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ABSTRACT11

Foraging for food, developing new medicines, and learning complex games are search problems with vast
numbers of possible actions. Yet, under real-world time or resource constraints, optimal solutions are generally
unobtainable. How do humans generalize and learn which actions to take when not all options can be
explored? We present two behavioral experiments in which the spatial correlation of rewards provides traction
for generalization, yet a limited search horizon allows for exploration of only a small fraction of all available
options. We competitively test 27 different probabilistic and heuristic models for making out-of-sample
predictions of individual’s search decisions. Our results show that a Gaussian Process function learning model,
combined with an optimistic Upper Confidence Bound sampling strategy, robustly captures how humans
use generalization to guide search behavior. Taken together, these two form a model of exploration and
generalization that leads to reproducible and psychologically meaningful parameter estimates, providing novel
insights into the nature of human search in vast spaces. We find a systematic—yet sometimes beneficial—
tendency towards undergeneralization, as well as strong evidence for the separate phenomena of directed and
undirected exploration. Our modeling results and parameter estimates are recoverable, and can be used to
simulate human-like performance, bridging a critical gap between human and machine learning.

12

Introduction13

From engineering proteins for medical treatment1 to mastering the game of Go2, many complex tasks14

can be described as search problems3. Frequently, these tasks come with a vast space of possible actions,15

each corresponding to some reward that can only be observed through experience. In such problems,16

one must learn to balance the dual goals of exploring unknown options, whilst also exploiting existing17

knowledge for immediate returns. This frames the exploration-exploitation dilemma, typically studied18

using the multi-armed bandit framework∗4–6, with the assumption that each option has its own reward19

distribution to be learned independently. Yet under real-world constraints of limited time or resources, it is20

not enough to know when to explore, but also where.21

Human learners are able to quickly adapt to unfamiliar environments, where the same situation is22

rarely encountered twice7, 8. This highlights an intriguing gap between human and machine learning,23

where traditional approaches to reinforcement learning typically learn about the distribution of rewards for24

each state independently9. Such an approach falls short in more realistic scenarios where it is impossible25

∗The multi-armed bandit is a metaphor for a row of slot machines in a casino, where each slot machine has an independent
payoff distribution. Solutions to the problem propose different policies for how to learn about which arms are better to play
(exploration), while also playing known high-value arms to maximize reward (exploitation).
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to try all possible actions in all possible states10, 11. How could an intelligent agent, biological or machine,26

learn which actions to take when not all options can be explored?27

In computer science, one method for dealing with vast state spaces is to use function learning as a28

mechanism to generalize prior experience to unobserved states12. The function learning approach relates29

different state-action pairs to each other by approximating a global value function over all states and30

actions, including ones not experienced yet8. This allows for generalization to vast and potentially infinite31

state spaces, based on a small number of observations. Additionally, function learning scales to problems32

with complex sequential dynamics and has been used in tandem with restricted search methods, such as33

Monte Carlo sampling, for navigating intractably large search trees2, 13. While restricted search methods34

have been proposed as models of human reinforcement learning in planning tasks14, 15, here we focus on35

situations in which a rich model of environmental structure supports learning and generalization16.36

Function learning has been successfully utilized for adaptive generalization in various machine learning37

applications17, 18, although relatively little is known about how humans generalize in vivo (e.g., in a search38

task). Building on previous work exploring inductive biases in pure function learning contexts19, 20, and39

human behavior in univariate function optimization21, we present the first comprehensive research on how40

people utilize generalization to effectively learn and search for rewards in large state spaces. Across two41

studies using uni- and bivariate versions of a multi-armed bandit, we compare 27 different models in their42

ability to predict individual human behavior.43

In both experiments, the vast majority of individual subjects are best captured by a model combining44

function learning using Gaussian Process (GP) regression, with an optimistic Upper Confidence Bound45

(UCB) sampling strategy that directly balances expectations of reward with the reduction of uncertainty.46

Importantly, we recover meaningful and robust estimates of the nature of human generalization, showing47

the limits of traditional models of associative learning22 in tasks where the environmental structure48

supports learning and inference. Interestingly, the most predictive model of the behavioral data is also49

currently the only known Bayesian optimization algorithm with competitive performance guarantees23.50

This result has rich theoretical implications for reinforcement learning and the study of intelligent human51

behavior.52

The main contributions of this paper are threefold.53

1. We introduce the spatially correlated multi-armed bandit paradigm as a method for studying the54

extent to which people use generalization to guide search, in a far more complex problem space55

than traditionally used to study human behavior.56

2. We find that a Bayesian model of function learning robustly captures how humans generalize and57

learn about the structure of the environment, where an observed tendency towards undergeneraliza-58

tion is shown to sometimes be beneficial.59

3. We show that participants solve the exploration-exploitation dilemma by optimistically inflating60

expectations of reward by the underlying uncertainty, with recoverable evidence for the sepa-61

rate phenomena of directed exploration (towards reducing uncertainty) and random, undirected62

exploration.63

Results64

A useful inductive bias in many real world search tasks is to assume spatial correlation between rewards65

(i.e., clumpiness of resource distribution;24). This is equivalent to assuming that actions will yield similar66

outcomes in nearby locations. We present human data and modeling results from two experiments67
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Figure 1. Procedure and behavioral results. Both experiments used a 2×2 between-subject design, manipulating
the type of environment (Rough or Smooth) and the payoff condition (Accumulation or Maximization). a)
Experiment 1 used a 1D array of 30 possible options, while Experiment 2 used a 2D array (11×11) with 121 options.
Experiments took place over 16 (Experiment 1) or 8 (Experiment 2) rounds, with a new environment sampled
without replacement for each round. Search horizons alternated between rounds, with the horizon length of the first
trial counter-balanced between subjects. b) Examples of fully revealed search environments, where tiles were
initially blank at the beginning of each round, except for a single randomly revealed tile. Rough and Smooth
environments differed in the extent of spatial correlations (see Methods). c) Locality of sampling behavior compared
to a random baseline simulated over 10,000 rounds (black line), where distance is measured using Manhattan
distance. d) Average reward earned (Accumulation goal) and maximum reward revealed (Maximization goal),
where colored lines indicate the assigned payoff condition and shaded regions show the standard error of the mean.
Short horizon trials are indicated by lighter colors and dashed lines, while black lines are a comparison to a random
baseline simulated over 10,000 rounds.
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using spatially correlated multi-armed bandits on univariate (Experiment 1) and bivariate (Experiment 2)68

environments (Fig. 1). The spatial correlation of rewards provides a context to each arm of the bandit,69

which can be learned and used to generalize to yet unobserved contexts, thereby guiding search decisions.70

Additionally, since recent work has connected both spatial and conceptual representations to a common71

neural substrate25, our results in a spatial domain provide potential pathways to other search domains,72

such as contextual26, 27 or semantic search28, 29.73

Experiment 174

Participants searched for rewards on a 1×30 grid world, where each tile represented a reward-generating75

arm of the bandit (Fig. 1a). The mean rewards of each tile were spatially correlated, with stronger76

correlations in Smooth than in Rough environments (between subjects; Fig. 1b). Participants were either77

assigned the goal of accumulating the largest average reward (Accumulation condition), thereby balancing78

exploration-exploitation, or of finding the best overall tile (Maximization condition), an exploration goal79

directed towards finding the global maximum. Additionally, the search horizons alternated between rounds80

(Short = 5 vs. Long = 10), with the order counter-balanced between subjects. We hypothesized that,81

if search behavior is guided by function learning, participants would perform better and learn faster in82

smooth environments, in which stronger spatial correlations reveal more information about nearby tiles30.83

Looking first at sampling behavior, the distance between sequential choices was more localized than84

chance (t(160) = 31.2, p < .001, d = 1.92; Fig. 1c)†, as has also been observed in semantic search28 and85

causal learning31 domains. Participants in the Accumulation condition sampled more locally than those in86

the Maximization condition (t(79) = 3.33, p = .001, d = 0.75), corresponding to the increased demand87

to exploit known or near known rewards. Comparing performance in different environments, the learning88

curves in Fig. 1d show that participants in Smooth environments obtained higher average rewards than89

participants in Rough environments (t(79) = 3.58, p < .001, d = 0.8), consistent with the hypothesis that90

spatial patterns in the environment can be learned and used to guide search. Additionally, longer search91

horizons (solid vs. dashed lines) did not lead to higher average reward (t(80) = 0.60, p = .549, d = 0.07).92

We analyzed both average reward and the maximum reward obtained for each subject, irrespective of their93

payoff condition (Maximization or Accumulation). Participants in the Accumulation condition performed94

better than participants in the Maximization condition on the average reward criterion (t(79) = 2.89,95

p = .005, d = 0.65), yet remarkably, they performed equally well in terms of finding the largest overall96

reward (t(79) =−0.73, p = .467, d = 0.16). Thus, a strategy balancing exploration and exploitation, at97

least for human learners, may achieve the global optimization goal en passant.98

Experiment 299

Experiment 2 had the same design as Experiment 1, but used a 11×11 grid representing an underlying100

bivariate reward function (Fig. 1 right). We replicated the main results of Experiment 1, showing101

that participants sampled more locally than a random baseline (t(158) = 42.7, p < .001, d = 4.47; Fig.102

1c), participants in the Accumulation condition sampled more locally than those in the Maximization103

condition t(78) = 2.75, p = .007, d = 0.61), and overall, participants obtained higher rewards in Smooth104

environments than in Rough environments (t(78) = 6.55, p < .001, d = 1.47; Fig. 1d). For both105

locality (compared to a random baseline) and the difference between environments, the effect size was106

larger in Experiment 2 than in Experiment 1. We also replicated the result that participants in the107

Accumulation condition were as good as participants in the Maximization condition at discovering the108

highest rewards (t(78) =−0.62, p = .534, d = 0.14), yet in Experiment 2, the Accumulation condition did109

not lead to substantially better performance than the Maximization condition in terms of average reward110

†All reported t-tests are two-sided.
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(t(78) =−1.31, p = .192, d = 0.29). Again, short search horizons led to the same level of performance111

as longer horizons, (t(79) =−0.96, p = .341, d = 0.11), suggesting that for participants, frugal search112

can be quite efficient. For full results on learning over rounds and trials see Fig. S3.113

Modeling Generalization and Search114

We competitively tested a diverse set of 27 different models in their ability to predict each subject’s trial-115

by-trial choices (for full results see Fig. S1 and Table S1). These models include different combinations of116

models of learning and sampling strategies, which map onto the distinction between belief and sampling117

models, central to theories in statistics32, psychology33, and philosophy of science34. Models of learning118

form inductive beliefs about the value of possible actions based on previous observations, while sampling119

strategies transform these beliefs into probabilistic predictions about where a participant will sample next.120

We also consider simple heuristics, which make predictions about search behavior without maintaining a121

model of the world (see SI). By far the best predictive models used Gaussian Process (GP) regression35, 36
122

as a method for learning an underlying value function relating all state-action contexts to each other, and123

Upper Confidence Bound (UCB) sampling37.124

Function learning provides an explanation of how individuals generalize from previous experience to125

untested actions, by adaptively learning an underlying function mapping actions onto rewards. We use126

GP regression as an expressive model of human function learning, which in contrast to neural network127

function approximators38 can produce psychologically interpretable parameter estimates about the extent128

to which generalization occurs (i.e., the strength of generalization as a function of spatial distance). GP129

function learning can guide search by making normally distributed predictions about the expected mean130

m(x) and the underlying uncertainty s(x) (estimated here as a standard deviation; see Methods for details)131

for each option x in the global state space (see Fig. 2b), conditioned on a finite number of previous132

observations of rewards yT = [y1,y2, . . . ,yT ]
> at inputs XT = {x1, . . . ,xT}. Similarities between options133

are modeled by a Radial Basis Function (RBF) kernel:134

kRBF(x,x′) = exp
(
−||x−x′||2

λ

)
, (1)135

136

where λ governs how quickly correlations between points x and x′ (e.g., two tiles on the grid) decay towards137

zero as their distance increases. We use λ as a free parameter, which can be interpreted psychologically138

as the extent to which people generalize spatially. Since the GP prior is completely defined by the RBF139

kernel, the underlying mechanisms are similar to Shepard’s universal gradient of generalization39, which140

also models generalization as an exponentially decreasing function of distance.141

Given estimates about expected rewards m(x) and the underlying uncertainty s(x), UCB sampling142

generates a value for each action x, allowing us to make predictions about where participants will search143

next (Fig. 2c) using a weighted sum:144

UCB(x) = m(x)+β s(x), (2)145
146

where β is a free parameter governing how much the reduction of uncertainty is weighted relative to147

expectations of reward. This trade-off between exploiting known high-value rewards and exploring to148

reduce uncertainty40 can be interpreted as optimistically inflating expected rewards by their attached149

uncertainty, and can be decomposed into two separate components that only sample points based on high150

expected reward (Pure Exploitation) or high uncertainty (Pure Exploration).151
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Figure 2. Overview of the Function Learning-UCB model specified using median participant parameter estimates
(see Table S1). a) Screenshot of Experiment 2. Participants were allowed to select any tile until the search horizon
was exhausted. b) Estimated reward (not shown, the estimated uncertainty) as predicted by the GP Function
Learning model, based on the points sampled in Panel a). c) Upper confidence bound of predicted rewards. d)
Choice probabilities after a softmax choice rule. P(x) = exp(UCB(x)/τ)/∑

N
j=1 exp(UCB(x j)/τ), where τ is the

temperature parameter (i.e., higher temperature values lead to more random predictions).

PureExploit(x) = m(x) (3)152

PureExplore(x) = s(x) (4)153
154

Figure 2 shows how the Function Learning-UCB model makes inferences about the search space,155

and uses UCB sampling (with a softmax choice rule) to make probabilistic predictions about where the156

participant will sample next. We refer to this model as the Function Learning model and contrast it with157

an Option Learning model. The Option Learning model uses a Bayesian Mean Tracker (BMT) to learn158

about the distribution of rewards for each option independently (see Methods). The Option learning model159

is a type of traditional associative learning model, and can be understood as a variant of a Kalman filter160

without temporal dynamics5. Like the Function Learning model, the Option Learning model also generates161

normally distributed predictions m(x) and s(x), which we combine with the same set of sampling strategies162

and the same softmax choice rule to make probabilistic predictions about search. We use the softmax163

temperature parameter (τ) to estimate the amount of undirected exploration (i.e., higher temperatures164

correspond to more random sampling), in contrast to the β parameter of UCB, which estimates the level165

of exploration directed towards reducing uncertainty.166

Modeling results167

Experiment 1168

Instead of learning rewards for each state independently, as assumed by the Option Learning model,169

participants were better described by the Function Learning model (t(80) = 14.01, p < .001 d = 1.56;170

comparing cross-validated predictive accuracies, both using UCB sampling), providing evidence against171

the assumption of state independence. Furthermore, by decomposing the UCB sampling algorithm into172

Pure Exploitation or Pure Exploration components, we show that both expectations of reward and estimates173

of uncertainty are necessary components for the Function Learning model to predict human search behavior,174

with Pure Exploitation (t(80) = 8.85, p < .001, d = 0.98) and Pure Exploration (t(80) = 16.63, p < .001,175

d = 1.85) variants of the model performing worse at predicting human behavior than the combined UCB176

algorithm.177

Because of the observed tendency to sample locally (Fig. 1c), we created a localized variant of both178

Option Learning and Function Learning models (indicated by an asterisk *; Fig. 3a), giving larger weight179

to options closer to the previous selected option, without introducing additional free parameters (see180
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Figure 3. Modeling results. a) Cross-validated predictive accuracy of each model, with bars indicating the group
mean (±SEM). Each individual participant is shown as a single dot, with the number of participants best described
shown as an icon array (inset; aggregated by sampling strategies). Asterisks (*) indicate a localized variant of the
Option Learning or Function Learning models, where predictions are weighted by the inverse distance from the
previous choice (see Methods). b) Averaged learning curves of participants and models (combined with
UCB-sampling only) simulated over 10,000 replications using sampled participant parameter estimates. Learning
curves (and parameter estimates) are separated by environment, aggregated over payoff conditions and search
horizons.

Methods). While the Option Learning*-UCB model with localization was better than the standard Option181

Learning-UCB model (t(80) = 16.13, p < .001, d = 1.79), the standard Function Learning-UCB model182

still outperformed its localized variant (t(80) =−5.05, p < .001, d = 0.56).183

Overall, 56 out of 81 participants were best described by the Function Learning-UCB model, with an184

additional 10 participants best described by the Function Learning*-UCB model with localization. Figure185

3b shows simulated learning curves of each model in comparison to human performance, where models186

were specified using parameters sampled from participant estimates (10,000 samples with replacement).187

Whereas both versions of the the Option Learning-UCB model barely beat the performance of a completely188

random baseline, both standard and localized versions of the Function Learning-UCB model behave189

sensibly and improve performance over time. This suggests there exists some overlap between the190

elements of human intelligence responsible for successful performance in our task, and the elements of191

participant behavior captured by the Function Learning-UCB model.192

Looking more closely at the parameter estimates of the Function Learning-UCB model (Fig. 4),193

we find that people tend to underestimate the extent of spatial correlations, with estimated λ values194

significantly lower than the ground truth (λSmooth = 2 and λRough = 1) for both Smooth (mean estimate:195

λ̂ = 0.82, t(41) = −17.60, p < .001, d = 2.71) and Rough environments (λ̂ = 0.78, t(38) = −3.89,196

p < .001, d = 0.62), which can be interpreted as a tendency towards undergeneralization8, 41.197

To illustrate, an estimate of λ = 0.8 corresponds to generalization of the extent that the rewards of198

two neighboring options are expected to be correlated by r = 0.42, and that this correlation decays to zero199

if options are further than three tiles away from each other. Additionally, we found that the estimated200

exploration bonus of UCB sampling (β ) was reliably greater than 0 (β̂ = 0.47, t(80) = 12.78, p < .001,201

d = 1.42; compared to the lower estimation bound), reflecting that participants valued the exploration of202
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Figure 4. Parameter estimates of the best predicting model for each experiment. Each colored dot is the median
estimate of a participant, with box and whisker plots indicating the upper and lower quartiles (box limits) and 1.5x
IQR (whiskers), the median (horizontal line), and mean (diamond). λ is the length-scale of the RBF kernel
reflecting the extent to which people generalize, β is the exploration bonus of the UCB sampling strategy, and τ is
the temperature of the softmax choice rule.

uncertain options, along with exploiting high expectations of reward. More specifically, an exploration203

bonus of β = 0.47 suggests that participants would prefer the hypothetical option x1 predicted to have204

mean reward m(x1) = 60 and standard deviation s(x1) = 10, over option x2 predicted to have mean reward205

m(x2) = 64 and standard deviation s(x2) = 1. This is because sampling x1 is expected to reduce a large206

amount of uncertainty, even though x2 is predicted to have a slightly higher mean reward (UCB(x1) = 64.7207

vs. UCB(x2) = 64.47). Lastly, we found relatively low estimates of the softmax temperature parameter208

(mean estimate: τ̂ = 0.01), suggesting that the search behavior of participants corresponded closely to209

selecting the very best option, once they had taken into account both the exploitation and exploration210

components of the available actions.211

Experiment 2212

In a more complex bivariate environment (Fig. 3a), the Function Learning-UCB model again made213

better predictions than the Option Learning-UCB model (t(79) = 9.99, p < .001, d = 1.12), which was214

also the case when comparing localized Function Learning*-UCB to localized Option Learning*-UCB215

(t(79) = 2.05, p = .044, d = 0.23). In the two-dimensional search environment of Experiment 2, adding216

localization improved predictions for both Option Learning-UCB (t(79) = 19.92, p < .001, d = 2.23) and217

Function Learning-UCB (t(79) = 10.47, p < .001, d = 1.17), in line with the stronger tendency towards218

localized sampling compared to Experiment 1 (see Fig. 1c). 61 out of 80 participants were best predicted219

by the localized Function Learning*-UCB model, whereas only 12 participants were best described by the220

localized Option Learning*-UCB model. Again, both components of the UCB strategy—the expected221

reward (t(79) = −6.44, p < .001, d = 0.72) and the attached uncertainty (t(79) = −14.32, p < .001,222

d = 1.60)—were necessary to predict choices well.223

As in Experiment 1, simulated learning curves of the Option Learning-UCB models performed poorly224

and were indistinguishable from a random sampling strategy, whereas both variants of the Function225

Learning-UCB model achieved performance favorably comparable to that of human participants (Fig. 3b).226

Median parameter estimates per participant from the Function Learning*-UCB model (Fig. 4) showed227

that participants again underestimated the strength of the underlying spatial correlation in both Smooth228

8/29

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/171371doi: bioRxiv preprint first posted online Aug. 1, 2017; 

http://dx.doi.org/10.1101/171371


(λ̂ = 0.92, t(42) = −14.62, p < .001, d = 2.22; comparison to λSmooth = 2) and Rough environments229

(λ̂ = 0.78, t(36) =−5.31, p < .001, d = 0.87; comparison to λRough = 1), suggesting a robust tendency230

to undergeneralize. The estimated exploration bonus β was again greater than 0 (β̂ = 0.45, t(79) = 27.02,231

p < .001, d = 3.02, compared to the lower estimation bound). Both λ and β estimates were similar to232

Experiment 1, while the estimated softmax temperature parameter τ was slightly larger than in Experiment233

1 (τ̂ = 0.09; see Table S1). Experiment 2 therefore replicated the main findings of Experiment 1.234

Taken together, these results provide strong evidence that human search behavior is best explained by a235

combination of function learning paired with an optimistic trade-off between exploration and exploitation.236

The Adaptive Nature of Undergeneralization237

In both experiments, we observed a robust tendency to undergeneralize about the spatial correlations of238

the environment. Therefore, we ran three simulations which revealed that undergeneralization largely239

leads to better performance than overgeneralization—and remarkably—is sometimes even better than an240

exact match between the extent of one’s generalization and the underlying structure of the environment.241

Our simulations consisted of generating search environments by sampling from a GP prior specified242

using a teacher length-scale (λ0), and then simulating search in this environment using the Function243

Learning-UCB model, where the GP of the function learning component was specified by a student244

length-scale (λ1).245

The first simulation assessed mismatch in the univariate setting of Experiment 1 (Fig. 5a), using the246

median participant estimates of both the soft-max temperature parameter τ = 0.01 and the exploration247

parameter β = 0.50 and simulating 100 replications for every combination between λ0 = {0.1,0.2, · · · ,3}248

and λ1 = {0.1,0.2, · · · ,3}. This simulation showed that it can be beneficial to undergeneralize (Fig. 5a,249

area below the dotted line), in particular during the first five trials. Repeating the same simulations for250

the bivariate setting of Experiment 2 (using the median participant estimates τ = 0.02 and β = 0.47), we251

found that undergeneralization can also be beneficial in a more complex two-dimensional environment252

(Fig. 5b), at least in the early phases of learning.253

To assess whether undergeneralization could be adaptive for Bayesian optimization algorithms in254

a more general setting, we used a set-up regularly used by the machine learning community42 and ran255

a final simulation (Fig. 5c) with continuous bivariate inputs in the range x,y = [0,1] and using every256

combination between λ0 = {0.1,0.2, · · · ,1} and λ1 = {0.1,0.2, · · · ,1}. Since the interpretation of λ is257

always relative to the input range, a length-scale of λ = 1 along the unit input range would be equivalent258

to λ = 10 in the x,y = [0,10] input range of Experiment 2. Thus, this third simulation represents a259

broad set of potential mismatch alignments, while the use of continuous inputs extends the scope of260

the task to an infinite state space. As before, we found that undergeneralization largely leads to better261

performance than overgeneralization. This effect is more pronounced over time t, whereby a mismatch262

in the direction of undergeneralization recovers over time (higher scores for larger values of t). This263

is not the case for a mismatch in the direction of overgeneralization, which continues to produce low264

scores, even at t = 40. Estimating the best possible alignment between λ0 and λ1 to produce the highest265

score revealed that underestimating λ0 by an average of about 0.21 produces the best scores over all266

scenarios. These simulation results show that the systematically lower estimates of λ captured by our267

models do not necessarily suggest a flaw or bias in human behavior—but instead—can sometimes lead to268

better performance. Undergeneralization, as it turns out, might not be a bug but rather a feature of human269

behavior.270
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Figure 5. Mismatched length-scale (λ ) simulation results. The teacher length-scale λ0 is on the x-axis and the
student length-scale λ1 is on the y-axis. The teacher λ0 values were used to generate environments, while the student
λ1 values were used to parameterize the Function Learning-UCB model to simulate search performance. The dotted
lines show where λ0 = λ1 and mark the difference between undergeneralization and overgeneralization, with points
below the line indicating undergeneralization. a) Effect of mismatch at trial numbers t = {1,3,5,10} in the
univariate Experiment 1 setting, where the median participant parameters of τ = 0.01 and β = 0.50 were used to
specify the Function-Learning-UCB model. Each tile of the heat-map indicates the median reward obtained for that
particular λ0-λ1-combination, aggregated over 100 replications. Triangles and circles indicate participant λ

estimates from Smooth and Rough conditions. b) Effect of mismatch at trial numbers t = {1,3,5,40} in the
bivariate Experiment 2 setting, where the median participant parameters of τ = 0.02 and β = 0.47 were used to
specify the Function-Learning-UCB model. Again, each tile of the heat-map indicates the median reward obtained,
with triangles and circles indicating participant λ estimates from Smooth and Rough conditions. c) Generalized
effect of mismatch using continuous bivariate inputs in the unit range x,y = [0,1]. Here the teacher λ0 and student
λ1 range is also between [0,1]. Because the value of λ is always relative to the input range, a length-scale of λ = 1
along the unit input range is equivalent to a λ = 10 in the x,y = [0,10] input range of Experiment 2. Here we report
the score as a standardized measure of performance, such that 0 shows the lowest possible and 1 the highest possible
log unit-score.
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Figure 6. Parameter recovery. The generating parameter estimate is on the x-axis and the recovered parameter
estimate is on the y-axis. The generating parameter estimates are from the cross-validated participant parameter
estimates, which were used to simulate data. Recovered parameter estimates are the result of the cross-validated
model comparison on the simulated data. While the cross-validation procedure yielded k estimates per participant,
one for each round (kExp1 = 16;kExp2 = 8), we show the median estimate per (simulated) participant. The dashed
line shows a linear regression on the data, while the Pearson correlation and p-value is shown above the plot. For
readability, colors represent the bivariate kernel density estimate, with red indicating higher density.

Robustness and Recovery271

To assess the validity of our modeling results, we conducted both model and parameter recovery simulations272

(see SI for full details). We performed model recovery by using each participant’s parameter estimates273

to specify a generating model in order to simulate data, upon which we once again used the same274

cross-validation procedure to predict choices using a recovering model. In all cases, the best predictive275

accuracy occurred when the recovering model matched the generating model (Fig. S2), suggesting276

robustness to Type I errors and the unlikeliness of overfitting (i.e., the Function Learning model was not277

the best predictor for data generated by the Option Learning model). Additionally, the range of predictive278

accuracies (obtained for matching generating and recovering models) were not perfect, but rather highly279

similar to the predictive accuracy obtained by the Function Learning model on the participant data.280

Parameter recovery was performed to ensure that each parameter in the Function Learning-UCB281

model robustly captured separate and distinct phenomena. Fig. 6 shows the results of the parameter282

recovery, where the generating parameter estimate (i.e., estimated from participant data) is on the x-axis,283
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and the recovered estimate is on the y-axis (i.e., estimated from generated data). In all cases, generating284

and recovered parameter estimates were highly correlated. It is noteworthy that we found distinct and285

recoverable estimates for β (exploration bonus) and τ (softmax temperature), because we provide evidence286

for the existence of a directed exploration bonus11 as a separate phenomena from random, undirected287

exploration43.288

Discussion289

How do people learn and adaptively make good decisions in situations where the number of possible290

actions is vast and not all possibilities can be explored? Whereas Gaussian Process (GP) function291

learning combined with a UCB sampling algorithm has been successfully applied to search problems in292

ecology44, robotics45, and biology46, there has been little psychological research on how humans learn293

and solve problems in environments with a rich set of possible actions. Here, we have found that Function294

Learning, which we operationalized using GP regression, provides a mechanism for generalization. The295

ability to generalize guides participants’ search behavior by forming inductive beliefs about unexplored296

options. Combined with Upper Confidence Bound (UCB) sampling, this model navigates the exploration-297

exploitation dilemma by optimistically inflating expectations of reward by the estimated uncertainty.298

We have presented the first study to apply cognitive modeling to predict individual decisions in a299

complex search task with spatially correlated outcomes. Our comparison of 27 models yielded robust300

and recoverable results (Fig. S2) and parameter estimates (Fig. 6). The spatial correlation of rewards301

made it possible for participants to generalize to unseen rewards by adaptively learning an underlying302

value function based on spatial context. Our results show that participants capitalized on spatial context303

in all task variants, and performed best in environments with the strongest spatial correlations. Even304

though our current implementation only grazes the surface of the types of complex tasks people are able to305

solve—and indeed could be extended in future studies using temporal dynamics or depleting resources—it306

is nonetheless richer in both the set-up and modeling framework than traditional multi-armed bandit307

problems used for studying human behavior.308

Through multiple analyses, including trial-by-trial predictive cross-validation and simulated behavior309

using participants’ parameter estimates, we competitively assessed which models best predicted human310

behavior. The vast majority of participants were best described by the Function Learning-UCB model or its311

localized variant. Parameter estimates from the best-fitting Function Learning-UCB models suggest there312

was a systematic tendency to undergeneralize the extent of spatial correlations, which we can sometimes313

be a beneficial bias for search (Fig. 5).314

Whereas previous research on exploration bonuses has had mixed results5, 11, 43, we find robustly315

recoverable parameter estimates for the separate phenomena of directed exploration encoded in β and316

the random, undirected exploration encoded in the softmax temperature parameter τ , in the Function317

Learning-UCB model. Even though UCB sampling is both optimistic (always treating uncertainty as318

positive) and myopic (only planning the next timestep), it is nonetheless the only algorithm with currently319

known performance guarantees in a bandit setting (i.e., sublinear regret, or in other words, monotonically320

increasing average reward)23. This shows a remarkable concurrence between intuitive human strategies321

and the state of the art in machine learning.322

Limitations and extensions323

One potential limitation was that we failed to find reliable and interpretable differences in model parameters324

across the different experimental manipulations (i.e., smoothness, payoff condition, and horizon length),325

although behavioral differences were evident. In the future, starker contrasts in environment structure326
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or available search horizon may translate into more detectable differences from a modeling perspective.327

Additionally, the goal of balancing exploration-exploitation (Accumulation condition) or the goal of328

global optimization (Maximization condition) was induced through the manipulation of only a few lines329

of text. While this may have been sufficient for observing behavioral differences, it may have been330

inadequate to produce reliable differences in terms of generalization or exploration (either directed or331

undirected), which were the (non-exhaustive) aspects of human behavior captured by our models. Indeed,332

the practical difference between these two goals is even murky in the Bayesian optimization literature,333

which from a purely computational perspective, often proposes abandoning the strict goal of finding the334

global optimum47, in favor of an approximate measure of performance, such as cumulative regret23, which335

more closely aligns to our Accumulation payoff condition.336

The Function Learning-UCB model also offers many opportunities for theory integration. The Option337

Learning model as specified here can be reformulated as special case of a GP regression model48. When338

the length-scale of the RBF kernel approaches zero (λ → 0), the Function Learning Model effectively339

assumes state independence, as in the Option Learning Model. Thus, there may be a continuum of340

reinforcement learning models, ranging from the traditional assumption of state independence to the341

opposite extreme, of complete state interdependence. Moreover, GPs also have equivalencies to Bayesian342

Neural Networks49, suggesting a further link to distributed function learning models50. Indeed, one343

explanation for the impressive performance of Deep Reinforcement Learning13 is that neural networks are344

specifically a powerful type of function approximator51.345

Lastly, recent findings have connected both spatial and conceptual representations to a common neural346

substrate in the hippocampus25, suggesting a potential avenue for applying the same Function Learning-347

UCB model for modeling human behavior in domains such as contextual26, 27 or semantic search28, 29.348

One hypothesis for this common role of the hippocamus is that it performs predictive coding of future state349

transitions52, also known as “successor representation”22. In our task, where there are no restrictions on350

state transitions (i.e., each state is reachable from any prior state), it may be the case that the RBF kernel351

driving our GP Function Learning model performs the same role as the transition matrix of a successor352

representation model, where state transitions are learned via a random walk policy.353

Conclusions354

In summary, we have introduced a new paradigm for studying how people use generalization to guide the355

active search for rewards, found a systematic—yet sometimes beneficial—tendency to undergeneralize,356

and uncovered strong evidence for the separate phenomena of directed exploration (towards reducing357

uncertainty) and random, undirected exploration. Ultimately, our results help to advance our understanding358

of adaptive behavior in complex and uncertain environments.359

Methods360

Participants361

81 participants were recruited from Amazon Mechanical Turk for Experiment 1 (25 Female; mean ±362

SD age 33 ± 11), and 80 for Experiment 2 (25 Female; mean ± SD age 32 ± 9). In both experiments,363

participants were paid a participation fee of $0.50 and a performance contingent bonus of up to $1.50.364

Participants earned on average $1.14 ± 0.13 and spent 8 ± 4 minutes on the task in Experiment 1,365

while participants earned on average $1.64 ± 0.20 and spent 8 ± 4 minutes on the task in Experiment366

2. Participants were only allowed to participate in one of the experiments, and were required to have a367

95% HIT approval rate and 1000 previously completed HITs. The Ethics Committee of the Max Planck368

Institute for Human Development approved the methodology and all participants consented to participation369
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through an online consent form at the beginning of the survey.370

Design371

Both experiments used a 2×2 between-subjects design, where participants were randomly assigned to372

one of two different payoff structures (Accumulation condition vs. Maximization condition) and one of373

two different classes of environments (Smooth vs. Rough). Each grid world represented a (either uni- or374

bivariate) function, with each observation including normally distributed noise, ε ∼N (0,1). The task375

was presented over either 16 rounds (Exp. 1) or 8 rounds (Exp. 2) on different grid worlds drawn from the376

same class of environments. Participants had either a short or long search horizon (Exp. 1: [5,10]; Exp. 2:377

[20,40]) to sample tiles on the grid, including repeat clicks. The search horizon alternated between rounds378

(within subject), with initial horizon length counterbalanced between subjects.379

Materials and procedure380

Participants observed four fully revealed example environments and had to correctly complete three381

comprehension questions, prior to starting the task. Example environments were drawn from the same382

class of environments assigned to the participant (Smooth or Rough). At the beginning of each round, one383

random tile was revealed and participants could click any of the tiles in the grid until the search horizon384

was exhausted, including re-clicking previously revealed tiles. Clicking an unrevealed tile displayed the385

numerical value of the reward along with a corresponding color aid, where darker colors indicated higher386

point values. Per round, observations were scaled to a randomly drawn maximum value in the range of 65387

to 85, so that the value of the global optima could not be easily guessed (e.g., a value of 100). Re-clicked388

tiles could show some variations in the observed value due to noise. For repeat clicks, the most recent389

observation was displayed numerically, while hovering over the tile would display the entire history of390

observation. The color of the tile corresponded to the mean of all previous observations.391

Payoff conditions. We compared performance under two different payoff conditions, requiring either a392

balance between exploration and exploitation (Accumulation condition) or corresponding to consistently393

making exploration decisions (Maximization condition). In each payoff condition, participants received a394

performance contingent bonus of up to $1.50. Accumulation condition were given a bonus based on the395

average value of all clicks as a fraction of the global optima, 1
T ∑( yt

y∗ ), where y∗ is the global optimum,396

whereas participants in the Maximization condition were rewarded using the ratio of the highest observed397

reward to the global optimum, (maxyt
y∗ )4, taken to the power of 4 to exaggerate differences in the upper398

range of performance and for between-group parity in expected earnings across payoff conditions. Both399

conditions were equally weighted across all rounds and used noisy but unscaled observations to assign a400

bonus of up to $1.50. Subjects were informed in dollars about the bonus earned at the end of each round.401

Smoothness of the environment. We used two classes of environments, corresponding to different levels402

of smoothness. All environments were sampled from a GP prior with a RBF kernel, where the length-scale403

parameter (λ ) determines the rate at which the correlations of rewards decay over distance. Rough404

environments used λRough = 1 and Smooth environments used λSmooth = 2, with 40 environments (Exp. 1)405

and 20 environments (Exp. 2) generated for each class (Smooth and Rough). Both example environments406

and task environments were drawn without replacement from the assigned class of environments, where407

smoothness can be understood as the extent of spatial correlations.408

Search horizons. We chose two horizon lengths (Short=5 or 20 and Long=10 or 40) that were fewer409

than the total number of tiles on the grid (30 or 121), and varied them within subject (alternating between410

rounds and counterbalanced). Horizon length was approximately equivalent between Experiments 1 and 2411

as a fraction of the total number of options (short≈ 1
6 ; long≈ 1

3 ).412
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Models of Learning413

We use different Models of Learning (i.e., Function Learning and Option Learning), which combined414

with a Sampling Strategy can make predictions about where a participant will search, given the history of415

previous observations.416

Function Learning417

The Function Learning Model adaptively learns an underlying function mapping spatial locations onto418

rewards. We use Gaussian Process (GP) regression as a Bayesian method of function learning36. A GP is419

defined as a collection of points, any subset of which is multivariate Gaussian. Let f : X → Rn denote a420

function over input space X that maps to real-valued scalar outputs. This function can be modeled as a421

random draw from a GP:422

f ∼ GP(m,k), (5)423
424

where m is a mean function specifying the expected output of the function given input x, and k is a kernel425

(or covariance) function specifying the covariance between outputs.426

m(x) = E[ f (x)] (6)427

k(x,x′) = E
[
( f (x)−m(x))( f (x′)−m(x′))

]
(7)428

429

Here, we fix the prior mean to the median value of payoffs, m(x) = 50 and use the kernel function430

to encode an inductive bias about the expected spatial correlations between rewards (see Radial Basis431

Function kernel). Conditional on observed data Dt = {x j,y j}tj=1, where y j ∼N ( f (x j),σ
2) is drawn from432

the underlying function with added noise σ2 = 1, we can calculate the posterior predictive distribution for433

a new input x∗ as a Gaussian with mean mt(x∗) and variance vt(x∗) given by:434

E[ f (x∗)|Dt ] = mt(x∗) = k>∗ (K+σ
2I)−1yt (8)435

V[ f (x∗)|Dt ] = vt(x∗) = k(x∗,x∗)−k>? (K+σ
2I)−1k∗, (9)436

437

where y = [y1, . . . ,yt ]
>, K is the t× t covariance matrix evaluated at each pair of observed inputs, and438

k∗ = [k(x1,x∗), . . . ,k(xt ,x∗)] is the covariance between each observed input and the new input x∗.439

We use the Radial Basis Function (RBF) kernel as a component of the GP function learning algorithm,440

which specifies the correlation between inputs.441

k(x,x′) = exp
(
−||x−x′||2

λ

)
(10)442

443

This kernel defines a universal function learning engine based on the principles of Bayesian regression and444

can model any stationary function‡. Intuitively, the RBF kernel models the correlation between points as445

an exponentially decreasing function of their distance. Here, λ modifies the rate of correlation decay, with446

larger λ -values corresponding to slower decays, stronger spatial correlations, and smoother functions. As447

λ →∞, the RBF kernel assumes functions approaching linearity, whereas as λ → 0, there ceases to be any448

spatial correlation, with the implication that learning happens independently for each discrete input without449

generalization (similar to traditional models of associative learning). We treat λ as a hyper-parameter, and450

use cross-validated estimates to make inferences about the extent to which participants generalize.451

‡Note, sometimes the RBF kernel is specified as k(x,x′) = exp
(
− ||x−x′||2

2l2

)
whereas we use λ = 2l2 as a more psychologi-

cally interpretable formulation.
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Option Learning452

The Option Learning model uses a Bayesian Mean Tracker (BMT), which is a type of traditional associative453

learning model that assumes the average reward associated with each option is constant over time (i.e., no454

temporal dynamics, as opposed to the assumptions of a Kalman filter or Temporal Difference Learning)5,455

as is the case in our experimental search tasks. In contrast to the Function Learning model, the Option456

Learning model learns the rewards of each option independently, by computing an independent posterior457

distribution for the mean µ j for each option j. We implement a version that assumes rewards are normally458

distributed (as in the GP Function Learning Model), with a known variance but unknown mean, where the459

prior distribution of the mean is again a normal distribution. This implies that the posterior distribution for460

each mean is also a normal distribution:461

p(µ j,t |Dt−1) =N (m j,t ,v j,t) (11)462
463

For a given option j, the posterior mean m j,t and variance v j,t are only updated when it has been selected464

at trial t:465

m j,t = m j,t−1 +δ j,tG j,t
[
yt−m j,t−1

]
(12)466

v j,t =
[
1−δ j,tG j,t

]
v j,t−1 (13)467

468

where δ j,t = 1 if option j was chosen on trial t, and 0 otherwise. Additionally, yt is the observed reward at469

trial t, and G j,t is defined as:470

G j,t =
v j,t−1

v j,t−1 +θ 2
ε

(14)471

472

where θ 2
ε is the error variance, which is estimated as a free parameter. Intuitively, the estimated mean473

of the chosen option m j,t is updated based on the difference between the observed value yt and the prior474

expected mean m j,t−1, multiplied by G j,t . At the same time, the estimated variance v j,t is reduced by a475

factor of 1−G j,t , which is in the range [0,1]. The error variance (θ 2
ε ) can be interpreted as an inverse476

sensitivity, where smaller values result in more substantial updates to the mean m j,t , and larger reductions477

of uncertainty v j,t . We set the prior mean to the median value of payoffs m j,0 = 50 and the prior variance478

v j,0 = 500.479

Sampling Strategies480

481

Given the normally distributed posteriors of the expected rewards, which have mean mt(x) and variance482

vt(x), for each search option x (for the Option Learning model, we let mt(x) = m j,t and vt(x) = v j,t , where483

j is the index of the option characterized by x), we assess different sampling strategies that (with a softmax484

choice rule) make probabilistic predictions about where participants search next at time t +1.485

Upper Confidence Bound Sampling. Given the posterior predictive mean mt(x) and the estimated486

uncertainty (estimated here as a standard deviation) st(x) =
√

vt(x), we calculate the upper confidence487

bound using a simple sum488

UCB(x) = mt(x)+β st(x), (15)489
490

where the exploration factor β determines how much reduction of uncertainty is valued (relative to491

exploiting known high-value options) and is estimated as a free parameter.492
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Pure Exploitation and Pure Exploration. Upper Confidence Bound sampling can be decomposed into493

a Pure Exploitation component, which only samples options with high expected rewards, and a Pure494

Exploration component, which only samples options with high uncertainty.495

PureExploit(x) = mt(x) (16)496

PureExplore(x) = st(x) (17)497
498

Localization of Models499

To penalize search options by the distance from the previous choice, we weighted each option by the500

inverse Manhattan distance (IMD) to the last revealed tile IMD(x,x′) = ∑
n
i=1 |xi− x′i|, prior to the softmax501

transformation. For the special case where x = x′, we set IMD(x,x′) = 1. Localized models are indicated502

by an asterix (*).503

Model Comparison504

We use maximum likelihood estimation (MLE) for parameter estimation, and cross-validation to measure505

out-of-sample predictive accuracy. A softmax choice rule transforms each model’s prediction into a506

probability distribution over options:507

p(x) =
exp(q(x)/τ)

∑
N
j=1 exp(q(x j)/τ)

, (18)508

509

where q(x) is the predicted value of each option x for a given model (e.g., q(x) = UCB(x) for the UCB510

model), and τ is the temperature parameter. Lower values of τ indicate more concentrated probability511

distributions, corresponding to more precise predictions. All models include τ as a free parameter.512

Additionally, Function Learning models estimate λ (length-scale), Option Learning models estimate θ 2
ε513

(error variance), and Upper Confidence Bound sampling models estimate β (exploration bonus).514

Cross Validation. We fit all models—per participant—using cross-validated MLE, with either a Differ-515

ential Evolution algorithm53 or a grid search if the model contained only a single parameter. Parameter516

estimates are constrained to positive values in the range [exp(−5),exp(5)]. Cross-validation is performed517

by first separating participant data according to horizon length, which alternated between rounds within518

subject. For each participant, half of the rounds corresponded to a short horizon and the other half corre-519

sponded to a long horizon. Within all rounds of each horizon length, we use leave-one-out cross-validation520

to iteratively form a training set by leaving out a single round, computing a MLE on the training set, and521

then generating out of sample predictions on the remaining round. This is repeated for all combinations522

of training set and test set, and for both short and long horizon sets. The cross-validation procedure523

yielded one set of parameter estimates per round, per participant, and out-of-sample predictions for 120524

choices in Experiment 1 and 240 choices in Experiment 2 (per participant). In total, cross-validated model525

comparisons for both experiments required approximately 50,000 hours of computation, or about 3 days526

distributed across a 716 CPU cluster.527

Predictive Accuracy. Prediction error (computed as log loss) is summed up over all rounds, and is528

reported as predictive accuracy, using a pseudo-R2 measure that compares the total log loss prediction529

error for each model to that of a random model:530

R2 = 1− logL(Mk)

logL(Mrand)
, (19)531

532
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where logL(Mrand) is the log loss of a random model (i.e., picking options with equal probability) and533

logL(Mk) is the log loss of model k’s out-of-sample prediction error. Intuitively, R2 = 0 corresponds534

to prediction accuracy equivalent to chance, while R2 = 1 corresponds to theoretical perfect prediction535

accuracy, since logL(Mk)/ logL(Mrand)→ 0 when logL(Mk)� logL(Mrand).536

Mismatched generalization537

We assessed the effect of mismatched λ -estimates on the performance of the Function Learning-UCB538

Model. A mismatch is defined as estimating a different level of spatial correlations (captured by the539

per participant λ -estimates) than the ground truth in the environment (λSmooth = 2, and λRough = 1 for540

both experiments). In both experiments, we found that participant λ -estimates were systematically541

lower than the true value (Fig. 3), which can be interpreted as a tendency to undergeneralize about the542

spatial correlation of rewards in the world. In order to test how this tendency to undergeneralize (i.e.,543

underestimate λ ) influences task performance, we present results of 3 simulations (Fig. 5) using different544

λ values in a teacher kernel (x-axis) and a student kernel (y-axis).545

Both teacher and student kernels were always RBF kernels, where the teacher kernel was parameterized546

with a length-scale λ0 and the student kernel with a length-scale λ1. For situations in which λ0 6= λ1, the547

assumptions of the student can be seen as mismatched with the environment. The student overgeneralizes548

when λ1 > λ0 (Fig. 5 above the dotted line), and undergeneralizes when λ1 > λ0 (Fig. 5 below the dotted549

line), as was captured by in our behavioral data. For the two empirical simulations, we simulate every550

possible combination between λ0 = {0.1,0.2, · · · ,3} and λ1 = {0.1,0.2, · · · ,3}, leading to 900 different551

combinations of student-teacher scenarios. For each of these combinations, we sample a target function552

from a GP parameterized by λ0 and then use the Function Learning-UCB Model parameterized by λ1 to553

search for rewards using the median parameter estimates from within the matching experiment.554

For the generalized Bayesian optimization simulation, we simulate every possible combination between555

λ0 = {0.1,0.2, · · · ,1} and λ1 = {0.1,0.2, · · · ,1}, leading to 100 different combinations of student-teacher556

scenarios. For each of these combinations, we sample a continuous bivariate target function from a GP557

parameterized by λ0 and then use the Function Learning-UCB Model parameterized by λ1 to search for558

rewards. The exploration parameter β was set to 0.5 to resemble participant behavior (Table S1). The input559

space was continuous between 0 and 1, i.e. any number between 0 and 1 could be chosen and GP-UCB560

was optimized (sometimes called the inner-optimization loop) per step using NLOPT54 for non-linear561

optimization.562

Figure 5 shows the results of each simulation. For Experiment 1 and Experiment 2 simulations (Fig.563

5a-b), the color of each tile shows the median reward obtained at the indicated trial number, for each of the564

100 replications using the specified teacher-student scenario. For the generalized Bayesian optimization565

simulation, 5c), we report score as a standardized measure of performance using the log-unit scores,566

normalized to a range of [0,1].567

Supporting Information568

S1 Fig. Full model comparison. The learning model is indicated above (or lack of in the case of simple569

heuristic strategies), and sampling strategy are along the x-axis. Bars indicate predictive accuracy (group570

mean) along with standard error, and are separated by payoff condition (color) and environment type571

(darkness), with individual participants overlaid as dots. Icon arrays (right) show the number participants572

best described (out of the full 27 models) and are aggregated over payoff conditions, environment types,573

and sampling strategy. Table S1 provides more detail about the number of participants best described by574

each model.575
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S2 Fig. Model recovery results. Data was generated by the specified generating model using individual576

participant parameter estimates. The recovery process used the same cross-validation method used in the577

model comparison. We report the predictive accuracy of each candidate recovery model. Bars show the578

group mean with standard error, with each individual (simulated) participant overlaid as a dot. Icon arrays579

show the number of simulated participants best described. For both generating and recovery models, we580

used UCB sampling. Table S1 reports the median values of the cross-validated parameter estimates used581

to specify each generating model.582

S3 Fig. Learning over trials and rounds. Average correlational effect size of trial and round on score583

per participant as assessed by a standardized linear regression. Participants are ordered by effect size584

in decreasing order. Dashed lines indicate no effect. Red lines indicate average effect size. Whereas585

participants consistently improve over trials, there is no effect over rounds.586

S1 Table. Modeling results. Full description of predictive accuracy, number of participants best587

described, and parameter estimates for all 27 models.588
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Supporting information

Full Model Comparison We report the full model comparison of 27 models, of which 12 (i.e., four
learning models and three sampling strategies) are included in the main text. We use different Models of
Learning (i.e., Function Learning and Option Learning), which combined with a Sampling Strategy can
make predictions about where a participant will search, given the history of previous observations. We
also include comparisons to Simple Heuristic Strategies, which make predictions about search decisions
without maintaining a representation of the world (i.e., with no learning model). Table S1 shows the
predictive accuracy, the number of participants best described, and the median parameter estimates of each
model. Figure S1 shows a more detailed assessment of predictive accuracy, with participants separated by
payoff condition and environment type.

Additional Sampling Strategies
Expected Improvement

At any point in time t, the best observed outcome can be described as x+ = argmaxxi∈x1:t mt(xi). Expected
Improvement (EXI) evaluates each option by how much (in the expectation) it promises to be better than
the best observed outcome x+:

EXI(x) =

{
Φ(Z)(mt(x)−mt(x+))+ st(x)φ(Z), if st(x)> 0
0, if st(x) = 0

(20)

where Φ(·) is the normal CDF, φ(·) is the normal PDF, and Z = (mt(x)−mt(x+))/st(x).

Probability of Improvement

The Probability of Improvement (POI) strategy evaluates an option based on how likely it will be better
than the best outcome (x+) observed so far:

POI(x) = P
(

f (x)≥ f (x+)
)

= Φ

(
mt(x)−mt(x+)

st(x)

)
(21)

Probability of Maximum Utility

The Probability of Maximum Utility (PMU) samples each option according to the probability that it results
in the highest reward of all options in a particular context5. It is a form of probability matching and can be
implemented by sampling from each option’s predictive distribution once, and then choosing the option
with the highest sampled pay-off.

PMU(x) = P
(

f (x j)> f (xi6= j)
)

(22)

We implement this acquisition function by Monte Carlo sampling from the posterior predictive
distribution of a learning model for each option, and evaluating how often a given option turns out to be
the maximum over 1,000 generated samples.

Simple Heuristic Strategies

We also compare various simple heuristic strategies that make predictions about search behavior without
learning about the distribution of rewards.
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Figure S1. Full model comparison of all 27 models. The learning model is indicated above (or lack of in the case
of simple heuristic strategies), and sampling strategy are along the x-axis. Bars indicate predictive accuracy (group
mean) along with standard error, and are separated by payoff condition (color) and environment type (darkness),
with individual participants overlaid as dots. Icon arrays (right) show the number participants best described (out of
the full 27 models) and are aggregated over payoff conditions, environment types, and sampling strategy. Table S1
provides more detail about the number of participants best described by each model.

Win-Stay Lose-Sample

We consider a form of a win-stay lose-sample (WSLS) heuristic55, where a win is defined as finding a
payoff with a higher or equal value than the previous best. When the decision-maker “wins”, we assume
that any tile with a Manhattan distance ≤ 1 is chosen (i.e., a repeat or any of the four cardinal neighbours)
with equal probability. Losing is defined as the failure to improve, and results in sampling any unrevealed
tile with equal probability.

Local Search

Local search predicts that search decisions have a tendency to stay local to the previous choice. We use
inverse Manhattan distance (IMD) to quantify locality:

IMD(x,x′) =
n

∑
i=1
|xi− x′i|, (23)

where x and x′ are vectors in Rn. For the special case where x = x′, we set IMD(x,x′) = 1.
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Figure S2. Model recovery results. Data was generated by the specified generating model using individual
participant parameter estimates. The recovery process used the same cross-validation method used in the model
comparison. We report the predictive accuracy of each candidate recovery model. Bars show the group mean with
standard error, with each individual (simulated) participant overlaid as a dot. Icon arrays show the number of
simulated participants best described. For both generating and recovery models, we used UCB sampling. Table S1
reports the median values of the cross-validated parameter estimates used to specify each generating model.

Localization of Models

With the exception of the Local Search model, all other models include a localized variant, which
introduced a locality bias by weighting the predicted value of each option q(x) by the inverse Manhattan
distance (IMD) to the previously revealed tile. This is equivalent to a multiplicative combination with the
Local Search model, without the introduction of any additional free parameters. Localized models are
indicated with an asterisk (e.g., Function Learning*).

Model recovery
We present model recovery results that assess whether or not our predictive model comparison procedure
allows us to correctly identify the true underlying model. To assess this, we generated data based on each
individual participant’s parameter estimates. More specifically, for each participant and round, we use
the cross-validated parameter estimates to specify a given model, and then generate new data resembling
participant data. We generate data using the Option Learning and the Function Learning model for
Experiment 1 and the Option Learning* model and the Function Learning* model for Experiment 2. In all
cases, we use the UCB sampling strategy in conjunction with the specified learning model. We then utilize
the same cross-validation method as before in order to determine if we can successfully identify which
model has generated the underlying data. Figure S2 shows the cross-validated predictive performance
(bars) for the simulated data, along with the number of simulated participants best described (icon array).
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Experiment 1

In the simulation for Experiment 1, our predictive model comparison procedure shows that the Option
Learning model is a better predictor for data generated from the same underlying model, whereas the
Function Learning model is only marginally better at predicting data generated from the same underlying
model. This suggests that our main model comparison results are robust to Type I errors, and provides
evidence that the better predictive accuracy of the Function Learning model on participant data is unlikely
due to overfitting.

When the Option Learning model generates data using participant parameter estimates, the same
Option Learning model achieves an average predictive accuracy of R2 = .1 and describes 71 out 81
simulated participants best. On the same generated data, the Function Learning model achieves an average
predictive accuracy of R2 = .08 and only describes 10 out of 81 simulated participants best.

When the Function Learning model has generated the underlying data, the same Function Learning
model achieves a predictive accuracy of R2 = .4 and describes 41 out of 81 simulated participants
best, whereas the Option Learning model achieves a predictive accuracy of R2 = .39 and describes
40 participants best. This makes our finding of the Function Learning as the best predictive model
even stronger as—technically—the Option Learning model could mimic parts of the Function Learning
behavior.

Experiment 2

In the simulations for Experiment 2, we used the localized version of each type of learning model for
both generation and recovery, since in both cases, localization improved predictive accuracy of human
participants (Table S1). Here, we find very clear recoverability in all cases, with the recovering model best
predicting the vast majority of simulated participants when it is also the generating model (Fig. S2).

When the Option Learning* model generated the data, the Option Learning* model achieves a
predictive accuracy of R2 = .32 and predicts 79 out of 80 simulated participants best, whereas the Function
Learning* model predicts only a lone simulated participant better, with an average predictive accuracy of
R2 = .26.

If the Function Learning* model generated the underlying data, the same Function Learning* model
achieves a predictive accuracy of R2 = .34 and describes 77 out of 80 simulated participants best, whereas
the Option Learning* model only describes 3 out of 80 simulated participants better, with a average
predictive accuracy of R2 = .32.

In all of the these simulations, the model that has generated the underlying data is also the best
performing model, as assessed by its predictive accuracy and the number of simulated participants
predicted best. Thus, we can confidently say that our cross-validation procedure distinguishes between the
two assessed model classes. Moreover, in the cases where the Function Learning or Function Learning*
model has generated the underlying data, the predictive accuracy of the same model is not perfect (i.e.,
R2 = 1), but rather close to the predictive accuracies we found for participant data (Table S1).

Parameter Recovery
Another important question is whether or not the reported parameter estimates of the two Function
Learning models are reliable and recoverable. We address this question by assessing the recoverability of
the three parameters of the Function Learning model, the length-scale λ , the exploration factor β , and
the temperature parameter τ of the softmax choice rule. We use the results from the model recovery
simulation described above, and correlate the empirically estimated parameters used to generate data (i.e.,
the estimates based on participants’ data), with the parameter estimates of the recovering model (i.e.,
the MLE from the cross-validation procedure on the simulated data). We assess whether the recovered
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parameter estimates are similar to the parameters that were used to generated the underlying data. We
present parameter recovery results for the Function Learning model for Experiment 1 and the Function
Learning* model for Experiment 2, both using the UCB sampling strategy. We report the results in Figure
6, with the generating parameter estimate on the x-axis and the recovered parameter estimate on the y-axis.

For Experiment 1, the correlation between the generating and the recovered length-scale λ is r = .62,
p < .001, the correlation between the generating and the recovered exploration factor β is r = 0.62,
p < .001, and the correlation between the generating and the recovered softmax temperature parameter
τ is r = 0.91, p < .001. For Experiment 2, the correlation between the generating and the recovered λ

is r = 0.91, p < .001, for β the correlation is r = 0.77, p < .001, and for τ the correlation is r = 0.76,
p < .001.

These results show that the correlation between the generating and the recovered parameters is high
for both experiments and for all parameters. Thus, we have strong evidence to support the claim that
the reported parameter estimates of the Function Learning model (Table S1) are recoverable, reliable,
and therefore interpretable. Importantly, we find that estimates for β (exploration bonus) and τ (softmax
temperature) are indeed recoverable, providing evidence for the existence of a directed exploration bonus11,
as a separate phenomena from random, undirected exploration43 in our behavioral data.

Further behavioral Analysis

Learning over trials and rounds
We assessed whether participants improved more strongly over trials or over rounds (Fig. S3). If they
are improved more over trials, this means that they are indeed finding better and better options, whereas
if they are improving over rounds, this would also suggest some kind of meta-learning as they would
get better at the task the more rounds they have performed previously. To test this, we fit a linear
regression to every participant’s outcome individually, either only with trials or only with rounds as
the independent variable. Afterwards, we extract the mean standardized slopes for each participant
including their standard errors§. Results (from one-sample t-tests with µ0 = 0) show that participants’
scores improve significantly over trials for both Experiment 1 (t(80) = 5.57, p < .001, d = 0.62) and
Experiment 2 (t(79) = 2.78, p < .001, d = 0.31). Over successive rounds, there was a negative influence
on performance in Experiment 1 (t(80) =−2.78, p = .007, d = 0.3) and no difference in Experiment 2
(t(79) = 0.21, p = 0.834, d = 0.02).

§Notice that these estimates are based on a linear regression, whereas learning curves are probably non-linear. Thus, this
method might underestimate the true underlying effect of learning over time
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Figure S3. Learning over trials and rounds. Average correlational effect size of trial and round on score per
participant as assessed by a standardized linear regression. Participants are ordered by effect size in decreasing order.
Dashed lines indicate no effect. Red lines indicate average effect size. Whereas participants consistently improve
over trials, there is no effect over rounds.
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Table S1. Modeling Results

Model

Experiment 1 Experiment 2
Model Comparison Parameter Estimates Model Comparison Parameter Estimates

Predictive
Accuracy

Participants
Best

Described

Length
Scale

λ

Exploration
Bonus

β

Error
Variance√

θ 2
ε

Softmax
Temperature

τ

Predictive
Accuracy

Participants
Best

Described

Length
Scale

λ

Exploration
Bonus

β

Error
Variance√

θ 2
ε

Softmax
Temperature

τ

Option Learning
Upper Confidence Bound 0.09 0 – 3.51 0.94 0.03 0.1 0 – 0.97 1.96 0.02
Pure Exploitation 0.07 1 – – 54.6 54.6 0.1 0 – – 148.41 148.41
Pure Exploration 0.02 0 – – 0.32 0.02 0.01 0 – – 15.9 0.03
Expected Improvement 0.02 0 – – 0.37 0.01 0.01 0 – – 1.56 0.02
Probability of Improvement 0.09 0 – – 0.01 0.15 0.1 0 – – 0.01 0.11
Probability of Maximum Utility 0.00 0 – – 0.69 0.69 0 0 – – 0.54 0.01

Option Learning*
Upper Confidence Bound 0.21 1 – 44.7 0.01 28.07 0.36 12 – 44.08 0.07 15.79
Pure Exploitation 0.07 1 – – 54.6 0.01 0.1 0 – – 148.41 148.41
Pure Exploration 0.18 0 – – 0.01 0.71 0.33 3 – – 0.58 0.43
Expected Improvement 0.16 0 – – 0.01 0.27 0.32 0 – – 0.63 0.14
Probability of Improvement 0.14 0 – – 0.01 0.19 0.32 0 – – 0.01 0.09
Probability of Maximum Utility 0.12 0 – – 0.67 0.46 0.13 0 – – 0.36 0.01

Function Learning
Upper Confidence Bound 0.29 48 0.5 0.51 – 0.01 0.24 4 0.54 0.47 – 0.02
Pure Exploitation 0.16 6 1.94 – – 0.15 0.16 0 1.55 – – 0.11
Pure Exploration 0.02 0 0.11 – – 0.03 0.01 0 0.17 – – 0.55
Expected Improvement 0.15 9 0.56 – – 0.01 0.23 0 0.67 – – 0.05
Probability of Improvement 0.05 0 3.43 – – 0.18 0.02 0 0.87 – – 0.09
Probability of Maximum Utility 0.00 0 0.69 – – 7.17 0.02 0 0.49 – – 0.01

Function Learning*
Upper Confidence Bound 0.23 10 0.96 0.54 – 0.16 0.38 60 0.76 0.49 – 0.09
Pure Exploitation 0.16 1 7.13 – – 0.12 0.23 0 14.4 – – 0.06
Pure Exploration 0.14 3 0.08 – – 0.32 0.27 0 0.17 – – .19
Expected Improvement 0.09 1 0.71 – – 0.11 0.23 1 0.67 – – 0.05
Probability of Improvement 0.12 0 7.14 – – 0.2 0.24 0 0.84 – – 0.09
Probability of Maximum Utility 0.12 0 0.67 – – 0.46 0.12 0 0.46 – – 0.01

Simple Heuristics
Win-Stay Lose-Sample 0.00 0 – – – 3.72 0.05 0 – – – 0.32
Win-Stay Lose-Sample* 0.05 0 – – – 0.73 0.26 0 – – – 0.22
Local Search 0.12 0 – – – 0.46 0.28 0 – – – 0.22

Note: Parameter estimates are the median over all participants. There were 81 participants in Experiment 1 and 80 participants in Experiment 2. The best
performing model for each experiment is highlighted in boldface. Asterisks (*) indicate a localized variant of a model.
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