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ABSTRACT

Native listeners neurally integrate iconic gestures with speech, which can enhance degraded speech compre-
hension. However, it is unknown how non-native listeners neurally integrate speech and gestures, as they might
process visual semantic context differently than natives. We recorded EEG while native and highly-proficient
non-native listeners watched videos of an actress uttering an action verb in clear or degraded speech, accom-
panied by a matching ('to drive'+ driving gesture) or mismatching gesture ('to drink'+ mixing gesture). Degraded
speech elicited an enhanced N400 amplitude compared to clear speech in both groups, revealing an increase in
neural resources needed to resolve the spoken input. A larger N400 effect was found in clear speech for non-
natives compared to natives, but in degraded speech only for natives. Non-native listeners might thus process
gesture more strongly than natives when speech is clear, but need more auditory cues to facilitate access to
gestural semantic information when speech is degraded.

1. Introduction

During face-to-face communication, a listener's brain constantly
integrates information from auditory inputs, such as speech, and visual
inputs, such as iconic co-speech gestures. For example, a listener might
see a speaker making a drinking gesture (i.e., a hand mimicking a glass
that is moved towards the mouth) when she is asking whether someone
wants a drink. Iconic gestures, like that drinking gesture, can be de-
scribed as hand movements that illustrate object attributes, actions, and
space, and can carry semantic information that is relevant to what is
conveyed in speech (e.g. Goldin-Meadow, 2005; McNeill, 1992). This
semantic information can affect the processing of speech comprehen-
sion in normal and adverse listening conditions, such as in degraded
speech (Drijvers & Ozyiirek, 2017; Drijvers, Ozyurek, & Jensen, in
press). So far, how the brain processes gestural information in the
context of degraded speech has only been investigated in native lis-
teners (Holle et al., 2010; Obermeier, Dolk, & Gunter, 2012b; Drijvers
et al., in press). However, the neural mechanisms that support speech-
gesture integration in non-native listeners in clear and degraded speech
have never been investigated.

Previous studies have reported that non-native listeners can make
use of auditory semantic-contextual cues (e.g., a previous sentence
context) in adverse listening conditions to aid comprehension, but only

when the auditory signal is of sufficient quality to facilitate access to
semantic information (Bradlow & Alexander, 2007; Mayo, Florentine, &
Buus, 1997; Zhang et al., 2016). Non-native listeners can also benefit
from visual semantic cues from gestures (Dahl & Ludvigsen, 2014;
Sueyoshi & Hardison, 2005), but this has been only studied behavio-
rally in clear speech and with low-proficient non-native listeners. It
remains unclear whether and how the semantic cues from iconic co-
speech gestures can influence the neural processing of degraded speech
comprehension in highly-proficient non-native listeners with sufficient
vocabulary knowledge of a language. Whereas non-native listeners
might process gestural information more strongly in clear speech than
natives, they might require more auditory cues to benefit from gestures
in degraded speech than native listeners. They might show more pro-
cessing difficulties when coupling the semantic information from ges-
ture to the degraded speech signal (see similar mechanisms proposed
for difficulty in comprehension of reduced speech in non-natives,
Ernestus, Dikmans, and Giezenaar (2017)). To investigate this, the
present study uses behavioral measures and event-related potentials
(ERPs) as a measure of online neural semantic integration to investigate
how native and non-native listeners integrate gestures with clear and
degraded speech.
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1.1. Native speech-gesture processing in clear and adverse conditions

There is ample evidence from both behavioral and neuroimaging
studies that native listeners process and integrate gestures with clear
speech (e.g. Beattie & Shovelton, 1999a, 1999b; Beattie & Shovelton,
2002; Holle & Gunter, 2007; Holler, Kelly, Hagoort, & Ozyurek, 2010;
Holler, Shovelton, & Beattie, 2009; Holler et al., 2014; Kelly, Barr,
Church, & Lynch, 1999; Kelly, Healey, Ozyiirek, & Holler, 2015;
Obermeier, Holle, & Gunter, 2011; see for a review, Ozyiirek, 2014),
even when the gesture is irrelevant for the listeners' task (Kelly, Creigh,
& Bartolotti, 2010), or when the gesture has no semantic content (beat
gestures) (Biau & Soto-Faraco, 2013, 2015; Biau, Torralba, Fuentemilla,
de Diego Balaguer, & Soto-Faraco, 2015; Dimitrova, Chu, Wang,
Ozyiirek, & Hagoort, 2016; Holle et al., 2012; Wang & Chu, 2013).
Furthermore, fMRI studies have studied speech-gesture integration
from a spatial perspective, and reported involvement of bilateral pos-
terior superior temporal sulcus/middle temporal gyrus (pSTS/MTG)
(integration processes) and left inferior frontal gyrus (LIFG) (de-
manding semantic unification operations, revision/modification) (Dick,
Mok, Raja Beharelle, Goldin-Meadow, & Small, 2014; Green et al.,
2009; He et al., 2015; Holle, Gunter, Ruschemeyer, Hennenlotter, &
lacoboni, 2008; Holle, Obleser, Rueschemeyer, & Gunter, 2010b;
Willems, Ozyﬁrek, & Hagoort, 2007; Willems, Ozyﬁrek, & Hagoort,
2009).

An alternative approach has been to investigate the temporal
character of the brain mechanisms that support speech-gesture in-
tegration by measuring ERPs in the EEG signal. ERPs can be seen as
deflections in voltage that are measured and recorded from electrodes
placed on the scalp. Previous studies on the neural integration of iconic
gestures and clear speech in native listeners (Cornejo et al., 2009;
Habets, Kita, Shao, Ozyurek, & Hagoort, 2011; Holle & Gunter, 2007;
Kelly, Kravitz, & Hopkins, 2004; Kelly et al., 1999; Obermeier et al.,
2011; Wu & Coulson, 2005, 2007a, 2007b) have focused on the N400
component to assess differences in semantic processing. The N400 is a
negative-going ERP component between 300 and 600 ms. that peaks
around 400 ms. The amplitude of the N400 is interpreted to reflect the
ease of semantic integration and the extent to which neural resources
are needed to integrate information. The N400 amplitude is smaller
when semantic unification operations are easier (Kutas & Federmeier,
2000, 2014). Previous ERP studies on gesture processing have shown
modulations of the N400 amplitude in mismatch paradigms (e.g.,
Cornejo et al., 2009; Habets et al., 2011; Kelly & Lee, 2012; Kelly, Ward,
Creigh, & Bartolotti, 2007; Kelly et al., 2004; Ozyiirek, Willems, Kita, &
Hagoort, 2007; Sheehan, Namy, & Mills, 2007; Wu & Coulson, 2007a,
2007b), with more negative N400 amplitudes in response to speech that
was presented with a mismatching gesture as compared to a matching
gesture. This indicates that the brain is sensitive to the way gesture
relates to speech, and that gesture is processed semantically. For ex-
ample, Habets et al. (2011) investigated the degree of asynchrony in
speech and gesture onsets that are optimal for semantic integration.
They presented participants with videos where gestures were semanti-
cally congruent or incongruent, and where gesture and speech were
presented either simultaneuos (SOA = 0), or the speech was delayed by
160 ms or 360 ms, and showed an N400 effect for the SOA 0 and SOA
160 conditions, but not the SOA 360 condition. Their results implied
that speech and gesture are integrated most efficiently when they occur
within a certain time span, because iconic gestures need speech to be
disambiguated to fit within the speech context.

Contrary to the numerous studies on speech-gesture integration
during clear speech processing, less is known about how native listeners
integrate speech and gestures in adverse listening conditions. Previous
research has shown that visual semantic cues that are conveyed by
iconic gestures can enhance clear speech comprehension when speech
is ambiguous (Holle & Gunter, 2007) and when speech is degraded
(Drijvers & Ozyiirek, 2017; Holle et al., 2010). For example, in an fMRI
study, Holle et al. (2010) investigated which brain areas are responsive
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to speech-gesture integration, bimodal enhancement, and inverse ef-
fectiveness. They presented participants with videos that could either
contain speech in a good signal-to-noise ratio, a moderate signal-to-
noise ratio, or no speech. Simultaneously, the actor in these videos
would either make an accompanying iconic gesture or no gesture. Their
results showed that speech-gesture integration could enhance speech
comprehension in noise (especially at a moderate noise level) and that
this bimodal enhancement was reflected by an increased activation of
left pSTS/STG. Similarly, in a recent experiment (Drijvers & Ozyiirek,
2017), we presented participants with videos with varying levels of
visual information: videos could either contain a speaker with her lips
blurred, a speaker with visible speech, or a speaker with visual speech
and a gesture. The sound in these videos was presented either clear,
moderately degraded by noise-vocoding (6-band) or severely degraded
by noise-vocoding (2-band). The results revealed that listeners benefit
more from having two visual articulators (i.e., visual speech and iconic
gestures) present as compared to one (i.e., visible speech only), and that
this benefit was largest at a moderate vocoding level, where listeners
can still benefit from both the phonological cues from visible speech
and semantic cues from iconic gestures to disambiguate the speech.
However, although Holle et al. (2010) have demonstrated the spatial
neural correlates of speech-gesture integration in adverse listening
conditions, it remains unclear what the online temporal neural correlates
are of how the semantic information from iconic gestures enhances the
comprehension of degraded speech, and whether matching and mis-
matching gestures have an effect on the N400 amplitude in clear and
degraded listening conditions. Second, Holle et al. (2010) have pre-
sented gestures in head-occluded conditions, and not in a context where
all visual articulators are visible to participants. It remains unknown
whether the semantic information conveyed by gestures is used as
much when both visible speech and gestures are available as visible
cues to enhance speech comprehension.

In the auditory domain, previous ERP studies have mostly focused
on degraded speech comprehension in an auditory semantic context
(e.g., a previous sentence context). These auditory electrophysiological
studies have demonstrated that the N400 amplitude of a native listener
is reduced in response to incongruent items that are acoustically de-
graded (e.g., a negative N400 amplitude when unifying an incongruent
word with a preceding context in clear speech is less negative during
degraded speech), or even absent when speech is too severely degraded
(Aydelott, Dick, & Mills, 2006; Boulenger, Hoen, Jacquier, & Meunier,
2011; Obleser & Kotz, 2011; Strauf}, Kotz, & Obleser, 2013). For ex-
ample, Obleser and Kotz (2011) demonstrated that the N400 amplitude
in response to low-cloze sentence-final words (indexing semantic in-
tegration load) decreased linearly with more signal degradation. In line
with this, a similar EEG study by Strauf3, Kotz, and Obleser (2013) on
the influence of expectancies under degraded speech comprehension
proposed that an adverse listening condition might narrow expectancies
about the speech signal. By diminishing the sensory input, the neural
system might rely more on signal-driven expectancies than contextual
information.

The question remains however whether the neural resources that
are needed to integrate a word with semantic information are similarly
modulated by the imposed perceptual load of degraded speech when
visual semantic context (e.g., iconic gestures) instead of auditory se-
mantic context is provided. Unlike the sentential semantic context
provided in the studies above, gestures might provide visual semantic
context and semantic expectencies about a word when speech is de-
graded. This means that in response to degraded speech, the N400
amplitude might be more enhanced compared to clear speech, as a
listener might recruit more neural resources when speech is degraded,
such as visual semantic information that is conveyed by gestures to try
to resolve the auditory input (in line with Skipper, Nusbaum, & Small,
2006; Skipper, Wassenhove, Nusbaum, & Steven, 2007). Furthermore,
the N400 effect in degraded speech might be smaller than in clear
speech, due to the fact that gestures also need speech for their
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disambiguation (see Habets et al., 2011), and speech quality is dimin-
ished when speech is degraded.

1.2. Non-native speech-gesture processing in clear & adverse listening
conditions

The next question is how gestures can enhance clear and degraded
speech comprehension in non-native listeners. Non-native listeners
might utilize visual semantic cues that are conveyed by gestures more
than native listeners due to their lack of full proficiency. Behavioral
studies have shown that iconic co-speech gestures can enhance non-
native language comprehension and non-native language learning (e.g.,
Dahl & Ludvigsen, 2014; Macedonia & Kriegstein, 2012; Sueyoshi &
Hardison, 2005). However, up to date, there are no studies on the
neural correlates of how visual semantic cues that are conveyed by
gestures might enhance clear or degraded speech comprehension for
non-native listeners.

Previous behavioral research on non-native degraded speech com-
prehension has been mostly tested in an auditory context, using only
auditory semantic information in a verbal context as a modulating
factor. These studies reported differences between native and highly
proficient non-native listeners in terms of how previous auditory se-
mantic context is taken into account during adverse listening conditions
(Bradlow & Alexander, 2007; Bradlow & Bent, 2002; Gat & Keith, 1978;
Golestani, Rosen, & Scott, 2009; Mayo et al., 1997; Oliver, Gullberg,
Hellwig, Mitterer, & Indefrey, 2012; Shimizu, Makishima, Yoshida, &
Yamagishi, 2002; Wijngaarden et al., 2002; Zhang et al., 2016). How-
ever, how these differences are reflected in neural activity remains
unknown. For example, in a behavioral study, Bradlow and Alexander
(2007) presented native and non-native listeners with sentences in
which the final word would either be highly predictable or not and
produced in plain or clear speech. The results demonstrated that non-
native listeners' comprehension was only aided when both semantic and
acoustic information were available (e.g., in a sentence that was highly
predictable and produced in clear speech). Conversely, native listeners
could benefit from acoustic and semantic information both in combi-
nation and separately. One of the explanations for this difference be-
tween native and non-native listeners is that non-native listeners might
not be able to use semantic contextual information to resolve the in-
formation loss at the phoneme level when the signal clarity was in-
sufficient (e.g.,Bradlow & Alexander, 2007; Golestani et al., 2009;
Oliver et al., 2012; Zhang et al., 2016). In line with this, another
audiovisual behavioral study by Hazan et al. (2006) demonstrated that
non-native listeners effectively incorporate and use visual cues from
visible speech that are related to phonological features in the auditory
signal to enhance speech comprehension in noise, and that increasing
auditory proficiency is linked to an increased use of visual cues by non-
native listeners. Based on this previous research, one might expect
differences in the way speech and gesture are integrated in non-natives
and natives in clear and degraded speech contexts. Therefore, to get a
detailed insight into possible processing differences between native and
non-native listeners during this semantic integration, an on-line method
that can monitor the possible differences in neural integration is needed
to investigate how the native language status of the listener influences
the extent to which an iconic gesture is semantically integrated with
clear and degraded speech.

1.3. The present study

We present an EEG study that aims to further our understanding of
how native and non-native listeners integrate information online from
speech and iconic co-speech gestures during both clear and degraded
speech comprehension. Here, we measure the brain's electro-
physiological response to the speech and gesture videos by focusing on
ERPs in the EEG signal, to exploit the excellent temporal resolution this
method offers. In line with previous electrophysiological research on
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the neural integration of speech and iconic gestures (e.g., Habets et al.,
2011; Holle & Gunter, 2007; Ozyiirek et al., 2007, Wu & Coulson,
2007a, 2007b), we focused on the N400 component to neurally assess
differences in how visual semantic information is integrated with clear
and degraded speech in native and non-native listeners. To this end, we
presented native and highly proficient non-native listeners with videos
of an actress uttering Dutch action verbs (see Drijvers & Ozyiirek,
2017), while she simultaneously made an iconic gesture that could ei-
ther match or mismatch with the speech signal. The sound in these
videos was either clear or degraded. All participants completed a be-
havioral cued-recall after each item that asked which verb they had
heard in the videos.

Behaviorally, and in line with previous work (Drijvers & Ozyiirek,
2017; Holle et al., 2010), we expected that native listeners would
benefit from gestures during degraded speech comprehension, resulting
in more correct answers on the cued-recall task when a gesture matched
the speech signal, and faster reaction times for matching than mis-
matching gestures during degraded speech comprehension. On an
electrophysiological level, we expected that integrating gestures with
degraded speech is more effortful and requires more neural resources
than in clear speech because there are less auditory cues available. This
would then result in higher N400 amplitudes in degraded speech as
compared to clear speech. Furthermore, we expected a typical N400
effect when comparing a matching and mismatching gesture in clear
speech, with a more negative N400 amplitude in response to mis-
matching gestures. We expected a similar N40O effect in degraded as in
clear speech, resulting in a more negative N400 amplitude in response
to mismatching compared to matching gestures. However, we predicted
this N400 effect to be smaller in degraded speech, because semantically
coupling degraded speech with gestures will be more effortful due to
the fact that the diminished auditory input will not always be resolved
by gestures, especially not when the gesture mismatches the signal. This
is in line with speech and gesture comprehension theories that claim
that speech and gesture interact to enhance comprehension and that
gestures also need speech to be disambiguated (Habets et al., 2011;
Kelly et al., 2010).

For non-native listeners we expected similar behavioral results for
all conditions due to their high proficiency. We recruited highly-profi-
cient non-native listeners with enough vocabulary knowledge of the
words we presented. Low proficient participants would not recognize
all of the verbs, and possibly be able to only pick up information from
gestures. This would not be sufficient to study gestural enhancement of
degraded speech comprehension.

On an electrophysiological level, we expected a similar typical N400
effect for highly-proficient non-native listeners during clear speech
comprehension when comparing matching and mismatching gestures as
in native listeners. Based on previous research showing that non-natives
might make more use of gestural context (e.g., Dahl & Ludvigsen, 2014)
we expected that this N400 effect might be stronger in non-natives than
in natives. However, non-native listeners' electrophysiological re-
sponses might differ from natives when speech is degraded. Non-native
listeners might require more neural resources than natives to resolve
degraded speech, resulting in a lesser ability to rely on visual semantic
information to resolve the phonetic input than native listeners. This, in
turn, might diminish how much non-natives can benefit from gestural
information, and might result in no or a reduced N400 effect when
comparing degraded speech and a mismatching gesture to degraded
speech and a matching gesture. This would fit with previous behavioral
results that suggested that a certain signal clarity is required for non-
natives for semantic information to be effective (e.g., Bradlow &
Alexander, 2007; Hazan et al., 2006).
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2. Methods
2.1. Participants

Twenty-four Dutch participants (mean age = 21.6, SD = 1.97, 9
males) and twenty-three German advanced learners of Dutch (mean
age = 22.4, SD = 2.35, 8 males) participated in this experiment. All
participants were right-handed and reported no language impairments,
normal hearing, no motor disabilities and normal or corrected-to-
normal vision. All participants gave informed written consent before
the start of the experiment and received a financial compensation for
participation.

All participants were students at Radboud University. The German
participants (‘non-native listeners") were recruited on the basis of the
following criteria: They had lived or studied in the Netherlands for at
least 1 year, had to use Dutch regularly (minimally once per week) for
their studies and/or their personal lives, and acquired Dutch after age
12 (range: 12-23, mean age = 18.7, SD = 2.5). One participant from
the Dutch participant group was excluded from analyses due to having
excessive artifacts.

2.2. LexTALE assessment

Before the main experiment, the Dutch proficiency level of all par-
ticipants was assessed by the Dutch version of the Lexical Test for
Advanced Learners of English (LexTALE), a vocabulary test using non-
speeded visual lexical decision (Lemhofer & Broersma, 2012). Partici-
pants are presented with 40 Dutch words and 20 nonwords. Nonwords
were nonsense strings created either by changing a number of letters in
an existing word, or by recombining existing morphemes. Only German
participants with a proficiency level of 67.5% and higher were allowed
to participate in the main experiment. A score of 60% and higher is
predicted to correlate with a B2 level or higher (Lemhofer & Broersma,
2012). After the main EEG experiment (described below), participants
were presented with an adapted version of the LexTALE to assees their
knowledge of the specific verbs that we used in the main experiment.
Again, this version consisted of 40 real words from the main experiment
and 20 nonwords.

2.3. Stimulus materials

The materials in this experiment are partially based on a subset of
pretested stimuli which are described in more detail in Drijvers and
Ozyiirek (2017). We presented participants with 160 video clips of a
female, native Dutch actress uttering a highly frequent Dutch action
verb. All videos were recorded with a JVC GY-HM100 camcorder and
had an average length of 2 s (see Fig. 1B). The actress was visible from
the knees up, wore neutrally colored clothing, and was standing in front
of a unicolored background. The onset of each video was the same: The
actress in the videos would stand in the middle of the screen with her
arms hanging casually on each side of her body. The actress always
produced an iconic co-speech gesture that could either match or mis-
match with the spoken verb (e.g., the verb 'drive' and a driving gesture
in the match conditions, and the verb 'eat' with a mixing gesture in the
mismatch conditions, see Fig. 1A).

The preparation of these gestures always started 120 ms after video
onset, the stroke of the gesture started on average at 550 ms, gesture
retraction at 1380 ms, and gesture ended at 1780 ms. Speech onset was
on average at 680 ms, which means that stroke onset started 130 ms
before speech onset, maximizing the overlap between the meaningful
part of the gesture and speech for mutual comprehension (Habets et al.,
2011) (see Fig. 1C).

Since our videos showed the face of the actress and we could
therefore not recombine a mismatching auditory track to a video to
create the mismatch condition, we asked the actress to utter a verb and
produce a mismatching gesture with it. These mismatching gestures

10
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were created by dividing the list of verbs in the mismatch conditions in
two lists, and combining the verbs on the first list with the gesture
corresponding to a verb on the second list, and vice versa (e.g., a verb
on the first list ('drink") would be coupled with a verb on the second list
('salt), so the actress would utter the word 'drink' while making a
salting gesture). Iconicity ratings of the gestures were conducted as part
of Drijvers and Ozyiirek (2017) and revealed a mean recognition rate of
59% when speech was absent. This reveals that these gestures were
potentially ambiguous without speech, which is mostly the case in
spontaneous speech-gesture production (Krauss, Morrel-Samuels, &
Colasante, 1991), and that they were to an extent dependent on speech
to be disambiguated (Habets et al., 2011, see Drijvers & Ozyiirek,
2017).

All auditory sound files were intensity-scaled to 70 dB, de-noised in
Praat (Boersma & Weenink, 2015) and recombined with their corre-
sponding video files in Adobe Premiere Pro. From every cleaned audio-
file, a 6-band noise-vocoded version was created by using a custom-
made Praat script. Noise-vocoding degrades the spectral content of the
speech signal while pertaining the temporal envelope (Shannon, Zeng,
Kamath, Wygonski, & Ekelid, 1995). The speech signal then remains
intelligible to a certain extent, with more bands corresponding to a
more intelligible speech signal. Since our previous experiment (see
Drijvers & Ozyiirek, 2017) identified a 6-band noise-vocoding level as
the optimal range in which iconic gestures can enhance degraded
speech comprehension the most, this was also the speech degradation
level that was used in this experiment (see Drijvers & Ozyiirek, 2017).

In total, four conditions were created for this experiment: a clear
speech + matching gesture condition ('clear-match/, e.g., 'to eat' in clear
speech combined with a co-speech gesture for 'to eat'), a clear
speech + mismatching gesture condition ('clear-mismatch/, e.g., 'to call'
in clear speech combined with a mismatching co-speech gesture for 'to
drive"), a degraded speech + matching gesture condition (‘degraded-
match', e.g., 'to mix' in degraded speech combined with a matching co-
speech gesture for 'mixing') and a degraded speech + mismatching
gesture condition (‘degraded-mismatch', e.g., 'to turn' in degraded
speech with a mismatching co-speech gesture for 'salting') (see Fig. 1 for
an overview). All conditions consisted of 40 unique videos with unique
verbs and gestures.

2.4. Procedure

Upon arrival, participants first completed a consent form and par-
ticipated in the LexTALE test before they were fitted with an EEG cap.
Participants sat in front of a computer monitor while holding a four-
button box in an acoustically and electrically shielded room. Stimuli
were presented full screen on a 1650 X 1080 monitor by using
Presentation software (version 16.4; Neurobehavioral Systems, Inc.)
Participants were explained that the videos would contain a girl who
would utter a Dutch action verb and asked to attentively watch and
listen to the stimuli. Each trial would start with a fixation cross
(1000 ms), after which the video started (2000 ms). After a short delay
(1500 ms) participants were presented with a cued-verb recall task and
asked to identify which verb (out of four alternatives: correct answer,
phonological competitor, semantic competitor, unrelated answer) they
heard in the video by pressing a 4-button box. The order of the stimuli
was pseudo-randomized for all participants and presented in four
blocks of 40 trials. The constraint on this randomization was that a
condition could not be presented more than twice in a row. After each
block, participants could take a self-paced break. All participants
completed the experiment within 30 min. After the experiment, parti-
cipants filled in the adapted version of the LexTALE to test their
knowledge of the verbs used in these videos.

2.5. EEG data acquisition

The participants EEG was continuously recorded throughout the
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Fig. 1. Experimental overview. (A) Overview of conditions. (B) Video structure. (C) Trialstructure.

experiment from 32 AG-AgCI electrodes, of which 27 were mounted in
a cap (actiCap) according to the 10-20 standard system, one was placed
on the right mastoid for re-referencing and 4 were used for bipolar
horizontal and vertical electrooculograms (EOG). The ground electrode
was placed on the forehead. Electrode impedance was kept below 5
KOhm. The EEG was filtered through a 0.02-100 Hz band-pass filter
and digitized on-line with a sampling frequency of 500 Hz.

2.6. EEG data analysis

We analyzed the EEG data by using Fieldtrip (Oostenveld, Fries,
Maris, & Schoffelen, 2011) a toolbox running under MATLAB (Math-
Works, Natick, MA). First, we re-referenced the EEG data offline to the
average of the right and left mastoid and filtered the data with a high-
pass filter at 0.01 Hz and a low pass filter at 35 Hz. The data was seg-
mented into epochs from -1 to 3.5 s relative to the onset of the videos.
We used a baseline window of -0.4 s to -0.2 s. Artifacts were removed by
using a semi-automatic rejection routine. On average, we excluded
8,1% of the trials for each participant (13/160). One participant from
the Dutch participant group was excluded from analyses due to having
excessive artifacts.

To calculate the event-related potential, the time-locked average
(time-locked to video onset) over all remaining trials was computed
separately for the four conditions for each participant. We used non-
parametric cluster-based permutation tests (Maris & Oostenveld, 2007)
to evaluate the differences between conditions within each listener
group separately. Using a multi-level statistical approach, a dependent
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samples t-test was executed for every data point of two conditions (time
by individual by electrode) for the within-group results. All adjacent
data points that exceeded a pre-set threshold of 5% were grouped into
clusters. In each of these clusters, the t-statistics were summed in order
to calculate the cluster-level statistics. Then, a Monte-Carlo permuta-
tion distribution was created by randomly assigning a participant’s
average to one of the two conditions (1000 times) and calculating the
largest cluster-level statistic for every permutation. The highest cluster-
level statistic from each randomization was entered into the Monte
Carlo permutation distribution and cluster-level statistics were calcu-
lated for the measured data and compared against this permutation
distribution. Clusters that fell in the highest or lowest 2.5th percentile
of the distribution were considered significant (see Maris & Oostenveld,
2007).

3. Results
3.1. Behavioral results - LexTALE

Non-native listeners scored within the high-proficiency range, but
performed lower than native listeners on the first LexTALE test
(mean = 92.8 (SD = 4.86) for native listeners vs. mean = 76.4
(SD = 5.38) for non-native listeners, t(44) = 10.892, p = < .001) and
in the second, adapted LexTALE test (mean = 96.41, (SD = 3.60), for
native listeners vs. mean = 86.58, (SD = 5.32) for non-native listeners,
t(44) = 7.34, p < .001). The second test assessed their knowledge
about the words we used as stimuli, and revealed that they were highly
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familiar with them, reaching almost native-like levels.

3.2. Behavioral results - cued verb-recall task

We tested the difference in correct answers and reaction times in
two 2 x 2 (Noise-vocoding (clear, degraded) x Gesture (match, mis-
match)) repeated measures analysis of variance (ANOVA) per group
(native/non-native).

3.3. Native listeners

We observed a significant effect of Noise-vocoding, indicating that
when the speech signal was clear, native listeners' response accuracy
was higher than when the speech was degraded (F(1,22) = 140.95,
p < .001, Wilks' Lambda = 0.135, n2 = 0.87). We also found an effect
of Gesture (F(1,22) = 128.87, p = < .001, Wilks' Lambda = 0.146,
n2 = 0.85), indicating that when the gesture matched the speech signal,
native listeners were more able to correctly identify the verb. We found
a significant interaction between Noise-vocoding and Gesture (F
(1,22) = 112.20, p= < .001, Wilks' Lambda = 0.164, n2 = 0.83),
indicating that when the speech signal was clear and the gesture mat-
ched the speech signal, participants demonstrated higher response ac-
curacy. Bonferroni corrected post-hoc analyses revealed a difference
between clear-match and clear-mismatch t(22) = 6.67, ppon, < 0.001,
between degraded-match and degraded-mismatch t(22) = 11.12,
Pbon < .001, between clear-match and degraded-match t(22) = 7.89,
Pbon < .001 and between clear-mismatch and degraded-mismatch t
(22) = 12.42, ppon < .001 (see Fig. 2).

We found a similar pattern in terms of reaction times and found a
main effect of Noise-vocoding (F(1,22) = 74.11, p = < .001, Wilks'
Lambda = 0.22, n2 = 0.77), indicating that when the speech signal was
clear, native listeners answered more quickly. We found a significant
main effect of Gesture (F(1,22)=69.20, p= <.001, Wilks'
Lambda = 0.24, n2 = 0.76), indicating that when the gesture matched
with the speech signal native listeners answered more quickly. Lastly,
there was a significant interaction between Noise-vocoding and Gesture
(F(1,22) = 43.87, p = < .001, Wilks' Lambda = 0.23, 12 = 0.66), in-
dicating that when the signal was clear and the gesture matched with
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the speech signal, native listeners answered more quickly. Bonferroni
corrected post-hoc analyses revealed no significant difference between
clear-match and clear-mismatch, t(22) = —0.96, ppon = 0.348, but did
show significant differences between degraded-match and degraded-
mismatch, t(22) = —7.80, ppon < .001, between clear-match and de-
graded-match t(22) = —6.97, ppon < .001, and between clear-mis-
match and degraded-mismatch, t(22) = —8.73, ppon < .001.

3.4. Non-native listeners

In general, non-native listeners showed similar behavioral results as
natives regarding the differences in conditions. Our analysis revealed a
significant main effect of Noise-vocoding, indicating that when speech
was clear, non-native listeners had a higher response accuracy than
when speech was degraded (F(1,22)=165.47, p < .001, Wilks'
Lambda = 0.11, n2 = 0.88) and a significant main effect of Gesture,
indicating that when a matching gesture was present, non-native lis-
teners were more able to correctly identify the verb than when a mis-
matching gesture accompanied the verb (F(1,22) = 69.65, p < .001,
Wilks' Lambda = 0.24, n2 = 0.76). Lastly, we found a significant in-
teraction between Noise-vocoding and Gesture, indicating that when
speech was clear and the gesture matched the speech signal, non-native
listeners showed a higher response accuracy (F(1,22) = 82.91,
p < .001, Wilks' Lambda = 0.21, 12 = 0.79). Post-hoc analyses
(Bonferroni corrected) showed revealed no significant difference in
response accuracy between clear-match and clear-mismatch, t(22) = -
0.92, p = .367, but did show significant differences between degraded-
match and degraded-mismatch, t(22) = —9.55, p < .001, between
clear-match and degraded-match t(22) = —6.74, p < .001, and be-
tween clear-mismatch and degraded-mismatch, t(22) = —15.29,
p < .001.

We observed a similar pattern in reaction times as in response ac-
curacy: We observed a significant main effect of Noise-vocoding (F
(1,22) = 104.554, p < .001, Wilks' Lambda = 0.174, n2 = 0.82), in-
dicating that non-native listeners were quicker to respond when the
speech signal was clear and a significant main effect of Gesture, in-
dicating that when the gesture matched the speech signal, non-native
listeners responded quicker than when the gesture mismatched with the
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speech signal (F(1,22) = 53.42, p < .001, Wilks' Lambda = 0.29,
n2 = 0.70). We observed a significant interaction between Noise-vo-
coding and Gesture, indicating that when speech was clear and the
gesture matched the speech signal, non-native listeners were quicker to
respond (F(1,22) =59.53, p < .001, Wilks' Lambda = 0.27,
n2 = 0.73). Bonferroni corrected post-hoc analyses revealed no sig-
nificant difference between clear-match and clear-mismatch, t
(22) = —0.71, ppon = 0.483, but did show significant differences be-
tween degraded-match and degraded-mismatch, t(22) = —8.576,
Pbon < .001, between clear-match and degraded-match t
(22) = —8.48, ppon < .001, and between clear-mismatch and de-
graded-mismatch, t(22) = —10.76, ppon, < .001.

Note that non-native listeners show a similar behavioral pattern as
native listeners, but that they showed an overall lower accuracy and
slower reaction times in the degraded speech conditions (see Fig. 2).

3.5. EEG data - native participants

For the analyses of our EEG data, we defined our time-window of
interest (1.0-1.7, which corresponds to 300 ms after speech onset (at
~ 680 ms) until 1000 ms after speech onset, based on previous research
on speech-gesture integration and N400 effects, and visual inspection of
the waveforms (e.g., Habets et al., 2011; Kutas & Federmeier, 2014).
We compared the ERPs of the four conditions time-locked to the onset
of the video and averaged over all 23 native participants.

For native listeners, we observed a significant difference between
the clear-match and the clear-mismatch condition (clear-mismatch >
clear-match, p < .001), the degraded-match and the degraded-mis-
match condition (degraded-mismatch > degraded-match, p < .05),
between the clear-match condition and degraded-match condition
(clear-match < degraded-match, p < .001) and the clear-mismatch
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and degraded-mismatch condition (clear-mismatch < degraded-mis-
match, p < .001). Fig. 3 shows the grand average event-related po-
tentials for all four conditions, as well as the topographical plots of the
N400 effects in clear and degraded speech. Degraded-mismatch elicited
the largest N400 amplitude, followed by degraded-match, clear-mis-
match and clear-match. In the clear speech conditions, the N400 effect
was most pronounced over central-parietal electrodes, but in the de-
graded conditions, this effect was more widespread over left and right
temporoparietal electrodes. To compare the N400 effects in clear and
degraded speech, we subtracted the averages of the clear-match from
the clear-mismatch condition, and the averages of the degraded-match
condition from the degraded-mismatch condition. The N400 effect was
larger in clear than in degraded speech (p = .041).

3.6. EEG data - non-native listeners

In non-native listeners, we observed a significant difference between
clear-match and clear-mismatch (clear-mismatch > clear-match,
p < .001), but not between degraded-match and degraded-mismatch
(p = .16). We observed a significant difference between clear-match
and degraded-match (clear-match < degraded-match, p < .001) and
between clear-mismatch and degraded-mismatch (clear-mismatch <
degraded-mismatch, p < .05) Degraded-mismatch and degraded-
match elicited the largest N400 amplitude, followed by clear-mismatch
and clear-match. The topographical plots revealed that the N400 effect
in clear speech extends over central-parietal as well as right lateralized
electrodes, unlike what was observed in natives.

3.7. EEG data - native versus non-native listeners
Although the difference between native and non-native listeners in
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separate ERP waveforms per condition could not be compared, we did
compare the N400 effects found in clear and degraded speech between
the two groups (i.e., the interaction effect of nativeness and gesture
congruence). We observed a larger N400 effect in clear speech for non-
native listeners as compared to native listeners (p < .05) and a larger
N400 effect for native as compared to non-native listeners in degraded
speech (p < .05), which was driven by the absence of an N400 effect in
the non-native listeners group.

4. Discussion

The current study examined whether and how (non)-native listeners
neurally integrate iconic gestures with clear and degraded speech. Even
though native and non-native listeners demonstrated similar behavioral
results, our EEG results suggested that native and non-native listeners
neurally integrate speech with gestures differently in both clear and
degraded speech. Natives, but not non-natives revealed an N400 effect
in degraded speech. Non-natives however, revealed a larger N400 effect
in clear speech than native listeners. Below we will discuss these results
in more detail.

4.1. Behavioral results - native & non-native listeners

Native and non-native listeners showed similar behavioral results
and were more able to correctly identify a verb when speech was clear
as compared to degraded, and when a gesture matched compared to
mismatched speech. Reaction times revealed a similar pattern, but no
difference in reaction times was observed between clear speech and a
matching compared to a mismatching gesture for both native and non-
native listeners, which is possibly due to a ceiling effect in both con-
ditions. On a behavioral level, this thus suggests that both native and
non-native listeners attempt to integrate gestures with both clear and
degraded speech. Listeners seem to use the semantic information from
gestures to boost comprehension when speech is degraded.

However, although the behavioral patterns of both groups look si-
milar with regard to the differences between the conditions, non-native
listeners demonstrated lower overall accuracy scores and slower reac-
tion times in the degraded conditions than in the clear conditions when
compared to natives. This could indicate that it is more difficult for
them to resolve the remaining auditory cues and couple the semantic
information that is conveyed by the gesture to the speech signal (similar
to results on reduced speech, such as Ernestus et al. (2017)). Our EEG
results provided more evidence for this claim.

4.2. EEG results - native listeners

We observed a more negative N400 amplitude when gestures mis-
matched compared to matched clear speech (in line with e.g., Habets
et al., 2011; Holle & Gunter, 2007; Kelly et al., 2004; Ozyiirek et al.,
2007), suggesting that integrating mismatching gestures requires more
neural resources than integrating matching gestures. When speech was
degraded we observed a similar pattern with more negative N400
amplitudes than in clear speech, suggesting more neural resources were
required to integrate gestures when speech was degraded. Here, lis-
teners might need more neural effort or semantic unification operations
to disambiguate both the degraded auditory cues and the visual se-
mantic information that is conveyed by the gesture.

Interestingly, previous research on auditory degraded speech com-
prehension has reported a reduced N400 amplitude when auditory
target words were (increasingly) degraded as compared to clear and
when they were presented in a low-cloze probability context (e.g., when
semantic expectations about the upcoming word are low) (Aydelott
et al., 2006; Obleser & Kotz, 2011; Strauf3 et al., 2013). Although we did
not provide listeners with prior auditory context similar to the studies
mentioned above, we did provide listeners with a visual semantic
context. Note that this visual semantic context was not completely
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unambiguous, as both the gesture and the speech could mutually dis-
ambiguate each other. We expected that, to some extent, gestures could
therefore elicit predictions about the degraded word, which, in turn,
could have enhanced degraded speech comprehension, resulting in the
recruitment of more neural resources compared to clear speech. In line
with this tentative explanation, we observed an increased N400 ampli-
tude in response to degraded compared to clear speech. Note that our
data revealed stepwise differences between the conditions: the de-
graded-mismatch condition yielded the largest N400 amplitude, fol-
lowed by degraded-match, clear-mismatch and clear-match. We suggest
that this shows an increase in neural resources that are required to
resolve the speech signal and couple the semantic information con-
veyed by the gesture, resulting in an additive effect of both speech
degradation and semantic incongruency of the gesture on the amplitude
of the N400.

We also observed an N400 effect in both degraded speech and clear
speech, which shows that gestures exert a visual semantic context ef-
fect. This N400 effect was reduced in degraded speech, which is pos-
sibly due to the fact that listeners have less auditory cues to their dis-
posal to couple the gestural information to. This is also in line with
Obleser and Kotz (2011), who find that effortful semantic computation
is more visible in less degraded signals, that is, when signal quality is
good enough for semantic manipulations to have an effect on com-
prehension. Similarly, this is also the case for gestural information,
which is partially ambigious without the speech context.

In Fig. 3A and B, a possible latency of the N400-effect can be ob-
served when comparing the effect in degraded and clear speech.
However, post-hoc analyses of the N400 peak latency did not reveal any
difference between clear and degraded speech, but only in the onset of
the N400 effect (1000 ms for clear speech vs. 1280 ms for degraded
speech) Previous studies (e.g., Obleser & Kotz, 2011; Strauf} et al.,
2013) did report significant differences in peak latency in response to
degraded speech, suggesting a delayed semantic integration. Since we
did not find a difference in N400 peak latency but only in the onset of
the N400 effect, we suggest this is due to the auditory cognitive load
that degraded speech imposes on the listener (Connolly, Philips,
Stewart, & Brake, 1992).

4.3. EEG results - Non-native listeners

Similar to native listeners, non-native listeners showed a more ne-
gative N400 amplitude in clear speech for mismatching than matching
gestures. In degraded speech, non-native listeners revealed no differ-
ence between matching and mismatching gestures, nor did these N400
amplitudes differ from the N400 amplitude of mismatching gestures in
clear speech.

These results seem in line with theoretical explanations of why
differences between native and non-native listeners arise under adverse
listening conditions. Possibly, non-native listeners cannot fully make
use of the semantical cues of the gesture when the auditory cues are too
difficult to resolve (Bradlow & Alexander, 2007; Bradlow & Bent, 2002;
Gat & Keith, 1978; Golestani et al., 2009; Mayo et al., 1997; Oliver
et al., 2012). Compared to native listeners, non-native listeners may
have required more neural resources to resolve the degraded auditory
cues. In turn, this may have caused a limited benefit from visual in-
formation for comprehension, especially when the degraded auditory
cues were not reliable enough to couple the visual semantic information
to or for the visual information to boost comprehension of the degraded
auditory cues. This might have resulted in a similar N400 amplitude of
the degraded conditions and the clear speech and mismatching gesture
condition, or could be explained by a ceiling effect. In the cued-recall
task however, the unreliable degraded auditory cues might be more
easily recognized when the four answer options were presented. This
might have masked the actual comprehension difficulties the listeners
had when they watched the video.

In line with this interpretation of our data, we also observed a
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smaller N400 effect for natives in degraded compared to clear speech.
Similarly, this result suggested that the neural processing of semantic
integration already suffered from having less auditory cues present to
map the semantic information from the gestures to. We therefore sug-
gest that this effect is even more enhanced for non-native listeners:
when signal quality suffers and there are less auditory cues to map
semantic information to, non-native listeners are less able than native
listeners to benefit from semantic information from the gesture to boost
comprehension and resolve the degraded auditory input. Note that a
mismatching gesture in degraded speech can possibly also have a de-
leterious effect, when the visual information was difficult to integrate
with the remaining auditory cues and the semantic information did not
aid resolving the auditory cues.

A direct comparison of the ERP waveforms of native and non-native
listeners was not possible because of the many differences there could
exist between these groups that are irrespective of the experimental
manipulation, such as motivation (which might have been larger for the
non-native group, as they completed a Dutch language proficiency test
upon arrival). For example, post-hoc analyses of the N1/P2 complex at
the start of the video revealed differences between the groups that
could not be explained by stimulus characteristics. However, we did
compare the N400 effects in the two groups, and found a larger N400
effect in clear speech for non-native compared to native listeners, and a
larger N400 effect in degraded speech for native listeners (due to the
absence of an N400 effect in non-native listeners). This revealed that in
clear speech, non-native listeners possibly recruit the visual semantic
information more than native listeners, which is possibly due to the fact
that they pay more attention to gestures when they are unsure about
their language proficiency. As we did not observe an N400 effect in
degraded speech, we suggest that non-native listeners might employ
different neural processing strategies for semantic information than
native listeners when speech is degraded. One possibility is that non-
native listeners first try to resolve the degraded auditory cues and re-
cruit more visual information when resolving the degraded cues is too
taxing. If however the remaining auditory cues are not reliable enough,
they cannot benefit from these semantic cues. Native listeners on the
other hand use and attempt to integrate the visual semantic information
to immediately sharpen their perception to resolve the degraded speech
signal, and can benefit more from this information than non-natives.

Although differences in the distribution of the N400 component
should be carefully made on the basis of ERP scalp topographies, we
observed a more right-lateralized topography of the N400 effect in clear
speech for non-native as compared to native listeners. Right-hemi-
sphere effects have been found in a range of studies that reported
sensitivity of the right hemisphere during speech-gesture integration
(especially in pSTS/MTG), (Green et al., 2009; Holle et al., 2010; Holler
et al.,, 2014; Skipper, Goldin-Meadow, Nusbaum, & Small, 2009;
Straube, Green, Weis, & Kircher, 2012; Willems et al., 2007, 2009),
when semantic contexts are indirectly related (Kiefer, Weisbrod, Kern,
Maier, & Spitzer, 1998) and when gestures were semantically more
distant (i.e., mismatching) (Kelly et al., 2004, 2007). In clear speech,
non-native listeners might attempt to exploit and process the semantic
information from gestural input more than native listeners, resulting in
the recruitment of right-lateralized areas in the heightened processing
of the semantic information that is provided by the gesture. A similar
pattern is observed in the N400 effect in degraded speech for native
listeners, where we observed a widespread negativity over both left and
right lateralized electrodes. Previous literature has hypothesized that
the N400 could reflect reverberating neural activity that is instantiated
by a network consisting of memory/storage (MTG/STG), unification
(LIFG) and control retrieval (dorsolateral prefrontal cortex) areas
(Baggio & Hagoort, 2011). Especially when speech is degraded, the
dynamic reverberating circuits involved between (L)IFG and pSTS/
MTG might be more widespread to recruit more top-down information
to enhance degraded speech comprehension and facilitate unification of
the two input streams. This more extended network would also fit with
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the account that when speech processing becomes more taxing, addi-
tional neural resources are recruited to aid in comprehension (Skipper
et al., 2006, 2007).

In future work, we aim to address these questions by including a
baseline condition where there is no gesture present, to investigate
whether the semantic information from the gesture enhances recogni-
tion depending on semantic congruency. Future studies could also test
the current paradigm in a more sentential context, or whether similar
results will hold when participants have a lower proficiency level, to
test how a possible larger dependence on visual semantic information
affects comprehension.

5. Conclusion

Our data revealed that native and non-native listeners differ in the
extent to which the semantic information from the gesture is coupled to
the degraded speech signal on a neural level. Non-native listeners might
recruit additional neural resources to process gestural information
when speech is clear, by focusing more on gestural information than
native listeners. While both native and non-native listeners use more
neural resources to disambiguate the degraded speech signal, non-na-
tive listeners were more hindered in their ability to neurally couple the
semantic information from the gesture to degraded auditory cues,
possibly because they need more auditory cues to facilitate access to
gestural information. Thus, although gestures enhance degraded speech
comprehension, highly-proficient non-native listeners benefit less from
visual semantic context than native listeners and integrate speech and
gestures differently.
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