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Abstract

How do people pursue rewards in risky environments, where some outcomes should be

avoided at all costs? We investigate participants’ search for spatially correlated rewards

in scenarios where one must avoid sampling rewards below a given threshold. This

requires participants to not only balance exploration and exploitation, but also to

reason about how to avoid potentially risky areas of the search space. Within risky

versions of the spatially correlated multi-armed bandit task, we show that participants’

behavior is aligned well with a Gaussian process function learning algorithm, which

chooses points based on a safe optimization routine. Moreover, using

leave-one-block-out cross-validation, we find that participants adapt their sampling

behavior to the riskiness of the task, although the underlying function learning

mechanism remains relatively unchanged. These results show that participants can

adapt their search behavior to the adversity of the environment and enrich our

understanding of adaptive behavior in the face of risk and uncertainty.

Keywords: Exploration-Exploitation; Generalization; Function learning; Risky

choices
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Generalization and search in risky environments

Introduction

Your phone rings. It is your parents. They are on their way for a surprise visit.

You can hear the engine of their car running as you talk to them. They will arrive in a

few hours and ask if you could prepare something for dinner. Your mum jokes that they

already had beans on toast for lunch. Aiming to amaze them with a unique culinary

experience, you decide to prepare something extraordinary, something they have never

eaten before. As you open your fridge and kitchen cupboards, you find a plethora of

ingredients at your disposal. In your head, you go through different combinations of

ingredients, imagining how their taste combines and interacts to produce a—hopefully

memorable—culinary experience. You have enough time to try out some combinations,

experiencing the resulting taste, and thereby learning about the effects of unusual

combinations and methods of preparation. While you can be adventurous, you need to

be sure to avoid certain options; you cannot risk trying inedible, poisonous, or otherwise

disastrous dishes.

This scenario is an example of a multi-armed bandit task (Robbins, 1985; Srinivas,

Krause, Kakade, & Seeger, 2009; Steyvers, Lee, & Wagenmakers, 2009), where there are

a number of options or “arms” of the bandit (e.g., the possible dishes) which lead to

initially unknown and stochastic outcomes or rewards (e.g., the taste of the dish), that

are related to a set of features (e.g., the ingredients, the method of preparation, and so

forth). Through experience, you can learn a function which maps features to rewards,

and use this knowledge to maximize the overall rewards gained over repeated plays of

the bandit. A key challenge for optimal behavior in such tasks is framed by the

exploration-exploitation dilemma (Gittins, 1979; Laureiro-Martínez, Brusoni, & Zollo,

2010): should you choose an option that you know will likely lead to a high reward, or

try an unknown option to experience its outcome and thereby learn more about the

function mapping features to rewards, increasing the chances of gaining even higher

rewards in the future?

Single-mindedly focusing on optimizing outcomes is frequently ill-advised as there
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might be further constraints which one has to take into account. For example, you may

need to avoid a particularly bad outcome (e.g., poisonous food) at all cost. In order to

satisfy this constraint, you should only explore options that—while uncertain—are

likely to be “safe”. Such restricted exploration-exploitation problems are indeed

common in daily life, from choosing which restaurant to visit (avoid food poisoning),

where to buy a second-hand car (avoid buying a lemon), to finding the shortest route

home (avoid dangerous terrain). In our previous research on human behavior in

contextual (Schulz, Konstantinidis, & Speekenbrink, 2017) and spatially-correlated

multi-armed bandits (Wu, Schulz, Speekenbrink, Nelson, & Meder, 2017a), we found

that human reward seeking in the absence of constraints can be robustly described by a

combination of a universal function learning mechanism and a decision strategy which

explicitly balances an option’s expected reward and its attached uncertainty. The

function learning mechanism was formalized as Gaussian process regression – a form of

non-parametric Bayesian regression that adapts its complexity to the data at hand

(Griffiths, Lucas, Williams, & Kalish, 2009; Rasmussen, 2006). The decision strategy

was formalized as upper confidence bound sampling (UCB; Auer, 2002) strategy.

In the present study, we expand on our previous work by introducing scenarios

with additional constraints: unsafe options —defined as options which produce outputs

below a given threshold— which should be avoided at all costs. We assess how people

behave when they have to maximize accumulated rewards whilst avoiding (momentary)

outcomes below the threshold. The task is presented as a spatially correlated

multi-armed bandit in which participants choose an input, and then observe and accrue

the output of an underlying function which maps spatial locations to expected rewards.

In two experiments with a uni- and bivariate spatially-correlated multi-armed bandit,

we find that participants adapt their exploration-exploitation strategy to the additional

constraints of risky situations, but utilize the same underlying learning mechanism.

From a computational perspective1, the task of maximizing rewards while

1Marr (1982) famously proposed to analyze intelligent systems on three different levels: the compu-
tational (what is the task the system is trying to solve), the algorithmic level (how does it solve it), and
the implementation level (how is the solution implemented).
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avoiding unsafe inputs can best be solved by a safe optimization algorithm (Sui,

Gotovos, Burdick, & Krause, 2015). This algorithm tries to find points that are likely to

be safe, and then expands on the set of safe points while also attempting to optimize

the underlying function. When analyzing how humans choose from the three sets of

points identified by a safe optimization algorithm (i.e., safe, expanding, and maximizing

points), we find that choices are strongly influenced by a tendency to stay safe.

From an algorithmic perspective, it is possible to predict individual participant

choices by combining different models of learning with multiple decision strategies, and

then perform model comparison using out-of-sample prediction accuracy. Whereas the

estimated parameters of the learning model remain relatively unchanged, we find that

participants seem to adapt their decision strategy to whether or not they need to avoid

unsafe outcomes, as predicted by a decision strategy that focuses on staying safe.

Our results point to the relevance of safe reinforcement learning (Berkenkamp,

Turchetta, Schoellig, & Krause, 2017) for explaining human behavior in naturalistic

tasks and enrich our notion of how people strategically adapt their behavior to the risk

and uncertainty of the environment. In particular, whereas the way in which people

generalize over different options remains similar across different riskiness conditions,

they tend to adapt their sampling strategy by focusing more on safe actions as the

situations become more risky.

General task description

We use a variant of the spatially correlated multi-armed bandit (Wu, Schulz,

Speekenbrink, Nelson, & Meder, 2017b), where the rewards of each option (i.e., arm) are

correlated according to how close they are to each other. Intuitively, nearby arms tend

to have similar rewards, with the level of similarity decreasing over larger distances.

The options are either univariate input values placed along a line, or bivariate input

values placed on a grid. Each discretized input value represents a playable arm of the

bandit. Traditionally, the goal in such tasks is to maximize cumulative payoffs by

sequentially choosing one of the N -arms of the bandit that stochastically generate
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rewards (Lai & Robbins, 1985; Steyvers et al., 2009), with learning happening

independently for each arm (e.g., through associative learning). In our case, because

proximate arms generate similar rewards due to the spatial correlations, there is the

opportunity to form inductive beliefs about the rewards of untried options by learning

the function that maps the spatial location of options to their rewards. This task allows

us to study how people generalize their experience to generate beliefs about novel

options, and how this process influences their search behavior (Wu et al., 2017a).

Importantly, we add a constraint such that participants need to avoid rewards

below a given threshold. If participants obtain rewards above the threshold, they collect

the reward and continue to the next trial where they are again asked to choose an

input. If they obtain a reward below the threshold, they forego the reward, end their

round, and lose the opportunity to collect further rewards within the current round.

The additional requirement of avoiding unsafe options in the Risky Spatially Correlated

Bandit makes generalization even more important, as it now serves to identify not only

highly rewarding options, but also unsafe options. In contrast to unconstrained

spatially correlated multi-armed bandits, where good performance does not require

accurate knowledge of the function in regions of low rewards, our risky version requires

people to learn about both regions of low and high reward.

Function learning as model of generalization

We assume that generalization within spatially correlated multi-armed bandits

can be described as a function learning mechanism that learns a function mapping the

spatial context of each arm to expectations of reward. We use Gaussian process

regression (Rasmussen, 2006; Schulz, Speekenbrink, & Krause, 2016) as an expressive

model of human function learning. Gaussian process regression is a non-parametric

Bayesian approach towards function learning which can perform generalization by

making inductive inferences about unobserved outcomes. In past research we found that

Gaussian process regression captures the inductive biases of human participants in a

variety of explicit function learning tasks (Schulz, Tenenbaum, Duvenaud,
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Speekenbrink, & Gershman, 2016), and provides an accurate description of human

generalization in contextual and spatially correlated multi-armed bandits without the

presence of unsafe outcomes (Schulz et al., 2017; Wu et al., 2017a).

Gaussian process regression integrates both rule-based and similarity-based

approaches towards function learning and has originally been proposed as a rational

model of human function learning by Lucas, Griffiths, Williams, and Kalish (2015).

Here, we use Gaussian process regression both as a rational model, and as a component

in our models which describe behavior on an algorithmic level. Thus, we use an

approach that bridges the gap between two levels of descriptions (Griffiths, Lieder, &

Goodman, 2015; Griffiths, Vul, & Sanborn, 2012).

To categorize participants’ choices from a computational level, we assess the

correspondence between input points preferred by a Gaussian process-based safe

optimization algorithm and those preferred by the participants in our experiments. To

determine the model which describes behavior on the algorithmic level, we combine

Gaussian process regression with different decision strategies, some of which are

risk-averse and some of which are not. We then use participant-wise cross validation to

compare the resulting models with other models that do not apply generalization.

Gaussian process function learning

A Gaussian process defines a distribution over functions (see Rasmussen, 2006;

Schulz, Speekenbrink, & Krause, 2016, for an introduction). Let f : X 7→ R denote a

function over input space X (i.e., options or arms) that maps to real-valued scalar

outputs (i.e., rewards). The function is assumed to be a random draw from a Gaussian

process:

f ∼ GP(m, k), (1)
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where m is a mean function specifying the expected output of the function given input

x, and k is a kernel (or covariance) function specifying the covariance between outputs:

m(x) = E[f(x)] (2)

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] . (3)

Intuitively, the kernel encodes an inductive bias about the function’s expected

smoothness. We follow standard conventions and set m(x) = 0.

Conditional on observed data Dt = {xj, yj}tj=1, where yj ∼ N (f(xj), σ2
ε ) is a

noise-corrupted draw from the underlying function (σ2
ε is the noise variance), the

posterior predictive distribution of the function value for a new input x∗ is Gaussian

with mean and variance given by:

E[f(x∗)|Dt] = k>t∗(Kt + σ2
ε I)−1yt (4)

V[f(x∗)|Dt] = k(x∗,x∗)− k>t∗(Kt + σ2I)−1kt∗, (5)

where yt = [y1, . . . , yt]>, Kt is the t× t matrix of covariances evaluated at each pair of

observed inputs, and kt∗ = [k(x1,x∗), . . . , k(xt,x∗)] is the covariance between each

observed input and the new input x∗.

A common choice of kernel function is the radial basis function kernel

k(x,x′) = exp
(
−||x− x′||2

λ

)
, (6)

where the length-scale λ governs how quickly correlations between points x and x′

decay towards zero as their distance increases2.

2Sometimes the RBF kernel is specified as k(x,x′) = exp
(
− ||x−x′||2

2l2

)
whereas we use λ = 2l2 for

simplicity.
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Rational model

Given a learned representation of a function at time t, this knowledge can be used

to choose the next input at time t+ 1 in a close to rational way. This is done through a

decision strategy that takes the predicted mean µ(x) and uncertainty σ(x) for each

input, and produces a criterion governing which input to choose next in order to

balance exploration and exploitation (Brochu, Cora, & De Freitas, 2010; Schulz,

Speekenbrink, & Krause, 2016).

A strategy that can cope with the additional requirement to avoid outcomes below

a threshold in a close-to-rational way, is the safe optimization algorithm put forward by

Sui et al. (2015). This algorithm uses Gaussian process regression to form beliefs about

different arms’ predictive payoff distributions at time point t. It first defines a safe set

of possible inputs St that are likely to provide outputs above the threshold, and then

further separates the safe set into a set of maximizers (Mt, inputs that are likely to

provide the maximum output) and expanders (Gt, inputs that are likely to expand the

safe set). Following Berkenkamp and Schoellig (2015), we define the upper and lower

bounds of a confidence interval by adding the current expectation of reward

µt−1(x) = E[f(x)|Dt−1] and the estimated uncertainty σt−1(x) =
√
V[f(x)|Dt−1]:

ut(x) = µt−1(x) + ωσt−1(x) (7)

lt(x) = µt−1(x)− ωσt−1(x). (8)

The parameter ω determines the width of the confidence bound, and we set it to ω = 3

to assure high safety for the rational safe optimization algorithm. Using these bounds,

we can define the safe set St as all the input points in the set of available inputs X that

are likely to lead to output values above the safe threshold hmin,

St = {x ∈ X |lt(x) ≥ hmin} (9)

This means that points are considered to be safe if their lower confidence bound is
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above the provided threshold. This is intuitive as one would expect the output for these

points to rarely fall below the threshold.

The set of potential maximizersMt contains all safe inputs that are likely to

obtain high output values; these are the safe inputs for which the upper confidence

bound ut is above the best current lower bound:

Mt = {x ∈ St|ut(x) ≥ maxx′∈X lt(x′)} (10)

where x′ is the best revealed reward at time t. This means that maximizers are input

points that are expected to be at least as good as the best overall outcome in a worst

case scenario.

To find the set of expanders, we first define

gt(x) = |{x′ ∈ X \ St|lt,(x,ut(x))(x′) ≥ hmin}| (11)

where lt,(x,ut(x))(x′) is the lower bound of x′ based on past data and a optimistic

outcome for x which provides a new upper bound ut(x). Put differently, this function is

used to determine how many inputs might possibly be added to the safe set after

choosing input x and observing the output it provides. This function is positive only if

the new data point has a non-negligible chance to expand the safe set. The set of

potential expanders is then defined as

Gt = {x ∈ St|gt(x) ≥ 0} (12)

This expander set is assessed by forward simulation and simply checks if the safe set is

expected to be expanded (i.e., that more points will be in this set) by choosing a given

input point.

For categorizing participants’ decisions, we assess how much—if at

all—participants’ choice behavior is guided by options being safe, maximizers, and/or

expanders. More precisely, we check if membership of an input point within the three

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/227322doi: bioRxiv preprint first posted online Nov. 30, 2017; 

http://dx.doi.org/10.1101/227322
http://creativecommons.org/licenses/by-nc-nd/4.0/


SAFE SEARCH AND RISKY BANDITS 12

sets makes it more likely to be chosen.

In order to assess if set membership is related to participants’ decisions, we will

use mixed-effects logistic regression to determine the extent to which factors of the safe

optimization algorithm influence their choices. The dependent variable in this analysis

is, for each option, whether it was chosen or not by a given participant on a given trial.

The predictors are indicator variables for an option’s membership of the safe, the

maximization, and the expander set. This analysis allows us to judge whether (i) a

Gaussian process function learning model with parameters set to match the underlying

task, combined with (ii) class membership specified by the safe optimization algorithm,

can describe whether or not a participant chose an option on a given trial. This will be

the first part of our analysis.

Models of learning and decision making

In the second part of our analysis, we make out-of-sample predictions about

individual choices, using a combination of different learning models with multiple

decision strategies. We first contrast two different models of learning before describing

the decision strategies. The function learning model learns about the underlying value

function relating the spatial locations of options to their expected rewards. The option

learning model does not learn about an underlying function, but rather learns about

each input individually by associating inputs with previously generated rewards.

Function learning model

For the function learning model, we use Gaussian process regression combined

with a radial basis function kernel (Eq. 6). Using a radial basis function to model the

extend of generalization across space is similar to Shepard et al. (1987)’s proposal of a

universal law of generalization and has previously been implemented in a non-Bayesian

model of function learning by Busemeyer, Byun, Delosh, and McDaniel (1997).
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Option learning model

The option learning model uses a simple mean tracking approach to learn the

distribution of rewards of each input individually. We implement a version which

assumes rewards are normally distributed with a known variance (σ2
ε ) but unknown

mean θj where the prior distribution of the mean is again a normal distribution. This

implies that the posterior distribution for each mean is also a normal distribution:

p(θj|Dt) = N (µj,t, σj,t) (13)

The mean µj,t and variance σ2
j,t of the posterior distribution for option j are only

updated when that option is selected at trial t:

µj,t = µj,t−1 + δj,tGj,t [yt − µj,t−1] (14)

σ2
j,t = [1− δj,tGj,t]σ2

j,t−1 (15)

where δj,t = 1 if option j was chosen on trial t, and 0 otherwise. Intuitively, the

estimated mean of the chosen option µj,t is updated based on the difference between the

observed value yt and the expected mean µj,t−1, multiplied by Gj,t. At the same time,

the estimated variance σ2
j,t is reduced by a factor of 1−Gj,t, where Gj,t is defined as:

Gj,t =
σ2
j,t−1

σ2
j,t−1 + σ2

ε

, (16)

σ2
ε is the error variance, which is estimated as a free parameter. We set the prior mean

to the median value of the payoffs and the prior variance σ2
j,0 = 5

This model does not generalize over unseen arms at all, but rather only learns

locally about the distribution of rewards for each option separately (Wu et al., 2017a).

We use it as a benchmark for comparisons in our cross-validation procedure. If this

model predicts participants’ behavior well, this means that participants do not

generalize using the spatial structure of the environment, but rather learn about each
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SAFE SEARCH AND RISKY BANDITS 14

option independently, as is the case in a traditional multi-armed bandit.

Decision strategies

The learning models produce predictions about the distribution of rewards for

each option in the search space, whereby we use a decision strategy to determine useful

actions and predict choices. We compare four different strategies, two of which are

designed for safe search and two of which are designed for risky search. Each strategy is

based on a acquisition function, which determines a utility value for each option, with a

softmax choice used to make probabilistic predictions about choice behavior.

Decision strategies for safe tasks. Upper confidence bound sampling directly

trades off between the expected rewards and uncertainty. Given the posterior mean

µt−1(x) and its attached standard error σt−1(x), we calculate the acquisition function of

the upper confidence bound as

UCBt(x) = µt−1(x) + βσt−1(x), (17)

where the exploration factor β determines how much reduction of uncertainty is valued

(relative to exploiting known high-value options) and is estimated as a free parameter.

This sampling strategy has recently been found to describe human behavior well across

different function exploration-exploitation tasks without additional constraints (Schulz

et al., 2017; Wu et al., 2017a). Additionally, it has known performance guarantees in

function optimization scenarios (Srinivas, Krause, Kakade, & Seeger, 2012). We will use

it as a candidate for unconstrained function optimization tasks.

The probability of improvement (POI) strategy evaluates an option based on how

likely it will be better than the best outcome (x+) observed so far:

POIt(x) = P
(
f(x) ≥ f(x+)

∣∣∣Dt−1)

= Φ
(
µt−1(x)− µt−1(x+)

σt−1(x)

)
(18)

where Φ(·) is the normal CDF. This rule calculates the probability for each option to
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lead to an outcome higher than the option that has currently been observed (Kushner,

1964) and has recently been used in experiments involving multi-attribute choices

(Gershman, Malmaud, & Tenenbaum, 2017).

Decision strategies for risky tasks. To define possible search strategies for

risky situations, we consider two modifications of the decision strategies defined above.

The probability of being safe (POS) is similar to the POI strategy, but assess the

probability that a candidate input provides a reward above the safe threshold.

Formally, if the threshold is hmin, POS is defined as:

POSt(x) = P (f(x) ≥ h| Dt−1)

= Φ
(
µt−1(x)− hmin

σ(x)

)
. (19)

Instead of sampling by the probability to improve upon the best seen point so far, this

sampling strategy only cares about maximizing the probability of being safe (i.e.,

sampling above the threshold).

Instead of valuing uncertainty positively, the lower confidence bound algorithm

(LCB)

LCBt(x) = µt−1(x)− βσt−1(x), (20)

tries to avoid highly uncertain options. As input areas with high uncertainty can also

lead to possibly bad outcomes, this sampling strategy can be seen as a highly

risk-averse but possibly not very adaptive approach to risky environments.

The difference between UCB and LCB corresponds to differences observed in

risk-sensitive reinforcement learning when outcomes are either positive or negative (Niv,

Edlund, Dayan, & O’Doherty, 2012).

Estimation and model comparison

For model fitting and evaluation, we use a cross-validation procedure in which we

estimate parameters by maximum likelihood from a subset of the data and use these
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estimated models to make out-of-sample predictions as a measure of predictive

accuracy. A softmax function,

pt(x) = exp(qt(x)/τ)∑N
j=1 exp(qt(xj)/τ)

, (21)

transforms each model’s criterion into a probability distribution over options, where

qt(x) is the value of an option x according to the models’ valuation of each option, and τ

is the temperature parameter (i.e., lower values of τ indicate more precise predictions).

For the function learning model, we estimate λ (length-scale), for the option

learning model σ2
ε (error variance), and for the upper and lower confidence bound

sampling strategies β (exploration bonus for UCB, safety bonus for LCB). Additionally,

all models include τ as a free parameter. We fit all models separately for each

participant by cross-validated maximum likelihood estimation, using differential

evolution algorithm (Mullen, Ardia, Gil, Windover, & Cline, 2009). Parameter

estimates are constrained to positive values in the range [exp(−5), exp(5)].

Cross-validation is performed for the safe and risky function

exploration-exploitation objectives separately. Within all rounds, we use

leave-one-block-out cross-validation to iteratively form a training set by leaving out a

single round, computing a maximum likelihood estimate on the training set, and then

generating out-of-sample predictions on the remaining round. This is repeated for all

combinations of training and test sets, and for every participant individually. The

prediction error (computed as log loss) is summed up over all trials, and is reported as

average predictive accuracy, using a pseudo-R2 measure that compares the total log loss

prediction error for each model to that of a random model

R2 = 1− logL(Mn)/ logL(Mrand), (22)

where logL(Mn) is the log loss (negative log likelihood) of model n and logL(Mrand)

the log loss of a random model (which chooses options with equal probability).

Intuitively, a R2 = 0 corresponds to prediction accuracy equivalent to chance, while
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R2 = 1 corresponds to a perfect prediction accuracy.

Experiment 1: Univariate inputs

Figure 1 . Screenshot of Experiment 1. The red line marks the safe threshold (outcomes
below this threshold would immediately stop the round). Dots above the red line show
observed outputs. The input can be chosen by moving the slider (the green dot shows
the value) and selected by clicking “submit value”.

The first experiment required participants to maximize unknown univariate

functions f : x 7→ y by choosing discretized input values x ∈ (0, 0.5, 1, . . . , 10). This

scenario is similar to a multi-armed bandit task (with n = 21 arms) in which all arms

are ordered horizontally and where the outputs of the arms are correlated as a function

of their distance. Additionally, we introduced the constraint that participants should

avoid choosing options with a reward below the horizontal red line, or else forfeit the

remaining trials in the round.
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Participants

61 participants (36 female) with an average age of 32.95 (SD = 8.02) were

recruited via Amazon Mechanical Turk and received $1 for their participation and a

bonus of up to $1, in proportion to their overall score. The experiment took on average

12 minutes to complete.

Procedure

Participants were told they had to maximize outputs of an unknown function,

while at the same time trying to avoid obtaining outputs below a given red line. After

reading the instructions and performing an example round, they had to correctly

answer 4 comprehension questions to check if they understood the instructions. There

were 9 rounds in total and each round contained (at most) 10 trials. At the start of

each round, participants were shown the output of a pre-selected input value. This

input was randomly drawn from all inputs with outputs above the threshold.

On each round, participants had to choose an input with an output above the red

line, as choosing a different input would end the current round and forfeit any

additional rewards they could have earned by continuing selecting “safe” inputs on the

given round. On each trial t = 1, . . . , 10 in a block, they could choose an input value

x ∈ {0, 0.5, 1, . . . , 10} to observe (and accrue) an output y = f(x) + ε with noise term

ε ∼ N (0, 1). The underlying functions were sampled from a GP prior with a radial basis

function kernel (length-scale λ=1). The objective was to maximize the sum of the

obtained outputs over all trials in a round. A threshold hmin was introduced and a

round was ended abruptly if an output below this threshold was obtained.

Before the first trial, an initial safe point above the threshold was sampled at

random and provided to participants. A screenshot is shown in Figure 1. Outputs were

scaled to be between 0 and 10 but such that the underlying maximum was never

actually 10 in order to make the maximum not easily guessable. This was done by

sampling a random number between 9 and 10 and using this number as the overall

maximum for rescaling.
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In order to see if different levels of risk influence participants’ learning and

sampling behavior, we manipulated the risk of obtaining outputs below the red line as a

between-group factor, resulting into 6 groups for which the probability of sampling

below the line was set to p = [0.55, 0.6, 0.65, · · · , 0.8]. This means that, unknown to

participants and before the start of each round, the red line was placed such that

p× 100% of the input points would produce an output lower than the red line.

Participants received $1 for participating in the experiment and a bonus of $0.09 for

every point acquired.

Behavioral results
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Figure 2 . Results of Experiment 1. The upper left panel shows participants’ scores over
trials, including the average score (red) and standard errors in error bars. The upper
right panel shows the average scores for the different risk conditions. The lower left
panel shows the locality of chosen inputs as compared to a random sampler. The lower
right panel shows the locality of chosen inputs by different riskiness-conditions.

Figure 2 shows the results of Experiment 1. In general, participants performed

better than chance (mean score = 6.21, t(61) = 12.32, p < .001, d = 1.57) and improved
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over time (mean correlation between trials and score r = .2, t(60) = 6.87, p < .001,

d = 0.88). In addition, the average number of trials per block statistically exceeded

what would be expected if participants chose completely at random (t(60) = 22.69,

p < .01, d = 2.9), indicating that participants were successful at finding reward and

avoiding risky options. Participants of different risk conditions did not perform

significantly different from another (correlation between mean score and risk level:

r = .06, t(59) = 0.48, p > .6). Participants also showed localized sampling behavior,

choosing inputs more locally than a random sampling model (t(60) = −22.1, p < .001,

d = −2.83), although participants in higher risk conditions did not choose more locally

(correlation between risk level and average distance of consecutive inputs: r = −.08,

t(59) = −0.64, p = .52). Therefore, participants learned within the task but were

seemingly uninfluenced by the riskiness of the threshold.

Categorization of decisions

We used mixed-effects logistic regression analysis to determine the factors

influencing participants’ decisions. The dependent variable was whether each input was

chosen or not on each trial for each participant. As predictors, we used indicator

variables for an input’s membership of the safe, maximization, and expander sets.

Results indicated that the most plausible model was one that contains all variables as

fixed effects and a participant-specific random intercept, indicating that participants

were influenced by set membership in an overall similar fashion. The coefficients of the

fixed effects are presented in Table 1 below.

Table 1
Results of the mixed effects logistic regression for Experiment 1.

Estimate S.E. z value Pr(>|z|)
Intercept -3.71 0.12 -29.75 0.00

Maximizer 0.82 0.23 3.50 0.00
Expander -0.44 0.20 -2.20 0.03

Safe 0.85 0.24 3.46 0.00

Comparing the magnitude of the slopes of the predictors, we can conclude that

while all of the sets relate to participants’ behavior, participants were mostly influenced
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by whether or not a point was safe (Estimate = 0.85) or a maximizer (Estimate = 0.82).

Being within the set of possible expanders was negatively related to whether or not

participants would choose a given point (Estimate = −0.44). This shows that

participants’ behavior corresponded, at least to some extent, to the predictions

generated by the rational model. However, they seemed to focus more on staying safe

and maximizing locally rather than expanding the safe set. We next assessed if we

could predict trial-by-trial decision behavior with more process-level modeling.

Trial-by-trial models

Assessing the trial-by-trial modeling results, we found that the overall best

performing models were the Gaussian process model with a probability of being safe

decision strategy as well as the option learning model with the same decision strategy.

Comparing the learning models by aggregating over decision strategies, we found

that the option learning model outperformed the Gaussian Process learning model

(t(60)− 2.34, p < .05, d = 0.30). This mirrors the behavioral finding that participants

explored in a local manner, thus seemingly not generalizing much over different inputs

and observed outcomes.

Comparing the decision strategies by aggregating over learning strategies, we

found that the probability of being safe strategy predicted participants’ behavior better

than any of the other strategies, no matter whether it was combined with the option

learning (t(60) = 5.72, p < 0.001, d = 0.73) or the Gaussian process function learning

model (t(60) = 6.28, p < 0.001, d = 0.80).

Finally, there was no significant difference between the Gaussian process function

learning and the option learning when both were combined with the probability of

being safe sampling strategy (t(60) = −0.71, p = 0.48, d = 0.09).

We extracted the median parameter estimates of the Gaussian process learning

model combined with the probability of being safe sampling strategy for each

participant to check if they meaningfully tracked behavioral differences in the task

(Figure 4). Overall, the model’s predictions were relatively precise as indicated by low
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Figure 3 . Results of the trial-by-trial learning models in Experiment 1.

estimates of the softmax temperature parameter τ (median estimate: τ̂ = 0.097).

Furthermore, the length-scale parameter of the Gaussian process indicated that

participants seemed to somewhat generalize over different arms (median estimate

λ̂ = 4.43; compared to the ground truth of λ = 1). Interestingly, people who generalized

more performed worse overall (r = −.36, t(59) = −2.99, p < .004). This is most likely

the result of the dual objectives participants were facing, which required them to

generalize beyond encountered examples but to also sample safe options, which

frequently required sampling rather locally.

Lastly, we used the participant-wise parameters of the Gaussian process function

learning model paired with the probability of being safe sampling strategy (henceforth

GP-POS) to simulate data within the task. This means that we let the model

parameterized by participants’ estimates of both λ and τ perform the exact same task

as participants for the exact same number of rounds trying to optimize the same

underlying function. The results of this posterior model check simulation allow us to

judge about the extent of which the empirical results can be reproduced by the
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Figure 4 . Parameter estimates of the Gaussian process and probability of being safe
(GP-POS) model in Experiment 1.

GP-POS model. The results of this simulation are shown in Figure 5.

Even though the GP-POS model produces a similar trajectory of mean rewards as

participants, its average score per trial is somewhat below that of participants. Looking

at the distribution of average trial length per round, we can see that while the two

distributions are very similar overall, participants managed to more often play rounds

to the maximum number of trials than the simulations. While this could indicate that

participants were even more risk averse than the best fitting GP-POS models, the

finding that they also outperformed the GP-POS model in score obtained shows that

this did not negatively affect their performance.

Discussion

Within a first experiment assessing behavior in a univariate variant of the risky

spatially correlated multi-armed bandit, we found that participants managed to learn

within this tasks, improved their scores over trials, and performed better than what
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would be expected by chance. Moreover, participants tended to select input points

which were classified as safe or maximizing points by a rational safe optimization

algorithm. Using leave-one-block-out cross-validation, we found that participants’

behavior was best predicted by a probability of staying safe (POS) decision strategy

that mainly cares about sampling points above the provided threshold. Overall,

participants did not generalize far beyond the already observed input points, resulting

in roughly equal performance of both the option learning and the Gaussian process

regression model. There seemed relatively little effect of the level of riskiness in the task

(manipulated by the level of the safe threshold). Perhaps participants start behaving

equally risk averse once a threshold is introduced. Overall, participants performed

slightly better and chose inputs in a more risk averse manner than predicted by the

GP-POS model (parameterized by participant’s estimates), although the model

produced behavior very similar to participants’ overall.

Experiment 2: Bivariate inputs

In the second experiment, participants were asked to maximize an unknown

bivariate function, which was represented by a two-dimensional grid world (Fig. 6).

Moreover, we introduced a standard, risk-free condition as a within-subjects factor to

see if participants can switch between the two different modes or riskiness.

Participants

62 participants (37 male), with an average age of 31.77 years (SD = 8.97) were

recruited via Amazon Mechanical Turk and received $1 for their participation and a

performance-dependent bonus of up to $1. The average completion time of the whole

experiment was 11 minutes.

Procedure

We created functions f : x 7→ y with x = (x1, x2)>, defined over the grid

x1, x2 ∈ [0, 0.1, . . . , 1] resulting in a 11× 11 grid, with y = f(x) + ε with ε ∼ N (0, 1). As

in Experiment 1, on each round the function f was sampled independently from a GP
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with an RBF kernel (length-scale λ = 2). The output values y varied between 0 and 100

and one initial input point with an output above the threshold of 50 was chosen at

random and provided at the start of each round. We varied the level of risk

within-participants: out of the total of 10 rounds there were 5 which were “safe” (i.e.,

unconstrained maximization tasks without a threshold) and 5 which were labeled as

“risky” (i.e., constrained maximization tasks where obtaining an output below 50

caused the round to terminate immediately, forfeiting any remaining trials in the

round). The rounds were presented in a counter balanced order.

Participants were paid a basic fee of $1 and an additional bonus of $0.01 for every

additional 10 points they earned overall.

Behavioral results

Figure 7 shows the results of Experiment 2. Participants performed better than

chance overall (t(61) = 15.48, p < .001, d = 1.97). On average, participants did not

increase their scores significantly over rounds (mean correlation: r = −.04,

t(61) = −1.34, p > .1, d = 0.16). However, looking separately at the riskiness conditions

showed that while this was true for the safe conditions (mean correlation: r = .02,

t(61) = 0.99, p > .3, d = 0.13), participants did get significantly better over trials within

the risky condition (mean correlation: r = .10, t(61) = 2.23, p < .05, d = 0.28).

Surprisingly, participants actually scored higher in risky rounds as compared to safe

rounds (t(61) = 9.78, p < .001, d = 1.24). This seems to be driven by a tendency

towards greater exploration in the safe rounds which also explains why the average of

their first sampled output considerably drops from the average revealed value (see

Figure 7). In risky rounds, participants avoided scoring below the threshold for longer

than was expected by chance (t(61) = 8.06, p < .001, d = 1.02).

Participants again explored more locally than expected by chance (t(61) = 18.43,

p < 0.001, d = 2.34), but did not explore more locally during risky as compared to safe

rounds (t(61) = −0.31, p > 0.7, d = −0.06).
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Categorization of decisions

We again fitted a mixed-effects logistic regression analysis to participants choices

and found that the best possible model contained a random intercept over participants

as well as an interaction term between the effect of the safe sets and the current

riskiness condition (Table 2). As expected, the effect of the safe set was again the

strongest overall (Estimate = 1.85). As before, participants also chose points that were

classified as maximizers more frequently (Estimate = 1.16). Additionally, being within

the expansion set also deemed points to be significantly more frequently chosen this

time, although this effect turned out to be relatively small (Estimate = 0.13). The

interaction effect between the riskiness condition and the safe sets indicate that

participants are less likely to sample from within the safe sets in the conditions without

additional risks (Estimate = −0.61). This is intuitive as they are not required to focus

on sampling above 50 in this condition.

Table 2
Fixed effects of the mixed-effects logistic regression in Experiment 2.

Estimate S.E. z value Pr(>|z|)
Intercept -5.17 0.02 -271.95 0.00

Maximizer 1.16 0.11 10.58 0.00
Expander 0.13 0.06 2.24 0.02

Safe 1.85 0.11 16.75 0.00
Safe × Condition -0.61 0.06 -10.62 0.00

Trial-by-trial modeling

Model fits for the two riskiness conditions are shown in Figure 8. We can see that

the predictions of the models were generally better for the risky condition than the safe

conditions (t(61) = 9.69, p < .001, d = 1.23).

Only analyzing the safe condition, we found that the Gaussian process regression

model lead to better predictions than the option learning model (t(61) = 4.89, p < .001,

d = 0.62). There were no differences between the different decision strategies when

paired with the Gaussian process model for the safe conditions (all p > 0.05).
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Looking at the results for the risky condition, the Gaussian process regression

again predicted behavior better than the option learning model (t(61) = 4.53, p < .001,

d = 0.58). Importantly, the probability of being safe sampling strategy lead to

significantly better prediction than any other sampling strategy (t(61) = 3.37, p < .01,

d = 0.43). Therefore, participants seem to adapt their sampling strategy to the risky

constraints of the task.

Figure 9 shows the median parameter estimates for each participant for the

GP-POS model(Gaussian process learning paired with the probability of being safe

decision strategy) for both the risky and safe conditions. Whereas the estimates of the

softmax temperature parameter differed between the two conditions (t(61) = −4.13

p < .001, d = 0.52) indicating more precise predictions for the risky (median estimate

τ̂ = 0.11) than for the safe condition (median estimate τ̂ = 0.27), estimates of the

length-scale λ did not differ significantly between conditions (t(61) = −0.66, p = .51,

d = 0.08). Instead, median estimates of λ per participant correlated significantly

between conditions (r = .36 t(60) = 2.97, p < .01), indicating that participants

approached both conditions with a similar tendency towards generalization.

As in Experiment 1, we performed a posterior model check by parameterizing the

GP-POS model with the participant-wise parameter estimates and let the model

perform the exact same task as participants. Results of this simulation are shown in

Figure 10.

We can see that, in the risky condition, the average score of the GP-POS model

drops on the second trial but afterwards increases more sharply than participants’ mean

trajectory. From round 9 onwards, the model performs slightly better than participants.

This indicates that the GP-POS model explores more extensively than participants did,

incurring an initial hit to performance in order to reap later benefits. For the safe

condition, the model corresponds almost perfectly with participants’ mean trajectories.

This is expected as this result is primarily driven by a higher temperature parameter τ ,

leading to an increase in random exploration. The histogram of round length again

indicates that participants’ behavior is more risk averse than that of the GP-POS
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model, as participants managed to play for the maximum number of trials more

frequently than he GP-POS model.

Discussion

Within a bivariate version of the risky spatially correlated multi-armed bandit, we

found that participants improved over trials within the risky but not the safe condition,

gained better scores than would be expected from random choices, played for longer

than expected by chance in the risky conditions, and seemed to generalize further than

in the previous task with univariate inputs. Our mixed effects regression analysis

revealed that participants selected safe and maximizing points frequently, only

marginally cared about choosing inputs from the expanding set input, and focused less

on safe input points during safe conditions. The model comparison results showed that

the Gaussian process regression model predicted behavior best in both conditions, even

though predictions turned out to be generally better for the risky rounds than for the

safe rounds. Importantly, whereas the different decision strategies predicted behavior

equally well for the safe conditions, the probability of staying safe predicted behavior

best for the risky condition. These results suggest that participants adapted their

decision strategy to the task requirements while learning and generalizing about the

underlying function in a similar fashion. In a posterior predictive check for the GP-POS

model, we found that participants explored even more risk-aversely in the risky

condition than predicted by the GP-POS model.

General discussion and conclusion

Learning unknown functions and exploiting this knowledge to maximize rewards

are essential cognitive skills. Here we focused on a risky version of the spatially

correlated bandit task, in which outcomes below a given threshold need to be avoided.

We first analyzed participants’ choices using a rational Gaussian process safe

optimization strategy that establishes a safe set and tries to maximize outputs or

expand the safe set by choosing inputs from this set. We found that participants

shunned risks by focusing on maximizing outputs locally to “tried-and-tested” inputs,
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mostly ignoring lesser known input points which could expand the safe set. This focus

on avoiding unsafe inputs is consistent with a biological homeostasis maintenance

principle (Korn & Bach, 2015) that prioritizes not losing everything over gaining

maximum rewards (Houston, McNamara, & Hutchinson, 1993).

The results of our cross-validation model comparison revealed that participants

learn and perform generalization in a similar fashion, in scenarios with and without

risky constraints. While participants seemed to learn a similar representation of the

reward function (using the same learning strategy) across the different task demands in

Experiment 2, they did adapt their decision strategy to the riskiness of the

environment, sometimes even more than predicted by the best currently available

model. This in turn suggests a flexible mechanism that can guide people through risky

environments via generalization and adaptive search.

In future work, we aim to focus on the factors which drive participants to switch

from pure exploration to safe search strategies, and the situations in which switching

constitutes a normative strategy, for example because it minimizes costs (Bach, 2015).

Another promising avenue for future research will be marrying the powerful methods of

generalization put forward here with restricted methods of planning that have been

studied in the human reinforcement learning (Huys et al., 2015; Solway & Botvinick,

2015). Furthermore, investigating how different clinical populations differ in their

search and generalization behavior when confronted with risky decision making tasks

promises to extend our notion of computational mechanisms involved in mental illnesses

(Huys, Maia, & Frank, 2016; Montague, Dolan, Friston, & Dayan, 2012).

Unlike previous work on human behavior in a bandit setting, which has primarily

focused on pure exploration and exploitation, our work addresses a relatively novel

facet—optimizing risky functions while staying above a threshold. We expect that this

new approach will continue to enrich our understanding of how people resourcefully

optimize outcomes in the real world.
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Figure 5 . Posterior model checks of GP-POS model for Experiment 1. Upper panel
shows the mean trajectories of scores over trials for both human participants and the
GP-POS model when performing the exact same task. Lower panel shows the
histogram of lengths per round, i.e. how long both participants and the model managed
to sample without sampling below the threshold.
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Figure 6 . Screenshot of Experiment 2. Inputs were arranged in an 11 by 11 grid.
Participants chose inputs by clicking on the corresponding tile, trying to choose inputs
which produce high rewards. The “SAFE” condition indicates that they do not have to
worry about obtaining inputs above the safe threshold of 50. Rounds at which they had
to obtain outputs above 50 were marked as “RISKY”.
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Figure 10 . Posterior model checks of GP-POS model for Experiment 2. Upper panel
shows the mean trajectories of scores over trials for both human participants and the
GP-POS in the safe and risky rounds. Lower panel shows the histogram of lengths per
round, i.e. how long both participants and the model managed to sample without
sampling below the threshold.
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