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Abstract

The purpose of this note is to compare various approximation methods as applied to the
inverse of the Bessel function of the first kind 1

J0(s) , in a given domain of the complex plane.

1 Introduction

The Bessel function of the first kind and order n ∈ N, is defined as

Jn(s) =
1

2πi

∮
e( s

2
)(t− 1

t
)t−n−1dt. (1)

In the sequel we will consider only the case n = 0. Our goal is to approximate

H(s) =
1

J0(s)
, s ∈ C. (2)

In particular we will be interested in the approximation of H(s) in the rectangle

Ω = [0, 10]× [−1, 1] ⊂ C, (3)

of the complex plane. The magnitude of H(s), in Ω, is as follows:

Figure 1: ln|H(s)|, with s ∈ Ω = [0, 10]× [−1, 1]
.
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The following interpolatory reduction methods will be used:

1. The Loewner Framework and (recursive) [1],

2. the AAA approach [8],

3. Vector Fitting [6, 3].

1.1 The Loewner Framework

The Loewner framework is a data-driven reduction method. It uses measured or computed data
produced by an underlying dynamical system. The construction of reduced linear models is based
on rank-revealing factorization. Here is a brief description of this method. For details, see [1].
Given is a set of pairs of complex numbers:

{(sk,φk) : k = 1, ..., N},

with sk ∈ C, φk ∈ Cp×m. We partition the data in two disjoint sets:

• left data: (µj, `j,vj), j = 1, ..., q

• right data: (λi, ri,wi), i = 1, ..., k

The objective is to find H(s) ∈ Cp×m such that:

H(λi)ri ≈ wi, `∗jH(µj) ≈ v∗
j . (4)

In this report, we consider approximation of a SISO (Single Input Single Output) system, i.e.
m = p = 1, in which case the directions `j and ri can be chosen equal to 1. The associated
Loewner and shifted Loewner matrices L, Ls, are defined as:

L =


v1−w1

µ1−λ1
· · · v1−wk

µ1−λk
...

. . .
...

vq−w1

µq−λ1
· · · vq−wm

µq−λk

 ,Ls =


µ1v1−w1λ1

µ1−λ1
· · · µ1v1−wkλk

µ1−λk
...

. . .
...

µqvq−w1λ1

µp−λ1
· · · µqvq−wkλk

µp−λk

 , (5)

while (W )i = wi, (V )j = vj, i = 1, ..., q, j = 1, ..., k. In the case of just enough (minimal amount

of) data, (L,Ls), is regular. In this case {Ê = −L, Â = −Ls, B̂ = V, Ĉ = W}, is a minimal
realization of the data. Hence, G(z) = W(Ls − zL)−1V, is the required minimal solution of the
problem. In the case of redundant data we use the rank revealing SVD decompositions

[
L,Ls

]
= YΣ`X̃

∗,

[
L
Ls

]
= ỸΣrX

∗. (6)

where Σ` and Σr are r × r, with r � N .
The quadruple {Ê = −Y∗LX, Â = −Y∗LsX, B̂ = Y∗V, Ĉ = WX}, is then, the realization of an
approximate data interpolant of order r.

H(s) = Ĉ(sÊ− Â)−1B̂ (7)
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1.1.1 Computation of poles/zeros and projected interpolation points
Skelton [11], Van Dooren [9], Grimme [10]

Having a rational representation in state-space form, H(s) = Ĉ(sÊ − Â)−1B̂ is crucial for com-
puting its poles (roots of the denominator) and zeros (roots of the numerator), since these key
quantities can be obtained, for example, by computing the finite eigenvalues resulting from the
following generalized eigenvalue problems that involve the state-space matrices [12]

• poles: σ(Â, Ê)

• zeros: σ

([
Â B̂

Ĉ D̂

]
,

[
Ê 0
0 0

])
, where in this case D̂ = 0.

Interpolatory projection matrices - (Skelton/Grimme/Van Dooren)
We introduce the following quantities which play the role of projectors in the sequel. For this we
need the sets of the complex numbers namely µi, i = 1, ..., q, and λj, j = 1, ..., k which we will refer
to as left and right interpolation points:

R = [φ(λ1)B . . .φ(λk)B] ∈ Cn×k, O = [Cφ(µ1) . . .Cφ(µq)]
T ∈ Cq×n. (8)

These are called the generalized controllability and the generalized observability matrices.
With Λ = diag[λ1, . . . , λk], M = diag[µ1, . . . , µq], em = [1 . . . 1]T ∈ Rm. Then, R and O satisfy
the Sylvester equations:

ERΛ−AR = BeTk , MOE−OA = eqC. (9)

By multiplying the above equations with O,R we obtain:

Ls − LΛ = VR and Ls −ML = LW

By adding/subtracting appropriate multiples of these expressions it follows that the Loewner
quadruple satisfies the Sylvester equations

ML− LΛ = VR− LW, MLs − LsΛ = MVR− LWΛ. (10)

Given the projectors X,Y ∈ Cn×k, let the reduced quantities be

L̂ = X∗LY, L̂s = X∗LsY, V̂ = X∗V, L̂ = X∗L, Ŵ = WY, R̂ = RY. (11)

The associated Λ̂, and M̂, must satisfy the projected equations above, so,

L̂s − L̂Λ̂ = V̂R̂, L̂s − M̂L̂ = L̂Ŵ. (12)

Let the associated generalized eigenvalue problem be:

Λ̂ = eig(L̂s − V̂R̂, L̂), M̂ = eig(L̂S − L̂Ŵ, L̂). (13)

From the above equations we are able to compute the projected interpolation points.
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1.2 The recursive Loewner approach

A brief description is as follows. For details see [1]
First step:
Randomly choose two measurements. Put one of them into left measurement set and put another
one into right measurement set. Generate the resulting approximant.
Second step:

• Calculate the error between the approximant and the measurement values at the sample
points.

• Put the two measurements which has largest error into the left/right measurement sets
respectively.

• Construct the new approximant by means of the recursive Loewner framework. Continue
until all measurements are used.

1.3 The AAA algorithm

This algorithm [8] uses barycentric representation of interpolates :

r(s) =
n(s)

d(s)
=

∑m
=1

ωjfj
s−sj∑m

=1
ωj

s−sj

. (14)

First step:
Choose randomly one measurement from the measurement set. Construct the first order system
m = 1, where s1 is the sample point and f1 is the measurement value.

Second step:
Define the error as e(ω) =

∑n
j=2(fjd(s) − n(s))2, where ω, describes the weights. Using least

square we can calculate ω.
Third step:

for j = 2, ..., k

• Calculate the error between approximant and measurement value at sample points.

• Interpolate the measurement which has the largest error to increase the order of barycentric
representations m = j such that sj, is the sample point and fj, is the measurement value.

• Using least squares, calculate ω.

end

Return the barycentric representation approximation: r(s) = n(s)
d(s)

=

∑k
=1

ωj fj
s−sj∑k

=1

ωj
s−sj

. For more details

see [8].
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1.4 Vector Fitting

Condider the rational function approximation

f(s) =
r∑

n=1

cn
s− an

+ d + sh. (15)

The residue cn, and poles are real or complex conjugate pairs, while d and h, are real. The problem
is to estimate all coefficients in the above expression so that the least square error gets minimized.
The above problem is a non linear problem, because an, appears in the denominator. Vector fitting
addresses this issue by solving a sequence of linear problems. The procedure is as follows. Fixing
the quantities āi, solve for c̄i, ci, d and h, by evaluating the expression

r∑
n=1

(
c̄n

s− ān
+ 1

)
f(s) =

r∑
n=1

cn
s− ān

+ d + sh. (16)

at each interpolation point and using least squares to minimize the error. The procedure is repeated
until convergence. For details, see [6, 3] or http://www.sintef.no/projectweb/vectfit/.

2 Approximation Example

Choosing the interpolation points. The aim is to approximate the irrational function H(s),
in Figure 1, in the domain Ω, which is sampled in two different ways. First using a structured grid
with 2121 interpolation points (left pane below), and second, using a uniformly distributed grid
with 2000 points (right pane below).

Re(s)
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Im
(s

)
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1
Structured grid with 2121 points

(a) Structured grid with 2121 points

Re(s)
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)
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-0.5
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0.5

1
Sampling points as conjugate pairs 2M=2000

(b) Uniformly grid with 2000 sampling points.

Figure 2: In both cases we took under consideration conjugate pairs in order to enforce real
symmetry.

2.1 Interpolation points as in Figure 2a

2.1.1 The Loewner Framework applied to H(s)

First we will construct approximants Hr(s), (r, order) of H(s), using the interpolation points as
shown in the left hand figure, section 2, page 5. Below is a description of these points with the
corresponding samples of H(s), (Figure 3a) and the (normalized) singular values of the augmented
Loewner matrix (Figure 3b). We truncate at r=11 with corresponding accuracy O(10−12).
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(a) Sampling points over Ω = [0, 10]× [−1, 1]

,

100 101 102 103

10-15

10-10

10-5

100
Singular values of the [L Ls] and [L;Ls]

[L Ls]
[L,Ls]

(b) Fast decay of the singular values.

Figure 3: Interpolation scheme of the irrational function and the corresponding rank reavealing
SVD of the augmented Loewner matrix.

The next plot (Figure 4) shows the 11th order approximant Hr(s), superimposed on the plot
of H(s), in Ω, over the dense grid Ωgrid = [x1, ..., x500] × [y1, ..., y500] ⊂ Ω. As a result we see the
error plot in Figure 4b which shows for each point in the Ωgrid, the modulo |Hr(s)−H(s)|, with
s ∈ Ωgrid. The order of error is O(10−11).

(a) H(s), with Loewner Approximant (b) Absolute error of |H(s)−Hr|, over the Ω, domain.

Figure 4: Approximant and the error over the dense domain Ωgrid.
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(a) Poles X, Zeros O.
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Figure 5: Poles/zeros diagram and projected interpolation points in Ω.

Last, the corresponding poles/zeros and the projected left/right interpolation points are shown
in the Figure 5. The real part of the poles is shown with 15 digits accuracy, while the imaginary
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part with 5. Also the poles marked in bold correspond to the original zeros of J0(s), in Ω, appendix
4. The ensuing left and right sets containing 11 projected interpolation points each (with 5 digits
precision) are shown next.
Remark: Thus, the initial 2121 interpolation points in Ω, are now compressed to 22.

Poles =



−8.32213293322054 − 1.4252 i
−8.32213289862456 + 1.4252 i

−5.51461491999547
−2.40481847965605
2.40482555769577
5.52007811028631
8.65372791291101
11.7915356008908
14.9135964357538

17.6548692348549 − 1.561 i
17.654869354827 + 1.561 i


, Zeros =



−4.8491 − 10.766 i
−4.8491 + 10.766 i
0.12013 − 12.537 i
0.12013 + 12.537 i
4.785 + 13.066 i
4.785 − 13.066 i
9.4384 + 12.591 i
9.4384 − 12.591 i
14.367 + 10.868 i
14.367 − 10.868 i


, Right =



0.37181 + 0.54303 i
0.37181 − 0.54303 i

1.5504
2.424
3.8331
5.4898
6.479
8.4519
8.8561

9.6519 − 0.55566 i
9.6519 + 0.55566 i


, Left =



0.36164 − 0.55711 i
0.36164 + 0.55711 i

1.5491
2.4005
3.8418
5.473
6.4935
8.4516
8.8759

9.6605 − 0.57111 i
9.6605 + 0.57111 i


.

Trajectories of the projected interpolation points. If we increase the number of interpo-
lation points in Ω, the left and right projected interpolation points seem to converge. If
we choose a specific way to partition the measurements (left and right), i.e. max

i,j
|µi−λj| < ε, then

we noticed that the corresponding pairs of projected points are ε order, close each other. The tra-
jectories shown below use from 100 to almost 20000 initial interpolation points in Ω. By creating
an increasingly dense Ωgrid, we observe the following convergence patterns. More specifically, we
densify symmetrically Ω domain as follows: a× a, 2a× 2a, ..., na× na, with a, n ∈ N, (i.e. a = 10,
and n = 14) and for each grid we solve the set of equations (13). Only some pairs of trajectories
out of 11 pairs are shown, as the remaining pairs have similar convergence behavior. Finally, it
turns out that the projected interpolation points remain in Ω.
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(a) Trajectories of the projected interpolation points
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(b) Zoom on the upper right of Figure 6a.
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(c) Convergence with real symmetry
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(d) Conjugate trajectory of Figure 6b.

Figure 6: Pairs of trajectories of the projected interpolation points under increasingly denser
grids. In some cases it seems that the convergence has oscillatory behavior. Also, left and right
projected interpolation points seem to coincide when we select a particular way of separating the
data (left-right).
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2.1.2 The recursive Loewner algorithm to H(s)

The measurements are as before. The resulting approximant compared with the original is as
follows.

(a) Corresponding sampling points of H(s). (b) Approximant superimposed with H(s), in Ω.

(c) Error evaluation over the Ω.
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(d) Poles and zeros diagram

Figure 7: Approximation results of the H(s), over Ω, with the recursive Loewner approach.

In more detail the Figure 7a describes the interpolation points as shown in the left hand figure,
section 2, page 5 with a depiction of these points on the corresponding samples of H(s). The
Figure 7b shows the 11th order approximant with the recursive Loewner superimposed on the plot
of H(s), over the dense grid Ωgrid = [x1, ..., x500] × [y1, ..., y500] ⊂ Ω. As a result is the error plot
in Figure 7c which shows for each point in the Ωgrid, the distance |Hr(s)−H(s)|, with s ∈ Ωgrid.
The order of error is O(10−10). Last, the corresponding poles/zeros are shown in the Figure 7d
and for the exact values of them, someone can see Appendix 4 number 2.

Remark 2.1.2.1: With the recursive Loewner approach algorithm we need to choose the order
of the approximant.

Remark 2.1.2.2: With the recursive Loewner approach algorithm usually we notice that the
error is distributed more uniformly over Ω.
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2.1.3 The AAA algorithm applied to H(s)

(a) Corresponding sampling points of H(s). (b) Approximant superimposed with H(s), in Ω.

(c) Error evaluation over the Ω domain.
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(d) Poles and zeros diagram with AAA

Figure 8: Approximation results of the H(s), over Ω, with the AAA algorithm approach.

In more detail the Figure 8a describes the interpolation points as shown in the left hand figure,
section 2, page 5 with a depiction of these points on the corresponding samples of H(s). The
Figure 8b shows the 11th order approximant with the AAA approach superimposed on the plot
of H(s), over the dense grid Ωgrid = [x1, ..., x500] × [y1, ..., y500] ⊂ Ω. As a result is the error plot
in Figure 8c which shows for each point in the Ωgrid, the absolute distance |Hr(s) − H(s)|, with
s ∈ Ωgrid. The order of error is O(10−11). Last, the corresponding poles/zeros are shown in the
Figure 8d and for the exact values, someone can see Appendix 4 number 3.
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Figure 9: Support points from AAA algorithm in Ω.
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2.1.4 The Vector Fitting (VF) method applied to H(s)

The measurements are as before:

(a) Corresponding sampling points of H(s). (b) Approximant superimposed with H(s), in Ω.

(c) Error evaluation over the Ω.
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(d) 12 poles/zeros with one pole/zero cancellation

Figure 10: Approximation results of the H(s), over Ω, with the Vector Fitting algorithm approach.

In more detail the Figure 10a describes the interpolation points as shown in the left hand
figure, section 2, page 5 with a depiction of these points on the corresponding samples of H(s).
The Figure 10b shows the 11th order approximant with the VF approach superimposed on the
plot of H(s), over the dense grid Ωgrid = [x1, ..., x500] × [y1, ..., y500] ⊂ Ω. As a result is the error
plot in Figure 10c which shows for each point in the Ωgrid, the absolute distance |Hr(s) − H(s)|
with s ∈ Ωgrid. The order of error is O(10−6). Last, the corresponding poles/zeros are shown in
the Figure 10d and for the exact values, someone can see Appendix 4 number 4.

Remark 2.1.4.1 Since the 5th pole and the first zero above are equal up to 10−9, (Figure 8d) or
Appendix 4 number 4, they can be eliminated. After this zero/pole cancellation we obtain the
same order of accuracy with an approximate of order r = 11.

Remark 2.1.4.2 We notice that the biggest error appears in the vicinity of the 3rd pole. By
changing the weights distribution we can improve the error locally.

Remark 2.1.4.3 VF method also needs as an input the order of the approximant.
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2.2 Interpolation points as in figure 2b

2.2.1 The Loewner Framework applied to H(s).

We now make use of the uniformly distributed interpolation points as in Figure 2b.

(a) Corresponding sampling points of H(s). (b) Approximant superimposed with H(s), in Ω.

(c) Error evaluation over the Ω.
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(d) Poles and zeros diagram with Ω, rectangle

Figure 11: Approximation results of the H(s), over Ω, with the Loewner framework approach.

In more detail the Figure 11a describes the interpolation points as shown in the right hand
figure, section 2, page 5 with a depiction of these points on the corresponding samples of H(s). The
Figure 11b shows the 12th order approximant with the Loewner framework approach superimposed
on the plot of H(s), over the dense grid Ωgrid = [x1, ..., x500] × [y1, ..., y500] ⊂ Ω. As a result we
see the error plot in Figure 11c which shows for each point in the Ωgrid, the absolute distance
|Hr(s)−H(s)|, with s ∈ Ωgrid. The order of error is O(10−11). Last, the corresponding poles/zeros
are shown in the Figure 11d and for the exact values, someone can see Appendix 4 number 5.
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Figure 12: Left and right projected interpolation points in Ω.
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2.2.2 The recursive Loewner Framework applied to H(s).

(a) Corresponding sampling points of H(s). (b) Approximant superimposed with H(s), in Ω.

(c) Error evaluation over the Ω.
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Figure 13: Approximation results of the H(s), over Ω, with the recursive Loewner algorithm
approach.

In more detail the Figure 13a describes the interpolation points as shown in the right hand
figure, section 2, page 5 with a depiction of these points on the corresponding samples of H(s). The
Figure 13b shows the 12th order approximant with the recursive Loewner framewoork approach
superimposed on the plot of H(s), over the dense grid Ωgrid = [x1, ..., x500]× [y1, ..., y500] ⊂ Ω. As
a result we see the error plot in Figure 13c which shows for each point in the Ωgrid, the absolute
distance |Hr(s) −H(s)|, with s ∈ Ωgrid. The order of error is O(10−10). Last, the corresponding
poles/zeros are shown in the Figure 13d and for the exact values, someone can see Appendix 4
number 6.

Remark 2.2.2.1 Since the 8th pole and the last zero above are equal up to 10−5, (Figure 13d or
Appendix 4 number 6, they can not be eliminated because it is less than the error. So in this case
recursive algorithm produce 12th order approximant with almost a pole/zero cancellation.
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2.2.3 The AAA Alorithm over Uniformly Distributed Points

In this subsection we present the approximation with AAA algorithm where the input uses 2000
points as in figure 2b. After many realizations with uniformly distributed grid (2000 points), we
noticed that the error varies between O(1e− 11), to O(1e− 13). We kept one of the best.

(a) Corresponding sampling points of H(s). (b) Approximant superimposed with H(s), in Ω.

(c) Error evaluation over the Ω.
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Figure 14: Approximation results of the H(s), over Ω, with the AAA algorithm approach.

In more detail the Figure 14a describes the interpolation points as shown in the right hand
figure, section 2, page 5 with a depiction of these points on the corresponding samples of H(s). The
Figure 14b shows the 12th order approximant with the AAA algorithm approach superimposed
on the plot of H(s), over the dense grid Ωgrid = [x1, ..., x500] × [y1, ..., y500] ⊂ Ω. As a result we
see the error plot in Figure 14c which shows for each point in the Ωgrid, the absolute distance
|Hr(s)−H(s)|, with s ∈ Ωgrid. The order of error is O(10−13). Last, the corresponding poles/zeros
are shown in the Figure 14d and for the exact values, someone can see Appendix 4 number 7.
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Figure 15: Support points from AAA algorithm in Ω.
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2.2.4 Vector Fitting for uniformly distributed points

In this subsection we present the approximation with VF algorithm where we use 2000 (conjugate
pairs) uniformly distributed over the domain Ω, as in figure 2b.

(a) Corresponding sampling points of H(s). (b) Approximant superimposed with H(s), in Ω.

(c) Error evaluation over the Ω.
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Poles X and Zeros O with VF

(d) Poles and zeros diagram

Figure 16: Approximation results of the H(s), over Ω, with the Vector Fitting algorithm approach.

In more detail the Figure 16a describes the interpolation points as shown in the right hand
figure, section 2, page 5 with a depiction of these points on the corresponding samples of H(s). The
Figure 16b shows the 12th order approximant with the AAA algorithm approach superimposed on
the plot of H(s), over the dense grid Ωgrid = [x1, ..., x500]× [y1, ..., y500] ⊂ Ω. As a result is the error
plot in Figure 16c which shows for each point in the Ωgrid, the absolute distance |Hr(s) −H(s)|,
with s ∈ Ωgrid. The order of error is O(10−6). Last, the corresponding poles/zeros are shown in
the Figure 16d and for the exact values, someone can see Appendix 4 number 8.

Remark: Since the one pole/zero pair above are equal up to 10−9, (Figure 16d) or Appendix 4
number 8, they can be eliminated. After this zero/pole cancellation we obtain the same order of
accuracy with an approximate of order r = 11.
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3 Conclusion

3.1 Error comparison

Case/Method Loewner recursive Loewner AAA VF
1st: 2121 structured points O(10−11) O(10−10) O(10−11) O(10−6)
2nd: 2000 uniformly points O(10−11) O(10−10) O(10−13) O(10−6)

The above results show that all methods constructed low order models with very good accuracy.
Among them, the methods that built models with the highest accuracy are the direct method with
the Loewner Framework and the iterative AAA algorithm. It is worthwhile to note that these two
methods, in contrast to (recursive Loewner Framework and Vector Fitting), do not require the
a-priori assignment of the order of the reduced system. The Loewner framework method resolves
an entire SVD and from the way the singular values decay one can choose the truncation order.
This gives a trade off between accuracy and complexity. On the other hand, the AAA algorithm,
constructs the model by selecting on each step one more support point and solving a SVD on
each iteration step. When the error drops down, AAA fullfills its exit criterion (i.e. tol=1e-
13). Another point that is worth mentioning is that the Loewner framework method constructs
models (r − 1, r),r ∈ N, with real symmetry as opposed to the AAA algorithm which makes
approximants of (r, r), and with no real symmetry. The first number of the previous parenthesis
stands for the order of the numerator and the second for the denominator order. This approach
gives the opportunity for the Loewner framework method to introduce an arbitrary parameter D
(parametrize the system, details see [1] theorem 1.13 b) where its calculation can reduce the
error as in [7]. Another point is, that if we wanted to have the best possible approximation with
the Loewner Framework, we could choose order 13th in both cases (Figure 2). The error would
be: O(10−13). We maintained a lower-order model (11th for Figure 2a and 12th for Figure 2b) in
order to do a comparison with the AAA algorithm.

Last but not least, as we feed the system with conjugate measurements in both cases, someone
should be able to reveal the underlying real model. The AAA algorithm does not impose real
symmetry. For all the above methods we build a real approximant except for the AAA aproximant.
Introducing some changes to the AAA alorithm, now we are able to construct a reduced model
with real symmetry. In this particular case, we noticed that the order of the approximant becomes
higher and produce many poles/zeros cancellations (Froissart doublets) up to precision. In order
to tackle this problem, it is needed to enable the function ”cleanup” as explained in [8]. Both
functions increase the complexity for the construction of a real approximant.

3.2 Complexity comparison

The Complexity of the Loewner Framework algorith and AAA algorithm.
The main computational cost, for both methods comes from SVD calculation. For a matrix A with
dimension m × n, the SVD cost is O(m2n + mn2 + n3). Since the Loewner Framework involves
SVDs of dimension (N

2
× N

2
), the resulting complexity is 2O(3N3

8
) ≈ O(N3), flops. Algorithm

AAA involves SVDs of dimensions (M − j)× j, with j = 1, 2, ...,m, (m, stands for the order) its
complexity is O(Mm3), flops [8] instead of the Loewner framework which solves only one SVD with
complexity O(M3). For this problem on Bessel approximation, two methods succeed to construct
reduced models with low order approximants. The Loewner framework would produce better
computational results in the case that we have a slow decay of the singular values, so it would be
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needed to truncate in a higher order. This is something that will increase the computational cost
of AAA algorithm.

4 Appendix

The Bessel function zeros of the first kind. The first 6 solutions of the equation J0(s) = 0,
with 15 digits precision are:

Bessel original Zeros with 15 digits =


2.40482555769577
5.52007811028631
8.65372791291101
11.7915344390142
14.9309177084877
18.0710639679109

.

1. Poles/zeros from the Loewner Framework with 2121 points grid

Poles =



−8.32213293322054 − 1.4252 i
−8.32213289862456 + 1.4252 i

−5.51461491999547
−2.40481847965605
2.40482555769577
5.52007811028631
8.65372791291101
11.7915356008908
14.9135964357538

17.6548692348549 − 1.561 i
17.654869354827 + 1.561 i


, Zeros =



−4.8491 − 10.766 i
−4.8491 + 10.766 i
0.12013 − 12.537 i
0.12013 + 12.537 i
4.785 + 13.066 i
4.785 − 13.066 i
9.4384 + 12.591 i
9.4384 − 12.591 i
14.367 + 10.868 i
14.367 − 10.868 i


.

Remark: With bold are the poles inside the Ω, domain.

2. Poles/zeros from the recursive Loewner approach with 2121 points grid

PolesRec =



−8.64763053774167 − 0.874672 i
−8.64763053774167 + 0.874672 i

−5.53736536596127
−2.40481506507015
2.40482555769639
5.52007811028556
8.65372791291091

11.791534687103
14.9207741074572

17.7972322878303 − 1.42773 i
17.7972322878303 + 1.42773 i


. ZerosRec =



−4.81774 − 10.3428 i
−4.81774 + 10.3428 i
0.196012 − 12.134 i
0.196012 + 12.134 i
4.89894 − 12.6902 i
4.89894 + 12.6902 i
9.58028 − 12.2575 i
9.58028 + 12.2575 i
14.5169 − 10.5921 i
14.5169 + 10.5921 i


.

3. Poles/zeros from the AAA approach with 2121 points grid

PolesAAA =



−7.70989384927742 + 1.98333 i
−7.64706106530066 − 1.84221 i
−5.46205580369784 + 0.00647 i

−2.40483752963882
2.40482555769577
5.52007811028632
8.65372791291101
11.7915347392982

14.9221430048388 + 0.00059 i
17.8709511796541 − 1.35084 i
17.9082708199292 + 1.39389 i


, ZerosAAA =



−4.05365 − 10.9078 i
−3.99775 + 11.0922 i
0.832526 − 12.5068 i
0.905811 + 12.6642 i
5.42377 − 12.9188 i
5.49875 + 13.0562 i
9.99811 − 12.3601 i
10.0689 + 12.476 i
14.8259 − 10.5757 i
14.892 + 10.666 i

−22.5906 + 2.52206 i


.

Remark: Poles and Zeros do not appear as conjugates.

4. Poles/zeros from the Vector Fitting algorithm approach with 2121 points grid

PolesVF =



−8.49629987353267 − 1.3597 i
−8.49629987353267 + 1.3597 i

−5.51126493255679
−2.40482600718294
−0.157905556703521
2.40482555759485
5.52007811166818
8.65372790279672
11.7915516528236
14.8446346140717

16.8161497628161 − 2.0178 i
16.8161497628161 + 2.0178 i


, ZerosVF =



−0.157905555129157
−5.6578 − 10.624 i
−5.6578 + 10.624 i
−0.9698 + 12.28 i
−0.9698 − 12.28 i

3.683 − 12.71 i
3.683 + 12.71 i

8.3717 + 12.366 i
8.3717 − 12.366 i
13.196 − 10.889 i
13.196 + 10.889 i

25.816


.
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Remark: red color pole/zero pair shows cancellation

5. Poles/zeros from the Loewner Framework with 2000 uniformly points

PolesRL =



−8.05158320855723 − 1.7303 i
−8.05158320855723 + 1.7303 i

−5.48778972998639
−2.40483192639586
2.40482555769577
5.52007811028632
8.65372791291101
11.7915339297017

15.0015209902362 − 0.222 i
15.0015209902362 + 0.222 i
17.377289961194 − 2.03 i
17.377289961194 + 2.03 i


, ZerosRL =



−4.7536 − 11.207 i
−4.7536 + 11.207 i
0.17552 − 12.998 i
0.17552 + 12.998 i
4.8076 − 13.534 i
4.8076 + 13.534 i

15.242
9.4292 − 13.06 i
9.4292 + 13.06 i
14.319 − 11.333 i
14.319 + 11.333 i


.

6. Poles/zeros from the recursive Loewner with 2000 uniformly points

polesREC =



−8.66473644838372 − 0.55511 i
−8.66473644838372 + 0.55511 i

−5.55846358891533
−2.40478725513252
2.40482555769579
5.52007811028631
8.65372791291094
9.25763698485788
11.7915351867464
14.9164167045242

17.7116227515344 − 1.513 i
17.7116227515344 + 1.513 i


, ZerosREC =



14.465 + 10.772 i
14.465 − 10.772 i
−4.6782 + 10.478 i
−4.6782 − 10.478 i
9.5668 + 12.474 i
9.5668 − 12.474 i
0.29543 + 12.334 i
0.29543 − 12.334 i
4.9411 + 12.915 i
4.9411 − 12.915 i
9.25764464786048


.

7. Poles/zeros from the AAA with 2000 uniformly points

PolesAAA =



−8.56002747182546 − 1.3357 i
−8.54868176358933 + 1.3357 i

−5.51154958824584
−2.40482617183982
2.40482555769577
5.52007811028630
8.65372791291101
11.7915344794608

14.9286212759068 + 0.000044838 i
18.349207798415518.349 − 0.93836 i

18.3564686110828 + 0.94294 i
47.4348759491114 − 0.25113 i


, ZerosAAA =



−5.8598 − 10.679 i
−5.8806 + 10.684 i
−1.2407 − 12.66 i
−1.2625 + 12.659 i

3.062 + 13.453 i
3.0802 − 13.46 i
7.3122 + 13.387 i
7.3233 − 13.396 i
11.605 + 12.456 i
11.608 − 12.463 i
16.139 − 10.328 i
16.142 + 10.327 i


.

Remark: Poles and Zeros do not appear as conjugates.

8. Poles/zeros from the VF with 2000 uniformly points

PolesVF =



−8.51428135857578 − 1.3424 i
−8.51428135857578 + 1.3424 i

−5.51184166025835
−2.40482593907193
0.598123905184851
2.40482555782458
5.52007810888635
8.65372792599631
11.7915548184731
14.8352178424186

16.7433767283711 − 2.0413 i
16.7433767283711 + 2.0413 i


, ZerosVF =



0.598123905506776
−5.5835 − 10.635 i
−5.5835 + 10.635 i
−1.0088 + 12.445 i
−1.0088 − 12.445 i
3.4938 + 12.744 i
3.4938 − 12.744 i
8.2407 − 12.29 i
8.2407 + 12.29 i
13.127 + 10.826 i
13.127 − 10.826 i

24.775


.

Remark: red color pole/zero pair shows cancellation
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