
Under consideration for publication in J. Plasma Phys. 1

Threshold for the destabilisation of the
ion-temperature-gradient mode in

magnetically confined toroidal plasmas

A. Zocco1 P. Xanthopoulos1 H. Doerk2, J. W. Connor3, P. Helander1

1Max-Planck-Institut für Plasmaphysik, D-17491, Greifswald, BDR
2Max-Planck-Institut für Plasmaphysik, 85748, Garching, BDR

3Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

(Received 5 December 2017)

The threshold for the resonant destabilisation of ion-temperature-gradient (ITG) driven
instabilities that render the modes ubiquitous in both tokamaks and stellarators is in-
vestigated. We discover remarkably similar results for both confinement concepts if care
is taken in the analysis of the effect of the global shear ŝ. We revisit, analytically and by
means of gyrokinetic simulations, accepted tokamak results and discover inadequacies of
some aspects of their theoretical interpretation. In particular, for standard tokamak con-
figurations, we find that global shear effects on the critical gradient cannot be attributed
to the wave-particle resonance destabilising mechanism of Hahm and Tang [Physics of
Plasmas 1, 1185 (1989)], but are consistent with a stabilising contribution predicted by
Biglari, Diamond and Rosenbluth [Physics of Plasmas 1, 109 (1989)]. Extensive analyt-
ical and numerical investigations show that virtually no previous tokamak theoretical
predictions capture the temperature dependence of the mode frequency at marginality,
thus leading to incorrect instability thresholds. In the asymptotic limit ŝι ≪ 1 , where
ι is the rotational transform, in which such a threshold should be solely determined by
the resonant toroidal branch of the ITG mode we discover a family of unstable modes
below the previously known threshold of instability. This is true for a tokamak case de-
scribed by a local ŝ−α local equilibrium, and for the stellarator Weldenstein 7-X, where
these unstable modes are present even for configurations with a small trapped-particle
population. We conjecture they are of the Floquet type and derive their properties from
the Fourier analysis of toroidal drift modes of Connor and Taylor [Physics of Fluids 30,
3180 (1987)], and to Hill’s theory of the motion of the lunar perigee [Acta Mathematica
8, 1 (1886)]. The temperature dependence of the newly determined threshold is given for
both confinement concepts. In the first case, the new temperature gradient threshold is
found to be rather insensitive to the temperature ratio Ti/Te, at least for Ti/Te . 1, and
to be a growing function of the density gradient scale for Ti/Te & 1. For Wendelstein
7-X, the new critical temperature gradient is a growing function of the temperature ra-
tio. The importance of these findings for the assessment of turbulence in stellarators and
low-shear tokamak configurations is discussed.

1. Introduction

Any magnetic fusion reactor, no matter how carefully designed, is affected by turbulent
heat losses, which are detrimental to its performance. The study of turbulent transport
processes in magnetically confined plasmas, therefore, has always been of vital importance
in the identification of the confinement properties of such devices. A number of plasma
quantities are of relevance when evaluating how well the plasma is confined and thus



2 A. Zocco, et al.

more likely to yield fusion power. Amongst many, there is no doubt that one of the most
important is the achievable plasma temperature gradient.

It is known that kinetic plasma instabilities can draw energy from equilibrium plasma
gradients and the resulting turbulence cause what is observed as an anomalous energy
loss. Perhaps the most important of such instabilities is the ion-temperature-gradient
(ITG) driven one, which has been extensively studied both in tokamaks and stellarators.
The ITG mode manifests itself in several flavours. Sometimes it is a modified unstable
sound wave, as derived for the first time by Rudakov & Sagdeev (1961); it can also arise
in the guise of the interchange-type mode of Rosenbluth & Longmire (1956) as a result of
equilibrium magnetic field gradients (Horton et al. 1981). It can be of the ballooning type
(Connor & Taylor 1987), with a broad radial structure (Romanelli & Zonca 1993); of the
“boxing” type (Plunk et al. 2014), or with detailed structure on equilibrium magnetic
surfaces (Zocco et al. 2016); of the isolated or general (Dickinson et al. 2014) type, or
else “passing” or “trapped” (Dewar 1997); this list may not be complete.

In all these cases, the instability can be categorized in two broad classes which corre-
spond to the slab and the toroidal branch of the mode. In the first case, instability occurs
when the equilibrium temperature gradient causes a change in temperature of a pertur-
bation propagating at the sound speed, and such change is in phase with a perturbed
E × B drift, also caused by the presence of the equilibrium temperature gradient [see
discussion after Eq. (16) of (Coppi et al. 1967)]. In toroidal geometry, the coupling of the
∇B− and curvature drifts with the equilibrium temperature gradient can also destabilise
the mode (Horton et al. 1981). The intuitive picture of the ITG destabilisation generally
holds for very large temperature gradients (fluid limit). However, in many operationally
relevant regimes (Mantica et al. 2009), temperature gradients are not so extreme as to
justify a fluid approximation, and it is necessary to account for resonances. The compli-
cation associated with such theories escalates very rapidly, and an intuitive picture of
the kinetic resonant destabilisation would perhaps be more confusing rather than clarify-
ing. The development of gyrokinetic numerical codes has rescued the situation, and has
advanced our understanding of the critical threshold for the destabilisation of the ITG
mode(i). Inevitably, the interpretation of any linear result produced by a gyrokinetic code
is ultimately based on fundamental works, most notably those of Terry, Anderson and
Horton (Terry et al. 1982), Romanelli (1989), Biglari, Diamond and Rosenbluth (BDR)
(Biglari et al. 1989), for the toroidal branch of the instability, and those of Hahm &
Tang (1989), and Kadomtsev & Pogutse (1970) for the finite-shear and shear-less slab
branches, respectively.

All these analytical theories of the resonant destabilisation of the toroidal ITG were
performed in a long-wavelength limit, thus neglecting the full ion Larmor radius response.
Here, we present, for the first time, a complete mathematical treatment where this re-
sponse is retained. The analysis is performed in the local kinetic limit, thus neglecting
the variation of the eigenfunction along the magnetic field line, but is valid for arbitrary
magnetic geometry. Analytical progress is made by introducing a Padé approximant for
the ion reponse after integrating over the resonaces. These are treated by using a new
series representation of the Owen T−function (Owen 1956) which exploits the properties
of the incomplete Euler gamma function (Tricomi 1950b,a). No approximation for the
velocity space dependence of the particles drifts is made.

The threshold for resonant destabilization of the toroidal branch of the ITG mode
is then calculated and compared to previous analytical results and to numerical results

(i) In this context, a very influential work is the one of Jenko, Dorland and Hammett (Jenko
et al. 2001).
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obtained from simulations performed with the GENE (Jenko et al. 2000) code for a local
ŝ − α tokamak equilibrium. In the limit in which the streaming term contribution is
negligible)(ii) (ŝ ≪ 1), we identify a family of unstable ion modes below the threshold
for destabilization of the toroidal branch of the ITG mode. Such modes require high
velocity-space resolution to be adequately resolved, they are more unstable for small
inverse aspect ratios, and do not show resonant structures for v‖ 6= 0. The new critical
threshold is studied, for several density gradients, as a function of τ = Ti/Te, where Ti

and Te are the ion and electron temperature, respectively. For τ & 1, the threshold shows
a dependence on τ. For τ . 1, the threshold in the inverse temperature gradient scale
R/LT is proportional to the inverse density gradient scale, R/Ln.

The same qualitative small−ŝ behaviour at marginal stability is observed in the stel-
larator Wendelstein 7-X, even for flat densities. We have verified that the modes are
present for configurations with a small trapped-particle population. From the common
features shown in the tokamak and stellarator cases, we argue that these modes are of the
Floquet type, and can be described in terms of Mathieu functions. Far from marginality,
we propose a general eigenvalue equation that is exact and based on Hill’s mathematical
study of the motion of the Lunar perigee (Hill 1886).

The article is organised as follows. In Section II we present the numerical results
from gyrokinetic simulations that demonstrate the qualitative similar behaviour of low-ŝ
tokamaks and Wendelstein7−X at marginal stability. In Section III the critical threshold
for the low shear ITG mode is shown for both the ŝ − α tokamak equilibrium and
Wendelstein 7-X. The exact analytical formula for Floquet modes is given (and solved)
in Section IV. Conclusions are in Section V. A series of appendices is attached to elucidate
some analytical aspects of the resonant destabilisation of the toroidal ITG.

2. Instability thresholds

The description of the resonant destabilisation of the toroidal ITG is based on the
following eigenvalue equation (Terry et al. 1982; Romanelli 1989; Biglari et al. 1989)

1 + τ = Ii ≡
∫

d3v
ω − ωT

∗i
ω − ωdi

J2
0

(

k2⊥ρ
2
i v̂

2
⊥
) F0i

n0
, (2.1)

where τ = Ti/Te, ω is the mode complex frequency, k⊥ is the wave vector perpendic-
ular to the equilibrium magnetic field, v̂2 = (v2‖ + v2⊥)/v

2
thi, with vthi =

√

2Ti/mi the
ion thermal speed, and mi and n0 the ion mass and density, respectively. We are ef-
fectively considering a local limit, in the sense that the eigenmode structure along the
field-following co-ordinate is neglected, and we restrict our attention to a particular lo-
cation along the equilibrium magnetic field. This is equivalent to completely neglect the
slab branch discussed in the Introduction, and take k‖vthi ≪ ω, where k‖ is the parallel
wave number. The equilibrium distribution function is taken to be Maxwellian,

F0i =
n0

(πv2thi)
3/2

e−v̂2

. (2.2)

Two characteristic frequencies are present in Eq. (2.1)

ωT
∗i = ω∗i

[

1 + ηi
(

v̂2 − 3/2
)]

, (2.3)

(ii) While this is the case in tokamaks, in a stellarator this is not the only relevant condition.
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with ω∗i = 0.5kyρivthi/Ln, ηi = Ln/LT , and

ωd =
(

ωκv̂
2
‖ + ωBv̂

2
⊥/2

)

, (2.4)

where ρi = vthi/Ωci is the ion Larmor radius, Ωci = eB/(mic) ion the cyclotron frequency,
ωκ = 0.5kyρivthi/a, and ωB = ωκ − dβ/dx, the magnetic curvature and ∇B−drift fre-
quencies, while L−1

n = −n−1
0 dn0/dx and L−1

T = −T−1
i dTi/dx define the characteristic

density and temperature gradient scales, and β = 8πn0(Te+Ti)/B
2 is the ratio of kinetic

to magnetic pressure (it will shortly be set to zero), x is the radial co-ordinate, and y is a
co-ordinate associated with the field-line labels on a magnetic surface. Notice that we are
assuming kx = 0 for simplicity. The Bessel function squared originates, as usual, from a
Fourier transform of the gyroaveraged potential followed by a d3v integral at constant
r, the particle position. In Eq. (2.1) the eigenvalue ω acquires non-zero imaginary values
that regularise the, otherwise, singular integrand. The analytical form of the integral Ii
for arbitrary Larmor radii is given in Appendix A. The drift-kinetic limit is sufficient for
the following discussion. In this case k⊥ρi → 0, J2

0 → 1, and it is easy to show that

D ≡ − (1 + τ) + Ii

= − (1 + τ) +
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) ω
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}

,

(2.5)

which corresponds to D0 in Eq. (3) of BDR (Biglari et al. 1989). In the appendices
we prove this result in two different ways; both are alternatives to the derivation of
Ref. (Biglari et al. 1989). The real frequency at marginality is evaluated by solving
ℑ[D(ωr)] ≡ Di(ωr) = 0, where one sets ω = ωr + iγ, and takes γ → 0. Using Eq. (2.5)
this means

{

1− ω∗i
ωr

+ ηi
ω∗i
ωr

(

1− 2
ωr

ωκ

)}

ℜ
[

Z

(√

ωr

ωκ

)]

= ηi
ω∗i√
ωrωκ

. (2.6)

Once ωr is found, the condition that determines destabilization is ℜ[D(ωr)] > 0, which
can be determined only numerically. However, Romanelli (Romanelli 1989) has evaluated
the integral Ii by replacing v2⊥/2 + v2‖ → 4/3(v2⊥ + v2‖) in the definition of the particle

magnetic drifts [see Eq. (2.4)] in order to fit the numerical solution of Eq. (2.1) atR/Ln ≪
1, for kyρs =

√
0.1 ≈ 0.32, where ρs =

√

Ti/mi/Ωi = ρi/
√
2. In his case, the condition

ℜ[D(ωr)] > 0 yields a critical gradient R/LT |crit = (1 + τ) (4/3) whose τ−dependence
comes from the obvious fact that ℜ[D(ωr)] > 0 implies ℜ[Ii(ω = ωr)] > 1+ τ. Obtaining
the correct mode frequency at marginality is therefore crucial. From direct numerical
simulations we see that this quantity shows a dependence on the ion temperature that is
not captured by Romanelli’s treatment, nor by any other analytical theory known to us
[see Fig. (1)].
In our numerical tests, we consider adiabatic electrons and typical Cyclone Base Case

(CBC) parameters for ŝ − α geometry: ŝ = 0.786, q = ι−1 = 1.4, ǫ = r/R = 0.18,
R/Ln = 2, kyρs = 0.3, where R is the device major radius. From the imaginary part
of the eigenvalue, we extract the critical gradient [see Fig. (2)]. Figure (3) shows the
resulting critical gradient compared to several theories and one fitting formula. The
linear fit of the numerical data gives (i) R/LT |crit = (2.45± 0.07)τ +2.07± 0.06, with a

(i) We warn the reader that R here is representative of the curvature of the magnetic field.
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reduced χ2 = 6.5×10−4. The fitting formula (JDH) of Jenko et al. (2001) is R/LT |crit =
(1 + τ) (4/3 + 1.91 ŝ/q) . The curve derived by Romanelli (1989), R/LT = (1 + τ) (4/3) ,
which should work better for flat densities, R/Ln → 0, is not expected to match the
numerical results for R/Ln = 2, R/LT = O(1), even if q→ ∞ [in which case the streaming
term effect measured by the factor ŝ/q in the JDH formula should be negligible, as it is
neglected in Eq. (2.1)]. The BDR condition for destabilization (Biglari et al. 1989) would
give R/LT = 2.7, with virtually no dependence on τ. The full ion Larmor radius resonant
theory developed in the present article predicts higher critical gradients than the long-
wavelength resonant theory. Like results from numerical simulations, it gives a critical
gradient that depends linearly on τ = Ti/Te, but it underestimates the numerical results.
As already mentioned, this discrepancy can be attributed to the fact that analytical
theories predict a real frequency at marginality that does not depend on τ, as opposed
to the numerical findings. This is true for all the analytical theories revisited and derived
here, and seems to be a consequence of the neglect in Eq. (2.1) of the streaming term.
The problem is, of course, that parallel streaming has been neglected in the derivation
of Eq. (2.1), which can only be satisfied at a single (or a pair of) poloidal location on the
flux surface. Taken literally, this equation thus implies that the entire mode structure is
concentrated at this point, which, in the analytical theories quoted, is the location where
the field curvature is most unfavourable. However, in all practical circumstances, that is
not what the mode structure is, and the streaming term (with its ∂θ derivatives, where
θ is the balloning angle) determines the rate at which the eigenmode decays along the
field-line.
The results from GENE simulations are somewhat consistent with the fitting formula

of Jenko Dorland and Hammett (JDH) (Jenko et al. 2001) but do not seem to relate to the
theory of Hahm & Tang (1989), since we find a stabilising contribution from finite shear.
This is in line with a statement present in the work of Biglari Diamond and Rosenbluth
(Biglari et al. 1989) (i). The remaining two curves are derived from the numerical solution
of the dispersion relation with full Larmor orbits, Eq. (A 1), for small (k⊥ρi ≪ 1) and
for arbitrary Larmor radii. Strictly speaking, all our numerical results are valid for one
specific wavelength: kyρs = 0.3. However, a dependence of the numerical results on ky
cannot be excluded. A sensitivity scan was performed for the reference value τ = 1. If
we vary 0.2 6 kyρs 6 0.4, we find a critical gradient in the range 4.35 6 R/LT |crit 6 4.8
This indetermination is small enough to discriminate the analytical results of Fig. 3, and
large enough to let us consider the JDH formula quite reliable.
This preliminary analysis is in fact more general that it would seem. Equations (2.1)

and (A1) were derived by neglecting the contribution associated with particle streaming,
but the magnetic drift frequencies ωκ and ωB are essentially arbitrary. They must there-
fore be applicable to the stellarator case as well. There is a key factor that now brings
tokamaks and stellarators together. A low-bootstrap-current stellarator, like Wendelstein
7-X, possesses a low global shear. This condition is, incidentally, the same condition that
is required to neglect particle streaming in the kinetic equation, and the slab branch of
the ITG instability (Jenko et al. 2001) for the tokamak case. Thus, for low shear, the

In a stellarator, the natural normalisation scale of the temperature gradient length is not the
major radius of the machine.

(i) The stability diagram of Fig. (5) of Ref. (Biglari et al. 1989) has also been repro-
duced (not shown) by solving Eq. (2.5). Their result, R/LT = 2.7, can be obtained only
if we include an extra multiplicative factor in the definition of the magnetic drift, e.g.
ωκ = 2ω∗i(Ln/R) [however, in this work we follow Hastie & Hesketh (1981) and use
ωκ = ω∗i(Ln/R)]], and the frequency at marginal stability is evaluated by solving the equa-

tion
{[

1− ω∗i
ωr

+ ηi
ω∗i
ωr

(

1− 2 ωr
ωκ

)]

ℜ

[
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√

ω

ωκ
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ωr = 0.
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resonant destabilisation of the ITG mode in tokamaks and stellarators could show some
common features. In the following sections we will discover what these common aspects
are.

2.1. Low-shear tokamak

We repeat the same study that was performed above to benchmark the analytical theories
of the destabilisation of the toroidal ITG, but for ŝ = 0.1, and ǫ = 0.03, instead of
ŝ = 0.768 and ǫ = 0.18. The results are shown in Figs (4)-(5), and exhibit a new family
of unstable modes below what would have been the critical gradient had we extrapolated
to γ → 0 the growth rate calculated at large R/LT . These modes behave as a persistent
“background” of instability. The velocity-space structures and the eigenfunctions of two
representative modes (one from the “background”, one from the strongly driven toroidal
branch) are compared in Figs. (6) and (7). For these cases, a velocity-space resolution of
lv/nv0= 3/512 ≈ 5.86×10−3, where lv is the extension of the simulation box (in units of
thermal speed), and nv0 is the number of grid-points in the v‖− direction, was required
to fully resolve the maximum of the distribution function of the background mode at
v‖ = 0. However, the eigenvalue would not be affected by choosing slightly larger values.
All other resolutions are kept consistent with the analysis of the previous Section, but
care must be taken to fully resolve the asymptotic behaviour of the “background” mode
eigenfunctions for large ballooning angles. Since, formally, the ballooning angle is the
Fourier conjugate of the local radial variable, asymptotically decaying eigenfunctions are
captured by increasing the radial resolution. In our case, for a domain Lx = 1/(kyρsŝ) ≈
33.33, the number of grid-points in the radial (x) direction varies from 24 to 64. A
comparison of the eigenfunctions for the two types of modes is in Fig. (8) and (9). From
the first, we see that, at marginality, both eigenfunctions decay rather slowly. However,
the decay length of the background mode is much greater. Furthermore, the background
mode does not have an absolute maximum at θ = 0. While the strongly driven mode
shows resonances at finite v‖ outside the µ± v̂2‖ ≡ const boundary, the background mode
does not show structure at finite v‖. Its dependence on the inverse aspect ratio is shown
in Fig. (10). We see that the slab character of the instability is more pronounced for
larger aspect ratios. It is of some interest to know whether, for a given aspect ratio, there
is a critical shear, ŝcrit, above which the ”background” modes are suppressed. For the
case R/LT = 3, and ǫ = 0.18 of Fig. (10), we find 0.14 < ŝcrit < 0.16. For flat density
profiles, R/Ln = 0, and moderate inverse aspect ratio, ǫ = 0.18, the real frequency
at marginality shows an even stronger dependence on the temperature ratio, τ, [Fig.
(11)] but, for the specific parameters used, the background modes are not present. The
equilibrium values chosen to let the background modes emerge could seem unrealistic.
Let us therefore consider a situation where such modes are always expected, almost by
design.

2.2. Wendelstein 7-X

The stellarator Wendelstein 7-X shows the same qualitative bahaviour as just described
for the tokamak case. We consider a high-mirror configuration (Geiger et al. 2015) at a
normalised radial position r/a = 0.7, for kyρs = 0.9, flat density a/Ln = 0, q = 1/ι =
1.10186, and small negative global shear ŝ = −0.1286. Here a is the average minor radius.
Such configuration can be considered to be ”standard”. It is realised by setting to zero
the current in the planar coils, and imposing a ”large” ratio of average toroidal to helical
curvature, b1,0/b1,1 ≈ 0.5, and a finite mirror term, b0,1 ≈ 0.1, where bn,m are the Fourier
components of the equilibrium magnetic field in Boozer co-ordinates (Xanthopoulos et al.
2009). A scan in normalised temperature gradient scale, a/LT , is given in Figs. (12) and
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(13) for several τ. As in the tokamak case, there is a background of unstable modes below
the threshold of the strongly driven toroidal ITG branch. An inspection of the real part
of the eigenvalue reveals more frequent, but milder, jumps than in the tokamak case.
The eigenfunction is plotted in Fig. (14) for a/LT = 0.8 (background) and a/LT = 3.
(toroidal branch) for τ = 1. The global shear is kept constant, the mode localisation of the
two modes is very different: the background mode shows a much slower variation along
the field-line-following co-ordinate than the toroidal branch mode. Our results suggest
that the linear threshold for destabilisation of ITG modes in Wendelstein 7-X could be
overestimated by a rough extrapolation of the toroidal branch to γ → 0, even for flat
densities.

3. Temperature dependence of critical thresholds

In the previous section we have conjectured that the resonant destabilisation of the
ITG mode in low shear tokamaks and stellarators possesses common features. Numerical
simulations corroborate this hypothesis. We refrain from proposing some universal for-
mula for critical gradients at low shear, nonetheless we find it instructive to explore the
temperature dependence of the critical gradient, since this puts the new results in the
same context as previous analytical studies.
In the asymptotic limit of large inverse aspect ratio, ǫ = 0.03, the ŝ− α tokamak case

gives a critical inverse gradient that increases with τ, for τ & 1. For τ . 1, the instability
threshold is fixed by the density gradient, e.g. (R/LT )crit ≈ R/Ln [see Fig. (15)]. In
accordance with the JDH formula, a decreasing shear and an increasing Ln/LT have a
destabilising effect [see Fig. (16)]. The results for Wendelstein 7-X [Fig. (17)] were all
derived in the flat density limit R/Ln = 0. The critical temperature gradient is a growing
function of τ . We observe that (a/LT )crit ≈ 1 for sufficiently hot ions, τ & 2.

4. Floquet modes

What are these modes that emerge below the critical threshold of the toroidal branch at
low shear? In the classical nomenclature of ITG modes in tokamaks, for ŝ/q ≈ ιŝ ≪ 1, the
slab branch of the instability tends to be negligible. Below marginality the toroidal branch
is stable. We saw that the background of modes at marginality is not eliminated at large
inverse aspect ratios in tokamaks. High-mirror, as well as low-mirror, Wendelstein 7-X
configurations also exhibit this persistent feature, and we recall that density gradients are
stabilising since the electrons are taken to be adiabatic. To shed some light on the nature
of these modes, we are compelled to abandon for a moment the regime of marginality and
consider these modes at their maximum growth rate. We first verify where this maximum
is. We select two representative cases for ǫ = 0.1, and τ = 1 : R/LT = 3 (background),
and R/LT = 4 (strong toroidal branch). The spectrum of the two instabilities is shown
in Fig. (18). We first notice that both the background and toroidal branch modes occur
approximately at the same ion scale, kyρs ≈ 0.3. This does not necessarily imply that
the two modes would be destabilised for the same R/LT . Let us now consider the non-
resonant limit. We take the fluid limit of the ITG equation [see Eq. (19) of Zocco et al.

(2016), or the Fourier transform of Eq. (12) of Connor & Taylor (1987), or Eq. (B1) of
Candy et al. (2004)], neglect altogether the shear, i.e. ŝ ≡ 0, and restore the streaming
term, to obtain the Mathieu equation

d2ϕ

dz2
= [2q(ω) cos 2z − a(ω)]ϕ, (4.1)
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with q(ω) = 8ωω
(0)
κ /(v2thi/ℓ

2
‖), a(ω) = −8(ω3/ωT v

2
thi/ℓ

2
‖)
[

τ − ωTk
2
yρ

2
i /(2ω)

]

, and z =

l/2, where l is the field following co-ordinate, and ℓ‖ is the parallel connection length.
Basically, when the system approaches marginality, the toroidal driving term (propor-
tional to q, not to be confused with the safety factor), becomes smaller and the second
order derivative associated with the streaming term cannot be neglected. The absence
of secular terms due to very low shear, however, makes this non-resonant analysis still
valid. The resonant theory of such modes does not seem straightforward.

Equation (4.1) has been studied in the context of formation of internal transport
barriers in ITG turbulence by Candy et al. (2004) and by Connor & Hastie (2004). A
more general form was investigated by Taylor & Wilson (1996). In stellarator research,
“weakly localised” Mathieu solutions were first identified by Bhattacharjee et al. (1983).

The most general solution of Eq. (4.1) is

ϕ(z) = eµzΦ(z), (4.2)

where Φ is periodic with period πk, with k integer. The evaluation of µ was first published
in 1886 by Hill (1886), and it will now be applied to the ITG case. One introduces the
Fourier series for the π−period solution

ϕπ(z) = eµz
∞
∑

n=−∞
b2ne

2niz , (4.3)

to obtain

(µ+ 2ni)
2
b2n + ab2n − q (b2n−2 + b2n+2) = 0. (4.4)

For a 2π−period solution, ϕ2π(z) = eµz
∑∞

n=−∞ b′2n exp[inz], we have

(µ+ ni)
2
c′n + ac′n − q

(

c′n−1 + c′n+1

)

= 0, (4.5)

where c′n ≡ b′2n. Equation (4.5) is, for µ = 0, Eq. (21) of Connor & Taylor (1987). It
is clear that µ = 0 is the eigenvalue condition, because twisting boundary conditions
require ϕ′(0) = µΦ(0) + Φ′(0) = µΦ(0) = 0, which, indeed, implies µ = 0. Similarly,
we introduce cn ≡ b2n and write Eq. (4.4) in matrix form, Anmcn, where (for π−period
solutions), after setting µ = 0,

Amn =

















. . . − q
a−4×22

− q
a−4×12 1 − q

a−4×12

− q
a−4×02 1 − q

a−4×02

− q
a−4×12 1 − q

a−4×12

− q
a−4×22

. . .

















(4.6)

is an infinite tridiagonal matrix. The eigenvalue, ω̂ = ω/(vthi/a), is therefore determined
from

detAmn(ω̂) = 0. (4.7)

Notice that for q ∼ a, the off-diagonal elements decay like m−2, so the determinant of
the matrix is convergent for m → ∞. For a given large M, −M 6 (m,n) 6 M, one can
use the iterative formula for determinants of tridiagonal matrices, to show that Eq. (4.7)
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can be written in terms of the truncated continued fraction

1− q2

(a− 4M2) [a− 4(M − 1)2]

1

1− q2

[a−4(M−1)2][a−4(M−2)2]
1

1− q2

[a−4(M−2)2 ][a−4(M−3)2]
1

1

. ..

= 0,

(4.8)
where the recursive formula is iterated from m = M, to m = −M, with detA−M−1 ≡ 1.
Then

lim
M→∞

q2

(a− 4M2) [a− 4(M − 1)2]

1

1− q2

[a−4(M−1)2][a−4(M−2)2]
1

1− q2

[a−4(M−2)2 ][a−4(M−3)2 ]
1

1−

. . .

= 1

(4.9)
is the eigenvalue equation for the Floquet ITG mode. Candy et al. (2004) report an
eigenvalue condition which reads

a(ω̂) = −2q(ω̂) + 2q1/2(ω̂), (4.10)

and is valid only for q ≫ 1. Connor & Taylor (1987) derived , for large q,

a(ω̂) = −2q(ω̂) + q1/2(ω̂), (4.11)

after expanding a finite ŝ version of Eq. (4.1) in Fourier harmonics, and treating the
Fourier index as a continous variable. Following Connor and Taylor, we can consider
slowly varying cm coefficients, for the π−period solution, and obtain

q
d2cm
dm2

+
(

4m2 − a− 2q
)

cm = 0. (4.12)

By using the ansatz cm = exp[−λm2], the eigenvalue condition,

a(ω̂) = 2q(ω̂) + 2iq1/2(ω̂), (4.13)

is derived. This corresponds to equation (B9) of Candy et al. (2004) for q → −q [Eq.
(4.10) in this work]. In fact, both eigenvalue equations (4.5) and (4.13) are approximate
forms of the exact one, for a different periodicity of 2π or π, respectively. For each
periodicity, we have two eigenmodes (and eigenvalues) depending on the argument of q.
For instance, the 2π−period solutions have maxima at the poloidal location θ = π, [Eq.
(4.11)] and θ = 0 [Eq. (4.11) with q → −q].
The numerical solution of Eq. (4.7), γ̂ = ℑ[ω̂], is plotted in Fig. (19) as a function of

the matrix dimension for ω
(0)
κ /(vthi/a) = 0.45, ωT /(vthi/a) = 0.6, vthi/ℓ‖ = 0.5(vthi/a)

and kyρi = 0.3 (here a is a normalising length). The result is compared to the solution
of Eq. (4.13). In this case q = 10. The agreement is excellent. For q ∼ 1, which is the
relevant regime, since Eq. (4.1) is derived for ωκ/ω ∼ v2thi/ℓ

2
‖ ≪ 1, Eq. (4.7) is the

correct eigenvalue equation. It is worth mentioning that Taylor & Hastie (1968), in their
seminal work where linear gyrokinetics was derived for the first time for electrostatic
perturbations in a torus, report an eigenvalue equation of the form of our Eq. (4.7).
Their eigenvalue equation [Eq. (50)] reduces to a determinant of a tridiagonal matrix
[derived by Coppi, Laval, Pellat, and Rosenbluth (Coppi et al. 1968)], when the plane
slab ITG is modified by a sinusoidal periodic gravity term. Coppi et al. recognised the
role of the Hill determinant in the evaluation of the true eigenvalue given by the solution
of Eq. (4.7), but the approximated eigenvalue of Eq. (4.11) was derived only 17 years
later! We now see that the resonant destabilisation of Floquet modes in stellarators can
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possibly be compared with the final result derived by Coppi et al. (1968) in Appendix B
of their work, if temperature gradient effects are included.

5. Discussion and Conclusions

The aim of this work was to elucidate what sets the linear threshold for destabilisation
of the electrostatic ion-temperature-gradient driven mode in toroidal magnetic fusion
devices. We study both axisymmetric (tokamaks) and non-axisymmetric (stellartors)
confinement concepts.
In regimes of interest for the stellarator Wendelstein 7-X, a background of unstable

modes exists below the threshold of destabilisation of the toroidal branch of the ITG
mode. We proposed the hypothesis that such modes are ITG modes of the Floquet type.
The eigenfunctions resulting from GENE numerical simulations of Wendelstein 7-X show
a much slower decay along the field line for these modes than for modes of the toroidal
branch [see Fig. (14)]. This behaviour is evocative of the prediction of weakly localised
drift-wave modes in stellarators, decribed in terms of Mathieu functions by Bhattacharjee
et al. (1983). In the non-resonant limit, a complete eigenvalue equation is then proposed
and studied in relation to previous known results.
The importance of our findings relies on the fact that such modes result from having

a very low global shear, ŝ, and feature similar qualitative behaviour in tokamaks and
stellarators. In the former case, one could imagine them being relevant for advanced
confinement scenarios with very flat safety factor profiles. For finite density gradients,
the insensitivity of the derived temperature gradient thresholds to the temperature ratio
τ = Ti/Te for τ < 1 seems a rather clear effect, distinguishing these modes from the more
conventional branches. For stellarators, our findings could have a non-negligible impact
on confinement if Floquet modes play any role nonlinearly. If stellarator electrostatic
turbulence is affected by the nonlinear activity of these modes, there is an open question
regarding what is really the achievable temperature gradient for a stellarator with low
global shear, as opposed to known tokamak cases, where a finite turbulent transport
is observed above a finite critical temperature gradient, generally larger than the one
discussed in this work (Dimits et al. 2000). Additional stabilising effects can of course
suppress these modes. Our results are perhaps also relevant for trapped-electron-mode
driven turbulence, where similar eigenfunctions and ”background”modes can be observed
(Faber et al. 2015; Proll et al. 2013).

Part of this work was presented at the first conference ”Frontiers in Plasma Physics”,
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held at the Abbey of the Most Holy Trinity of Spineto (Sarteano, Italy) under the auspices
of the Journal of Plasma Physics (Cambridge University Press).

Appendix A. Local kinetic limit formulation

In order to solve the intergal Ii for arbitrary ion Larmor radii, some preliminary ma-
nipulations are in order. We add and subtract ωκv̂

2
‖ + ωB v̂

2
⊥/2 in the numerator of Ii to

obtain

Ii = 2

∫ ∞

0

dv̂⊥v̂⊥J
2
0

(

k2⊥ρ
2
i v̂

2
⊥
)

e−v̂2
⊥

− ω∗i
ω

(

1− 3

2
ηi

)

J (0)

+
ωκ − ω∗iηi

ω
J
(2)
⊥

+
ωB/2− ω∗iηi

ω
J
(2)
‖ ,

(A 1)

with

J
(n)
⊥,‖ = 2

∫ ∞

0

dv̂⊥v̂⊥

∫ ∞

−∞
dv̂‖v̂

n
⊥,‖

J2
0

(

k2⊥ρ
2
i v̂

2
⊥
)

1− (ωκ

ω v̂2‖ +
ωB

ω v̂2⊥/2)

e−(v̂2
‖+v̂2

⊥)

√
π

. (A 2)

The first line of Eq. (A 1) gives the well known result of gyrokinetic theory:

2

∫ ∞

0

dv̂⊥v̂⊥J
2
0

(

k2⊥ρ
2
i v̂

2
⊥
)

e−v̂2
⊥ = Γ0(b), (A 3)

where b = k2⊥ρ
2
i /2, and Γ0(b) = I0(b) exp(−b), with I0 the modified Bessel function. We

now integrate the resonances in a way similar to that presented by Biglari Diamond and
Rosenbluth (BDR) (Biglari et al. 1989). For J (0) we have

J (0) = −2i

∫ ∞

0

dv̂⊥v̂⊥J
2
0

∫ ∞

−∞

dv̂‖√
π

∫ ∞

0

dλeiλ[1−(ωκ
ω v̂2

‖+
ωB
ω v̂2

⊥/2)]−(v̂2
‖+v̂2

⊥)

= −2i

∫ ∞

0

dλeiλ
∫ ∞

0

dv̂⊥v̂⊥J
2
0

∫ ∞

−∞

dv̂‖√
π
e−v̂2

⊥(1+iλ
ωB
2ω )e−v̂2

‖(1+iλωκ
ω )

= −2i

∫ ∞

0

dλeiλ
∫ ∞

0

dv̂⊥v̂⊥J
2
0

e−v̂2
⊥(1+iλ

ωB
2ω )

(

1 + iλωκ

ω

)1/2

= −i

∫ ∞

0

dλ
eiλ

(

1 + iλωκ

ω

)1/2

Γ0

(

b̂
)

1 + iλωB

2ω

,

(A 4)

with b̂ = b/[1 + iλωB/(2ω)]. We require

ℑ[λωκ

ω
] < 1, (A 5)

ℑ[λωB

2ω
] < 1, (A 6)

and

ℑ[λ] > 0 (A 7)
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in order to guarantee convergence of the velocity-space and λ integrals, respectively.
Conditions (A 5)-(A 7) thus define an abscissa of convergence in the complex λ−plane

ℜ[λ] > αc ≡ ℑ[ω]−1(ℑ[λ]ℜ[ω]− |ω|2 /ωκ). (A 8)

Here we are using ωB ≡ ωκ (valid in the electrostatic case) and taking the most restrictive
of conditions (A 5)-(A 7). Similarly, we obtain

J
(2)
‖ = − i

2

∫ ∞

0

dλ
eiλ

(

1 + iλωκ

ω

)3/2

Γ0

(

b̂
)

1 + iλωB

2ω

, (A 9)

and

J
(2)
⊥ = −i

∫ ∞

0

dλ
eiλ

(

1 + iλωκ

ω

)1/2

Γ0

(

b̂
)

+ b̂
[

Γ1

(

b̂
)

− Γ0

(

b̂
)]

(

1 + iλωB

2ω

)2 . (A 10)

We now introduce the Padé approximants

Γ0

(

b̂
)

≈ 1

1 + b
1+iλ

ωB
2ω

, (A 11)

and

Γ0

(

b̂
)

+ b̂
[

Γ1

(

b̂
)

− Γ0

(

b̂
)]

≈ 1
(

1 + b
1+iλ

ωB
2ω

)2 , (A 12)

which will allow us to perform the λ integration. The integral J (0) becomes

J (0) = −i

∫ ∞

0

dλ
eiλ

(

1 + iλωκ

ω

)1/2

1

1 + iλωB

2ω + b
. (A 13)

For λ → λω/ωκ, b → 0, and ωB ≡ ωκ,

lim
b→0

J (0) = −i
ω

ωκ

∫ ∞

0

dλ
ei

ω
ωκ

λ

(1 + iλ)
1/2

1

1 + iλ2

=
ω

ωκ
F1,1,

(A 14)

with F1,1 defined in Eq. (A2) of BDR. We notice that the change of variables λ → λω/ωκ

requires (ℜ[λ]ℑ[ω]+ℑ[λ]ℜ[ω])/ωκ > 0 for the convergence of the λ integral. At marginal
stability, for ωκ < 0 and ω < 0, this is condition (A 7).

Appendix B. Arbitrary Larmor radii solution

For b 6= 0, the analytical technique used by BDR to solve for F1,1 cannot be used to
perform the integration. We prefer to proceed in a different way.
Let us consider

R = −i

∫ ∞

0

dλ
eiΩλ

(1 + iλ)
1/2

1

1 + iλ ωB

2ωκ
+ b

, (B 1)

with Ω = ω/ωκ. We change variables

iλ = t2 − 1, (B 2)
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and obtain

R = −4
ωκ

ωB

∫ ei
π
4 ∞

1

dt
eΩ(t2−1)

2 ωκ

ωB
(1 + b)− 1 + t2

= −4
ωκ

ωB
e−Ω

∫ ei
π
4 ∞

1/
√
g

du√
g

eΩgu2

1 + u2
,

(B 3)

with

g = 2
ωκ

ωB
(1 + b)− 1. (B 4)

In the case ωκ = ωB, g = 1 + 2b > 0 ∀ b. We split the domain of integration and define

R = −4
ωκ

ωB
e−Ω

(

∫ ei
π
4 ∞

0

du√
g
−
∫ 1/

√
g

0

du√
g

)

eΩgu2

1 + u2

≡ −4
ωκ

ωB
e−Ω (I∞ − Ig) .

(B 5)

In appendices C and D, we show that

R = −4
ωκ

ωB

e−Ω

√
g

{

− i

2

√
πZ
(

√

gΩ
)

− 2πe−gΩT

[

i
√

2gΩ;
1√
g

]}

, (B 6)

where Z is the plasma dispersion function (Fried & Conte 1961), and T the Owen
T−function (Owen 1956). By direct comparison of Eqs. (A 13) and (B 1), we have

J (0) =
ω

ωκ
R. (B 7)

The integral J
(2)
⊥ now becomes

J
(2)
⊥ = −i

∫ ∞

0

dλ
eiλ

(

1 + iλωκ

ω

)1/2

1
(

1 + iλωB

2ω + b
)2

= − d

db
J (0).

(B 8)

To evaluate the integral J
(2)
‖ , it is convenient to consider a simple generalization of the

auxiliary integral, R, namely

Rν = −i

∫ ∞

0

dλ
eiΩλ

(ν + iλ)
1/2

1

1 + iλ ωB

2ωκ
+ b

. (B 9)

Then

J
(2)
‖ = − lim

ν→1
Ω

d

dν
Rν . (B 10)

The integral Rν can be related to R after some straightforward algebra. We find

Rν = −4
ωκ

ωB
e−νΩ

∫ ei
π
4

∞

√
ν/gν

du√
gν

egνΩu2

1 + u2

= −4
ωκ

ωB

e−νΩ

√
gν

{

− i

2

√
πZ
(

√

gνΩ
)

− 2πe−gνΩT

[

i
√

2gνΩ;

√

ν

gν

]}

, (B 11)

with

gν =
2ωκ

ωB
(1 + b)− ν. (B 12)
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Summarizing, the local kinetic dispersion relation is

1 + τ = Γ0(b)

− ω∗i
ω

(

1− 3

2
ηi

)

J
(0)
⊥

+
ω∗i
ω

(

ωκ

ω∗i
− ηi

)

J
(2)
⊥

+
ω∗i
ω

(

ωB

2ω∗i
− ηi

)

J
(2)
‖ ,

(B 13)

with

J (0) = lim
ν→1

ω

ωκ
Rν , (B 14)

J
(2)
⊥ = − d

db
J (0), (B 15)

J
(2)
‖ = − lim

ν→1
Ω

d

dν
Rν , (B 16)

with Rν defined in Eq. (B 11), gν = 2(1 + b)ωκ/ωB − ν, and

T

[

i

√

2gν
ω

ωκ
;

√

ν

gν

]

=
egν

ω
ωκ

2π
√
gν

∞
∑

n=0

(−ν/gν)
n

(2n+ 1)

n
∑

m=0

(−gν
ω
ωκ

)m

m!
. (B 17)

This expression for the Owen T−function is derived in Appendix D.

Appendix C. The integral I∞
For I∞, we change variables to

gΩu2 → −ξ2, (C 1)

so that, when u → ei
π
4 ∞, ξ → ei(

3
4π+

arggΩ
2 )∞. A closed form of the integral can be

found for an unstable mode arg(Ωg) = arg {ω [2ωκ(1 + b)− ωB] /(ωκωB)} ≈ π/2, for

ℜ[ω] → 0. Then, ξ → ei(
3
4π+

arggΩ
2 )∞ ≈ ei(

3
4π+

π
4 )∞ = −∞, and I∞ becomes

I∞ = −i
√
Ω

∫ −∞

0

dξ
e−ξ2

(√
gΩ
)2 − ξ2

= i

√
Ω

2

∫ ∞

−∞
dξ

e−ξ2

2
√
gΩ

{

1

ξ +
√
Ω

− 1

ξ −
√
Ω

}

= − i

2

√

π

g
Z
(

√

gΩ
)

.

(C 2)

Analytic continuation is needed for damped modes.

Appendix D. The integral Ig and the Owen T−function

In the case of Ig, we have

Ig =

∫ 1/
√
g

0

du√
g

eΩgu2

1 + u2
. (D 1)



Resonant destabilisation of ITG modes 15

This integral can be written in terms of the Owen T−function (Owen 1956).

Ig =

∫ 1/
√
g

0

du√
g

eΩgu2

1 + u2

= e−gΩ

∫ 1/
√
g

0

du√
g

e
−(i

√
2gΩ)2

(

u2

2 + 1
2

)

1 + u2

= 2π
e−gΩ

√
g

T

[

i
√

2gΩ;
1√
g

]

.

For analytical manipulations and numerical implementation, the most convenient way
of writing the Owen function is, perhaps, the following. Since

T

[

i

√

2gν
ω

ωκ
;

√

ν

g

]

=
1

2π

∫

√
ν/gν

0

dt
egν

ω
ωκ

(1+t2)

1 + t2
, (D 2)

if we rewrite

T

[

i

√

2gν
ω

ωκ
;

√

ν

g

]

=
1

2π

∫

√
ν/gν

0

dt
egν

ω
ωκ

(1+t2)

1 + t2

=
1

2π

∫ ∞

0

dξ

∫

√
ν/gν

0

dte−ξ(1+t2)egν
ω
ωκ

(1+t2)

=
1

2π
egν

ω
ωκ

∫ ∞

0

dξe−ξ

∫

√
ν/gν

0

dte−(ξ−g ω
ωκ

)t2

=
1

2π
egν

ω
ωκ

∫ ∞

0

dξe−ξ

√

π/4

ξ − gν
ω
ωκ

Erf

√

ν

(

ξ

gν
− ω

ωκ

)

,

(D 3)

we are then able to introduce the series representation of the Error function, to obtain

T

[

i

√

2gν
ω

ωκ
;

√

ν

g

]

=
egν

ω
ωκ

2π
√
gν

∫ ∞

0

dξe−ξ
∞
∑

n=0

(−ν/gν)
n

n!(2n+ 1)

(

ξ − gν
ω

ωκ

)n

=
egν

ω
ωκ

2π
√
gν

∞
∑

n=0

(−ν/gν)
n

n!(2n+ 1)

∫ ∞

0

dξe−ξ

(

ξ − gν
ω

ωκ

)n

=
1

2π
√
gν

∞
∑

n=0

(−ν/gν)
n

n!(2n+ 1)

∫ ∞

−gν
ω
ωκ

dye−yyn

=
1

2π
√
gν

∞
∑

n=0

(−ν/gν)
n

n!(2n+ 1)

(

∫ ∞

0

dy −
∫ −gν

ω
ωκ

0

dy

)

e−yyn

=
1

2π
√
gν

∞
∑

n=0

(−ν/gν)
n

n!(2n+ 1)

[

Γ (n+ 1)− γ(n+ 1,−gν
ω

ωκ
)

]

,

(D 4)

where

γ

(

n+ 1,−gν
ω

ωκ

)

(D 5)

is the incomplete gamma function (Tricomi 1950b,a). Tricomi shows that, for integer n,

γ

(

n+ 1,−gν
ω

ωκ

)

= n!

[

1− egν
ω
ωκ

n
∑

m=0

(−gν
ω
ωκ

)m

m!

]

, (D 6)
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therefore, our series representation of the Owen function is

T

[

i

√

2gν
ω

ωκ
;

√

ν

gν

]

=
egν

ω
ωκ

2π
√
gν

∞
∑

n=0

(−ν/gν)
n

(2n+ 1)

n
∑

m=0

(−gν
ω
ωκ

)m

m!
. (D 7)

Appendix E. Proof of some identities

In Appendix B, we derived the following result

R = −4
ωκ

ωB

e−Ω

√
g

{

− i

2

√
πZ
(

√

gΩ
)

− 2πe−gΩT

[

i
√

2gΩ;
1√
g

]}

, (E 1)

which is valid ∀ b. We now prove that, for ωκ ≡ ωB,

lim
b→0

R = F1,1, (E 2)

where

F
1/2
1,1 = e−Ω

∫ Ω

−∞
dz

e−z

z1/2
(E 3)

is the result found by BDR (Biglari et al. 1989).
Since limb→0 g = 1, we have

lim
b→0

R = 2i
√
πe−ΩZ

(√
Ω
)

+ 4πe−2ΩΦ
(

i
√
2Ω
) [

1− Φ
(

i
√
2Ω
)]

, (E 4)

where

Φ(x) =
1√
2π

∫ x

−∞
dte−t2/2. (E 5)

It is easy to see that

Φ(x) =
i

2
√
π

∫ Ω

−∞
dz

e−z

z1/2

=
i

2
√
π
eΩF

1/2
1,1

(E 6)

Then

lim
b→0

R = 2i
√
πe−ΩZ

(√
Ω
)

+ 4πe−2ΩΦ
(

i
√
2Ω
) [

1− Φ
(

i
√
2Ω
)]

,

= 2i
√
πe−Ω

{

Z
(√

Ω
)

+ F
1/2
1,1

}

+ F1,1.
(E 7)

However, it is also true that

F
1/2
1,1 = e−Ω

∫ Ω

−∞
dz

e−z

z1/2

= −2ie−Ω

∫ iΩ1/2

−∞
dte−t2

= −Z
(√

Ω
)

,

(E 8)

then the first two terms in equation (E 7) cancel, leaving us with

lim
b→0

R = F1,1, (E 9)

which is what we aimed to prove.
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Appendix F. Real frequency at marginality, long wavelength limit

b → 0

In the light of the identities just proved in Appendix E, we are in the position to say
that, for b → 0,

D ≡ − (1 + τ) + Ii

= − (1 + τ) +
(

1− ω∗i
ω

)

ΩZ2
(√

Ω
)

+ ηi
ω∗i
ω

{

(1− 2Ω)ΩZ2
(√

Ω
)

− 2Ω3/2Z
(√

Ω
)}

,

(F 1)

which corresponds to D0 in Eq. (3) of BDR (Biglari et al. 1989). The real frequency at
marginality is evaluated by solving ℑ[D(ωr)] ≡ Di(ωr) = 0, where we set ω = ωr + iγ,
and take γ → 0. This comes directly from Eq. (F 1)

{

1− ω∗i
ωr

+ ηi
ω∗i
ωr

(

1− 2
ωr

ωκ

)}

ℜ
[

Z

(√

ωr

ωκ

)]

= ηi
ω∗i√
ωrωκ

. (F 2)

As a validity check, one can set J2
0 → 1 in the definition of Ii and integrate the resonances

in yet another way. Thus

Ii = 2

∫ ∞

0

dv̂⊥v̂⊥e
−v̂2

⊥

∫ ∞

−∞

dv̂‖e
−v̂2

⊥

√
π

Ω− Ω∗
[

1 + ηi

(

v̂2‖ + v̂2⊥ − 3/2
)]

Ω−
(

v̂2‖ + v̂2⊥

)

= −2

∫ ∞

0

dv̂⊥v̂⊥e
−v̂2

⊥







Ω− Ω∗i

(

1− 3

2
ηi

) Z
(

√

Ω− v̂2⊥/2
)

√

Ω− v̂2⊥/2







+ ηiΩ∗i







1 + 2

∫ ∞

0

dv̂⊥v̂
3
⊥e

−v̂2
⊥

Z
(

√

Ω− v̂2⊥/2
)

√

Ω− v̂2⊥/2







+ ηiΩ∗i2

∫ ∞

0

dv̂⊥v̂⊥e
−v̂2

⊥

√

Ω− v̂2⊥/2Z

(

√

Ω− v̂2⊥/2

)

.

(F 3)

It is easy to see that

2

∫ ∞

0

dv̂⊥v̂⊥e
−v̂2

⊥

Z
(

√

Ω− v̂2⊥/2
)

√

Ω− v̂2⊥/2
= −4ie−2Ω

∫ ∞

iΩ1/2

dζe−2ζ2

Z (iζ) ≡ I1, (F 4)

2

∫ ∞

0

dv̂⊥v̂
3
⊥e

−v̂2
⊥

Z
(

√

Ω− v̂2⊥/2
)

√

Ω− v̂2⊥/2
= 2

∫ ∞

0

dv̂⊥2v̂⊥

(

v̂2⊥
2

− Ω+ Ω

)

e−v̂2
⊥

Z
(

√

Ω− v̂2⊥/2
)

√

Ω− v̂2⊥/2

= 2ΩI1 + 2(−4i)e−2Ω

∫ ∞

iΩ1/2

dζζ2e−2ζ2

Z (iζ)

≡ 2ΩI1 + 2I2,

(F 5)

and

2

∫ ∞

0

dv̂⊥v̂⊥e
−v̂2

⊥

√

Ω− v̂2⊥/2Z

(

√

Ω− v̂2⊥/2

)

= −I2. (F 6)
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Then

1 + τ − ηiΩ∗i = −
{

Ω− Ω∗i

[

1− 3

2
ηi

(

1− 4

3
Ω

)]}

I1 − ηiΩ∗iI2. (F 7)

By writing the plasma dispersion function as an error function of imaginary argument,
one sees that the integrals I1,and I2 can be performed analytically to obtain

1 + τ = {− (Ω− Ω∗i)− ηiΩ∗i (1− 2Ω)}πe−2Ω
[

1− Erfi2
(√

Ω
)

− 2iErfi
(√

Ω
)]

+ 2ηiΩ∗i
√
πΩe−Ω

[

Erfi
(√

Ω
)

+ i
]

,

(F 8)

whose imaginary part set to zero gives Eq. (F 2).
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Figure 1. Real frequency from the GENE code as a function of the temperature gradient for
different τ = Ti/Te. The τ−dependence is evident. Cyclone Base Case parameters are used (see
text for details).
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Figure 2. Growth rate from the GENE code as a function of the temperature gradient for
different τ = Ti/Te. The τ−dependence is evident. Cyclone Base Case parameters are used (see
text for details).
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Figure 3. Critical threshold from GENE data, linear fit to GENE data, fitting formula of
Jenko Dorland and Hammett, and different local theories. The GENE data at q = 100 should
be compared to the local theories.
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Figure 4. Imaginary part of eigenvalue from the GENE code as a function of the temperature
gradient for different τ. Parameters as in Fig 4, but ŝ = 0.1, ǫ = 0.03. The “background” modes
at marginality are evident.
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Figure 5. Real part of eigenvalue from the GENE code as a function of the temperature
gradient for different τ. Parameters as in Fig 4, but ŝ = 0.1, ǫ = 0.03. The “background” modes
at marginality are evident.
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Figure 6. Ion distribution function in phase space. τ = 1, R/LT = 3, for the “background”
mode that belongs to the “foot” of Fig. 5 No clear resonance at finite v‖. The velocity-space

resolution in the v‖−direction is 5.86 × 10−3. Other parameters as in Fig. 4.
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Figure 7. Ion distribution function in phase space. τ = 1, R/LT = 5, for the toroidal branch
mode. Resonance occurs outside the µ± v̂2‖ ≡ const boundary. The velocity-space resolution in

the v‖−direction is 5.86 × 10−3. Other parameters as in Fig. 4.
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Figure 8. Eigenfunctions as a function of the ballooning angle for the ŝ − α tokamak equilib-
rium from the GENE code (flux tube). Here τ = 1, kyρs = 0.3, a/LT = 3 (Floquet), a/LT = 5
(toroidal branch). The velocity-space resolution in the v‖−direction is 5.86 × 10−3. Other pa-
rameters as in Fig. 4.
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Figure 9. A “zoom” of Fig. 8. Eigenfunctions as a function of the ballooning angle for the
ŝ− α tokamak equilibrium from the GENE code (flux tube). Here τ = 1, kyρs = 0.3, a/LT = 3
(Floquet), a/LT = 5 (toroidal branch). The velocity-space resolution in the v‖−direction is

5.86 × 10−3.
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Figure 11. Real part of eigenvalue from the GENE code as a function of the temperature
gradient for different τ. Parameters as in Fig 1, but ŝ = 0.1, and R/Ln = 0. The τ−dependence
at marginality is evident.
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Figure 12. Growth rate of microinstability in Wendelstein 7-X from the GENE code (flux tube).
High mirror configuration, adiabatic electrons, radial position r/a = 0.7. The “background”
modes at marginality are evident.



Resonant destabilisation of ITG modes 31

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5 1 1.5 2 2.5 3

ω
/(
c s
/a

)

a/LT

τ = 0.3
τ = 0.5
τ = 1.
τ = 1.5
τ = 2

Figure 13. Frequency associated with the unstable modes of Fig. (12) evaluated for Wendelstein
7-X from the GENE code (flux tube). High mirror configuration, adiabatic electrons, radial
position r/a = 0.7, for kyρs = 0.9.
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(Floquet), a/LT = 3 (toroidal branch).
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Figure 15. Critical threshold from GENE data of Fig. 5 for several density gradients, R/Ln.
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Figure 16. Critical threshold from GENE. Cyclone Base Case parameters are used (see text
for details), but ŝ = 0.1 for R/Ln = 0, and ŝ = 0.786 for R/Ln = 2.
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Figure 18. Spectra of instability for an ŝ− α tokamak, ǫ = 0.1, τ = 1, R/LT = 3
(background) and R/LT = 4 (strong toroidal branch).
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Figure 19. Numerical solution of Eq. (4.7) and (4.13) derived for π−periodic solutions with
maximum at θ ∝ z = 0. The eigenvalue of the local toroidal branch is given by the solution of
a = 2q, where a and q are defined in the text.


