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Abstract We propose a model order reduction approach for balanced truncation of
linear switched systems. Such systems switch among a finite number of linear sub-
systems or modes. We compute pairs of controllability and observability Gramians
corresponding to each active discrete mode by solving systems of coupled Lyapunov
equations. Depending on the type, each such Gramian corresponds to the energy
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associated to all possible switching scenarios that start or, respectively end, in a
particular operational mode. In order to guarantee that hard to control and hard to
observe states are simultaneously eliminated, we construct a transformed system,
whose Gramians are equal and diagonal. Then, by truncation, directly construct
reduced order models. One can show that these models preserve some properties of
the original model, such as stability and that it is possible to obtain error bounds
relating the observed output, the control input and the entries of the diagonal
Gramians.

Keywords Model order reduction · Switched systems · Balanced truncation ·
Infinite Gramians · Controllability · Observability

Mathematics Subject Classification (2010) 93A15 · 93A30 · 93B11 · 93C05 ·
93C10

1 Introduction

In recent years, the need for accurate mathematical modeling of physical and arti-
ficial processes for simulation and control has been steadily increasing. To cope
with it, inclusion of more detail at the modeling stage is required, which inevitably
leads to analyzing larger-scale, more complex dynamical systems. Such high dimen-
sional systems are often linked to spatial discretization of underlying time-dependent
coupled partial differential equations (PDE).

In broad terms, model order reduction (MOR) is concerned with finding efficient
computational prototyping tools to replace such complex and large models by simpler
and smaller models that capture their dominant characteristics. Such reduced order
models (ROM) could be used as efficient surrogates for the original model, replacing
it as a component in larger simulations. For details on different MOR techniques, we
refer the readers to the book [1] and to the surveys [4, 6].

Hybrid systems are a class of nonlinear systems which result from the interac-
tion of continuous time dynamical subsystems with discrete events. These systems
are hence described by both discrete and continuous states, inputs and outputs. The
transitions between the discrete states may result in a jump in the continuous inter-
nal variable. The discrete dynamics is determined by a finite-state deterministic
automaton equipped with outputs (the so-called Moore automaton).

Switched systems constitute a subclass of hybrid systems, in the sense that the
discrete dynamics is simplified, i.e. any discrete state transition is allowed and the set
of discrete events coincides with the set of discrete states.

A switched system is a dynamical system that consists of a finite number of sub-
systems and a logical rule that orchestrates switching between these subsystems.
These subsystems or discrete modes are usually described by a collection of differen-
tial or difference equations. The discrete events interacting with the subsystems are
governed by a piecewise continuous function, i.e. the switching signal.

One can classify switched systems based on the dynamics of their subsystems,
for example continuous-time or discrete-time, linear or nonlinear and so on. In this
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work we analyze continuous-time linear switched systems (LSS) with reset maps
(or coupling/switching matrices). The latter term refers to matrices that scale the
continuous state at the switching times.

Hybrid and switched systems represent useful models for distributed embedded
systems design where discrete controls are routinely applied to continuous processes.
In particular, switched systems have applications in control of mechanical and aero-
nautical systems, power converters and also in the automotive industry. For a detailed
characterization of theses classes of dynamical systems, we refer the readers to the
books [16, 19, 37, 38]. In the past years, hybrid and switched systems have received
increasing attention in the scientific community, which can be partly explained by the
fast development of the switch control research area (see [18, 24, 40]). In this con-
text, adaptive control techniques based on switching between different controllers are
used to achieve stability and improve transient response. The study of the properties
of hybrid and switched systems includes such topics as stability (see [13, 37, 40]),
realization including observability/controllability (see [27, 30]), analysis of switched
DAEs (see [21, 39]) and numerical solutions (see [17]).

In some cases, the complexity of verifying and assessing general properties of
these systems is very high so that the use of these models is limited in applications
where the size of the state space is large. A useful tool for dealing with such com-
plexity is MOR. A very prolific MOR method that has been continuously developed
over the years is balanced truncation (BT). It was initially introduced in the systems
and control theory in [23, 26]. The main idea behind BT is to transform a dynamical
system to a balanced form defined in such a way that appropriately chosen control-
lability and observability Gramians are equal and diagonal. Then a reduced-order
model is computed by truncating the states corresponding to the small diagonal ele-
ments of the Gramians. For more details on BT especially from a practical point of
view (i.e. application to large scale systems, solution of Lyapunov equations etc.),
see [7, 20].

In this paper we present a model order reduction algorithm for linear switched
switched based on balanced truncation. We consider linear switched systems whose
linear subsystems may have different state-space dimensions, and where the change
of the discrete mode is accompanied with a change in the continuous state using
linear reset maps. As it is usual in balanced truncation, the proposed method is based
on the following steps. First, observability/controllability Gramians are calculated.
Then, using these Gramians a state-space transformation is calculated such that after
the application of this state-space transformation, the observability and controllability
Gramians are equal to each other and they are diagonal. Finally, the reduced model
is obtained by discarding those states which correspond to small diagonal elements
(referred to as singular values) of these Gramians.

In this paper we propose the definition of new type of Gramians for LSS. More
precisely, for each discrete mode we define observability/controllability Grami-
ans.We propose two definitions of observability/controllability Gramians: one defini-
tion defines observability/controllability Gramians as solutions of an LMI, the other
one defines them as solution of Sylvester equations. The latter Gramians satisfy the
LMIs of the first definition. Note that both the LMIs and the Sylvester equations
mix Gramians which belong to different discrete modes. The proposed Gramians
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exist even if the underlying LSS is not exponentially stable for all switching signals,
but only for slow enough switching signals. Furthermore, we present an analytical
error bound for the L2 norm of the difference between the outputs of the original
and reduced LSS. This error bound is formulated in terms of singular values of the
Gramians. However, this error bound is valid only for slow enough switching signals,
i.e., for switching signals with large enough dwell time. Recall that dwell time is the
minimal amount of time spent in each discrete mode.

Considerable attention has been dedicated in recent years to the problem of MOR
for linear switched system. The related work can be grouped into the following categories.

In [14, 41, 43, 44] the matrices of the reduced order model were obtained by
solving a set of LMIs, and the papers in this group differ from each other in the
specific assumptions they imposed on the system at hand and the form of the LMIs
employed. More precisely, for a given dimension of the reduced model and for a
given error bound these papers propose a set of LMIs, solution of which can be used
to calculate the matrices of the reduced order model. The L2 gain of the system
representing the difference between the input-output behavior of the original and
the reduced model is then bounded by the fixed error bound. The advantage of [14,
41, 43, 44] is that error bounds are available. The disadvantage is that the proposed
conditions are only sufficient, and the trade-off between the dimension of the reduced
model and the error bound is not clear. Moreove, the computational complexity of
solving those LMIs might be to high. In contrast to [14, 41, 43, 44], the current paper
proposed a method, whose applicability depends on the existence of solution for a few
simple LMIs which are necessary to find the observability/controllability Gramians.
Once the existence of these Gramians is assured, the model reduction method can
be applied. Moreover, there is an analytic error bound and the trade-off between
the approximation error and the dimension of the reduced system is formalized in
terms of the singular values of those Gramians. Furthermore, under some very mild
assumptions, the Gramians can be obtained by solving Sylvester equations instead
of LMIs. Another difference with respect to [14, 41, 43, 44] is that we consider a
more general class of switched systems: in contrast to [14, 41, 43, 44] the switched
systems considered are allowed to have reset maps and the linear subsystems may
have different state-space dimensions.

In [25], a model reduction method is proposed for switched systems with
autonomous switching, i.e. switching which depends on continuous outputs. The
proposed method is based on balanced truncation of the linear sub-models. How-
ever, [25] proposes no error bounds. In contrast, in this paper we consider switched
systems with external switching (the switching signal is an external input), and we
provide analytic error bounds.

In [9–11] balanced truncation for discrete-time switched systems was studied.
The balanced truncation was based on discarding those states which correspond to
the small singular values of the Gramians. The Gramians themselves were defined
as solutions of the LMIs. An analytic error bound based on singular values of the
Gramians was provided. However, the model reduction procedure of [9–11] provided
a reduced model whose linear subsystems at each discrete mode depended on the
switching signal and often they may not exist. switching signal. More precisely, if
q(k) denotes the discrete mode at time step k, the matrices of the reduced model had
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to satisfy Āq(k) = Lq(k+1)Aq(k)Rq(k), B̄q(k) = Lq(k+1)Bq(k), C̄q(k) = Aq(k)Rq(k),
where (Aq, Bq, Cq) and (Āq, B̄q, C̄q) are the matrices of the linear subsystem asso-
ciated with the discrete mode q for the original and reduced models respectively, and
Lq, Rq are suitable matrices. For example, if the switching signal is 123121, then
Ā2 = L3A2R2 and Ā2 = L1A2R2 has to hold simultaneously. In [10,11] no con-
ditions are provided to guarantee that this is possible. Moreover, if we consider the
switching signal 121124, then we get a different set of equalities which Ā2 should
satisfy. That is, the model reduction algorithm of [9–11] need not always yield a
well-posed switched system, even if the Gramians exist, moreover, the parameters of
this switched system will depend on the switching signals. In contrast to [9–11], in
this paper we deal with continuous-time switched systems, and the parameters of the
reduced model do not depend on the time-varying switching signals (of course, the
parameters of each linear subsystem will depend on the discrete mode the subsystem
is associated with).

In [22] a model reduction algorithm is proposed which is based on finding observ-
ability/controllability Gramians for each linear subsystem and then bringing them
into a diagonal form by a common state-space transformation. Moreover, [22] pro-
poses necessary and sufficient conditions for the existence of such a transformation.
In contrast to the current paper [22] presents no error bound for the difference
between the input-output behavior of the original and of the reduced model. More-
over, in contrast to [22] we consider systems with reset maps and linear subsystems
whose dimensions may vary according to the discrete state.

In [2, 3, 34] model reduction procedures based on moment matching is proposed.
In contrast to the current paper, those methods do not allow for analytical error
bounds. However, in [2, 3] it is guaranteed that the reduced model will have the
same input-output behavior for certain switching signals. As to [34], in contrast to
the present paper, it considers switched systems with autonomous switching and it
proposed a model reduction procedure which guarantees that the reduced model has
the same steady-state output response to certain inputs as the original model.

In [31, 35, 36] model reduction based on generalized observability/reachability
Gramians are proposed. The method of [31, 35, 36] applies only to quadratically
stable linear switched systems. Here, quadratic stability means that there exists a
common quadratic Lyapunov function for all the linear subs-systems. Quadratic sta-
bility is known to be sufficient but not necessary for the linear switched system to be
exponentially stable for any switching signal and zero continuous input. The Grami-
ans at hand are solutions of a certain LMI. After calculating a solution of the LMI, a
linear state-space transformation is applied to the original model such that the observ-
ability Gramian becomes diagonal and equals the controllability Gramian. Then the
states corresponding to small singular values of these Gramians are thrown away.
Furthermore, in [31] an analytical error bound is presented which involves the singu-
lar values of the Gramians. The current paper can be seen as an improvement upon
[31, 35, 36]. The algorithm proposed in this paper can be applied to switched sys-
tems which are not quadratically stable, and like in [31, 35, 36] there is a clear error
bound and trade-off between the size of the reduced order model and approxima-
tion error. However, the price we pay for it is that the error bound is valid only for
switching signals with a sufficiently large dwell time. Another improvement upon
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[31, 35, 36] is that we consider switched systems with reset maps and with linear
subsystems whose dimensions are not necessarily the same.

The definitions of Gramians proposed in this paper are inspired by the definitions
previously encountered for the case of bilinear and stochastic systems (see [5, 42]).

Finally, it is worth mentioning that MOR for LSS is related to the notion of approx-
imate bisimulation introduced in [15]. The paper [15] does not directly address model
reduction. Instead, it proposes a definition of simulation relations among hybrid sys-
tems. Informally, an approximate simulation relation between two hybrid systems
is a multivalued map between their state spaces, which approximately respects the
dynamics and the output map of the systems at hand. As a consequence, if two hybrid
systems are related by an approximation simulation relation, then their outputs will be
close to each other. If one of the hybrid systems has a simpler structure, for example,
it is a finite-state transition system, then the existence of a approximation simulation
relation allows to use the simple system for control synthesis or verification. While
the general goal of model reduction and of finding approximate simulation relations
is the same (both aim at replacing a complex model by a simpler one), the details a
very different. In particular, in model reduction, the aim is to replace a model with
a model of the same type but with less states. For example, a switched system is
replaced by another switched system with a smaller number of states. In contrast, the
goal in using approximate simulation relations is to replace a hybrid/nonlinear sys-
tem by a finite-state transition system, which is approximately similar to the original
system. A formal comparison between classical model reduction approaches and the
ideas of [15] would certainly be very useful, but it would go beyond the scope of this
paper.

The paper is organized as follows; in the second section, we introduce continuous-
time linear switched systems in a formal way. Furthermore, we provide a charac-
terization of input-output mappings in time domain corresponding to such systems.
Section 3 describes the procedure of constructing infinite energy Gramians for the
simplified case with only two discrete modes. Next, in Section 4 we provide a sys-
tem theoretic interpretation of such Gramians (for the general case with D modes).
Furthermore, we formally introduce the balancing algorithm followed by the MOR
step, i.e. the truncation. A measure of the quality of approximation by reduction
is provided by means of a error bound. Additionally, we investigate the possibility
of preserving system theoretic properties such as stability, for the reduced system.
Section 5 is designated for the numerical experiments while a summary of the
findings and the conclusion are presented in Section 6.

2 Linear switched systems

Definition 1 A continuous time linear switched system (LSS) is a control system of
the form:

� :
{
ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t)

y(t) = Cσ(t)x(t),
(1)

where � = {1, 2, . . . , D}, D > 1, is a set of discrete modes, σ(t) is the switching
signal, u is the input, x is the state, and y is the output.
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The system matrices Aq ∈ R
nq×nq , Bq ∈ R

nq×m, Cq ∈ R
p×nq , where q ∈ �,

correspond to the linear system active in mode q ∈ �, and x0 is the initial state. We
consider the Eq matrices to be invertible. Furthermore, the transition from one mode
to another is made via the so called switching or coupling matricesKq1,q2 ∈ R

nq2×nq1

where q1, q2 ∈ �.

Remark 1 The case for which the coupling is made between identical modes is
excluded, Hence, when q1 = q2 = q, consider that the coupling matrices are identity
matrices, i.e. Kq,q = Inq .

The notation � = (n1, n2, . . . , nD, {(Aq,Bq,Cq)|q ∈ �}, {Kqi ,qi+1 |qi, qi+1 ∈
�}) is used as a short-hand representation for LSSs described by the equations in (1).
The vector n = (

n1 n2 · · · nD

)
is the dimension (order) of �.

The restriction of the switching signal σ(t) to a finite interval of time [0, T ] can
be interpreted as finite sequence of elements of � × R+ of the form:

ν(σ ) = (q1, t1)(q2, t2) . . . (qk, tk),

where q1, . . . , qk ∈ � and 0 < t1 < t2 < · · · < tk ∈ R+, t1 + · · · + tk = T , such
that for all t ∈ [0, T ] we have:

σ(t) =

⎧⎪⎪⎨
⎪⎪⎩

q1 if t ∈ [0, t1],
q2 if t ∈ (t1, t1 + t2],
. . .

qi if t ∈ (t1 + . . . + ti−1, t1 + . . . + ti−1 + ti], for 2 � i � k.

In short, by denoting Ti := t1 + . . . + ti−1 + ti , T0 := 0, Tk := T , write

σ(t) =
{

q1 if t ∈ [0, T1],
qi if t ∈ (Ti−1, Ti], i > 2.

(2)

Intuitively, the switching signal defined above specifies that in the interval [Ti−1, Ti)

the mode qi is active and hence the continuous state and output change according to
the linear system associated with this mode, i.e.,

ẋ(t) = Aqx(t) + Bqu(t), y(t) = Cqi
x(t). (3)

Remark 2 (The number of entries of the vector x(t) changes with time) Note that the
continuous state depends on the discrete mode, in fact, the dimension of the space
it belongs to changes when the discrete mode changes. This is due to the fact that
the state-space dimension of linear systems associated with different modes can be
different.

Note that in order to define x, the (3) are not sufficient, as the initial state of the
differential equation in (3) is not specified. This calls for a careful and formal defini-
tion of what we mean by a solution of an LSS. To this end, denote by PC(R+,Rn),
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Pc(R+,Rn), the set of all piecewise-continuous, and piecewise-constant functions,
respectively.

Definition 2 A tuple (x, u, σ, y), where x : R+ → ⋃D
i=1R

ni , u ∈ PC(R+,Rm),

σ ∈ Pc(R+, �), y ∈ PC(R+,Rp) is called a solution, if the following conditions
simultaneously hold:

1. The restriction of x(t) to [Ti−1, Ti) is differentiable, and satisfies ẋ(t) = Aqi
x(t)

+Bu(t), and x(Ti) = Kqi ,qi+1 lim
t↗Ti

x(t).

2. For all t ∈ R+, y(t) = Cσ(t)x(t) holds.

Remark 3 (Existence and uniqueness of solution) The solution of a linear switched
system is unique for every initial state, continuous input and switching signal. More
precisely, for every initial state x0, input signal u and switching signal σ , there exists
a unique function x : R+ → ⋃D

i=1R
ni , and y : R+ → R

p which satisfies the con-
ditions of Definition 2, and such that x(0) = x0. It is sufficient to show that there
exists a unique function x : R+ → ⋃D

i=1R
ni such that x(0) = x0 and which satisfies

the conditions of Definition 2. In order to show existence, for every i ∈ N, define
the functions zi : [Ti−1, Ti] → R

ni recursively as follows: let z0 : [0, T1] → R
ni

be the solution of the differential equation ż1(t) = Aq1z1(t) + Bq1u(t) with the
initial state z1(0) = x(0), and if zi is defined, then let zi+1 be the solution of
the differential equation żi+1(t) = Aqi+1zi+1(t) + Bqi+1u(t) with the initial state
zi+1(Ti) = Kqi,qi+1zi(Ti). Define now x by x(t) = zi(t) for all t ∈ [Ti−1, Ti) for all
i ∈ N. It is clear that x satisfies Definition 2. Assume that x̂ : R+ → ⋃D

i=1R
ni satis-

fies the conditions of Definition 2 and x̂(0) = x(0). We will show by induction that
for every i ∈ N, the restrictions of x̂ and x to [Ti, Ti+1) are equal. Indeed, for i = 0,
consider he restriction of x̂ to [0, T1) is a solution of the differential equation ż1(t) =
Aq1z1(t) + Bq1u(t) with the initial condition z1(0) = x̂(0) = x(0), and hence by the
uniqueness of solutions of differential equations, restriction of x̂ to [0, T1) equals the
restriction of z1 to [0, T1), and the latter equals the restriction of x to [0, T1). Assume
that the induction hypothesis is true for i ≤ k. In particular, this implies that the
restrictions of x and x̂ to [Tk, Tk+1) are equal. In particular, lim

t↗Tk+1
x(t) = lim

t↗Tk+1
x̂(t),

and hence x(Tk+1) = Kqk+1,qk+2 lim
t↗Tk+1

x(t) = Kqk+1,qk+2 lim
t↗Tk+1

x̂(t) = x̂(Tk+1).

Since the restrictions of x and x̂ to [Tk+1, Tk+1) are solutions of the same differen-
tial equation żk+1(t) = Aqk+1zk+1(t) + Bqk+1u(t) with the same initial condition
zk+1(Tk+1) = x̂(Tk+1) = x(Tk+1), by uniqueness of the solution of a differential
equation, the restrictions of x and x̂ to [Tk+1, Tk+2) are equal.

The switching matrices Kqi ,qi+1 allow having different dimensions for the subsys-
tems active in different modes. If the Kqi ,qi+1 matrices are not explicitly given, it is
considered that they are identity matrices.

The input-output behavior of an LSS system can be described in time domain
using the mapping f(u, σ ). This particular map can be written in generalized kernel
representation (as suggested in [28]) using the unique family of analytic functions:
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gq1,...,qk
: Rk+ → R

p and hq1,...,qk
: Rk+ → R

p×m with q1, . . . , qk ∈ �, k � 1 such
that for all pairs (u, σ ) and for T = t1 + t2 + · · · + tk we can write:

f(u, σ )(t) = gq1,...,qk
(t1, ..., tk)+

k∑
i=1

∫ ti

0
hqi ,qi+1,...,qk

(ti −τ, ti+1, . . . , tk)u(τ +Ti−1)dτ, (4)

where the functions g, h are defined for k � 1, as follows,

gq1,q2,...,qk
(t1, t2, . . . , tk) = Cqk

eAqk
tkKqk−1,qk

e
Aqk−1 tk−1Kqk−2,qk−1 · · · Kq1,q2e

Aq1 t1x0, (5)

hq1,q2,...,qk
(t1, t2, . . . , tk) = Cqk

eAqk
tkKqk−1,qk

e
Aqk−1 tk−1Kqk−2,qk−1 · · ·Kq1,q2e

Aq1 t1Bq1 . (6)

In the rest of the paper, we will make the following assumption.

Assumption 21 If � is an LSS of the form (3), we assume that for all q = 1, . . . , D, Aq is
stable, i.e. all eigenvalues of Aq have a strictly negative real part.

Assumption 1 implies that each linear subsystem of the LSSs are stable. However, this
does not imply that the LSS at hand is stable for any switching signal, see [16, 19, 37, 38] for
counter-examples.

Remark 4 (Role of minimallity) Since in this paper we aim at proposing a MOR method for
LSS, it is natural to discuss the issue of LSS of minimal order realizing a certain input-output
function. Indeed, transforming an LSS to a minimal order one, while preserving its input-
output behavior could be a first step toward model order reduction. There exists a complete
realization theory and a minimization algorithm for linear switched systems [27, 29]. Accord-
ing to this theory, a linear switched system is called minimal, if the sum of the dimensions
of its LTI subsystems is minimal among all the linear switched systems describing the same
input-output function. It is also shown that minimality is equivalent to observability and reach-
ability of the linear switched system. Here, observability means that any non-zero continuous
state will yield a non-zero output for a suitable switching signal, and reachability means that
the span of all states reached by varying continuous input and switching signals is the whole
state-space. It is well known [27, 29] that a linear switched system can be observable (respec-
tively reachable), without any of its LTI sub-systems being observable (respectively reachable).
Based on this observation, it can be shown by means of counter-examples that minimality of
a linear switched system does not imply that of its LTI sub-systems, i.e., it can happen that a
linear switched system is minimal, but the LTI subsystems are not. For this reason we do not
assume minimality of the LTI subsystems, as it would exclude a large class of input-output
behaviors which are realizable by linear switched systems.

In particular, [27, 29] propose algorithms for transforming a linear switched system to a
minimal one, while preserving its input-output function. Hence, that minimization algorithm
can be considered as a primitive model reduction algorithms, which eliminates those states
which do not contribute to the input-output behavior of the system. Note that the minimization
algorithm produces a system whose input-output behavior is exactly the same as that of the
original system, while the goal of model reduction is to produce a system whose input-output
behavior is sufficiently close, but not necessarily the same as that of the original system. Since
the former goal is a special case of the latter one, minimization algorithms can be viewed as
subclasses of model reduction algorithms. However, since they aim at preserving exactly the
same input-output behavior, they tend to produce too large systems.
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Naturally, before applying any model reduction to a linear switched system, one can use
the minimization algorithm of [27, 29] to obtain a smaller linear switched system model.

However, in this paper we prefer not to restrict attention to minimal LSS, as it is not neces-
sary and in fact would lead to technical complications. More precisely, the proposed algorithm
could yield non-minimal models, even if applied to minimal LSS. Since the main analytical
result of the paper is proven using repeated application of the model reduction procedure for
eliminating one single state, assuming minimality could lead to technical difficulties. Indeed,
if our assumptions include minimality of the LSS at hand, then after applying the model reduc-
tion procedure to eliminate one state, we might end up with an LSS which is not minimal.
Then, we could no longer apply the same model reduction algorithm to this reduced LSS. We
could minimize this reduced LSS. However, for the proof we need this LSSs to be balanced
with Gramians which are diagonal and which are sub-matrices of the balanced Gramians of
the original LSS. It is not clear if applying the minimization algorithm will preserve these
properties.

The remark that the proposed algorithm may result in non-minimal LSS might seem
counter-intuitive. Intuitively, the proposed algorithm, like all the other balanced truncation
algorithms, will eliminate certain poorly controllable and poorly observable states. However,
we have no proof that the proposed algorithm will eliminate unobservable or unreachable
states. In fact, it is known that the balanced truncation algorithm from [31] may result in non-
minimal models. Note that in our algorithm we require that the observability and reachability
Gramians are positive definite. While in the LTI case this would imply minimality of the LTI
system, it is not clear if our assumptions imply minimality of the switched system. In fact,
the counter-example of [31] is a strong indication that this is not the case. However, since the
Gramians proposed in this paper are different from that of [31], formally we cannot be certain.
All these issues require further research.

3 Energy Gramians for LSS for two modes

The purpose of this section is to provide some intuition behind the general definition of Grami-
ans which will be presented in Section 4 later on. For simplicity of the exposition, we first
consider the simplified case D = 2 (the LSS system switches between two modes only). This
situation is encountered in most of the numerical examples in the literature we came across.
see Section 4.

3.1 Setup and notations

Assume that there are two discrete modes, i.e., D = 2. Depending on the values of the
switching signal σ(t), the original system � switches between the following subsystems,

�1 :
{
ẋ1(t) = A1x1(t) + B1u(t),

y(t) = C1x1(t).
or �2 :

{
ẋ2(t) = A2x2(t) + B2u(t),

y(t) = C2x2(t),
, (7)

where dim(�1) = n1 (i.e. x1 ∈ R
n1 and A1 ∈ R

n1×n1 ,B1,CT
1 ∈ R

n1 ) and also dim(�2) = n2
(i.e. x2 ∈ R

n2 and E2,A2 ∈ R
n2×n2 ,B2,CT

2 ∈ R
n2 ). Notice that we allow both the two

subsystems to be written in descriptor format (having possibly singular E matrix).
Denote, for simplicity, with K1 the coupling matrix when switching from mode 1 to mode

2 (instead of K1,2) and, with K2, the coupling matrix when switching from mode 2 to mode 1
(instead of K2,1) with K1 ∈ R

n2×n1 and K2 ∈ R
n1×n2 .
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In the following, for the first two levels we present the generalized kernels, which were
previously defined in (6), i.e.,

Level 1 :
{
h1(t1) = C1e

A1t1B1,

h2(t2) = C2e
A2t1B2.

,Level 2 :
{
h1,2(t1, t2) = C1e

A1t1K2e
A2t2B2,

h2,1(t1, t2) = C2e
A2t1K1e

A1t2B1.

Consider a LSS system � as described in (1) with two operational modes, i.e D = 2 and
� = {1, 2}. Consider dim(�k) = nk for k = 1, 2 and let K1 ∈ R

n2×n1 and K2 ∈ R
n1×n2 be

the coupling matrices.

Definition 3 For ν ∈ {1, 2}, let �ν,+ and �+,ν be the ordered sets containing all tuples that
can be constructed with symbols from the alphabet � = {1, 2} and that start (and respectively
end) with the symbol ν. Also, no two consecutive characters are allowed to be the same. Hence,
explicitly write the new introduced sets as follows:

�1,+ = {(1), (1, 2), (1, 2, 1), . . .}, �2,+ = {(2), (2, 1), (2, 1, 2), . . .}, (8)

�+,1 = {(1), (2, 1), (1, 2, 1), . . .}, �+,2 = {(2), (1, 2), (2, 1, 2), . . .}. (9)

Definition 4 Let the ith unit vector of length k be denoted with

ei = [0, . . . , 1, . . . , 0]T ∈ R
k, ei (�) = 1, if � = i and ei (�) = 0, else.

In some contexts we may use the alternative notation ei,k to emphasize its dimension k. The
identity matrix Ik ∈ R

k×k can be written as Ik = [e1,k e2,k . . . ek,k]. Also, let 0k,� ∈ R
k×�

be an all zero matrix. When k = �, we use the notation 0k =∈ R
k×k or simply 0 when the

dimension is clearly inferred.

3.2 Level k switching - an intermediate step

3.2.1 Reachability Gramians

Introduce the following level k energy functional gr
q1,q2,...,qk

(t1, t2, . . . , tk) : Rk → R
nq1×m,

corresponding to the switching sequence (q1, q2, . . . , qk) ∈ �k , as

gr
q1,q2,...,qk

(t1, t2, . . . , tk) = eAq1 t1Kq2,q1e
Aq2 t2Kq3,q2 · · ·Kqk,qk−1e

Aqk
tkBqk

. (10)

By fixing the first element of the tuple (q1, q2, . . . , qk), i.e., q1 ∈ {1, 2}, note that
(q1, q2, . . . , qk) can either be an element of �1,+ or of �2,+ (as introduced in Definition 4).

If we choose q1 = 1, then it follows that (q1, q2, . . . , qk) ∈ �1,+. Examples of energy
functionals associated to sequences from �1,+, are for instance the following

gr
1(t1) = eA1t1B1, gr

1,2(t1, t2) = eA1t1K2e
A2t2B2, gr

1,2,1(t1, t2, t3)

= eA1t1K2e
A2t2K1e

A1t3B1, . . .

In general, define the level k infinite Gramian corresponding to mode q1 ∈ {1, 2} as

P(k)
q1

=
∫ ∞

0
· · ·

∫ ∞

0
gr
q1,q2,...,qk

(t1, t2, . . . , tk)(gr
q1,q2,...,qk

(t1, t2, . . . , tk))
T dt1dt2 . . . dtk.

(11)
Note that due to Assumption 1, the infinite integrals in (11) are well defined. By making

use of the recurrence relation

gr
q1,q2,...,qk

(t1, t2, . . . , tk) = (
eAq1 t1Kq2,q1

)
gr
q2,q3,...,qk

(t2, t3, . . . , tk),
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it follows that the kth Gramian corresponding to mode 1 (or respectively mode 2) can be written
in terms of the (k − 1)th Gramian corresponding to mode 2 (or mode 1), as

P(k)
q1

=
∫ ∞

0
· · ·

∫ ∞

0

(
eAq1 t1Kq2,q1

)
gr
q2,...,qk

(t2, . . . , tk)
(
gr
q2,...,qk

(t2, . . . , tk)
)T

(
eAq1 t1Kq2,q1

)T
dt1 . . . dtk =

∫ ∞

0
eAq1 t1Kq2,q1

( ∫ ∞

0
gq2,...,qk

(t2, . . . , tk)

(
gr
q2,...,qk

(t2, . . . , tk)
)T

dt2 . . . dtk

)
KT

q2,q1
e
AT

q1
t1dt1

=
∫ ∞

0
eAq1 t1Kq2,q1P(k−1)

q2
KT

q2,q1
e
AT

q1
t1dt1. (12)

Next, introduce the linear reachability Gramians for the case with no switching. They are
denoted with P(1)

q , correspond to mode q ∈ {1, 2}, and can be defined as

P(1)
q =

∫ ∞

0
gr
q (t)

(
gr
q (t)

)T
dt =

∫ ∞

0
eAq tBqBT

q eA
T
q t dt. (13)

It is a well known result that P(1)
q satisfies the following Lyapunov equation:

AqP(1)
q + P(1)

q AT
q + BqBT

q = 0. (14)

Proposition 1 With Assumption 1, the level k reachability Gramians corresponding to modes
1 and 2 from (11) are the unique solutions of the recursive systems of linear equations:

A1P(k)
1 + P(k)

1 AT
1 + K2P(k−1)

2 KT
2 = 0, (15)

A2P(k)
2 + P(k)

2 AT
2 + K1P(k−1)

1 KT
1 = 0, (16)

where k > 1 and P(1)
q1 is as in (14).

Proof of Proposition 2 By multiplying the equality in (12) with Aq1 to the left and with A
T
q1

to
the right, we write

Aq1P(k)
q1

+ P(k)
q1

AT
q1

=
∫ ∞

0
Aq1e

Aq1 t1Kq2,q1P(k−1)
q2

KT
q2,q1

e
AT

q1
t1dt1

+
∫ ∞

0
eAq1 t1Kq2,q1P(k−1)

q2
KT

q2,q1
e
AT

q1
t1AT

q1
dt1

=
∫ ∞

0

d

dt1

(
eAq1 t1Kq2,q1P(k−1)

q2
KT

q2,q1
e
AT

q1
t1dt1

)
= −Kq2,q1P(k−1)

q2
KT

q2,q1
.

Hence it follows that, for q1, q2 ∈ {1, 2} with q1 �= q2, we write

Aq1P(k)
q1

+ P(k)
q1

AT
q1

+ Kq2,q1P(k−1)
q2

KT
q2,q1

= 0,

which proves the statements in (15) and (16).

3.2.2 Observability Gramians

Define the level k energy functional go
qk,...,q2,q1

(tk, . . . , t2, t1) : Rk → R
p×nq1 , corresponding

to the switching sequence (qk, . . . , q2, q1) ∈ �k , as

go
qk,qk−1,...,q1

(tk, . . . , t2, t1) = Cqk
eAqk

tkKqk−1,qk
e
Aqk−1 tk−1Kqk−2,qk−1 · · ·Kq1,q2e

Aq1 t1 (17)

By fixing the last element of the tuple, i.e., q1 ∈ {1, 2}, note that (qk, . . . , q2, q1) can either
be an element of �+,1 or of �+,2 (as introduced in Definition 4).
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If q1 = 1 is chosen, then it follows that (qk, qk−1, . . . , q1) ∈ �1,+. Examples of energy
functionals associated to sequences from �+,1, are the following

go
1(t1) = C1e

A1t1 , go
2,1(t2, t1) = C2e

A2t2K1e
A1t1 ,

go
1,2,1(t3, t2, t1) = C1e

A1t3K2e
A2t2K1e

A1t1 , . . .

Define level k infinite Gramian corresponding to mode q1 ∈ {1, 2} as
Q(k)

q1
=

∫ ∞

0
· · ·

∫ ∞

0

(
go
qk,...,q2,q1

(tk, . . . , t2, t1)
)T go

qk,...,q2,q1
(tk, . . . , t2, t1)dt1 . . . dtk. (18)

Note that the infinite integrals in (18) are well-defined due to Assumption 1. By using the
following recurrence relation,

go
qk,...,q2,q1

(tk, . . . , t2, t1) = go
qk,...,q3,q2

(tk, . . . , t3, t2)
(
Kq1,q2e

Aq1 t1
)
,

the kth observability Gramian corresponding to mode 1 (or respectively mode 2) can be written
in terms of the (k−1)th observability Gramian corresponding to mode 2 (or respectively mode
1), as

Q(k)
q1

=
∫ ∞

0
· · ·

∫ ∞

0

(
Kq1,q2e

Aq1 t1
)T (

go
qk,...,q2

(tk, . . . , t2)
)T go

qk,...,q2
(tk, . . . , t2)

(
Kq1,q2e

Aq1 t1
)
dt1 . . . dtk =

∫ ∞

0
e
AT

q1
t1KT

q1,q2

( ∫ ∞

0

(
go
qk,...,q2

(tk, . . . , t2)
)T

go
qk,...,q2

(tk, . . . , t2)dt2 . . . dtk

)
Kq1,q2e

Aq1 t1dt1

=
∫ ∞

0
e
AT

q1
t1KT

q1,q2
Q(k−1)

q2
Kq1,q2e

Aq1 t1dt1. (19)

The linear observability Gramian (for the case with no switching) Q(1)
q which corresponds

to mode q ∈ {1, 2}, can be written as
Q(1)

q =
∫ ∞

0

(
go
q(t)

)T go
q(t)dt =

∫ ∞

0
eA

T
q tCT

q CqeAq t dt. (20)

It is a well known result that Q(1)
q satisfies the following Lyapunov equation:

AT
q Q(1)

q + Q(1)
q Aq + CT

q Cq = 0. (21)

Proposition 2 With Assumption 1, the level k observability Gramians corresponding to modes
1 and 2 defined in (18) are the unqiue solution of the recusive systems of linear equations

AT
1 Q

(k)
1 + Q(k)

1 A1 + KT
1 Q

(k−1)
2 K1 = 0, (22)

AT
2 Q

(k)
2 + Q(k)

2 A2 + KT
2 Q

(k−1)
1 K2 = 0, (23)

where the starting point is represented by the linear Gramians (with no switching) �
(1)
q1 in (21)

that correspond to the first level.

Proof of Proposition 4 By multiplying the identity in (19) with AT
q1

to the left and with Aq1 to
the right, we write

AT
q1
Q(k)

q1
+ Q(k)

q1
Aq1 =

∫ ∞

0
AT

q1
e
AT

q1
t1KT

q1,q2
Q(k−1)

q2
Kq1,q2e

Aq1 t1dt1

+
∫ ∞

0
e
AT

q1
t1KT

q2,q1
Q(k−1)

q2
Kq1,q2e

Aq1 t1Aq1dt1

=
∫ ∞

0

d

dt1

(
e
AT

q1
t1KT

q1,q2
Q(k−1)

q2
Kq1,q2e

Aq1 t1dt1

)
= −KT

q1,q2
Q(k−1)

q2
Kq2,q1 .
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Hence it follows that, for q1, q2 ∈ {1, 2} with q1 �= q2, we write

AT
q1
Q(k)

q1
+ Q(k)

q1
Aq1 + KT

q1,q2
Q(k−1)

q2
Kq1,q2 = 0.

which proves the statements in (22) and (23).

3.3 Infinite Gramians and Lyapunov equations

Next, we will propose a definition of reachability/observability Gramians which collects level
k reachability/observability Gramians. We will start with reachability Gramians.

Definition 5 Introduce the infinite reachability Gramian Pq1 corresponding to mode q1 ∈
{1, 2} of the LSS system � as

Pq1 =
∞∑

k=1

∫ ∞

0
· · ·

∫ ∞

0
gr
q1,q2,...,qk

(t1, t2, . . . , tk)
(
gr
q1,q2,...,qk

(t1, t2, . . . , tk)
)T

dt1 . . . dtk,

⇒ Pq1 =
∞∑

k=1

P(k)
q1

= P(1)
q1

+ P(2)
q1

+ . . . , (24)

in terms of the multivariate functions gr
q in (10) or matrices P(k)

q1 in (11).

Note that Pq1 is computed by taking into account the inner products of energy functionals
associated to all possible switching sequences (of any length k) that start in mode q1.

Definition 6 Introduce the infinite observability Gramian Qq1 corresponding to mode q1 ∈
{1, 2} of the LSS system � as

Qq1 =
∞∑

k=1

∫ ∞

0
· · ·

∫ ∞

0

(
go
qk,...,q2,q1

(tk, . . . , t2, t1)
)T go

qk,...,q2,q1
(tk, . . . , t2, t1) dt1dt2 . . . dtk

Qq1 =
∞∑

k=1

Q(k)
q1

= Q(1)
q1

+ Q(2)
q1

+ . . . (25)

Note that Qq1 is computed by taking into account the inner products of energy functionals
associated to all possible switching sequences (of any length k) that end in mode q1.

Note that the existince of the newly defined Gramians is not evident. The following result
from [42] addresses the existence of the newly defined Gramians. In a nutshell, it states that
this holds if the norm of the coupling matrices is sufficiently small. In order to state this result,
we need the following notation. Write the matrices {Pq ,Aq ,Bq ,Cq}, q ∈ {1, 2} and {Kq1,q2},
q1, q2 ∈ {1, 2} in block-diagonal format, as

XD =
[
X1 0
0 X2

]
, X ∈ {A,B,C,P}, K D=

[
0 K1

K2 0

]
. (26)

Proposition 3 If

AD is stable and ‖K D‖ = max(‖K1‖, ‖K2‖) �
√
2α

β
, (27)

where α, β > 0 are such that ‖eADt‖ � βe−αt . for all t ∈ R+,1 then the infinite sums in
(24)–(25) are absolutely summable, and hence the reachability and observability Gramians in
(24) – (25) exist.

1Note that if AD is stable, then there always exist constants α, β > 0 such that ‖eADt‖ � βe−αt holds.
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Infinite reachability/observability Gramians satisfy Sylvester equations.

Proposition 4 Assume (27) of Proposition 3 holds. Then the infinite reachability Gramians
defined in (24) satisfy the following system of generalized coupled Lyapunov equations{

A1P1 + P1AT
1 + K2P2KT

2 + B1BT
1 = 0,

A2P2 + P2AT
2 + K1P1KT

1 + B2BT
2 = 0.

(28)

Proof of Proposition 5 By adding the equalities stated in (15) and (16) for k > 2 as well as the
one corresponding to k = 1 (in (13)), it follows that

(
Aq1P(1)

q1
+ P(1)

q1
AT

q1
+ Bq1B

T
q1

) +
∞∑

k=2

(
Aq1P(k)

q1
+ Pq1A

T
q1

+ Kq2,q1P(k−1)
q2

KT
q2,q1

) = 0

⇒ Aq1

(∑∞
k=1 P

(k)
q1

) + (∑∞
k=1 P

(k)
q1

)
AT

q1
+ Kq2,q1

(∑∞
k=1 P

(k)
q1

)
KT

q2,q1
+ Bq1B

T
q1

= 0.

⇒ Aq1Pq1 + Pq1A
T
q1

+ Kq2,q1Pq1K
T
q2,q1

+ Bq1B
T
q1

= 0 ∀q1 �= q2 ∈ {1, 2},
which shows the validity of the equalities introduced in (28).

Proposition 5 Assume (27) of Proposition 3 holds. Then the infinite observability Gramians
defined in (25), satisfy the following system of generalizaed coupled Lyapunov equations{

AT
1 Q1 + Q1A1 + KT

1 Q2K1 + CT
1 C1 = 0,

AT
2 Q2 + Q2A2 + KT

2 Q1K2 + CT
2 C2 = 0,

(29)

in terms of the multivariate functions go
q in (10) and matrices Q(k)

q1 in (18).

Proof of Proposition 6 By adding the equalities stated in (22) and (23) for k > 2 as well as the
one corresponding to k = 1 (in (20)), it follows that(

AT
q1
Q(1)

q1 + Q(1)
q1 Aq1 + CT

q1
CT

q1

) + ∑∞
k=2

(
AT

q1
Q(k)

q1 + Qq1Aq1 + KT
q1,q2

Q(k−1)
q2 Kq1,q2

)
= 0 ⇒ AT

q1

(∑∞
k=1 Q

(k)
q1

) + (∑∞
k=1 Q

(k)
q1

)
Aq1 + KT

q1,q2

(∑∞
k=1 Q

(k)
q1

)
Kq1,q2 + CT

q1
Cq1 = 0.

⇒ AT
q1
Qq1 + Qq1Aq1 + KT

q1,q2
Qq1Kq1,q2 + CT

q1
Cq1 = 0 ∀q1 �= q2 ∈ {1, 2},

which shows the validity of the equalities presented in (29).

Remark 5 Instead of solving the two equations in (29) separately, one can solve one equation

ADPD + PDAT
D + K DPDKT

D+ BDBT
D = 0, (30)

and recover the reachability Gramians P1 and P2 as block diagonal entries of PD.

Remark 6 Additional to (26), write the matrices {Qq}, q ∈ {1, 2} in block-diagonal format,

as QD =
[
Q1 0
0 Q2

]
. Hence, instead of solving the two equations in (29) separately, one can

solve one equation
AT
DQD + QDAD + KT

DQDK D+ CT
DCD = 0, (31)

and recover the observability Gramians as the block diagonal entries of QD.

For high order examples, it is not trivial to solve such generalized Lyapunov equations as
(30) and (31). A possible approach is to approximate these solutions with truncated sums of
positive definite matrices,

PD ≈
H∑

k=1

P(k)
D , QD ≈

H∑
k=1

Q(k)
D , H � 1, (32)
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where P(k)
D and Q(k)

D can be written as solutions of regular Lyapunov equations,

ADP
(k)
D + P(k)

D AD + K DP
(k−1)
D KT

D= 0,

AT
DQ

(k)
D + Q(k)

D AD + KT

DQ
(k−1)
D K D= 0, k � 2.

For practical applications, solving many such Lyapunov equations is expensive. One can com-
pute low rank factors instead of the full solutions to speed up the calculations ad avoid memory
problems (for example, by using the toolbox in [32]).

4 Extension to LSS with D ≥ 2 modes

Below, we extend the definitions of reachability/observability Gramians presented above for
the case D = 2 to the general case of D > 2 modes.

To this end, let � = {1, 2, . . . , D}, D � 2 and fix the starting mode q1 ∈ �. Introduce
the switching scenario (q1, q2, . . . , qk) ∈ �k . Since we exclude equal neighboring modes, i.e.
qj �= qj+1, 1 � j � k − 1, it follows that there are (D − 1)k−1 ways of choosing such a
switching sequence (q1, q2, . . . , qk). For D = 2, there was only one possible sequence chosen
uniquely.

For general number of modes D, we have to take into consideration the inner products
corresponding to all sequences. Hence we adapt the definition of P(k)

q1 from (11) as follows

P(k)
q1

=
∫ ∞

0
· · ·

∫ ∞

0

D∑
q2=1, q2 �=q1

. . .

D∑
qk=1, qk �=qk−1

gr
q1,q2,...,qk

(t1, t2, . . . , tk)

(
gr
q1,q2,...,qk

(t1, t2, . . . , tk)
)T

dt1dt2 . . . dtk. (33)

where gr
q1,q2,...,qk

(t1, t2, . . . , tk) : Rk+ → R
nq1×m is defined in the exactly same way as in (10),

but now for the general case of D ≥ 2, i.e.,

gr
q1,q2,...,qk

(t1, t2, . . . , tk) = eAq1 t1Kq2,q1e
Aq2 t2Kq3,q2 · · ·Kqk,qk−1e

Aqk
tkBqk

.

Note that the infinite integrals in (33) are well defined, due to Assumption 1. Again, one can
write a recurrence relation by fixing the mode indexes q3, . . . , qk ,

gr
q1,q2,...,qk

(t1, t2, . . . , tk) =
D∑

q2=1, q2 �=q1

(
eAq1 t1Kq2,q1

)
gr
q2,q3,...,qk

(t2, t3, . . . , tk).

Next, it follows that the kth reachability Gramian corresponding to mode q1 can be written in
terms of the (k − 1)th reachability Gramians corresponding to modes � \ {q1}, as

P(k)
q1

=
∫ ∞

0

D∑
q2=1, q2 �=q1

eAq1 t1Kq2,q1P(k−1)
q2

KT
q2,q1

e
AT

q1
t1dt1. (34)

Similarly, we adapt the definition of Q(k)
q1 from (18) as follows

Q(k)
q1

=
∫ ∞

0
· · ·

∫ ∞

0

D∑
q2=1, q2 �=q1

. . .

D∑
qk=1, qk �=qk−1

gr
q1,q2,...,qk

(t1, t2, . . . , tk)

(
gr
q1,q2,...,qk

(t1, t2, . . . , tk)
)T

dt1dt2 . . . dtk. (35)

where go
qk,...,q2,q1

(tk, . . . , t2, t1) : Rk → R
p×nq1 is defined as in (36), i.e.,

go
qk,qk−1,...,q1

(tk, . . . , t2, t1) = Cqk
eAqk

tkKqk−1,qk
e
Aqk−1 tk−1Kqk−2,qk−1 · · ·Kq1,q2e

Aq1 t1 (36)
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Similarly to the reachability Gramians, kth observability Gramian corresponding to mode q1
can be written in terms of the (k−1)th observability Gramians corresponding to modes�\{q1},
as

Q(k)
q1

=
∫ ∞

0

D∑
q2=1, q2 �=q1

(Kq2,q1e
Aq1 t1)T P(k−1)

q2
Kq2,q1e

AT
q1

t1dt1. (37)

Note that the infinite integrals in (33)–(35) are well defined, due to Assumption 1. Again,
one can write a recurrence relation by fixing the mode indexes q3, . . . , qk ,

gr
q1,q2,...,qk

(t1, t2, . . . , tk) =
D∑

q2=1, q2 �=q1

(
eAq1 t1Kq2,q1

)
gr
q2,q3,...,qk

(t2, t3, . . . , tk).

Next, it follows that the kth reachability and observability Gramian corresponding to mode
q1 can be written in terms of the (k − 1)th reachability respectively observability Gramians
corresponding to modes � \ {q1}, as

P(k)
q1

=
∫ ∞

0

D∑
q2=1, q2 �=q1

eAq1 t1Kq2,q1P(k−1)
q2

KT
q2,q1

e
AT

q1
t1dt1.Q(k)

q1
(38)

=
∫ ∞

0

D∑
q2=1, q2 �=q1

(Kq2,q1e
Aq1 t1P(k−1)

q2
KT

q2,q1
e
AT

q1
t1dt1. (39)

Definition 7 Define the infinite reachability Gramian corresponding to mode q1 ∈ �, as

Pq1 =
∞∑

k=1

P(k)
q1

. (40)

Definition 8 Define the observability Gramians as

Qq1 =
D∑

q1=1

Q(k)
q1

. (41)

Similarly to the case of D = 2, the question of existence of infinite reachabil-
ity/observability Gramians arises. It turns out that there exist an extension of Proposition 3 to
the general case D � 2. Again, the justification of what we propose comes from Theorem 2 in
[42], which addresses the existence of bilinear infinite Gramians for MIMO systems. In order
to present the announced result, we need the following notation, which is an extension of (26)
defined for D = 2.

Let τn
k : {1, . . . , n} → {1, . . . , n} be a cyclic permutation of index k where k ∈

{0, 1, . . . , n − 1}. The explicit rule is given by τn
k (�) = mod(k + �, n), � ∈ {1, . . . , n}, while

the permutation τn
k can also be written as,

τn
k =

(
1 2 . . . n

mod(k + 1, n) mod(k + 2, n) . . . mod(k + n, n)

)
, (42)

mod : {1, . . . , 2n − 1} → {1, . . . , n}, mod(k, n) =
⎧⎨
⎩

k, if 1 � k � n − 1
n, if k = n

k − n, if n + 1 � k � 2n − 1
.

Introduce the permutation matrix �n
k ∈ R

n×n corresponding to τn
k , that has the �th row

equal to the unit vector eT
τn
k (�),n

. Note that �n
k�

n
n−k = In and (�n

k )
T = �n

n−k, k ∈ {0, . . . , n}.
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For example, write

τ 30 =
(
1 2 3
1 2 3

)
, τ 31 =

(
1 2 3
2 3 1

)
, τ 32 =

(
1 2 3
3 1 2

)
, and �3

2 =
⎡
⎣ 0 0 1
1 0 0
0 1 0

⎤
⎦ .

For all X ∈ {A,B,C,P,Q} and k ∈ {1, . . . , D − 1}, consider the notations

XD =

⎡
⎢⎢⎢⎣
X1 0 . . . 0
0 X1 . . . 0

0 0
. . . 0

0 0 . . . XD

⎤
⎥⎥⎥⎦ , K Dk = �̃

D

k

⎡
⎢⎢⎢⎢⎣

K1,τD
D−k(1)

0 . . . 0

0 K2,τD
D−k(2)

. . . 0

0 0
. . . 0

0 0 . . . KD,τD
D−k(D)

⎤
⎥⎥⎥⎥⎦ , (43)

where �̃
D

k ∈ R

∑D
i=1 ni×∑D

i=1 ni is a block-permutation matrix written in terms of�D
k , by replac-

ing its one entries with identity matrices Ini
of appropriate dimensions. For example, choose

D = 3 and k = 2, and write the matrix �̃
3
2 as:

�̃
3
2 =

⎡
⎣ 0 0 In2
In3 0 0
0 In1 0

⎤
⎦ ∈ R

(n1+n2+n3)×(n1+n2+n3).

Note that, following the definition of �n
k , we can write that �̃

3
2 = �

n1+n2+n3
n1+n3

.

Proposition 6 Assume that

AD is stable and ‖
‖ �
√
2α

β
, (44)

where 
 =
√

‖∑D−1
k=1 K DkK

T
Dk
‖ and the scalars α, β. α, β > 0 are such that ‖eADt‖ � βe−αt

holds for all t ∈ R+. Then the infinite sums (33)–(35) are absolutely convergent, and hence
the reachability Gramians in (33) and observability Gramians (41) are well-defined.

Hence, the existence of the new proposed Gramians is assured when, basically, the norm
of the coupling matrices is sufficiently small. Note also that, if D = 2, the exact result from
(27) is obtained. Note that we can generalize the results form Remark 3 and 4 for the case
with D modes. Moreover, the equations satisfied by the reachability Gramians Pi , for i ∈
{1, 2, . . . , D} can be extended from (28), as follows

AiPi + PiAT
i +

D∑
j=1, j �=i

Kj,iPjKT
j,i + BiBT

i = 0, (45)

if the condition (44) of Proposition (6) holds. Similarly, if the condition (44) of Proposition (6)
holds, then the system of generalized Lyapunov equations

AT
i Qi + QiAi +

D∑
j=1, j �=i

KT
i,jQjKi,j + CT

i Ci = 0. (46)

is satisfied by the matrices Qi , ∈ �.

Remark 7 One can rewrite the D equations stated in (45) as one equation in the following way,

ADPD + PDAT
D +

D−1∑
k=1

K DkPDKT

Dk + BDBT
D = 0. (47)
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Remark 8 Similarly, we can rewrite the equations in (46) as only one equation,

AT
DQD + QDAD +

D−1∑
k=1

KT

DkQDK Dk + CT
DCD = 0. (48)

The Gramians introduced in Definitions 7 and 8 are mainly going to be used for the original
possibly large-scale system. In this case, we would like to avoid computing the Gramians as
solutions of LMIs (as in [31]). Additionally, we present a more relaxed definition of Gramians
which will turn out to be useful for model reduction.

Definition 9 Let M > 0 be a constant The collection of matrices {Pi > 0}Di=1 is said to be
M-relaxed reachability Gramians, if they satisfy the following collection of LMI,

∀i ∈ {1, 2, . . . , D} : AiPi + PiAT
i + MPi + BiBT

i < 0

∀q ∈ {1, 2, . . . , D} :
D∑

i=1,i �=q

Ki,qPiKT
i,q > 0 (49)

Similarly, the collection of matrices {Qi > 0}Di=1 is said to be M-relaxed reachability
Gramians, if they satisfy the following collection of LMI.

∀i ∈ {1, 2, . . . , D} : AT
i Qi + QiAi + MQi + CT

i Ci < 0,

∀q ∈ {1, 2, . . . , D} :
D∑

i=1,i �=q

KT
q,iQiKi,q > 0. (50)

Note that there might exist several M-relaxed reachability/observability Gramians.

Remark 9 (Relationship between Gramians and relaxed Gramians) Let {Pq}Dq=1 be infinite
reachability Gramians according to Definition 7 and assume that for all q ∈ {1, 2, . . . , D},∑D

i=1,i �=q Ki,qPiKT
i,q is strictly positive definite. Then for all q ∈ {1, 2, . . . , Q} there exists

Mq > 0such that
∑D

i=1,i �=q Ki,qPiKT
i,q > MqPq and hence, by taking M = minD

q=1 Mq ,

{Pq}Dq=1 satisfy (49) for a suitable constant M > 0. Similarly, if {Qq}Dq=1 are infinite observ-
ability Gramians according to Definition 8, and assume that for all q ∈ {1, 2, . . . , D},∑D

i=1,i �=q K
T
q,iQiKT

i,q is strictly positive definite. Then there exists a constant M > 0 such that

{Qq}Dq=1 satisfy (50) for a suitable constant M > 0. That is, under mild assumptions, infinite
reachability (resp. observability) Gramians are also M-relaxed reachability (resp. observabil-
ity) Gramians for a suitable constant M > 0. Note that the converse is not necessarily
true.

5 Main results

In this section, we will provide a collection of results that involve the new defined infinite
Gramians. In particular, these results will correspond to the more general case with D discrete
modes, as presented in Definitions 7, 8 and 9. In this section, we will assume the following.

Assumption 51 There exist M > 0 and positive definite matrices {Pq}Dq=1, {Qq}Dq=1 such
that they satisfy (49)–(50).
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In particular, if Assumption 2 holds, then the sets of M-relaxed reachability and observ-
ability Gramians are not empty. Moreover, in this case, all the linear subsystems are stable, i.e.
Assumption 1 holds. Finally, if there exists infinite reachability and observability Gramians
{Pq}Dq=1, {Qq}Dq=1, for which

∑D
i=1,i �=q Ki,qPiKT

i,q > 0,
∑D

i=1,i �=q K
T
q,iQiKi,q > 0, for all

q = 1, 2, . . . , D, then by Remark 9 they satisfy Assumption 2.

5.1 Energy bounds relating the input or output signals

First, we present the system theoretic interpretation approach; one can write upper and lower
bounds of the energy of observation and respectively, of the energy of control in terms of the
quantities Qi and Pi .

5.1.1 Observability Gramians

Lemma 1 Consider an LSS � as defined in (1) which satisfies Assumption 2. Consider the M-
relaxed observability Gramians {Qq}Dq=1 from Assumption 2. Then, there exists a dwell time
μ > 0 such that for any switching signal σ of the form (2), with ti � μ, ∀i � 1, and any
solution (x, u, σ, y) of � with zero input u(t) = 0, the following holds

x(0)T Qq1
x(0) �

∫ t

0
yT (s)y(s)ds, ∀t > 0, (51)

where q1 ∈ � represents the index of the first discrete mode in which � operates.

Proof of Lemma 1 It is easy to see that KT
i,jQjKi,j , i, j = 1, . . . , D are positive semi-

definite, hence there scalars γi,j > 0 to satisfy the following inequalities γi,jKT
i,jQjKi,j <

Qi . Introduce γ = min
i,j∈�, i �=j

γi,j and M = min
i∈�

Mi . Choose the minimal dwell times as μ =
− ln γ

M
. For any piecewise continuous switching signal σ : R → � satisfying the conditions

in (2) and with minimal dwell time μ, we will prove the bound stated in (51). Recall that Qq

satisfies (50). Let x(t) the corresponding solution to (1), and also introduce the functions

V (x(t)) =
{
xT (t)Qq1x(t), t ∈ [0, t1)
xT (t)Qqi

x(t), t ∈ [Ti−1, Ti), i � 2
, (52)

W(x(t)) =
{

eMtx(t)T Qq1x(t), t ∈ [0, t1)
eM(t−Ti−1)V (x(t)), t ∈ [Ti−1, Ti), i � 2

, (53)

where Ti = ∑i
�=1 t�. By considering the uncontrolled case, the input function is considered

to be u(t) = 0, ∀t . Using that dx(t)
dt

= Aqi
x(t), write the derivative of V (t) from (52) for

t ∈ [Ti−1, Ti),

∂V (x(t))
∂t

= dxT (t)

dt
Qqi

x(t) + xT (t)Qqi

dx(t)
dt

= xT (t)
(
AT

qi
Qqi

+ Qqi
Aqi

)
x(t).

For t ∈ [Ti−1, Ti), compute the time derivative of W(x(t)) as defined in (3) in terms of the one
corresponding to V (x(t)), as

∂W(x(t))
∂t

= MeM(t−Ti−1)V (x(t)) + eM(t−Ti−1)
∂V (x(t))

∂t

= eM(t−Ti−1)
(
MV (x(t)) + xT (t)

(
AT

qi
Qqi

+ Qqi
Aqi

)
x(t)

)

= eM(t−Ti−1)xT (t)
(
AT

qi
Qqi

+ Qqi
Aqi

+ MQi

)
x(t). (54)
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By substituting the inequality in (50) into the above relation (54), and using that y(t) =
Cix(t), t ∈ [Ti−1, Ti), it follows that

∂W(x(t))
∂t

� −eM(t−Ti−1)y(t)T y(t). (55)

Introduce the following notation

x(T −
i ) = lim

t↗Ti

x(t), V (x(T −
i )) = lim

t↗Ti

V (x(t)), W(x(T −
i )) = lim

t↗Ti

W(x(t)). (56)

By integrating the inequality (55) from Ti−1 to t ∈ [Ti−1, Ti), it follows that

W(x(t)) − W(x(Ti−1)) � −
t∫

Ti−1

eM(s−Ti−1)y(s)T y(s)ds � −
t∫

Ti−1

y(s)T y(s)ds. (57)

From (52) and (53), it follows that

W(x(T −
i )) = eM(Ti−Ti−1)V (x(T −

i )) = eMti V (x(T −
i )), (58)

and additionally, using that x(Ti) = Kqi ,qi+1x(T
−
i ), write

W(x(Ti)) = V (x(Ti)) = xT (T −
i )KT

qi ,qi+1
Qqi+1Kqi ,qi+1x(T

−
i ). (59)

From (59) and using that γ = min
i,j∈�, i �=j

γi,j , write

W(x(Ti)) �
1

γ
x(T −

i )T Qix(T
−
i ) = 1

γ
V (x(T −

i )). (60)

By combining (58) and (60), we can write

W(x(Ti)) �
e−Mti

γ
W(x(T −

i )). (61)

Since switching signals σ with minimal dwell time μ are considered, it follows that ti � μ ⇒
e−Mti

γ
� e−Mμ

γ
. Since, by definition μ = − ln γ

M
, we get that e−Mti

γ
� 1. Therefore, from (61), it

follows that
W(x(Ti)) � W(x(T −

i )). (62)

Putting together the inequalities in (57) and (62), it follows that

W(x(Ti)) − W(x(Ti−1)) � −
Ti∫

Ti−1

y(s)T y(s)ds. (63)

Now using the convention T0 = 0 and adding all the inequalities in (63), we obtain

�∑
i=1

W(x(Ti)) − W(x(Ti−1)) � −
�∑

i=1

Ti∫
Ti−1

y(s)T y(s)ds

⇒ W(x(T�)) − W(x(0)) � −
T�∫
0

y(s)T y(s)ds. (64)

Since W(x(T�)) = xT (T�)Qq�+1x(T�) � 0, from (64) it follows that,

W(x(0)) �
T�∫
0

y(s)T y(s)ds, ∀ � � 0. (65)

Now using that W(x(0)) = x(0)T Qq1x(0), the result in (51) is hence proven.
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5.1.2 Reachability Gramians

Lemma 2 Consider an LSS � as defined in (1) which satisfies Assumption 2 holds. Let
{Pq}Dq=1 be the M-relaxed reachability Gramians from Assumption 2. Then, there exists μ > 0
such that for any switching signal σ in (2), with minimal dwell time μ (i.e. ti � μ and any
solution (x, u, σ, u) of � with x(0) = 0, the following bound holds

xT (T −
� )P−1

q�
x(T −

� ) �
∫ T�

0
uT (s)u(s)ds. (66)

where x(T −
� ) = lim

t↗T�

x(t).

Proof of Lemma 2 Since for every i �= j ∈ �, Kj,iP−1
j KT

j,i are positive semi-definite, there

exist scalars γi,j > 0, such that γi,jKj,iP−1
j KT

j,i < P−1
i . Introduce γ = min

i,j∈�, i �=j
γi,j and

let μ = − ln γ
M

. For any piecewise continuous switching signal σ : R → � satisfying the
conditions in (2) and with minimal dwell time μ, we will prove the bound stated in (66). Recall
that Pq satisfies (49). By multiplying the inequality (49) with P−1

i both to the left and to the
right, we write

AT
i P−1

i + P−1
i Ai + MP−1

i + P−1
i BiBT

i P−1
i � 0. (67)

Let x(t) be the corresponding solution to (1), and also introduce the function

V (x(t)) =
{
xT (t)P−1

q1
x(t), t ∈ [0, t1),

xT (t)P−1
qi

x(t), t ∈ [Ti−1, Ti), i � 2
. (68)

Using that ẋ(t) = Aqi
x(t) + Bqi

u(t) and the definition of V (x(t)) in (68), for t ∈ [Ti−1, Ti),
we have

∂V (x(t))
∂t

= dxT (t)
dt

P−1
qi

x(t) + xT (t)P−1
qi

dx(t)
dt

= xT (t)
(
AT

qi
P−1

qi
+ P−1

qi
Aqi

)
x(t)

+2x(t)T P−1
qi

Bqi
u(t),

and by using the inequality in (67), it follows that

∂V (x(t))
∂t

+ MV (x(t)) � −x(t)T P−1
qi

Bqi
BT

qi
P−1

qi
x(t) + 2x(t)T P−1

qi
Bqi

u(t)

= −‖BT
qi
P−1

qi
x(t) − u(t)‖22 + u(t)T u(t). (69)

Hence, the following inequality holds as,

∂V (x(t))
∂t

+ MV (x(t)) � u(t)T u(t), t ∈ [Ti−1, Ti). (70)

By denoting W(x(t)) = eM(t−Ti )V (x(t)), for t ∈ [Ti−1, Ti), it follows that

∂W(x(t))
∂t

= eM(t−Ti )
(∂V (x(t))

∂t
+ MV (x(t))

)
, (71)

and by combining (70) and (71) and integrating from Ti−1 to t, we obtain

W(x(t)) − W(x(Ti−1)) �
t∫

Ti−1

eM(s−Ti )uT (s)u(s)ds. (72)

Following the same line of thought as in Section 4.1.1, one can show that the following holds:
W(x(Ti)) � W(x(T −

i )), where W(x(T −
i )) = lim

t↗Ti

W(x(t)) for i > 0 and W(x(0−)) =
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W(x(0)). By combining this statement with the inequality in (72), and by using the fact that
eM(s−Ti ) � 1, ∀s ∈ [Ti−1, Ti), one can write

W(x(T −
i )) − W(x(T −

i−1)) �
Ti∫

Ti−1

eM(s−Ti )uT (s)u(s)ds �
Ti∫

Ti−1

uT (s)u(s)ds

since s − Ti � 0 ⇒
�∑

i=1
W(x(T −

i )) − W(x(T −
i−1)) �

�∑
i=1

Ti∫
Ti−1

uT (s)u(s)ds

⇒ W(x(T −
� )) − W(x(0−)) �

T�∫
0
uT (s)u(s)ds. (73)

Since x(0) = 0, it follows that W(x(0−)) = 0. Also, from the definition of the function W,
it is clear that W(x(T −

� )) = V (x(T −
� )) = xT (T −

� )P−1
� x(T −

� ). Hence, from (73), we directly
conclude that

xT (T −
� )P−1

q�
x(T −

� ) �
T�∫
0

uT (s)u(s)ds, ∀� � 1, (74)

which proves the result in (66).

5.2 Balancing transformation and truncation

In this section, we introduce the procedure for model order reduction by balanced truncation,
and we prove a bound of the approximation error.

Procedure 51 Let � = (n1, n2, . . . , nD, {(Aq ,Bq ,Cq)|q ∈ �}, {Kqi ,qi+1 |qi, qi+1 ∈ �}) be
a linear switched system. Define the balanced LSS �̄ = (n1, n2, . . . , nD, {(Āq , B̄q , C̄q)|q ∈
�}, {K̄qi ,qi+1 |qi, qi+1 ∈ �}) as follows
1. Compute M-relaxed reachability {Pq > 0}Dq=1 Gramians which satisfy (49) and M-

relaxed observability Gramians {Qq > 0}Dq=1 which satisfy (50).

2. Find square factor matrices Uq so that Pq = UqUT
q . Additionally, compute the eigenvalue

decomposition of the symmetric matrix UT
q QqUq , as

UT
q QqUq = Vq�2

qV
T
q ,

where �q is a diagonal matrix with the real entries sorted in decreasing order.
3. Construct the transformation matrices Sq ∈ R

nq×nq as follows

Sq = �
1/2
q VT

q U
−1
q . (75)

4. The matrices corresponding to the balanced realization �̄ are computed in the following
way (for any q, q1, q2 ∈ �)

Āq = SqAqS−1
q , B̄q = SqBq , C̄q = CqS−1

q , K̄q1,q2 = Sq2Kq1,q2S
−1
q1

. (76)

Proposition 7 Condsider the matrices P̄q = SqPqST
q , Q̄q = (

S−1
q

)T QqS−1
q , q =

1, 2, . . . , D. Then for every q = 1, 2, . . . , D, P̄q = �q = Q̄q , and {P̄q}Dq=1, {Q̄q}Dq=1 are

M-relaxed reachability and observability Gramians respectively of �̄.
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Proof To prove these results, proceed as follows

SqPqST
q = (

�
1/2
q VT

q U
−1
q

)(
UqUT

q

)(
�

1/2
q VT

q U
−1
q

)T = �
1/2
q VT

q Vq�
1/2
q = �q ,

and similarly for the observability transformed Gramian. The following result holds for any
i ∈ �:

Āi�i + �iĀ
T

i + M�i + B̄i B̄
T

i < 0,
D∑

j=1,i �=j

K̄j,i�j K̄
T

j,i > 0, (77)

Ā
T

i �i + �iĀi + M�i + C̄
T

i C̄i < 0,
D∑

j=1, j �=i

K̄
T

i,j�j K̄i,j > 0. (78)

We will prove only the first inequality since the proof for the second is similar. By multiplying
the equation in (49) corresponding to mode i with Si to the left and with ST

i to the right, we
write

SiAiPiST
i + SiPiAT

i S
T
i + MSiPiST

i + SiBiBT
i S

T
i < 0 ⇒(

SiAiS
−1
i

)(
SiPiST

i

) + (
SiPiST

i

)(
(S−1

i )T AT
i S

T
i

) + MSiPiST
i + SiBiBT

i S
T
i < 0

⇒ Āi�i + �iĀ
T

i + M�i + B̄i B̄
T

i < 0.

Finally, if we multiply
∑D

i=1,i �=j Kj,iPjKT
j,i > 0 by Si in the left and by ST

i on the right,
it follows

Si

D∑
j=1,i �=j

Kj,iPjKT
j,iS

T
i > 0 =⇒

D∑
j=1,i �=j

(SiKj,iS
−1
j )(SjPjST

j )((S−1
j )T KT

j,iS
T
i ) =

D∑
j=1,i �=j

K̄j,i�j K̄
T

j,i > 0.

That is, (77) holds.

After the system is rewritten in the equivalent balanced realization, the next step will be
to construct a reduced order system by eliminating states similar as to the linear case with no
switching. One can partition the balanced realization of the original LSS � in the following
way

Āi =
[
Ā
11
i Ā

12
i

Ā
21
i Ā

22
i

]
, B̄i =

[
B̄
1
i

B̄
2
i

]
, C̄i =

[
C̄
1
i C̄

2
i

]
, K̄i,j =

[
K̄

11
i,j K̄

12
i,j

K̄
21
i,j K̄

22
i,j

]
, (79)

where Ā
11
i ∈ R

ri×ri , K̄
11
i,jR

rj ×ri , B̄
1
i ∈ R

ri , C̄
1
i ∈ R

1×ri . The truncation orders are chosen to
be less than the dimensions of the subsystems, i.e. ri � ni .

Definition 10 Consider the balanced LSS �̄ from Procedure 51 and consider the par-
titioning of its system matrices as in (79). Define the reduced order LSS �̂ =
(r1, r2, . . . , rD, {(Âq , B̂q , Ĉq)|q ∈ �}, {K̂qi ,qi+1 |qi, qi+1 ∈ �}) as follows

Âq = Ā
11
q , B̂q = B̄

1
i , Ĉq = C̄

1
q , K̂q1,q2 = K̄

11
q1,q2

, (80)

where rq � nq and q, q1, q2 ∈ �.
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By writing the dynamics of both the original balanced system �̄ and the reduced system �̂,
as

˙̄x(t) = Āqi
x̄(t) + B̄qi

u(t), ˙̂x(t) = Âqi
x̂(t) + B̂qi

u(t), t ∈ [Ti−1, Ti), (81)

and continuing with the transition of the state variable from mode qi to mode qi+1 at time Ti

again for both systems

x̄(Ti) = K̄qi ,qi+1 lim
t↗Ti

x̄(t), x̂(Ti) = K̂qi ,qi+1 lim
t↗Ti

x̂(t), (82)

we finally conclude that the original output and the one corresponding to the reduced LSS are
written as

ȳ(t) = C̄qi
x̄(t) = Cqi

x(t) = y(t), ŷ(t) = Ĉqi
x̂(t). (83)

We also partition the balanced Gramians corresponding to the system �̄ as

�i =
[

�̂i 0
0 �̌i

]
, �̂i ∈ R

ri , �̌i ∈ R
ni−ri . (84)

By plugging in the matrices in (79) and (84), into the equation (77)–(78), it follows that

Âi�̂i + �̂iÂ
T

i + M�̂i + B̂i B̂
T

i < 0ri

D∑
j=1,i �=j

K̂j,i�̂j K̂
T

j,i > 0ri (85)

Â
T

i �̂i + �̂iÂi + M�̂i + Ĉ
T

i Ĉi < 0ri

D∑
j=1,i �=j

K̂
T

j,i�̂j K̂j,i > 0ri . (86)

Hence, the reduced-order diagonal matrices �̂i , i ∈ � are also M-relaxed reachabil-
ity/observability Gramians of the reduced system �̂.

5.2.1 Error bound

In this section we present a bound on the L2 norm of the difference between the observed
outputs corresponding to the original LSS and to the reduced LSS. We will show that this
bound depends on the L2 norm of the chosen control input and on the neglected elements
of the balanced reduced Gramians. Some of the derivations presented here are inspired from
techniques used prior in the dissertations [8, 33] and in the more recent contribution [5], that
provides a bound for BT applied to stochastic systems.

We assume that all pairs of the original Gramians (Pi ,Qi ), defined as the solutions of the
equations (45) and (46), are transformed through the corresponding balanced transformations
Vi , into (�i , �i ) where �i are diagonal matrices (i ∈ �).

Recall the inequalities (77) and (78). By multiplying the first inequality of (77) with �−1

to the left and to the right, one can again write that

Ā
T

i �−1
i + �−1

i Āi + M�−1
i + �−1

i B̄i B̄
T

i �−1
i < 0. (87)

From (87) and (78) it directly follows that the following relations hold for any vectors z and v

2(Āiz + B̄iv)�
−1
i x � ‖v‖22 − MzT �−1

i z, (88)

2zT Ā
T

i �iz � −‖C̄iz‖22 − MzT �iz. (89)

Next, for all i ∈ {1, 2, . . . , D}, proceed to partition the transformed Gramians �i

�i =
[

�̂i 0
0 βi

]
, βi ∈ R. (90)
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Let β = max
i∈�

βi . Let (x̄, u, σ, y) be a solution of �̄. By splitting the state variable x̄(t) as

x̄(t) = [
x̄1(t) x̄2(t)

]T
, with x̄1(t) ∈ R

n−1, x̄2(t) ∈ R, introduce real valued vectors

xo(t) =
[
x̄1(t) − x̂(t)

x̄2(t)

]
, xc(t) =

[
x̄1(t) + x̂(t)

x̄2(t)

]
. (91)

Note that the following holds:

y(t) − ŷ(t) = Cqi
xo(t), t ∈ [Ti−1, Ti).

Define the function

V (xo(t), xc(t)) = xo(t)
T �qi

xo(t) + β2
qi
xc(t)

T (t)�−1
qi

xc(t), t ∈ [Ti−1, Ti). (92)

Lemma 3 The temporal derivative of the function V, as defined in (92), satisfies

∂V (xo(t), xc(t))

∂t
� −MV (t) + 4β2‖u(t)‖22 − ‖y(t) − ŷ(t)‖22, (93)

for all t ∈ [Ti−1, Ti).

Proof of Lemma 3 By putting together (79), (80) and (81) and by using the notation in (91), we
can write that

ẋo(t) = Aqi
xo(t) +

[
0

B2
qi

(t)

]
u(t) +

[
0

A21
qi

(t)

]
x̄(t), (94)

ẋc(t) = Aqi
xc(t) + 2B2

qi
u(t) −

[
0

B2
qi

(t)

]
u(t) −

[
0

A21
qi

(t)

]
x̄(t). (95)

By using (94) and the inequality in (89), one can write that

d

dt
xo(t)

T �qi
xo(t) = 2xT

o (t)�qi
xo(t) + 2

( [
0

B2
qi
u(t) + A21

qi
x̂(t)

]T

�qi
xo(t)

)

� −MxT
o (t)�qi

xo(t)−‖Cqi
xo(t)‖22 + 2αo =−MxT

o (t)�−1
qi

xo(t)

−‖y(t)−ŷ(t)‖22 + 2αo, (96)

where

αo =
[

0
B2

qi
u(t) + A21

qi
x̂(t)

]T [
�̂qi

0
0 βqi

] [
x̄1(t) − x̂(t)

x̄2(t)

]

= βqi

(
B2

qi
u(t) + A21

qi
x̂(t)

)T x̄2(t). (97)

Similarly, by using (95) and the inequality in (88) for z = xc(t) and v = 2u(t), one can show
that

d

dt
xc(t)

T �−1
qi

xc(t) = 2
(
Aqi

xc(t) + Bqi
2u(t)

)
�−1

qi
xo(t)

−2

⎛
⎝

[
0

B2
qi
u(t) + Ā

21
qi
x̂(t)

]T

�−1
qi

xc(t)

⎞
⎠

� −MxT
c (t)�−1

qi
xc(t) + 4‖u(t)‖22 − 2αc, (98)

where

αc =
[

0
B2

qi
u(t) + A21

qi
x̄(t)

]T
[

�̂
−1
qi

0
0 β−1

qi

][
x̄1(t) + x̂(t)

x̄2(t)

]

= β−1
qi

(
B2

qi
u(t) + A21

qi
x̄(t)

)T x̂2(t). (99)
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From (97) and (99), observe that αo = β2
qi

αc. Hence, by adding the inequality in (96)

with the one in (98) multiplied by β2
qi
, it follows that

d

dt
xo(t)

T �qi
xo(t) + β2

qi

d

dt
xc(t)

T �−1
qi

xc(t) � −M
(
xo(t)

T �qi
xo(t)

+ β2
qi
xc(t)

T �−1
qi

xc(t)
) − ‖y(t) − ŷ(t)‖22 + 4β2

qi
‖u(t)‖22,

and by using the definition of V (t) in (92), it automatically proves the result in (93).

Introduce the concatenation of the state variables and of the coupling matrices
corresponding to the (balanced) original and reduced systems, t ∈ [Ti−1, Ti)

x̃(t) =
[
x̄(t)
x̂(t)

]
∈ R

2nqi
−1, K̃qi ,qi+1 =

[
K̄qi ,qi+1 0

0 K̂qi ,qi+1

]
∈ R

2nqi
−1×2nqi

−1.

(100)
From (82) and (100), it follows that x̃(Ti) = K̃qi ,qi+1 lim

t↗Ti

x̃(t). Note that the function

V defined in (92), can also be written as a function of x̃(t), as

V (x̃(t)) = x̃(t)T R̃qi
x̃(t) =

[
x̄(t)
x̂(t)

]T

R̃qi

[
x̄(t)
x̂(t)

]
, t ∈ [Ti−1, Ti), (101)

where the matrices R̃q ∈ R
2nq−1×2nq−1 are defined for any q ∈ �, as

R̃q =
⎡
⎣ �̂q 0 −�̂q

0 βq 0
−�̂q 0 �̂q

⎤
⎦ + β2

q

⎡
⎢⎣

�̂
−1
q 0 �̂

−1
q

0 βq 0

�̂
−1
q 0 �̂

−1
q

⎤
⎥⎦

=
⎡
⎢⎣

�̂q + β2
q �̂

−1
q 0 −�̂q + β2

q �̂
−1
q

0 2βq 0

−�̂q + β2
q �̂

−1
q 0 �̂q + β2

q �̂
−1
q

⎤
⎥⎦ . (102)

First, we present a result for one step reduction. The L2 norm of the output error
computed as the differences between the original output and the output corresponding
to the reduced system is bounded by the norm of the input.

Theorem 1 Let � = (n1, n2, . . . , nD, {(Aq,Bq,Cq)|q ∈ �}, {Kqi ,qi+1 |qi, qi+1 ∈
�}) be a linear switched system. Assume that � satisfies Assumption 51.

Let �̂ be a reduced order LSS from Definition 2 with ri = ni −1, i = 1, 2, . . . , D,
i.e.,

�̂ = (n1 − 1, n2 − 1, . . . , nD − 1, {(Âq, B̂q, Ĉq)|q ∈ �}, {K̂qi ,qi+1 |qi, qi+1 ∈ �}).
There exists μ > 0 such that for any switching signal σ of the form (2) with minimal
dwell time μ (i.e. ti > μ, ∀i), and any control input u ∈ L2(Rm), if (x, u, σ, y) is a
solution of � and (x̂, u, σ, ŷ) is a solution of �̂ and x(0) = 0, x̂(0) = 0, then

‖y − ŷ‖2 � 2β‖u‖2. (103)
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Proof of Theorem 1 Choose μ = − ln γ
M

as the minimal dwell time for the switching

signal σ(t), where γ ∈ (0, 1) is such that γ K̃
T

q,q̂R̃q̂K̃q,q̂ < R̃q , q, q̂ ∈ {1, 2, . . . , D}.
Such a constant γ > 0 exists, since the matrices R̃q are strictly positive definite
q = 1, . . . , D.

Introduce the function W(x̃(t)) = eM(t−Ti−1)V (x̃(t)), for t ∈ [Ti−1, Ti). It
follows that

∂W(x̃(t))
∂t

= eM(t−Ti−1)
(∂V (x̃(t))

∂t
+ MV (x̃(t))

)
. (104)

Let (t) = 4β2‖u(t)‖22 − ‖y(t) − ȳ(t)‖22. From (93) and (104), we write that

∂W(x̃(t))
∂t

� eM(t−Ti−1)(t), t ∈ [Ti−1, Ti). (105)

Repeating the reasoning from the proof of Lemma 2, it follows that

x̃T (T −
� )R̃q�

x̃(T −
� ) �

∫ T�

0
(s)ds, ∀� � 1. (106)

where x̃(T −
� ) = lim

t↗T�

x̃(t). Since R̂q�
> 0, then

∫ T�

0 (s)ds � 0, ∀� � 1. By

allowing T� → ∞ and by using the definition of the function , we can write

4β2
∫ ∞

0
‖u(s)‖22ds �

∫ ∞

0
‖y(s) − ŷ(s)‖22ds.

Hence, the result in (103) has been proven.

Remark 10 By partitioning the set of discrete modes in two disjoint subsets, as
� = {1, 2, . . . , D} = �1

⋃
�2, we emphasize two different cases when reducing

the system �{
q ∈ �1 ⇒ perform reduction by 1 of the LTI subsystem in mode q,
q ∈ �2 ⇒ do not change the LTI in mode q.

(107)

Next, introduce the balanced Gramians corresponding to the two subsets, as

�� =
[

�̂� 0
0 β�

]
, for � ∈ �1, and �̂� = ��, for � ∈ �2. (108)

We conclude that the bound in (103) still holds for the setup that was introduced in
(107), as follows

‖y − ŷ‖2 � 2β‖u‖2, β = max
�∈�1

β�. (109)

Here, the selection of the scalar β is restricted only to diagonal Gramians correspond-
ing to the discrete modes from �1. The proof is similar to the one just presented and
will be skipped for brevity reasons.

Next, we will present a more general result by extending Theorem 1 from one
step reduction to reduction to any dimension by allowing possibly different reduction
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levels for each active mode q ∈ �. Consider that the diagonal Gramians associated
to the original and reduced systems can be written as

�q =
⎡
⎢⎣

σq,1 0
. . .

0 σq,nq

⎤
⎥⎦ ∈ R

nq×nq , �̂q =
⎡
⎢⎣

σq,1 0
. . .

0 σq,rq

⎤
⎥⎦ ∈ R

rq×rq . (110)

for q ∈ {1, 2, . . . , D} and σq,1 � σq,2 � . . . � σq,rq � . . . σq,nq > 0. For � ∈
{1, 2, . . . , ξ}, introduce the following diagonal matrices

��̂q =
⎡
⎢⎣

σq,1 0
. . .

0 σq,nq−i+1

⎤
⎥⎦, if i � nq−rq, ��̂q =

⎡
⎢⎣

σq,1 0
. . .

0 σq,rq

⎤
⎥⎦, if i >nq−rq

(111)
Similarly, let �Âq ∈ R

rq,�×rq,� , �B̂q ∈ R
rq,�×mq , �Ĉq ∈ R

pq×rq,� , �K̂q1,q2 ∈
R

rq2,�×rq1,� , be the (1, 1) blocks of the matrices defined in (79);

(112)

for rq,� =
{

nq − �, if � � nq − rq
rq, if � > nq − rq

.

Definition 11 Using the matrices introduced in (112), construct the family of
reduced linear switched systems {�̂� | 0 � � � ξ} with ξ = max

q∈�
(nq − rq), as

�̂� = (r1,�, r2,�, . . . , rD,�, {(�Âq,� B̂q,� Ĉq)|q ∈ �}, {�K̂qi ,qi+1 |qi, qi+1 ∈ �}).
(113)

Note that for � = 0, the element �̄0 coincides to the original LSS in balanced
format, i.e. �̂0 = �̄. Moreover, when � = ξ , it follows that �̂ξ = �̂, with �̂ as
introduced in Definition 13.

Proposition 8 If � satisfies Assumption 51, then so do {�̂� | 0 ≤ � ≤ ξ}.

Proof From (85) – (86) it follows that �̂� has a non-empty set of M-relaxed reach-
ability and observability Gramians, since ��̂q , q = 1, 2, . . . , D are M-relaxed
reachability and observability Gramians of �̂�. Hence, Assumption 51 holds.

Theorem 2 Let � = (n1, n2, . . . , nD, {(Aq,Bq,Cq)|q ∈ �}, {Kqi ,qi+1 |qi, qi+1 ∈
�}) be a linear switched system which satisfies Assumption 51 and let �̂ be a reduced
order system obtained from � introduced in Definition. There exists μ > 0 such that
for any switching signal σ of the form (2) with minimal dwell time μ (i.e. ti > μ, ∀i),
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such that for any control input u ∈ L2(Rm), if (x, u, σ, y) is a solution of � and
(x̂, u, σ, ŷ) is a solution of �̂ and x(0) = 0, x̂(0) = 0, then

‖y − ŷ‖2 � 2β‖u‖2, (114)

where β =
ξ∑

�=1
η�, η� = max

��nq−rq , q∈�
σq,nq−�+1.

Proof of Theorem 2We start by applying the result of Theorem 1 (for one step reduc-
tion) as adapted in Remark 10 (allowing adjustable reduction levels for different
modes), to �̂�−1 and �̂� for all � ∈ {1, 2, . . . , ξ}. Consider the following two subsets
of �,

��
1 = {q ∈ � |� � nq − rq}, ��

2 = {q ∈ � |� > nq − rq}.
Note that �̂� is the result of a one-step reduction applied to �̂�−1 and by Proposition
8 it satisfies Assumption 51. Next, denote with ŷ� and ŷ�−1 the outputs corresponding
to the systems �̂� and, respectively �̂�−1 for input u ∈ L2, switching signal σ(t)

with minimal dwell time μ� and initial zero states, i.e., (x̂k, u, σ, ŷk) is a solution of
�̂k and x̂k(0) = 0 for k = �, � − 1.

From (109), it follows that

‖ŷ�−1 − ŷ�‖2 � 2η�‖u‖2. (115)

For � = 0, the output ŷ0 coincides to the output of the original LSS in balanced
format, i.e. ŷ0 = y. Furthermore, when � = ξ , it follows that ŷξ = ŷ, with ŷ as in

Section 4.3, i.e. the output of the reduced-order LSS �̂ from Definition 13. By adding
the inequalities in (115) for all values of � in {1, . . . , ξ}, it follows that

ξ∑
�=1

‖ŷ�−1 − ŷ�‖2 � 2
ξ∑

�=1

η�‖u‖2 ⇒ ‖
ξ∑

�=1

(ŷ�−1 − ŷ�)‖2 � 2β‖u‖2

⇒ ‖ŷ0 − ŷξ‖2 � 2β‖u‖2,
which implies that the result in (114) is thus proven.

Example 1 To clarify the notation used in the proof of Theorem 2, we present a
simple example for D = 3, i.e. � = {1, 2, 3}. Assume nq = 3, ∀q ∈ � and the
choose reduction orders 1,3 and respectively, 2 for modes 1,2 and respectively, 3.
Also, note that ξ = max

q∈�
(nq − rq) = 2.
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The values rq,� represent the intermediate reduction orders for each subsystem.More-
over, the transition of the diagonal Gramians ��̂q for � ∈ {0, 1, 2} is made as
follows:

Step � = 0 → At this step, write the original balanced Gramians 0�̂q = �q, q ∈
�.

0�̂1 =
⎡
⎣ σ1,1 0 0

0 σ1,2 0
0 0 σ1,3

⎤
⎦, 0�̂2 =

⎡
⎣ σ2,1 0 0

0 σ2,2 0
0 0 σ2,3

⎤
⎦, 0�̂3 =

⎡
⎣ σ3,1 0 0

0 σ3,2 0
0 0 σ3,3

⎤
⎦ .

Step � = 1 → Error bound: ‖ŷ0 − ŷ1‖2 � 2max(σ1,3, σ3,3)‖u‖2.

1�̂1 =
[

σ1,1 0
0 σ1,2

]
, 1�̂2 =

⎡
⎣ σ2,1 0 0

0 σ2,2 0
0 0 σ2,3

⎤
⎦ , 1�̂3 =

[
σ3,1 0
0 σ3,2

]
.

Step � = 2 → Error bound: ‖ŷ1 − ŷ2‖2 � 2σ1,2‖u‖2.

2�̂1 = σ1,1, 2�̂2 =
⎡
⎣ σ2,1 0 0

0 σ2,2 0
0 0 σ2,3

⎤
⎦ , 2�̂3 =

[
σ3,1 0
0 σ3,2

]
.

By combining the two inequalities from steps 1 and 2, it follows that

‖y − ŷ‖2 � 2
(
max(σ1,3, σ3,3) + σ1,2

)‖u‖2.

Remark 11 (Choice of the model order) The idea behind the choice of the model
order of the reduced system is the following. After bringing the original model to bal-
anced form, as described in Procedure 1, we choose each integer rq in such a manner
that the diagonal elements σq,rq+1, . . . , σq,nq−rq are small, more precisely, such that

β =
ξ∑

�=1
η�, η� = max

��nq−rq , q∈�
σq,nq−�+1 is small, where ξ = maxq∈�(nq − rq).

The choice of the model order is not unique. First, it is determined by how much
approximation error we would like, and it represents a trade-off between the order of
each linear subsystem and the bound β of the estimation error. However, even if we
fix the approximation error, there are several choices of the dimensions of the linear
subsystems of the reduced model. For example, assume for example that we are deal-
ing with two modes D = 2, n1 = 5, n2 = 3, σ1,1 = 20, σ1,2 = 10, σ1,3 = 5, σ1,4 =
0.08, σ1,5 = 0.02 and σ2,1 = 30, σ2,2 = 0.9, σ2,3 = 0.1. Then, if we set r1 = 3 and
r2 = 3, then ξ = 2, and the guaranteed error bound is β = σ1,4 + σ1,5 = 0.1. How-
ever, we can achieve the same error bound by choosing r1 = 5 and r2 = 2. That is, the
same approximation error can be achieved either by discarding 2 states in the linear
system associated with mode 1, or discarding 1 state in the linear system associated
with mode 2. However, if we are satisfied with an error bound β = 0.2, then we could
take r1 = 3 and r2 = 2, i.e., we discard 2 states from the linear system associated with
mode 1 and we discard 1 state from the linear system associated with mode 2. Indeed,
in this case then the analytical error bound will be β = σ1,4+σ1,5+σ2,3+σ2,2 = 0.2.
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5.2.2 Using Gramians instead of M-relaxed Gramians

Computing M-relaxed Gramians requires solving LMIs and it is computation-
ally demanding. Moreover, M-relaxed Gramians are not unique. Hence, instead of
using M-relaxed Gramians, it could be more advantageous to use infinite reacha-
bility and observability Gramians defined in Definition 7–8. Note that by Remark
9, if {Pq}Dq=1, {Qq}Dq=1 are infinite reachability and observability Gramians and∑D

i=1,i �=q Ki,qPiKT
i,q > 0,

∑D
i=1,i �=q K

T
q,iQiKT

i,q > 0, for all q = 1, 2, . . . , D, then
by Remark 9 the infinite reachability and observability Gramians are also M-relaxed
reachability and observability Gramians respectively. Hence, the balanced trunca-
tion procedure presented in Section 5.2 can be applied to infinite reachability and
observability Gramians.

More precisely, let � = (n1, n2, . . . , nD, {(Aq,Bq,Cq)|q ∈
�}, {Kqi ,qi+1 |qi, qi+1 ∈ �}) be an LSS, and let {Pq}Dq=1, {Qq}Dq=1 be infinite
reachability and observability Gramians. Let us apply Procedure 51 to � using
the Gramians {Pq}Dq=1, {Qq}Dq=1. The balanced LSS S̄i is such that the matrices

P̄q = SqPqST
q , Q̄q = (

S−1
q

)T QqS−1
q are diagonal and equal to �q , q = 1, 2, . . . , D.

Moreover, the matrices �q = P̄q, Q̄q are also infinite reachability and observability
Gramians as they satisfy

Āi�i + �iĀ
T

i +
D∑

j=1, j �=i

K̄j,i�j K̄
T

j,i + B̄iB̄
T

i = 0, (116)

Ā
T

i �i + �iĀi +
D∑

j=1, j �=i

K̄
T

i,j�j K̄i,j + C̄
T

i C̄i = 0. (117)

Let �̂ be the reduced LSS obtained according to the Definition 2, using the infinite
reachability and observability Gramians P̄q = Q̄q = �q , q = 1, 2, . . . , D. Note that
the reduced Gramians �̂q , q = 1, 2, . . . , D are no longer infinite reachability and
observability Gramians. More precisely, they satisfy the following inequalities

Âi�̂i + �̂iÂ
T

i +
D∑

j=1, j �=i

K̂j,i�̂j K̂
T

j,i + B̂iB̂
T

i < 0ri (118)

Â
T

i �̂i + �̂iÂi +
D∑

j=1, j �=i

K̂
T

i,j �̂j K̂i,j + Ĉ
T

i Ĉi < 0ri . (119)

However, even though the reduced Gramians �̂i are not infinite reachability and
observability Gramians of the reduced order LSS, the error bound of Theorem 2 still
applies. In fact, this was exactly the motivation behind introducing relaxed Gramians.
Recall that the proof of the error bound in Theorem 2 relies on repeated application of
Theorem 1 and on the fact that truncated LSS are also balanced. The latter presents an
error bound for the case when only one state is discarded from each linear subsystem
during the truncation step. Theorem 1 remains true even when the balanced trun-
cation procedure is formulated only for infinite reachability/observability Gramians
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instead of the relaxed ones. However, if the balanced truncation was formulated only
for infinite reachability and observability Gramians as opposed to relaxed reachabil-
ity and observability Gramians, then the repeated application of Theorem 1 would
no longer be possible, as the truncated LSS would not be balanced (since the trun-
cated matrices �̂q do not satisfy the definition of infinite reachability/observability
Gramians).

5.2.3 Stability preservation

Stability preservation is a very sought after property when devising MOR techniques.
As pointed out in [19], a switched system is stable if all individual subsystems are
stable and the switching is sufficiently slow to permit the transient effects to vanish
after each switching time. In this book, Chapter 3.2 presents stability under slow
switching with multiple Lyapunov functions.

We present a definition of stability in a uniformly exponentially sense and with
imposing again the condition of a minimal dwell time μ. This definition was initially
introduced in [19]. Moreover, we will show that the reduced order models constructed
through the proposed balancing reduction technique, satisfy the conditions of this
particular type of stability.

Definition 12 A linear switched system � as described in (1), is uniformly exponen-
tially stable with dwell time μ if there exist constants K, M > 0 such that for any
solution (x, u, σ, y), the inequality holds for any t � 0,

‖x(t)‖2 � Ke−αt‖x(0)‖2. (120)

for a control input considered to be zero (i.e. u = 0) and the switching signal σ(t)

having minimum dwell time μ > 0.

Lemma 4 Consider an LSS � which satisfies Assumption 51. There exists a constant
μ > 0 such that � is uniformly exponentially stable with a dwell time μ.

Proof of Lemma 4 Let γ be such that γKT
q1,q2

Qq2Kq1,q2 < Qq1 for all q1, q2 ∈
{1, 2, . . . , D}. Since by Assumption 51, we have KT

q1,q2
Qq2Kq1,q2 > 0, such a

constant γ > 0 exists. Let μ = − lnγ
2M , and hence

e−0.5MμKT
q1,q2

Qq2Kq1,q2 < Qq1 . (121)

Let (x, u, σ, y) be a solution of the LSS with u = 0 and switching signal σ =
(q1, t1)(q2, t2) . . . with minimum dwell time μ > 0 (i.e. ti � μ, ∀i). Again,
set V(x(t)) = xT (t)Qqi

x(t), ∀t ∈ [Ti−1, Ti). From (50), it directly follows that
∂V (x(t))

∂t
� −MV (x(t)). Next, introduce the function

W(x(t)) = eM(t−Ti−1)V (x(t)) = eM(t−Ti−1)xT (t)Qqi
x(t), ∀t ∈ [Ti−1, Ti),
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and hence, the inequality ∂W(x(t))
∂t

� 0 holds. Using the same notations as in (56), we
get that W(x(t)) � W(x(Ti−1)) ⇒ eM(t−Ti−1)V (x(t)) � V (x(Ti−1)). Then

V (x(t)) � e−M(t−Ti−1)V (x(Ti−1)), ∀t ∈ [Ti−1, Ti). (122)

Now using that x(Ti−1) = Kqi−1,qi
lim

t↗Ti−1
x(t), and setting x(T −

i−1) = lim
t↗Ti−1

x(t),

V (x(Ti−1)) = xT (T −
i−1)K

T
qi−1,qi

Qqi
Kqi−1,qi

x(T −
i−1). (123)

From (121) and (123), we get that

V (x(Ti−1)) � e0.5MμxT (T −
i−1)Qi−1x(T

−
i−1) = e0.5MμV (x(Ti−1)). (124)

By plugging in t = Ti in (122) and using (124), it follows that

V (x(Ti)) � e−Mti+0.5MμV (x(Ti−1)). (125)

By putting all the relations in (125) together (k ∈ {1, 2, . . . , i}), write that
V (x(Ti)) � e−M(ti−0.5μ)V (x(Ti−1)) � e−M(ti+ti−1−μ)V (x(Ti−2))

� . . . � e−M(Ti−0.5iμ)V (x(0)). (126)

Since t > Ti−1 = ∑i−1
k=1 tk and by using the fact that the system has minimum

dwell time μ in each operational mode, i.e. tk � μ, it follows that t > (i − 1)μ.
Furthermore, by putting together (122), (124) and (126), the results hold ∀t ∈
[Ti−1, Ti),

V (x(t)) � e−M(t−Ti−1)e0.5Mμe−M(Ti−1−(0.5i−1)μ)V (x(0))

= e−M(t−0.5(i−1)μ)V (x(0)) = e−Mte0.5M(i−1)μV (x(0)) =
� e−Mte0.5MtV (x(0)) =e−0.5MtV (x(0)). (127)

In the last step, we used that t ≥ 0.5(i − 1)μ. Choose ε, φ > 0 such that for all
q ∈ {1, 2, . . . , D}, the following inequality holds for

ε2Qq � Inq � φ2Qq . (128)

Since Qq > 0, such a choice of ε, φ always exists. From (127) and (128), it follows
that for all t ∈ [Ti−1, Ti)

‖x(t)‖22 = x(t)T x(t) � φ2x(t)T Qqi
x(t) = φ2V (x(t)) � φ2e−0.5MtV (x(0))

= φ2e−0.5Mtx(0)T Qq1x(0) �
φ2

ε2
e−0.5Mt‖x(0)‖22.

By choosing K = φ2

ε2
, α = 0.5M the result of Lemma 4 is proven (from Definition

15).
From Proposition 8 and Lemma 4 we can conclude the following.

Corollary 1 If Assumptions 51 hold for the original LSS model �, then � is expo-
nentially stable with dwell time μ > 0, and the reduced-order LSS model �̄, defined
Definition 2, is also exponentially stable with the same dwell time μ.
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6 Numerical examples

6.1 First example - a small system with 3 modes

Consider the case for which D = 3. The reachability Gramians Pi , i ∈ {1, 2, 3},
satisfy the following equations

A1P1 + P1AT
1 + K2,1P2KT

2,1 + K3,1P3KT
3,1 + B1BT

1 = 0,

A2P2 + P2AT
2 + K1,2P1KT

1,2 + K3,2P3KT
3,2 + B2BT

2 = 0,

A3P3 + P3AT
3 + K1,3P1KT

1,3 + K2,3P2KT
2,3 + B3BT

3 = 0.

which can be compactly written as

ADPD + PDAT
D + K D1PDKT

D1 + K D2PDKT
D2 + BDBT

D = 0, (129)

where AD,BD and PD are as in (26) and also

K D1 =
⎡
⎣ 0 K2,1 0

0 0 K3,2
K1,3 0 0

⎤
⎦ , K D2 =

⎡
⎣ 0 0 K3,1
K1,2 0 0
0 K2,3 0

⎤
⎦ . (130)

Similarly, the observability Gramians Qi , i ∈ {1, 2, 3}, satisfy the following
equations

AT
1 Q1 + Q1A1 + KT

1,2Q2K1,2 + KT
3,1Q3KT

3,1 + CT
1 C1 = 0,

AT
2 Q2 + Q2A2 + KT

2,1Q1K1,2 + KT
2,3Q3K2,3 + CT

2 C2 = 0,

AT
3 Q3 + Q3A3 + KT

3,1Q1K3,1 + KT
3,2Q2K3,2 + CT

3 C3 = 0,

which can also be compactly written as

AT
DQD + QDAD + KT

D1QDK D1 + KT
D2QDK D2 + CT

DCD = 0, (131)

whereAD,CD andQD are block diagonal as in (43) andK Di as in (130) for i ∈ {1, 2}.
Choose the following system matrices for �, as

A1 =
⎡
⎣ −1 0 0

0 −8 0
0 0 −5

⎤
⎦ , A2 =

⎡
⎣ −2 0 0

0 −9 0
0 0 −6

⎤
⎦ , A3 =

⎡
⎣ −4 0 0

0 −3 0
0 0 −7

⎤
⎦ ,

B1 =
⎡
⎣ 1

2
−1

⎤
⎦ , B2 =

⎡
⎣ 1

−1
3
2

⎤
⎦ , B3 =

⎡
⎣ − 1

2−2
1

⎤
⎦ ,

⎧⎪⎪⎨
⎪⎪⎩

C1 = [ −1 1 5
2

]
,

C2 = [
1 2 − 7

2

]
,

C3 = [ − 3
2 1 − 1

2

]
,

M =
⎡
⎣ 1 −1 0
0 2 −3
1 0 1

2

⎤
⎦, N=

⎡
⎣ 0 2 − 1

2
1 1 −1
0 0 −3

⎤
⎦,

{
K1,2=M/7, K2,3=M/4, K3,1=M/6,

K2,1=N/5, K3,2=N/3, K1,3=N/2.
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Next, compute the balanced diagonal Gramians �i as,

�1 =
⎡
⎣ 0.6174 0 0

0 0.0816 0
0 0 0.0419

⎤
⎦ , �2 =

⎡
⎣ 0.4183 0 0

0 0.1514 0
0 0 0.0138

⎤
⎦ ,

�3 =
⎡
⎣ 0.3311 0 0

0 0.0948 0
0 0 0.0172

⎤
⎦ .

As for Example 4.1, consider the values of the reduced orders for the three subsys-
tems, as r1 = 1, r2 = 3 and r3 = 2. We recover the system matrices of the reduced
LSS �̂ as,

Â1=−1.4152, Â2=
⎡
⎣−7.7330 −2.9578 −1.4537

1.6867 −0.9066 −0.5297
−0.5775 1.1507 −8.3605

⎤
⎦, Â3=−

[
2.9416 0.7103
1.0000 5.0427

]
, ,

B̂1=−1.3006, B̂2=
⎡
⎣−2.4972

0.0221
−0.0636

⎤
⎦, B̂3=

[
1.2816
0.2190

]
, Ĉ1=1.2875, Ĉ2=

⎡
⎣2.4992
0.3182
0.2538

⎤
⎦

T

,

Ĉ3 = [ −1.2857 −0.5313
]
, K̂2,3 =

[ −0.6887 −0.5866 −0.1771
−0.2778 −0.5806 −0.0555

]
,

K̂3,1 = [ −0.3449 0.1360
]
.

From Example 4.1, it follows that the following bound holds, i.e. ‖y − ŷ‖2 �
2
(
max(σ1,3, σ3,3) + σ1,2

)‖u‖2 = 2(0.0816 + 0.0419) = 0.2471‖u‖2.
Consider the switching signal σ(t) depicted in Fig. 1, which is characterized by

the sequence of elements (1, t1)(3, t2)(1, t3)(2, t4) . . . (2, t9)(3, t10) with dwell times
t0 = 0s and t10 = 15s. By choosing the control input as u(t) = 1/2 sin(20t)e−t/2 +
1/20e−t/2, and performing a time domain simulation, we display in Fig. 1, the
outputs of the original and reduced systems � and �̂.

The absolute value of the difference between the two outputs is presented in Fig. 2.

6.2 Second example - a CD player system

For the next experiment, consider the CD player system from the SLICOT benchmark
examples for MOR (see [12]). This linear system of order 120 has two inputs and
two outputs. We consider that, at any given instance of time, only one input and
one output are active (the others are not functional due to mechanical failure). For
instance, consider mode j to be activated whenever the j th input and the j th output
are simultaneously failing (where j ∈ {1, 2}).

In this way, we construct an LSS system with two operational modes. Both subsys-
tems are stable SISO linear systems of order 120, i.e. we can write n1 = n2 = 120.
This initial linear switched system (which will be denoted with �) is reduced by
means of the new balanced truncation procedure (which we refer to in the follow-

ing as BT1) to obtain �̂
BT1 and also by means of the balancing method proposed in
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Fig. 1 Switching signal σ(t) and output y(t) corresponding to both � and �̂

[22] (which we refer to in the following as BT2) to obtain �̂
BT2 . In the later refer-

ence, it has been shown that, if certain conditions are satisfied (see Corollary IV.3 in
[22]), a simultaneous balanced truncation technique can be applied to LSS. In most
practical examples, the existence of a global transformation matrix is not guaran-
teed. Hence, in [22], the authors propose instead a method of balancing the so-called
average Gramians, i.e. Pavg = 1

D

∑D
i=1 Pi and Qavg = 1

D

∑D
i=1Qi .

We first proceed with a frequency domain simulation. By varying the frequency
variable ω in the interval [100, 106]rad/sec, we compute the frequency response
corresponding to mode j ∈ {1, 2}, i.e. the magnitude of the function Hj =
Cj (ωInj

−Aj )
−1Bj , in the specified frequency range. The frequency response of the

two original subsystems is depicted in Fig. 3.

Fig. 2 Absolute value of the output error: |y − ŷ|
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Fig. 3 Frequency response of the original subsystems

Next, we compute reduced order models using both of the reduction methods dis-
cussed above, i.e. BT1 and BT2. The truncation orders for the reduced systems are
chosen to be the same for each mode, i.e k1 = k2 = 33. In Fig. 4, we depict the
magnitude of the frequency domain approximation error between the original system

� and the reduced ones, i.e. �̂
BT1 and �̂

BT2 . The figure presents the error for each
mode, separately.

Let �j be the subsystem of the LSS � that corresponds to mode j ∈ {1, 2}, as
introduced in (7). The same applies for the notations �̂

BT 1
j and �̂

BT 2
j which denote

the mode j subsystem corresponding to the LSS �̂
BT 1

and, respectively, to the LSS

�̂
BT 2

.
Next, for both reduction methods, we compute the relative approximation errors

for both modes. This is performed with respect to the Hκ norm, where κ ∈ {2, ∞}.

Fig. 4 Approximation error in frequency domain
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Table 1 Relative approximation error for the two modes in the H2 andH∞ norms

H2 BT1 BT2 H∞ BT1 BT2

Mode 1 5.6988 · 10−6 1.1934 · 10−5 Mode 1 5.0901 · 10−7 2.8864 · 10−6

Mode 2 6.0980 · 10−7 1.4349 · 10−5 Mode 2 3.3007 · 10−8 3.0832 · 10−7

More specifically, the value of ‖�̂BT 1
j − �j‖Hκ

/‖�j‖Hκ
is calculated for the BT1

method, while ‖�̂BT 2
j − �j‖Hκ

/‖�j‖Hκ
is calculated for the BT2 method.

The numerical results are presented in Table 1. Note that, for both types of norms
and for each of the two operational modes, the balanced truncation method we
propose produces lower errors than those of the one introduced in [22].

As for the first example, we compare the time domain response of the original
linear switched system with the ones corresponding to the two reduced models. We
use the same signal as in Section 5.1 as control input, i.e. u(t) = 1/2 sin(20t)e−t/2 +
1/20e−t/2. The switching times ti are randomly chosen within [0,10]sec so that ti >

0.5sec, ∀i.
The switching signal σ is depicted in the upper part of Fig. 5, while in the lower

part of Fig. 5, the outputs of the three LSS (original one and the two reduced ones)
are displayed.

Notice that the output of the original system � is well approximated when using
any of the two MOR methods.

Finally, by inspecting the time domain error between the original response and the
one corresponding to the two reduced models (depicted in Fig. 6), observe that the
new proposed method generally produces better results. The error curve correspond-
ing to the BT1 method is below the error curve corresponding to the BT2 method for
most of the points on the time axis.

Fig. 5 Time domain simulation
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Fig. 6 Time domain approximation error

We conclude that the new proposed balancing method produces better results than
the one proposed in [22], in the sense that the original output is better approximated
for this particular choice of LSS and control input. Moreover, our method can be
applied to LSS with subsystems having different dimensions ni, i ∈ � and provide
reduced order models again with possibly different dimensions ri, i ∈ � in different
modes. The other method is constrained to having n1 = . . . = nD so that the compu-
tation of the average Gramians Pav and Qav is possible. Also, for BT2 it is assumed
that a common Lyapunov function exists, which is arguably restrictive. Moreover,
another advantage is that one can derive an error bound of the output error for the
new proposed method, as presented in Section 4.2.1. This is also true for the second
method proposed in [22].

7 Conclusion

In the current work, we have proposed a balanced truncation procedure for the class of
linear switched systems which is based on the computation of infinite energy Grami-
ans. These special matrices can be computed by solving generalized Lyapunov equations
instead of solving systems of LMIs. The new balancing method has several advantages.

We provided connections between the new Gramians and system theoretical quan-
tities (observation and controlling energy), by means of lower or upper bounds.
Moreover, it turned out that an error bound involving the inputs, outputs and the trun-
cated entries of the Gramians, could be derived. Finally, by applying the proposed
procedure, the reduced order LSS can be proven to be uniformly exponentially stable
with certain minimum dwell time, given that the original LSS also had this property.
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