc. 12th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT), 2010.

[7] A. Borodin and R. El-Yaniv. Online computation and competitive
analysis. Cambridge University Press, 1998.

[8] A. Borodin, N. Linial, and M. E. Saks. An optimal on-line algorithm
for metrical task system. J. ACM, 39(4):745–763, 1992.

[9] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiberg. Live wide-
area migration of virtual machines including local persistent state. In
Proc. VEE, 2007.

[10] K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual network em-
bedding with coordinated node and link mapping. In Proc. INFOCOM,
2009.

[11] M. Chowdhury, F. Samuel, and R. Boutaba. PolyViNE: Policy-based
virtual network embedding across multiple domains. In Proc. 2nd
ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and
Architecture (VISA), 2010.

[12] M. K. Chowdhury and R. Boutaba. A survey of network virtualization.
Elsevier Computer Networks, 54(5), 2010.

[13] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle in
cyberspace: Defining tomorrow’s Internet. In Proc. SIGCOMM, 2002.

[14] Data from 2008. International Telecommunications Union, 2009.
[15] G. Even, M. Medina, G. Schaffrath, and S. Schmid. Competitive and

deterministic embeddings of virtual networks. In ArXiv Technical Report
1101.5221, 2011.

[16] J. Fan and M. H. Ammar. Dynamic topology configuration in service
overlay networks: A study of reconfiguration policies. In Proc. INFO-
COM, 2006.

[17] D. Fotakis. On the competitive ratio for online facility location.
In Proc. 30th International Conference on Automata, Languages and
Programming (ICALP), also appeared in Algorithmica 50(1), pp. 1-57,
2008, pages 637–652, 2003.

[18] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang. Secondnet: A data center network virtualization architecture
with bandwidth guarantees. In Proc. ACM CONEXT, 2010.

[19] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song. Enhancing dynamic
cloud-based services using network virtualization. SIGCOMM Comput.
Commun. Rev., 40(1):67–74, 2010.

[20] U. C. Kozat, Y. Gwon, and R. Jain. An overlay server system (oss)
platform for multiplayer online games over mobile networks. In Proc.
Global Telecommunications Conference, 2006 (GLOBECOM), 2006.

[21] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis, and
A. Bestavros. Distributed placement of service facilities in large-scale
networks. In IEEE INFOCOM, 2007.

[22] J. Lischka and H. Karl. A virtual network mapping algorithm based on
subgraph isomorphism detection. In Proc. VISA, pages 81–88, 2009.

[23] J. Lu and J. Turner. Efficient mapping of virtual networks onto a shared
substrate. In Technical Report, WUCSE-2006-35, Washington University,
2006.

[24] J. R. M. Yu, Y. Yi and M. Chiang. Rethinking virtual network
embedding: Substrate support for path splitting and migration. ACM
SIGCOMM Computer Communication Review, 38(2):17–29, Apr 2008.

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74,
2008.

[26] B. Monien and H. Sudborough. Embedding one interconnection network
in another. In Computational Graph Theory, 1990.

[27] K.-M. Park and C.-K. Kim. A framework for virtual network embedding
in wireless networks. In Proc. 4th International Conference on Future
Internet Technologies (CFI), pages 5–7, 2009.

[28] R. Potter and A. Nakao. Mobitopolo: A portable infrastructure to
facilitate flexible deployment and migration of distributed applications
with virtual topologies. In Proc. 1st ACM Workshop on Virtualized
Infrastructure Systems and Architectures (VISA), pages 19–28, 2009.

[29] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network testbed
mapping problem. SIGCOMM Comput. Commun. Rev., 33(2):65–81,
2003.

[30] G. Schaffrath, S. Schmid, and A. Feldmann. Generalized and resource-
efficient VNet embeddings with migrations. In ArXiv Technical Report
1012.4066, 2011.

[31] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless,
A. Greenhalgh, A. Wundsam, M. Kind, O. Maennel, and L. Mathy.
Network virtualization architecture: Proposal and initial prototype. In
Proc. VISA, 2009.

[32] N. Spring, R. Mahajan, and T. Andersonr. Quantifying the causes of
path inflation. In Proc. SIGCOMM, 2003.

[33] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP
topologies with rocketfuel. IEEE/ACM Trans. Netw., 12(1):2–16, 2004.

[34] A. Talukder and R. Yavagal. Mobile Computing: Technology, Applica-
tions, and Service Creation. McGraw-Hill, 2006.

[35] US National Science Foundation. Global environment for network
innovations (GENI). http://www.geni.net/, 2006.

[36] K. Yi and Q. Zhang. Multi-dimensional online tracking. In Proc. of the
19th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1098–
1107, 2009.

[37] F. Zaheer, J. Xiao, and R. Boutaba. Multi-provider service negotiation
and contracting in network virtualization. In Proc. 12th IEEE/IFIP
Network Operations and Management Symposium (NOMS 2010), 2010.

[38] Y. Zhu and M. H. Ammar. Algorithms for assigning substrate network
resources to virtual network components. In Proc. INFOCOM, 2006.

	I Introduction
	I-A Related Work
	I-B Contributions and Organization

	II Architecture
	II-A General Cost Model
	II-B Competitive Analysis

	III Competitive Intra-Provider Migration
	III-A The Stat Algorithm
	III-B The Mix Algorithm
	III-C The Cen Algorithm
	III-D Remarks

	IV Inter-Provider Migration
	IV-A Remarks

	V Optimal Offline Algorithms
	VI Simulations
	VI-A Set-Up
	VI-B Intra Provider Migration
	VI-C Inter Provider Migration

	VII Conclusion
	References

