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Approximation of a damped Euler-Bernoulli beam

model in the Loewner framework

I.V. Gosea ∗ and A.C. Antoulas † ∗

Abstract

The Loewner framework for model order reduction is applied to the class of infinite-
dimension systems. The transfer function of such systems is irrational (as opposed to
linear systems, whose transfer function is rational) and can be expressed as an infinite
series of rational functions. The main advantage of the method is the fact that reduced
orders models are constructed using only input-output measurements. The procedure
can be directly applied to the original transfer function or to the one obtained from the
finite element discretization of the PDE. Significantly better results are obtained when
using it directly, as it is presented in the experiments section.

1 Introduction

Model order reduction (MOR) is used to replace large, complex models of time dependent
processes into smaller, simpler models that are still capable of representing accurately the
behavior of the original process under a variety of conditions. The goal is an efficient and me-
thodical strategy that yields lower dimensional systems which have (input-output) response
characteristics close to those of the original system while requiring only a fraction of the
large-scale simulation time and storage.

The motivation for MOR stems from the need for accurate modeling of physical phenom-
ena that often leads to large-scale dynamical systems which require long simulation times
and large data storage. For instance, one such example is that of discretization of partial dif-
ferential equations over fine grids, which leads to large-scale systems of ordinary differential
equations.

Throughout this work we exclusively consider interpolatory model reduction methods.
These methods have initially emerged in numerical analysis and linear algebra and are re-
lated to rational interpolation. Roughly speaking, in the linear case, we will seek reduced
models whose transfer functions match those of the original systems at selected frequencies,
or interpolation points.

The milestone towards setting up the Loewner framework was Lagrange rational inter-
polation, i.e., constructing rational interpolants that use a Lagrange basis for the numerator
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and denominator polynomials. As shown in [ACI13], this turns up to be a good idea mainly
because the basis choice leads to algorithms that are numerically robust. Also, a rational
function is more versatile than a simple polynomial because it has both poles (roots of the
denominator) and zeros (roots of the numerator), and can model functions with singularities
and highly oscillatory behavior more easily than polynomials can.

Using rational functions, models that match (interpolate) given data sets of measurements
are computed. In the context of linear dynamical systems, we start from data sets that contain
frequency response measurements and we week the rational function that interpolates these
measurements, i.e., we seek the linear dynamical system that models these measurements.

This is the approach covered by a class of widely used methods called Krylov or moment
matching methods. More precisely, Krylov methods seek reduced-order models that interpo-
late the full-order transfer function and its derivatives (moments) H(si) = H̃(si), H

(j)(si) =
H̃(j)(si) = 0 at relevant frequencies si for j > 0 . For these methods, interpolation typically
leads to approximation of the whole transfer function over a wide interval of frequencies of
interest.

The Loewner framework can be viewed as a step forward from the classical realization

problem which was covered extensively in the literature in previous years. The question
arises as to whether such a problem can be solved if information about the transfer function
at different points in the complex plane is provided. We will refer to this as the generalized
realization problem. This problem can be stated as follows: given data obtained by sampling
the transfer matrix of a linear system, construct a controllable and observable state space
model of a system consistent with the data.

The classes of systems which can be treated in our approach range from linear to bilinear
and also quadratic systems. For simplicity, consider SISO systems (m, p = 1). We will deal
only with linear systems whose dynamics are described in generalized state by:

ΣL :

{

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).
(1)

We seek reduced systems of the form:

Σ̂L :

{

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),
(2)

where Ê ∈ Rk×k, Â ∈ Rk×k, B̂ ∈ Rk×m, Ĉ ∈ Rp×k, x̂(t) ∈ Rk. The number of inputs and
outputs m and p, respectively, remain the same, while k ≪ n.

Notice that the transfer function of a linear system is a rational function, or a rational
matrix function in the case of multiple inputs and outputs, m and p.

2 The Loewner Framework

The Loewner framework allows the identification of the underlying system directly from
measurements. The key is that, in contrast to existing interpolatory approaches, larger
amounts of data than necessary are collected and the essential underlying system structure
is extracted appropriately. Thus, a basic advantage of this approach is that it is capable of
providing the user with a trade-off between accuracy of fit and complexity of the model.
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The Loewner framework was developed quite recently and has its starting point in [MA07].
For further details we refer the reader to the thesis [ACI13] and to the tutorial [ALI16].

Given measurements composed of right interpolation data: {(λi, ri, wi)|λi ∈ C, ri ∈
Cm×1, wi ∈ Cp×1, i = 1, ρ}, and left interpolation data: {(µi, li, vi)|µi ∈ C, li ∈ C1×p, vi ∈
C

1×m, i = 1, ν}, one needs to construct a realization {E,A,B, C}, such that the right con-

straints :

H(λi)ri = [C(λiE −A)−1B]ri = wi ∀ i ∈ {1, 2, ..., N},

and left constraints :

liH(µi) = li[C(µiE − A)−1B] = vi ∀ i ∈ {1, 2, ..., N},

are satisfied.We define the Loewner matrix as follows:

L =







v1r1−l1w1

µ1−λ1

...
v1rρ−l1wρ

µ1−λρ

...
. . .

...
vνr1−lνw1

µν−λ1

...
vνrρ−lνwρ

µν−λρ






∈ C

ν×ρ. (3)

The shifted Loewner matrix is defined as:

Lσ =







µ1v1r1−λ1l1w1

µ1−λ1
...

µ1v1rρ−λρl1wρ

µ1−λρ

...
. . .

...
µνvνr1−λ1lνw1

µν−λ1
...

µνvνrρ−λρlνwρ

µν−λρ






∈ C

ν×ρ. (4)

It can be shown that the Loewner matrices defined above can be factored as follows:
L = −OER, Lσ = −OAR, W = OB and V = CR where O and R are tangential general-

ized reachability and observability matrices which are introduced in [MA07]. Based on this
factorization, the next result arises:

Theorem 1. If the Loewner pencil (L,Lσ) is regular, then {Ẽ = −L, Ã = −Lσ, B̃ =
V, C̃ = W } is a realization of the data. Hence, we obtain that H(z) = W (Lσ − zL)−1V is

the required interpolant.

Having the input data given by the matrices {Λ,M, V,W, L,R}, there exists an interpolant
H(z) = C(zE − A)−1B if the following equality holds ∀z ∈ {λi} ∪ {µj}:

rank(zL− Lσ) = rank[L Lσ] = rank[L ; Lσ] = k.

If the Loewner pencil (L,Lσ) is irregular, we compute the short SVD of the following matrices:

[L Lσ] = UΣlZ̃
∗,

[
L

Lσ

]

= ŨΣrZ
∗,

where U, Z ∈ Rρ×k, Σl, Σr ∈ Rl×k.

Theorem 2. The quadruple (Ẽ, Ã, B̃, C̃), given by: {Ẽ = −U∗LZ, Ã = −U∗LσZ, B̃ =
UV, C̃ = WZ}, is the realization of an approximate data interpolant.

Thus, if we have more data than necessary, we can consider (L,Lσ, V,W ) as a singular
model of the data.
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3 The Beam Model

Model order reduction (MOR) plays a vital role in numerical simulation of large-scale com-
plex dynamical systems. These dynamical systems are governed by ordinary differential
equations (ODEs), or partial differential equations (PDEs), or both. To capture the essential
information about the dynamics of the systems, a fine semi-discretization of these governing
equations in the spatial domain is often required.

Since the solution of the PDE reflects the distribution of a physical quantity such as the
temperature of a rod or the deflection of a beam, these systems are often called distributed-
parameter systems (DPS).

The transfer functions of DPS systems are irrational functions as opposed to the transfer
functions of systems modeled by ordinary differential equations which are rational functions.
Another difference is that the state space is infinite dimensional, usually a Hilbert space.
Consequently, DPS are also called infinite-dimensional systems. The analysis of rational and
irrational transfer functions differ in a number of important aspects. The most obvious dif-
ferences between rational and irrational transfer functions are the poles and zeros. Irrational
transfer functions often have infinitely many poles and zeros.

The simplest example of transverse vibrations in a structure is a beam, where the vibra-
tions can be considered to occur only in one dimension.

Consider a homogeneous beam of length L experiencing small transverse vibrations. For
small deflections the plane cross-sections of the beam remains planar during bending. Under
this assumption, we obtain the classic Euler-Bernoulli beam model for the deflection w(x, t):

∂2w(x, t)

∂t2
+ EI

∂4w(x, t)

∂x4
= 0. (5)

Consider the Kelvin-Voigt damping model, sometimes referred to as the Rayleigh damping
which leads to the PDE:

∂2w(x, t)

∂t2
+ EI

∂4w(x, t)

∂x4
+ cdI

∂5w(x, t)

∂x4∂t
= 0, (6)

with the boundary conditions at the clamped end:

w(0, t) = 0,
∂w(0, t)

∂x
= 0, (7)

and, additionally, at the free end:

EI
∂2w(L, t)

∂x2
+ cdI

∂3w(L, t)

∂x2∂t
= 0, −EI

∂3w(x, t)

∂x3
− cdI

∂4w(L, t)

∂x3∂t
= u(t), (8)

where u(t) represents an applied force at the tip. Also take the observation (output) to be
y(t) = ∂w

∂t
(L, t)and let z(t) = w(L, t).

This model corresponds to the case of a clamped-free beam with shear force control
covered in [CM09]. By taking different boundary conditions, one might analyze different
models such as clamped-free beam with torque control or pinned-free beam with shear force
control. For this study, we restrict our attention only to the first model. As derived in [CM09],
the transfer function can be written as follows:

Horig(s) =
sN(s)

(EI + scdI)m3(s)D(s)
, (9)

4



in terms of the following nonlinear functions:

m(s) =
( −s2

EI + scdI

) 1

4

,

N(s) = cosh(Lm(s)) sin(Lm(s))− sinh(Lm(s)) cos(Lm(s)),

D(s) = 1 + cosh(Lm(s)) cos(Lm(s)).

The exact derivation of these types of irrational transfer functions is described in [GL88].
The poles of the transfer function (9) are the solution of the equation: s2+cdIα

4
ks+EIα4

k = 0
and can be written as:

µ±k =
−cdIα

4
k ±

√

(cdI)2α8
k − 4EIα4

k

2
, (10)

where the coefficients αk are the real positive roots of the hyperbolic equation in α: 1 +
cosh(Lα) cos(Lα) = 0. When k → ∞, these values converge to (2k+1)π

2L
.

The complex poles µ±k approach the imaginary axis as cd → 0 (the case for 0 damping).
Notice that there is also a real pole at − E

cd
.

The zeros of the transfer function are the solution of the equation: s2+cdIγ
4
ks+EIγ4

k = 0
where γk’s are the roots of the the equation in γ: cosh(Lγ) sin(Lγ) − sinh(Lγ) cos(Lγ) = 0.

When k → ∞, these values converge to (4k+1)π
4L

.
The original transfer function is irrational and is written as an infinite partial fraction

expansion:

Horig(s) =

∞∑

k=1

rk

s− µk

+
r−k

s− µ−k

=

∞∑

k=1

4s

s2 + cdIα
4
ks+ EIα4

k

, (11)

where rk =
4µk

µ
−k−µk

, r−k =
4µ

−k

µ
−k−µk

are the residues of the poles µ±k.

We consider that the beam has length L = 0.7m and that it is build out of aluminum.
Hence the Young modulus elasticity constant is taken to be E = 69GPa = 6.9 × 1010 N

m2 .
Then, the height and base of the rectangular cross section of the beam are taken to be
h = 8.5mm and b = 70mm. Then, since the moment of inertia can be calculated precisely in
terms of these two quantities: I = bh3

12
, it follows that: I = 3.58× 10−9m4. Finally, take the

damping coefficient to be cd = 5× 10−4Ns
m2 .

One way to proceed in modeling the dynamics of the beam is by computing a finite
element discretization (get rid of the variable x by approximating the spatial derivatives).
Assume that the beam has been divided in N + 2 intervals of length h = L

N+2
; the resulting

variables are w(kh, t), k ∈ {0, 1, ..., N + 2}. Consider wk = 0 for k > N + 3.
For simplicity, instead of w(kh, t), we are using wk. Approximate the time derivatives of
w(x, t) at x = kh with the following divided difference formulas:

w
(1)
k ≈

wk+1 − wk

h
, w

(2)
k ≈

wk+1 − 2wk + wk−1

h2
,

w
(3)
k ≈

wk+2 − 3wk+1 + 3wk − wk−1

h3
, w

(4)
k ≈

wk+2 − 4wk+1 + 6wk − 4wk−1 + wk−2

h4
.

The first two boundary conditions give us the following constraints: w0 = 0 and w1−w0

h
= 0

which means that we can eliminate the first two variables from the state vector (w0 = w1 = 0).
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The other two boundary conditions give us:

EI
(wN+2 − 2wN+1 + wN

h2

)

+ cdI
(ẇN+2 − 2ẇN+1 + ẇN

h2

)

= 0,

−EI
(wN+2 − 3wN+1 + 3wN − wN−1

h3

)

− cdI
( ẇN+2 − 3ẇN+1 + 3ẇN − ẇN−1

h3

)

= u.

It follows that:

EIwN+1 + cdIẇN+1 = EI(2wN − wN−1) + cdI(2ẇN − ẇN−1) + h3u,

EIwN+2 + cdIẇN+2 = EI(3wN − 2wN−1) + cdI(3ẇN − 2ẇN−1) + 2h3u.

Hence, we are left with N−1 variables in the state vector: v = [w2, w3, ..., wN ]
T ∈ RN−1. For

each variable, write down the corresponding ODE: w
(2)
k + EIw

(4)
k + cdIẇ

(4)
k = 0, 2 6 k 6 N

where w
(j)
k is defined above. Then, the next step is to rewrite these ODE’s into matrix format:

Mv̈ + Uv̇ +Kv = fu. Since y(t) = w(L, t), the output is chosen as follows: y = ẇN+2.

4 Experiments

In the past years, numerical approximation of large-scale dynamical systems has been in-
creasingly covered in the literature. Methods such as Balanced Truncation, Rational Krylov,
Optimal H2 approximation and Modal Truncation are just some of the contributions. We
refer the reader to [AA05] as an extensive survey on the above mentioned methods. In this
short study we will compare the results of the Loewner method against the results obtained
when applying modal truncation only.

Using the Loewner framework, we will construct reduced order linear models approximat-
ing the original transfer function of the clamped-free beam with shear force control model
in section 3. We will do so directly by using measurements of the original transfer func-
tion or by first performing a finite element semi-discretization of the PDE and then taking
measurements. The dimension of all reduced models is taken to be constant throughout all
experiments: r = 32. For the choice of the parameters in Section 3, proceed by sampling
Horig on a logarithmic frequency range between [100, 107]j. The frequency response of the
original transfer function is depicted in Fig. 1.
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Figure 1: Frequency response of the beam model
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The first 32 poles and the first 31 zeros of the original transfer function are intertwined as
we can observe in Fig. 2. Additionally, notice that the absolute value of the imaginary part
is less than 2.5× 10−5 for all 32 poles - and it is slowly increasing when taking less and less
dominant poles. The imaginary part of the dominant pair of poles is −4.6113×10−11. Notice
that as the damping constant cd becomes smaller and smaller, the poles approach more and
more the jω axis.

−2.5 −2 −1.5 −1 −0.5 0
x 10

−5
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4
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8x 10
4

Poles of the original model
Zeros of the original model

Figure 2: Poles and zeros distribution of the beam model

We are going to use our data driven MOR technique, i.e. the Loewner method, to find
a linear model that interpolates the original transfer function at some chosen frequencies in
some particular ’interest’ range. In the next experiments, this range is fixed to be [101, 104.5].
The number of interpolation points is chosen to be 400. The plot in Fig. 3 depicts the samples
taken in the aforementioned interval. The linear model that is constructed based on these
input-output measurements via the Loewner method is going to be singular (from a numerical
point of view).
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Figure 3: Samples corresponding to the frequency response of the beam model

The decay of the singular values of the Loewner matrix (see Fig. 4) represents a good
indicator that we can compress the model to a much smaller dimension (i.e. the 40th singular
value is below machine precision 10−16).

We choose reduction order 32. Note that the initial samples are accurately matched.
Additionally, outside the interest range, the fitted linear model is not able to faithfully
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Figure 4: Decay of the Loewner matrix singular values

reproduce the peaks.
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Figure 5: Original and Loewner model - Frequency response comparison

Notice that the zeros and poles of our reduced linear model are matching the ones of
the original transfer function. Only the least three dominant poles/zeros are not accurately
reproduced.

We want to compare our reduction method with other available methods for reducing sys-
tems with irrational input output mappings. A candidate method is modal truncation. When
applying this method, we completely cut poles from the infinite partial fraction expansion of
Horig- hence, we keep only the first dominant 2N poles:

Hmod(s) =

N∑

k=1

4s

s2 + cdIα
4
ks + EIα4

k

. (12)

Take N = 16 and notice that the first peaks are accurately approximated. As for the Loewner
method, the accuracy is lost outside the interest rang.

A comparison between the Loewner method (applied to data coming from the original
transfer function) and the modal truncation method is made by comparing the approximation
error of the two methods inside the target range of frequencies. We notice that the error
coming from the Loewner method is much lower than the one coming from modal (at least
seven orders of magnitude), as we can see in Fig. 7.
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Figure 6: Original and Loewner model - poles and zeros comparison
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Figure 7: The error in frequency domain - Loewner vs Modal

In the following experiments, we are going to sample the transfer function corresponding
to the finite element model constructed as described in section 3. Clearly, by discretizing the
spacial variable, we introduce an approximation that will considerably decrease the quality
of approximation (even for large number of elements).

Again, the first step is to take samples of HFEM(s) in the same ’interest’ range as before.
For a FE discretization with N = 1000 elements, take as before 400 samples of the transfer
function. The first major difference when using the approximated transfer function HFEM

is the decay of singular values which is not as steep as when using samples of the original
transfer function. For reduction order 32, the smallest singular value is around 10−6.
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Figure 8: Singular value decay - FEM
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Also, the poles and the zeros, are approximated well (only the four least dominant poles
are completely mismatched).
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Figure 9: Poles and zeros - original and FE model

The approximation errors are also compared. Note that the approximation quality is
considerably higher when applying the Loewner framework to the data coming from the
original transfer function (see Fig. 10) as compared to the data coming from the finite element
discretization.
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Figure 10: Error analysis

The Loewner framework has been recently generalized to parametric linear time invariant
systems - see [AIL12]. In parametric model reduction, the aim is to preserve the parameters
as symbolic variables in the reduced models.

After collecting frequency response measurements for appropriate ranges of frequencies
and parameter values, we use a generalization of the Loewner framework to the two variable
case to construct models which are reduced both with respect to frequency and to the parame-
ter. The Loewner matrix approach provides a trade-off between accuracy and complexity not
only with respect to the frequency variable but also with respect to the parameters involved.

In this particular case, the parameter is the damping coefficient cd. Our objective is to
come up with a parametrized linear model that is able to faithfully reproduce the original
transfer function on a particular range of frequencies as well as on a target parameter range.
As before we take measurements and we decide what order should we choose for the reduced
model by inspecting the singular value decay. The frequency ’interest’ range was chosen as
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for the other experiments, while the parameter ’target range’ was taken to be [10−5, 107]. For
30 values of cd in this range, we evaluate the transfer function Horig at 100 sampling points.
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Figure 11: Singular values decay

The plot above depicts two types of singular values. On one hand, we form Loewner
matrices by using measurements for varying frequency and constant parameter ( marked
with green). On the other hand, we form Loewner matrices by using measurements for
varying parameter and constant frequency ( marked with blue).

By investigating the drop in the SV plot, we decide to use reduction orders rs = 30 and
rp = 14 for building the two dimensional Loewner matrix. Then construct a reduced linear
parametric model which is sampled on the same frequency and parameter range as before.
When comparing to the original samples, the overall result is satisfactory:
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Figure 12: Comparison of the original measurements with the fitted Loewner model

5 Conclusion

The aim of this study was to study the applicability of the Loewner framework to approxi-
mating a particular class of systems: infinite-dimensional systems. It has been shown from
the various experiments performed that, indeed, the Loewner method is able to yield better
approximation than other methods such as modal truncation. An advantage of the Loewner
method is that it requires only input-output measurements to construct reduced order models
of the data. Moreover, the use of the Loewner pencil introduces a trade-off between accuracy
and complexity.
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The experiments performed showed that, in terms of the accuracy of the approximation,
it is better to use the framework for measurements coming directly from the original transfer
function. By introducing the semi-discretization step that transforms the PDE into a series
of ODE’s, additional error is added that drastically decreases the approximation quality. Of
course, in practice, the above mentioned step can seldom be avoided. Additionally, one could
try to increase the number of elements in the FE model in order that the derivatives would
be better approximated by the divided difference formulas.

As an overall observation, the Loewner framework has been successfully applied to the new
class of systems discussed in this work. As for further challenges and research interests, one
would take into consideration topics such as optimal choice of sampling points or recovering
from noise corrupted measurements.

References

[AA05] A.C. Antoulas. Approximation of large-scale dynamical systems, Series in Design
and Control. DC-6, SIAM Philadelphia 2005 (reprinted 2008).

[ACI13] A.C. Ionita. Lagrange rational interpolation and its application to approximation
of large-scale dynamical systems. PhD Dissertation, Houston, August 2013.

[AIL12] A.C. Antoulas, A.C. Ionita, S. Lefteriu. On two-variable rational interpolation.
Linear Algebra and its Applications 436, 28892915, 2012

[ALI16] A.C. Antoulas, S. Lefteriu, A.C. Ionita. A tutorial introduction to the Loewner
framework in Model Reduction and Approximation Theory and Algorithms, Edited by
P. Benner, A. Cohen, M. Ohlberger and K. Wilcox, SIAM, Philadelphia (accepted)
2016.

[MA07] A.J. Mayo and A.C. Antoulas. A framework for the generalized realization problem.
Linear Algebra and its Applications, Special Issue in honor of P.A. Fuhrmann, Edited
by A.C. Antoulas, U. Helmke, J. Rosenthal, V. Vinnikov, and E. Zerz,425:634–662, 2007

[CM09] R. Curtain and K. Morris. Transfer Functions of Distributed Parameter Systems: A
Tutorial, Automatica, 45(5), 1101-1116

[GL88] R.B. Guenther and J.W. Lee. Partial Differential Equations of Mathematical Physics
and Integral Equations. Edgewood Cliffs, NJ: Prentice-Hall, 1988

6 Appendix

We show the exact derivation of the finite element model for a very course discretization
of the beam. For example, take N = 6. The state equations are written as follows (k ∈
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{2, 3, 4, 5, 6}):

(k = 2) → ẅ2 + EI
w4 − 4w3 + 6w2

h4
+ cdI

ẇ4 − 4ẇ3 + 6ẇ2

h4
= 0

(k = 3) → ẅ3 + EI
w5 − 4w4 + 6w3 − 4w2

h4
+ cdI

ẇ5 − 4ẇ4 + 6ẇ3 − 4ẇ2

h4
= 0

(k = 4) → ẅ4 + EI
w6 − 4w5 + 6w4 − 4w3 + w2

h4
+ cdI

ẇ6 − 4ẇ5 + 6ẇ4 − 4ẇ3 + ẇ2

h4
= 0

(k = 5) → ẅ5 + EI
−2w6 + 5w5 − 4w4 + w3

h4
+ cdI

−2ẇ6 + 5ẇ5 − 4ẇ4 + ẇ3

h4
= −

1

h
u

(k = 6) → ẅ6 + EI
w6 − 2w5 + w4

h4
+ cdI

ẇ6 − 2ẇ5 + ẇ4

h4
=

2

h
u









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









︸ ︷︷ ︸

M









ẅ2

ẅ3

ẅ4

ẅ5

ẅ6









︸ ︷︷ ︸

v̈

++
cdI

h4









6 −4 1 0 0
−4 6 −4 1 0
1 −4 6 −4 1
0 1 −4 5 −2
0 0 1 −2 1









︸ ︷︷ ︸

J









ẇ2

ẇ3

ẇ4

ẇ5

ẇ6









︸ ︷︷ ︸

v̇

+

+
EI

h4









6 −4 1 0 0
−4 6 −4 1 0
1 −4 6 −4 1
0 1 −4 5 −2
0 0 1 −2 1









︸ ︷︷ ︸

K









w2

w3

w4

w5

w6









︸ ︷︷ ︸

v

=
1

h









0
0
0
−1
2









︸ ︷︷ ︸

f

u.

Next, by applying the Laplace transform of the above time-domain collection of ODE’s, we
obtain:

s2MV (s) + sJV (s) +KV (s) = fU(s) ⇒ V (s) = (s2M + sJ +K)−1fU(s).

We derive the output equation by using the surrogate variable z as follows:

EIz + cdIż = EI
(
0 0 0 −2 3

)

︸ ︷︷ ︸

c1









w2

w3

w4

w5

w6









︸ ︷︷ ︸

v

+ cdI
(
0 0 0 −2 3

)

︸ ︷︷ ︸

c2









ẇ2

ẇ3

ẇ4

ẇ5

ẇ6









︸ ︷︷ ︸

v̇

+ 2h3
︸︷︷︸

d

u.

Now, by taking the Laplace transform of the above differential equation in z, we obtain that:

EIZ(s) + cdIsZ(s) = c1V (s) + c2sV (s) + dU(s) ⇒ Z(s) =
(c1 + sc2)V (s)

EI + scdI
+

d

EI + scdI
U(s).

Since z = ẇN+2 and y = wN+2 it follows that z = ẏ and by taking again Laplace transform
we have: sZ(s) = Y (s) ⇒ Z(s) = Y (s)

s
. Substituting Z(s) in the above equation we get:

Y (s) =
s(c1 + c2s)V (s)

EI + cdS
+

ds

EI + cdS
U(s).
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Substituting V (s) in the above equation, we form the transfer function of the FEM as follows:

HFEM(s) =
Y (s)

U(s)
=

s

EI + scdI

[

(c1 + c2s)(s
2M + sJ +K)−1f + d

]

.

By introducing the new augmented state vector x =

(
v

v̇

)

∈ R2(n−1), we rewrite the

dynamics of the second degree differential system above as a first degree dynamical system
in x:

Gẋ = Ax+Bu, EIz + cdIy = Cx+Du,

where:

G =

(
In−1 0
0 M

)

, A =

(
0 In−1

−K −J

)

, B =

(
0
f

)

, C =
(
c1 c2

)
, D = d,

and In−1 is the identity matrix of dimension n− 1. Taking the Laplace transform we get:

X(s) = (sG−A)−1BU(s) and EIZ(s) + cdIY (s) = CX(s) +DU(s).

Again, using that: sZ(s) = Y (s), it follows that:

HFEM(s) =
Y (s)

U(s)
=

s

EI + scdI
[C(sG− A)−1B +D].
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