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Experimental evidence is accumulating that endosymbionts of phytophagous insects
may transmit horizontally via plants. Intracellular symbionts known for manipulating
insect reproduction and altering fitness (Rickettsia, Cardinium, Wolbachia, and bacterial
parasite of the leafhopper Euscelidius variegatus) have been found to travel from infected
insects into plants. Other insects, either of the same or different species can acquire the
symbiont from the plant through feeding, and in some cases transfer it to their progeny.
These reports prompt many questions regarding how intracellular insect symbionts are
delivered to plants and how they affect them. Are symbionts passively transported
along the insect-plant-insect path, or do they actively participate in the process? How
widespread are these interactions? How does symbiont presence influence the plant?
And what conditions are required for the new infection to establish in an insect?
From an ecological, evolutionary, and applied perspective, this mode of horizontal
transmission could have profound implications if occurring frequently enough or if new
stable symbiont infections are established. Transmission of symbionts through plants
likely represents an underappreciated means of infection, both in terms of symbiont
epidemiology and the movement of symbionts to new host species.

Keywords: horizontal transmission, plant-mediated transmission, host-switching, plant-symbiont interaction,
endosymbiont, Wolbachia, Rickettsia, Cardinium

INTRODUCTION

Bacteria–insect symbioses, ranging from mutualistic to parasitic interactions, are pervasive in
nature. Their commonness is likely due to the profound influence of the symbionts on host biology,
whereby they can be required for hosts’ survival, increase host fitness, or manipulate reproduction
to promote their own spread (Moran et al., 2008). Insect–symbiont associations can either be
obligate or facultative for the host, symbionts can have intracellular or extracellular lifestyles, and
they can be transmitted vertically, horizontally, or by the combination of both strategies (Moran
et al., 2008; Ebert, 2013).

While vertical transmission is the most frequent transmission mode for facultative intracellular
symbionts of insects, incongruence between the host and symbiont phylogenies indicates that many
horizontal symbiont transfers have occurred over evolutionary time. These events are important,
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enabling symbionts to extend their host range and for the hosts,
which, together with the new symbiont, gain new adaptations
(Sudakaran et al., 2017). Most of the directly observed horizontal
symbiont transfer events involve parasitoids, as is the case
for Arsenophonus-uninfected parasitoids acquiring the infection
while developing within the same host with the infected
counterparts (Duron et al., 2010). Parasitoids may also serve
as phoretic vectors, spreading Wolbachia from infected to
uninfected whiteflies (Ahmed et al., 2015) and Hamiltonella
defensa and Regiella insecticola by sequentially stabbing infected
and uninfected aphids (Gehrer and Vorburger, 2012). Finally,
parasitoids may acquire infection while developing inside an
infected host (Heath et al., 1999; Chiel et al., 2009). In addition
to these routes, intracellular insect symbionts can occasionally
spread through the insects’ food sources, such as in the cases of
predation and cannibalism of symbiont-harboring individuals,
which has been demonstrated in isopods (Le Clec’h et al., 2013).
Transmission via food has also been seen in aphids feeding on a
common artificial diet (Darby and Douglas, 2003). However, in
general, this form of transmission may be more common for gut
compared to intracellular symbionts.

There has been increasing interest in the role of symbiont
transmission through plants. In the case of herbivores, indirect
evidence for horizontal transmission via plant diet comes from
the observations that insects that feed upon common plants
possess similar symbionts (Sintupachee et al., 2006; Stahlhut
et al., 2010; Morrow et al., 2014). In this review, we examine the
mechanistic process involved in symbiont transmission through
the plant, first detailing the experimental systems studied to date,
before examining four phases of transfer: from insect to plant;
establishment or residence in the plant; uptake of a symbiont
by an insect feeding upon that plant and then transmission of
the symbiont by the insect to its progeny (Figure 1). We then
discuss the ecological and evolutionary significance of plant-
mediated transmission of symbionts before outlining areas for
future research.

EXPERIMENTAL SYSTEMS IN
PLANT-MEDIATED SYMBIONT
TRANSFER STUDIES

Intracellular bacteria usually regarded as insect symbionts, such
as Rickettsia, Wolbachia, Cardinium, and bacterial parasite of
the leafhopper Euscelidius variegatus (BEV), have been shown to
pass from herbivorous insects to plants, localize to plant tissues,
and infect or contaminate the naïve insects feeding on the plant
(Purcell et al., 1994; Caspi-Fluger et al., 2012; Gonella et al.,
2015; Li et al., 2017). All four symbionts are primarily vertically
transmitted, they possess several characteristics ensuring success
within the insect host and in the instances discussed here they
were associated with phloem feeding insects (Table 1).

Horizontal transfers of these symbionts are important as these
organisms can profoundly influence their hosts. Rickettsia, an
alphaproteobacterium, increases heat tolerance (Brumin et al.,
2011), fitness (Himler et al., 2011), as well as susceptibility
to insecticides (Kontsedalov et al., 2008) of the whitefly

Bemisia tabaci. Notably, this Rickettsia is closely related to the
plant-pathogenic Rickettsia causing Papaya bunchy top disease,
vectored by leafhoppers Empoasca papayae (Davis et al., 1998;
Weinert et al., 2009). Thus, Rickettsia could easily transition
between being an insect mutualist and a plant pathogen.
Wolbachia, closely related to Rickettsia, is a symbiont well known
for manipulating insect reproduction (Werren et al., 2008), for
protecting insect hosts from pathogens (Hedges et al., 2008;
Teixeira et al., 2008), and has also been suggested to increase
the fitness of the whiteflies (Xue et al., 2012). Cardinium, a
member of the Bacteroidetes clade, manipulates reproduction,
immunity, and fitness of various insects (Hunter and Zchori-
Fein, 2006). Finally, BEV, a gammaproteobacterial symbiont of
the leafhopper E. variegatus, is pathogenic: it reduces fecundity,
longevity and increases leafhopper’s developmental time (Purcell
et al., 1986; Purcell and Suslow, 1987), but also decreases
X-disease transmission by leafhopper to the celery plants (Purcell
and Suslow, 1987). From the bacteria discussed here, it is also the
only one that can be cultivated outside of host cells (Purcell et al.,
1986).

Symbiont Passage from Insect to Plant
Plant-mediated horizontal transmission initially requires for a
symbiont to be passed from an insect to a plant. The route of
symbiont transmission to a plant may differ depending on the
transmitting insect’s anatomy, physiology, and the mechanism of
feeding. Symbiont factors are likely equally important, including
symbiont density and tissue distribution (Caspi-Fluger et al.,
2012). It has been noted that symbionts exhibiting a scattered
infection pattern, whereby bacteria reside in the bacteriome,
hemolymph, and other organs, are more likely to be horizontally
transmitted than the ones restricted to bacteriome and ovaries
(Caspi-Fluger et al., 2012). While Wolbachia in B. tabaci can
exhibit both infection patterns (Ahmed et al., 2015), insects
with the scattered infection transferred symbionts to plants
(Li et al., 2017). Similarly, BEV, Cardinium, and Rickettsia also
infect various tissues in their respective hosts, including salivary
glands or stylets (Purcell et al., 1986; Mitsuhashi et al., 2002;
Gottlieb et al., 2006; Sacchi et al., 2008; Marubayashi et al., 2014;
Gonella et al., 2015). As such, bacteria from these hosts may be
inoculated directly into the plant tissue or vascular cells.

Direct access to the cellular milieu may be important for
the persistence of these microorganisms, given their intracellular
lifestyle. However, intracellular symbionts of insects are known
to stay viable and invasive outside of the cells (Purcell et al., 1986;
Rasgon et al., 2006). Thus, apart from direct ‘injection’ into the
plant tissues, bacteria may also be passed from insect to plant in
the form of surface contamination, likely by feces or in honeydew.
The intracellular ‘pea aphid Bemisia-like symbiont’ (Hamiltonella
defensa), which can be horizontally transmitted via a bacteria-
enriched artificial diet, was detected in some aphid honeydew and
siphuncular fluid samples, but was absent from salivary gland
secretions (Darby and Douglas, 2003), suggesting transmission
via contamination.

The question as to whether intracellular symbionts commonly
use surface contamination as a transmission mode could be
addressed by artificially inoculating symbionts onto plants and
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FIGURE 1 | Schematic overview of the plant-mediated symbiont transfer. The process requires insect-to-plant symbiont transfer, symbiont’s survival, and
persistence in a plant (where the symbiont may or may not disseminate), plant-to-insect transfer and successful establishment in the new insect. A subsequent
vertical transmission of an acquired symbiont can increase its prevalence, however, even the transient infections could impact host populations. Small black arrows
indicate symbiont moving between organisms. P stands for the parent, F1 is the progeny of the parent, and F2 is the progeny of the F1.

examining whether they can be acquired by uninfected insects.
This experiment has already been performed for BEV, which can
spread to insects through feeding on contaminated plants, but
failed to infect new individuals when artificially sprayed on the
surface of the leaves (Purcell et al., 1994). The authors postulated
that in this case, the survival of the symbiont outside of the plant
was probably poor (Purcell et al., 1994), but other as yet unknown
factors could also be necessary to facilitate transmission. Further
experiments are required to understand the most efficient ways
in which insect symbionts can be shared with plants, which
conditions are necessary for the transfers to occur, and how
insect-to-plant transfers can be enhanced experimentally.

Plant–Symbiont Interaction
Endosymbiont survival within or on the surface of the plant is
necessary to complete plant-mediated horizontal transmission.
Given that these microbes predominantly infect insects and are
adapted to the insect intracellular environment, their survival in
association with plants is remarkable. Additionally, symbionts
entering plant tissues likely need to overcome or resist plant
defenses. Plants defend themselves against microbial pathogens
and herbivorous insects through the jasmonic acid (JA) and
salicylic acid (SA) pathways (Erb et al., 2012; Pieterse et al., 2012).
Insect feeding and necrotrophic pathogen attack induce the JA
pathway, which leads to the production of repellent, antinutritive,
or toxic compounds (Howe and Jander, 2008). The main function
of SA pathway is orchestrating the response to biotrophic
pathogens. This response involves oxidative bursts, callose

deposition, ethylene production, and induction of defensive
genes, including antimicrobial proteins (Durrant and Dong,
2004). Both pathways have an antagonistic effect on each other
(Pieterse et al., 2012), imposing a trade-off between defense
against herbivore attack and concomitant bacterial challenge,
which possibly facilitates symbiont transfer from herbivores to
plants.

Detection of Wolbachia and Rickettsia RNA within the tissues
of plants confirms that intracellular insect symbionts can survive
in this unusual niche (Caspi-Fluger et al., 2012; Li et al., 2017).
Moreover, Wolbachia was observed to persist in plants for
extended periods of time and disseminate to neighboring leaves
(Li et al., 2017), which suggests that it can acquire nutrients
from plant tissues. Intriguingly, electron microscopy revealed
a Wolbachia-like bacterium within the vacuole of the phloem
cell of the plant (Li et al., 2017). Wolbachia has been shown
before to be able to invade insect cells in culture (White et al.,
2017), but an invasion of a plant cell in vivo would likely
require different machinery. Whether this is a singular case of
intracellular localization or a common Wolbachia niche in plants
remains to be determined. If the morphological identification
of Wolbachia within the plant cell is correct, it may represent
a biological interaction, with for instance nutrient provisioning
of the symbiont in this Wolbachia-plant system. Despite the
apparently close Wolbachia-plant association, Wolbachia had
no observable effects on the health of Gossypium hirsutum (Li
et al., 2017). In contrast to Wolbachia, BEV did not disseminate
in the plant when injected into the phloem by the leafhopper
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TABLE 1 | Summary of the literature on experimental plant-mediated horizontal symbiont transfer.

Symbiont Symbiont Plant Symbiont Type of evidence for Reference

donor recipient transfer to the recipient

BEV Leafhopper Euscelidius
variegatus

Rye grass Lolium perennae,
barley Hordeum vulgare,
sugar beet Beta vulgaris

Leafhopper Euscelidius
variegatus

CFUs determination Purcell et al., 1994

Rickettsia Whitefly Bemisia tabaci Cotton Gossypium
hirsutum

Whitefly Bemisia tabaci PCR Caspi-Fluger et al., 2012

Cardinium Leafhopper Scaphoideus
titanus

Grapevine Vitis viniera Leafhoppers Macrosteles
quadripunctulatus and
Empoasca vitis

qPCR or FISH Gonella et al., 2015

Wolbachia Whitefly Bemisia tabaci Cotton Gossypium
hirsutum

Whitefly Bemisia tabaci PCR, qPCR, vertical
transmission test

Li et al., 2017

E. variegatus, which is surprising given that this bacterium
originates from a lineage of plant pathogens (Degnan et al.,
2011). Consequently, just like Wolbachia, it also did not cause
observable pathology in plants (Purcell et al., 1994). The examples
above indicate that different symbionts can act differently,
sometimes counterintuitively, once they reach the plant.

Overall, we have a poor mechanistic understanding of
interactions occurring between plants and intracellular insect-
associated bacteria and many questions remain. Do intracellular
insect symbionts injected to the plant or their effectors influence
plant biology? Do plants mount an immune response against
these organisms? And are plants stably or transiently colonized
by these bacteria?

The observation that disease causing agents, such as Aster
Yellows phytoplasma strain Witches’ Broom, actively alters
plant biology and development in a manner that potentiates
transmission (MacLean et al., 2014; Orlovskis and Hogenhout,
2016) makes it worth investigating whether symbionts have
evolved likewise. In this context, it is notable that insect
endosymbiont-derived compounds can affect plants. GroEL,
a bacterial chaperonin highly expressed by aphid obligate
bacteriocyte-enclosed Buchnera aphidicola, was found in aphid
saliva and heterologously expressed protein was shown to elicit
an immune response in plants (Chaudhary et al., 2014; van Bel
and Will, 2016). Further studies in these systems are required
to obtain a more thorough understanding of the interactions
between plants and insect symbionts.

Symbiont Acquisition by a New Insect
Similar to symbiont transfer from insect to plant, successful
insect acquisition of a symbiont from plant likely depends on
a number of insect, symbiont, and plant factors. Location of
the symbiont in the plant would appear critical. Wolbachia
and Cardinium (as well as Arsenophonus) were found in the
phloem of plants which likely increased their chances of being
acquired by phloem feeders (Bressan et al., 2012; Gonella et al.,
2015; Li et al., 2017). Once in the insect gut, symbionts have
to resist digestion, alkaline pH, constitutive reactive oxygen
species production, and all the activities of the gut microbiota
(Vallet-Gely et al., 2008). Moreover, unless they are able to
attach quickly, they could be eliminated by peristaltic gut
movements (Vallet-Gely et al., 2008). Subsequently, symbionts

have to traverse the peritrophic matrix, invade the gut epithelium
or pass through extracellular spaces, enter the body cavity,
and localize within appropriate insect tissues. If these bacteria
stimulate insect immunity, then avoidance of, or resistance
to, the immune responses may also be required. Infection of
the appropriate tissue within the germline to ensure vertical
transmission is probably not easy to achieve either, with several
barriers on the way including the epithelial sheath, peritoneal
sheath, and follicular epithelium (Hughes and Rasgon, 2014).
Despite these challenges, diverse classes of symbionts have been
reported to be vertically transmitted after horizontal transfers,
suggesting that symbionts possess innate qualities enabling them
to infect germline (Russell and Moran, 2005; Frydman et al.,
2006; Weiss et al., 2006; Hughes et al., 2014; Nakayama et al.,
2015).

The literature on symbiont acquisition from plants reports
various outcomes for the symbiont and insect. In the case of
Rickettsia, we only know that symbiont DNA has reached the
recipient host (Caspi-Fluger et al., 2012), while BEV was shown
to be alive in the plant-feeding E. variegatus (Purcell et al., 1994).
Cardinium accumulated in the guts of M. quadripunctulatus
and E. vitis (Gonella et al., 2015), although it is not clear if it
established in the insects, as assays were performed immediately
after cessation of feeding on the symbiont-contaminated plant.
In contrast, Wolbachia was reported to be found in the adult
progeny derived from the newly infected B. tabaci females (Li
et al., 2017), suggesting a stable infection.

The examples discussed above add to the body of the literature
on insects acquiring their symbionts from a food source (Heath
et al., 1999; Darby and Douglas, 2003; Le Clec’h et al., 2013). It
is possible that some symbiont–insect host combinations, plant
species, and conditions support these horizontal transmission
events (Sintupachee et al., 2006; Stahlhut et al., 2010; Morrow
et al., 2014; Ahmed et al., 2016). Importantly, the observation
that DNA of the symbiont can be acquired from the food source
should be taken into account in screens attempting to estimate
population infection frequencies from PCR assays on whole
insects collected in the field. Symbiont DNA in the insect gut
is not equivalent to an infection, and there are cases where
orally acquired symbionts failed to establish (Chiel et al., 2009;
Faria et al., 2016). Performing screens using dissected tissues
different than the gut and carefully avoiding contamination with
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the gut content may overcome this bias. Confirmation by in situ
hybridization would provide further evidence of the infection.

Symbiont Establishment in the Newly
Infected Insect Line
Once the symbiont infects the new insect host and establishes
efficient vertical transmission, it may induce a cost for its new
host. Thus, the symbiont has to prevent elimination from the
newly infected lineage by natural selection and only symbionts
capable of manipulating their new host biology can persist. Two
general strategies facilitate facultative symbiont establishment:
providing fitness benefit or manipulating the reproduction
(Moran et al., 2008). Furthermore, phenotype induced by the
symbiont in the new insect host species may differ from that in
the original host (McGraw et al., 2002; Sasaki et al., 2002; Hornett
et al., 2008; Le Clec’h et al., 2012).

As closely related insects share similar genetic background and
adaptations, at least in some cases intraspecies transfers may be
more efficient than interspecies transfers (Łukasik et al., 2015).
However, patterns of symbiont distribution in different host
species indicate that interspecies transfers occur as well (Tagami
and Miura, 2004; Sintupachee et al., 2006; Stahlhut et al., 2010;
Morrow et al., 2014; Ahmed et al., 2016). Overall, the efficiency of
symbiont establishment in the new lineage upon plant-mediated
horizontal transmission depends not only on the symbiont but
also on the host’s genetic makeup, physiology, and population
structure as well as environmental factors. Even if symbionts
rarely succeed in particular transfer events the insect–symbiont–
plant interface is a platform for horizontal transmission to
occur.

ECOLOGICAL AND EVOLUTIONARY
CONSEQUENCES OF PLANT-MEDIATED
HORIZONTAL TRANSFER

Horizontal transmission can have profound consequences for
the ecology and evolution of the symbionts and their hosts. It
has been postulated that insect symbionts may adapt to utilize
plants as a means for horizontal transmission and evolve toward
increased virulence within them (Frago et al., 2012). This is
likely the case of bacteria in the genus Arsenophonus, which
have transitioned from being arthropod symbionts to insect-
vectored plant pathogens at least twice in their evolutionary
history (Bressan et al., 2012). Based on molecular phylogeny and
host range, similar conclusions could be drawn for Spiroplasma,
another widespread clade of arthropod symbionts (Lo et al.,
2015). In contrast, some plant pathogens have adapted to
live in symbiosis with insects (Degnan et al., 2011; Flórez
et al., 2017). Thus, there is an evolutionary continuum in
the spectrum of interactions, with some vertically transmitted
symbionts of herbivores evolving toward increased plant-
mediated transmission and pathogenesis in plants, and some
insect-vectored plant pathogens evolving toward efficient vertical
transmission in insect populations. In addition to driving
adaptation, horizontal transmission broadens a symbiont’s host

range. Crossing species and kingdom barriers and establishing
symbioses with new hosts can strengthen the selection on parts
of the genome that would have otherwise deteriorated and
will select to maintain systems required for transfer. Potential
coinfections enable symbiont competition with respect to speed
of bacterial replication and higher bacterial load within the
insect host, and these two are often correlated with higher
virulence in the insect host. Moreover, coinfections allow
recombination, creating new variants and potentially mitigating
against mutational decay through Muller’s ratchet. Horizontal
transmission may also drive the evolution and persistence
of parasites, such as BEV, as it at least in part unties the
fitness of the symbiont from the fitness of the insect host.
Moreover, it selects for symbiont genotypes able to survive in
the plant and in the new host midgut, and able to invade insect
tissues, and proliferate to compensate for stochastic and host-
induced symbiont loss on the way to the germline. Together
with the relaxed pressure for not harming their hosts, plant-
mediated horizontal transmission likely selects for more virulent
bacteria.

Finally, horizontal transmission can result in infection of
previously uninfected insect lineages and species (Sintupachee
et al., 2006; Stahlhut et al., 2010; Morrow et al., 2014),
a superinfection with a different symbiont genotype, or a
replacement of the original symbiont by the newly acquired one.
The consequences of these events for the host have been reviewed
elsewhere (Sudakaran et al., 2017). Intriguingly, if horizontal
transmission of transovarially transmitted insect symbionts via
plants (or any other route) occurs efficiently from both male and
female donors, males are not an evolutionary dead end for these
organisms (Engelstädter and Hurst, 2009). Transmission through
males also implies that the new reproductive manipulations
are less likely to be favored (Engelstädter and Hurst, 2009).
Therefore, each plant-mediated symbiont transmission event
may be a turning point in the history of the symbiont, insect, and
plant species.

FUTURE ENDEAVORS

As we are just starting to explore the cases of plant-mediated
horizontal transmission of intracellular bacterial symbionts, there
is still much to discover about these systems. Some important
questions include: How common are these interactions? How
frequently does this form of transmission lead to stable
infection in recipient hosts? If the infections are transient, what
implications do they have for host biology? And how do insect
symbionts influence plants? The broad nature of these questions
means that multidisciplinary collaborations would be required to
address them.

It would seem imperative to identify how commonly
intracellular insect symbionts associate with plants. The existing
reports have already provided evidence that at least four different
symbionts, five insects, and five plant species could participate
in plant-mediated transmission (Table 1; Purcell et al., 1994;
Caspi-Fluger et al., 2012; Gonella et al., 2015; Li et al., 2017).
Screening plant tissues for intracellular symbionts by PCR
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assay could provide evidence of plant colonization. Another
method to identify symbionts in plants would be to screen
next generation sequencing (NGS) data for symbiont-derived
reads, as many NGS projects aimed at characterizing hosts
serendipitously sequenced symbionts too (Salzberg et al., 2005a,b,
2009; Richardson et al., 2012; Gutzwiller et al., 2015). This should
be done carefully, to exclude cases of insect contamination and
horizontal gene transfer from bacteria to the plant. Similarly, it
may be possible to leverage plant RNAseq data to gain insights
into the transcriptional activity of symbionts in plants. However,
suitable data sets are currently scarce due to the common
poly-A enrichment procedure eliminating most of the bacterial
transcripts.

Once we have a better understanding of these systems, plant-
mediated symbiont transfer could be used for transinfecting new
phytophagous insect lineages or species. Moreover, symbiont–
plant associations could be exploited from an applied perspective
to seed or facilitate the spread of a particular symbiont
that induces desirable phenotypes in a herbivorous insect
pest. Plant-mediated symbiont transfer may also provide a
system suitable to explore the mechanisms and evolutionary
trajectories leading to host switching by intracellular insect
symbionts and the emergence of insect and insect-vectored plant
pathogens.
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