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Abstract 31 

Decision bias is traditionally conceptualized as a flexible internal reference against 32 

which sensory evidence is compared. Here, in contrast, we show that experimental 33 

manipulation of decision bias adjusts the rate of evidence accumulation in visual cortex 34 

towards one of the choice alternatives. Participants performed a visual detection task 35 

during EEG recordings. We experimentally manipulated participants’ response 36 

criterion using different stimulus-response reward contingencies, inducing liberal and 37 

conservative decision biases in different conditions. Drift diffusion modeling of choice 38 

behavior revealed that an experimentally induced liberal decision bias specifically 39 

biased the rate of sensory evidence accumulation towards ‘yes’ choices. In visual 40 

cortex, the liberal bias manipulation suppressed prestimulus 8—12 Hz (alpha) power, 41 

which in turn boosted cortical stimulus-related activity in the 59—100 Hz (gamma) 42 

range. Together, these findings show that observers can intentionally control cortical 43 

excitability to strategically bias evidence accumulation towards the decision bound that 44 

maximizes reward within a given ecological context. 45 

 46 

Introduction 47 

Perceptual decisions arise not only from the evaluation of sensory evidence, but are 48 

often biased towards one or the other response alternative by environmental factors, 49 

for example as a result of task instructions and/or stimulus-response reward 50 

contingencies (White & Poldrack, 2014). The ability to willfully control decision bias 51 

enables the behavioral flexibility required to survive in an ever-changing and uncertain 52 

environment. But despite its central and important role in decision making, the neural 53 

mechanisms underlying decision bias are not fully understood.  54 

The traditional account of decision bias comes from signal detection theory 55 

(SDT) (Green & Swets, 1966). In SDT, decision bias is quantified by estimating the 56 

relative position of a decision point or ‘criterion’ in between sensory evidence 57 

distributions for noise and signal (see Figure 1A). In this framework, a more liberal 58 

decision bias arises by moving the criterion closer towards the noise distribution (see 59 

green arrow in Figure 1A). Although SDT has been very successful at quantifying 60 

decision bias, it has not done much to elucidate the mechanism behind it. One reason 61 
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for this lack of insight may be that SDT does not have a temporal component to track 62 

how decisions are reached over time (Fetsch, Kiani, & Shadlen, 2014).  63 

As an alternative to SDT, the drift diffusion model (DDM) conceptualizes 64 

perceptual decision making as the accumulation of noisy sensory evidence over time 65 

into an internal decision variable (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; 66 

Gold & Shadlen, 2007; Ratcliff & McKoon, 2008). A decision in this model is made 67 

when the decision variable crosses one of two decision bounds corresponding to the 68 

choice alternatives. Within this framework, a strategic decision bias imposed by the 69 

environment can be modelled in two different ways: either by moving the starting point 70 

of evidence accumulation closer to one of the boundaries (see green arrow in Figure 71 

1B), or by biasing the rate of the evidence accumulation process itself towards one of 72 

the boundaries (see green arrow in Figure 1C). In both the SDT and DDM frameworks, 73 

decision bias shifts have little effect on the sensitivity of the observer when 74 

distinguishing signal from noise; they predominantly affect the relative response ratios 75 

(and in the case of DDM the speed with which one or the other decision bound is 76 

reached). There has been some evidence to suggest that decision bias induced 77 

through shifting the response criterion is best characterized by a drift bias in the DDM 78 

(Urai, de Gee, & Donner, 2018; White & Poldrack, 2014). However, the drift bias 79 

parameter has as yet not been related to a well-described cortical mechanism. 80 

 81 

  82 

Figure 1 | Theoretical accounts of decision bias. A. The SDT account of decision bias. In this 83 
framework, signal and noise+signal distributions are plotted as a function of the strength of internal 84 
sensory evidence. Here, the decision point (or criterion) that determines whether to indicate signal 85 
presence or absence is plotted as a vertical criterion line c, reflecting the degree of decision bias. c can 86 
be shifted left- or rightwards to respectively model a more liberal or conservative bias (green arrow 87 
indicates a shift to liberal). In drift diffusion models (DDMs, panels B. and C.), decisions are modelled 88 
in terms of a dynamic process of sensory evidence accumulation. When sensory input is presented, 89 
evidence starts to accumulate (drift) over time departing from starting point Z. The rate at which 90 
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evidence accumulates is called the drift rate, and a response is given when it either crosses decision 91 
boundary a (signal presence) or decision boundary 0 (no signal). DDMs are fitted to distributions of 92 
reaction times obtained over multiple trials. In panels B. and C., reaction time distributions for signal-93 
present responses are plotted at the top and reaction time distributions for no-signal responses are 94 
plotted in mirror image at the bottom. DDMs can model bias in two different ways. In panel B., bias is 95 
modelled in terms of the DDM starting point Z, which is moved closer or further away from the decision 96 
bounds a and 0. In panel C., decision bias is modelled in terms of drift bias, where the rate of evidence 97 
accumulation for signal and noise move upwards or downwards in tandem (green arrows indicate a 98 
shift to liberal). The predicted reaction time distributions under the models in B. and C. are plotted 99 
separately for a liberal and conservative bias above and below the graphs. Panels B. and C. are 100 
modified and reproduced with permission from Urai, de Gee, & Donner (2018). 101 

 102 

 Likewise, there have been a number of reports about a correlational 103 

relationship between cortical activity and decision bias. For example, spontaneous 104 

trial-to-trial variations in prestimulus oscillatory activity in the 8—12 Hz (alpha) band 105 

have been shown to correlate with decision bias and confidence (Iemi, Chaumon, 106 

Crouzet, & Busch, 2017; Limbach & Corballis, 2016; Samaha, Iemi, & Postle, 2017). 107 

Relatedly, alpha oscillations have been proposed to be involved in the gating of task-108 

relevant sensory information (Jensen & Mazaheri, 2010), possibly encoded in high-109 

frequency (gamma) oscillations in visual cortex (Ni et al., 2016; Popov, Kastner, & 110 

Jensen, 2017). Although these reports suggest a link between alpha suppression and 111 

decision bias, they do not uncover whether pre-stimulus alpha plays an instrumental 112 

role in decision bias and how exactly this might be achieved. For example, it is 113 

unknown whether an experimentally induced shift in decision bias is implemented in 114 

the brain by willfully adjusting pre-stimulus alpha in sensory areas.   115 

Here, we explicitly investigate these potential mechanisms by employing a task 116 

paradigm in which shifts in decision bias were experimentally induced within 117 

participants through instruction and asymmetries in stimulus-response reward 118 

contingencies during a visual detection task. By applying drift diffusion modeling to the 119 

participants’ choice behavior, we show that strategically adjusting decision bias 120 

specifically affects the rate of sensory evidence accumulation towards one of the two 121 

decision bounds. Further, we demonstrate that this drift bias is achieved by flexibly up- 122 

and down-regulating prestimulus alpha to control the response gain of stimulus-related 123 

gamma activity in visual cortex. Critically, we also show that gamma activity accurately 124 
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predicts the strength of the evidence accumulation bias within subjects, providing a 125 

direct link between the proposed mechanism and decision bias. Together, these 126 

findings identify the neural mechanism by which intentional control of cortical 127 

excitability is applied to strategically bias perceptual decisions in order to maximize 128 

reward in a given context. 129 

 130 

Results 131 

Liberal decision bias manipulation shifts sensory evidence accumulation  132 

In three EEG recording sessions, human participants (N = 16) viewed a continuous 133 

stream of horizontal, vertical and diagonal line textures alternating at a rate of 25 134 

textures/second. The participants’ task was to detect an orientation-defined square 135 

presented in the center of the screen and report it via a button press (Figure 2A). Trials 136 

consisted of a fixed-order sequence of textures (total sequence duration 1 second) 137 

embedded in the continuous stream. A square appeared in the fifth texture of a trial in 138 

75% of the presentations (target trials), while in 25% a homogenous diagonal texture 139 

appeared in the fifth position (nontarget trials). Although the onset of trials within the 140 

continuous stream of textures was not explicitly cued, the similar distribution of 141 

reaction times in target and nontarget trials suggests that participants employed the 142 

temporal structure of the task even when no target appeared (Figure S1A). Consistent 143 

significant EEG power modulations after trial onset even for non-target trials further 144 

confirm that subjects registered trial onsets even without an explicit cue, plausibly 145 

using the onset of a fixed order texture sequence as an implicit cue (Figure S1B).  146 

In alternating nine-minute blocks of trials, we actively biased participants’ 147 

perceptual decisions by instructing them either to report as many targets as possible 148 

(“Detect as many targets as possible!”; liberal condition), or to only report high-149 

certainty targets (“Press only if you are really certain!”; conservative condition). 150 

Participants were free to respond at any time during a block whenever they detected 151 

a target. We provided auditory feedback following missed targets (misses) in the liberal 152 

condition and falsely detected targets (false alarms) in the conservative condition and 153 

applied monetary penalties for these errors (Figure 2A; see Methods for details).  154 
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Participants reliably adopted the intended criterion shift (see Figure 2B showing 155 

that both the hit rate and the false alarm rate went down in tandem as a consequence 156 

of a more conservative criterion). The difference between hit rate and false alarm rate 157 

was not significant between conservative and liberal (p = 0.81, right bars in Figure 2B). 158 

However, detection performance (sensitivity) computed using standard SDT d’ 159 

(reflecting the distance between the noise and signal distributions in Figure 1A) was 160 

slightly higher during conservative (liberal: d’ = 2.0 (s.d. 0.90), versus conservative: d’ 161 

= 2.31 (s.d. 0.82), p = 0.0002, two-sided permutation test, 10,000 permutations, see 162 

Figure 2C, left bars)(Green & Swets, 1966). We also computed the standard SDT 163 

criterion measure c reflecting bias in the decision process (see the blue and red 164 

vertical lines in Figure 1A), which uncovered a strong experimentally induced criterion 165 

shift (liberal: c = – 0.13 (s.d. 0.4), versus conservative: c = 0.73 (s.d. 0.36), p = 0.0001, 166 

permutation test, see Figure 2C, right bars). 167 

Because the SDT framework is static, we decided to further investigate how 168 

bias affected various components of the dynamic decision process by fitting different 169 

drift diffusion models (DDMs) to the behavioral data (Figure 1B, C) (Ratcliff & McKoon, 170 

2008). DDMs postulate that perceptual decisions are reached by accumulating noisy 171 

sensory evidence towards one of two decision boundaries representing the choice 172 

alternatives. Crossing one of these boundaries can either trigger an explicit 173 

behavioural report to indicate the decision (for ‘yes’ responses in our experiment), or 174 

remain implicit (i.e. without active response, for ‘no’ decisions in our experiment) 175 

(Ratcliff, Huang-Pollock, & McKoon, 2016). We tested two different DDMs that can 176 

potentially account for decision bias: one in which the starting point of evidence 177 

accumulation moves closer to one of the decision boundaries (‘starting point model’, 178 

Figure 1B) (Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012), and one in 179 

which the evidence accumulation process (called the drift) itself is biased towards one 180 

of the boundaries (de Gee et al., 2017) (‘drift bias model’, see Figure 1C, referred to 181 

as drift criterion by Rattclif and McKoon (2008)). In the two respective models, we 182 

freed either the drift bias parameter (db, see Figure 2D) for the two conditions while 183 

keeping starting point (z) fixed across conditions (for the drift bias model), or vice versa 184 

(for the starting point model). The drift bias parameter is determined by estimating the 185 

contribution of an evidence-independent constant added to the drift (Figure 2B). These 186 
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alternative models make different predictions about the shape of the RT distributions 187 

in combination with the response ratios: a shift in starting point produces large 188 

changes in both the leading edge and tail of the distribution, whereas a shift in drift 189 

bias produces large changes only in the tail (Ratcliff & McKoon, 2008; Urai et al., 190 

2018), also see the RT distributions above and below the evidence accumulation 191 

graphs in Figure 1B and 1C. 192 

We fitted both the starting point and drift bias models to each participant’s RT 193 

distribution for ‘yes’ choices and the total number of implicit ‘no’ choices. In both 194 

models, all of the non-bias related parameters (drift rate v, boundary separation a and 195 

non-decision time u+w, see Figure 2D) were also allowed to vary by condition. We 196 

compared goodness of fit of the models to assess which model best explained the 197 

data. We found that the starting point model provided a worse fit to the data, as 198 

indicated by higher Bayesian Information Criterion (BIC) estimates than for the drift 199 

bias model (Figure 2E, see Methods for details). Specifically, for 14 out of the 16 200 

participants the drift bias model provided better fits than the starting point model, for 201 

ten of which delta BIC was greater than six, indicating strong evidence in favor of the 202 

drift bias model. Finally, we compared these models to a model in which both drift bias 203 

and starting point were fixed across the conditions, while still allowing the non-bias-204 

related parameters to vary per condition. This model provided the lowest goodness of 205 

fit (delta BIC greater than six for both models for all participants). See Figure S3 for 206 

model fits of the drift bias model for each participant. 207 

Given the superior performance of the drift bias model, we further characterized 208 

decision making under the bias manipulation using parameter estimates from this 209 

model. Drift rate, reflecting the participants’ ability to discriminate targets and non-210 

targets, was somewhat higher in the conservative compared to the liberal condition 211 

(liberal: v = 2.39 (s.d. 1.07), versus conservative: v = 3.06 (s.d. 1.16), p = 0.0001, 212 

permutation test, Figure 2F, left bars). An almost perfect correlation across 213 

participants between DDM drift rate and SDT d’ provided strong evidence that the drift 214 

rate parameter captures perceptual sensitivity (liberal, r = 0.97; conservative, r = 0.95, 215 

all p-values < 0.005, see Figure S2A).  216 
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Regarding the DDM bias parameters, the condition-fixed starting point 217 

parameter in the drift bias model was smaller than half the boundary separation (i.e. 218 

closer to the ‘no’ boundary: z = 0.24, p < 0.0001, tested against 0.5), indicating an 219 

overall conservative starting point across conditions (Figure S2D). Strikingly, however, 220 

whereas drift bias was on average not different from zero in the conservative condition 221 

(db = –0.04, p = 0.90), drift bias was strongly positive in the liberal condition (db = 222 

2.08, p = 0.0001; liberal vs conservative: p = 0.0005; Figure 2F, right bars). The overall 223 

conservative starting point combined with a condition-specific neutral drift bias 224 

explained the conservative decision bias (as quantified by SDT criterion) in the 225 

conservative condition (Figure 2C). Likewise, in the liberal condition the overall 226 

conservative starting point combined with a condition-specific positive drift bias 227 

(pushing the drift towards the ‘yes’ boundary) explained the neutral bias observed with 228 

SDT (criterion around zero for liberal, see Figure 2C). 229 

Converging with these modelling results, drift bias was strongly anti-correlated 230 

across participants with both SDT criterion (liberal, r = –0.83; conservative, r = –0.79, 231 

see Figure S2B) and reaction times (liberal, r = –0.66; conservative, r = –0.76, see 232 

Figure S2C). The strong correlations between DDM drift rate and SDT d’ on the one 233 

hand, and DDM drift bias and SDT criterion on the other, provide converging evidence 234 

that the SDT and DDM frameworks captured similar underlying mechanisms, while 235 

the DDM additionally captured the dynamic nature of perceptual decision making by 236 

linking the decision bias manipulation to the evidence accumulation process itself.  237 

Finally, the bias manipulation also affected two other parameters in the drift 238 

bias model that were not directly related to sensory evidence accumulation: boundary 239 

separation was slightly but reliably higher during liberal compared to conservative (p 240 

< 0.0001), and non-decision time (comprising time needed for sensory encoding and 241 

motor response execution) was shorter during liberal (p < 0.0001)(supplementary 242 

Figure S2D). In conclusion, a drift diffusion model of choice behavior implementing a 243 

bias in sensory evidence accumulation best explained how participants adjusted to 244 

the manipulations of decision bias. In the next sections, we used spectral analysis of 245 

the concurrent EEG recordings to identify a plausible neural mechanism that 246 

implements biased sensory evidence accumulation.  247 
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 248 

 249 

Figure 2 | Biased sensory evidence accumulation underlies experimentally induced liberal 250 
decision bias A. Schematic of the visual stimulus and task design. Participants viewed a continuous 251 
stream of full-screen diagonally, horizontally and vertically oriented textures at a presentation rate of 40 252 
ms (25 Hz). After random inter-trial intervals (range 0.3—2.2 s), a fixed-order sequence (duration 1 s) 253 
was presented, embedded in the stream. The fifth texture in each sequence either consisted of a single 254 
diagonal orientation (nontarget), or contained an orthogonal orientation-defined square (target of either 255 
45° or 135° orientation). Participants decided whether they had just seen a target, reporting detected 256 
targets by button press within 840 ms after target onset. Liberal and conservative conditions were 257 
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administered in alternating nine-minute blocks by penalizing either misses or false alarms, respectively, 258 
using aversive tones and monetary deductions. Depicted square and fixation dot sizes are not to scale. 259 
B. Average detection rates (hits and false alarms) during both conditions. C. SDT parameters for 260 
sensitivity and criterion. D.  Schematic and simplified equation of drift diffusion model accounting for 261 
reaction time (RT) distributions for explicit ‘yes’ and implicit ‘no’ decisions. Decision bias in this model 262 
can be implemented by either shifting the starting point of the evidence accumulation (Z), or by adding 263 
an evidence-independent constant (‘drift bias’, db) to the drift rate. See text and Figure 1 for details. 264 
Notation: dy, change in decision variable y per unit time dt; v·dt, mean drift (multiplied with 1 for signal 265 
+ noise (target) trials, and -1 for noise-only (non-target) trials); db·dt, drift bias; and cdW, Gaussian 266 
white noise (mean = 0, variance = c2·dt). E. The difference in Bayesian Information Criterion (BIC) 267 
goodness of fit estimates for the drift bias and the starting point models, A lower delta BIC value 268 
indicates a better fit, showing superiority of the drift bias model to account for the observed results. F. 269 
Estimated model parameters for drift rate and drift bias in the drift bias model. Error bars, SEM across 270 
16 participants. ***p < 0.001; n.s., not significant.  271 

 272 

Task-relevant textures induce stimulus-related responses in visual cortex 273 

Sensory evidence accumulation in the visual detection task presumably relies on 274 

stimulus-related signals processed in visual cortex. Such stimulus-related signals are 275 

typically reflected in cortical population activity exhibiting a rhythmic temporal structure 276 

(Buzsáki & Draguhn, 2004). Specifically, bottom-up processing of visual information 277 

has previously been linked to increased high-frequency (> 40 Hz, i.e. gamma) 278 

electrophysiological activity over visual cortex (Bastos et al., 2015; Michalareas et al., 279 

2016; Popov et al., 2017; van Kerkoerle et al., 2014). Figure 3A shows time-frequency 280 

representations of EEG power modulations over posterior cortex for the low and high 281 

frequency bands, normalized with respect to the prestimulus baseline period.  282 

We observed a total of four distinct stimulus-related power modulations after 283 

trial onset: two in the high-frequency range (> 36 Hz, Figure 3A, top panel) and two in 284 

the low frequency range (< 36 Hz, Figure 3A, bottom panel). First, a spatially focal 285 

modulation in a narrow frequency range around 25 Hz reflecting the steady state visual 286 

evoked potential (SSVEP) arising from entrainment by the visual stimulation frequency 287 

of our experimental paradigm (Figure 3B, lower panel). A second modulation from 288 

42—58 Hz (Figure 3B, top panel) comprised the first harmonic of the SSVEP, as can 289 

be seen from their similar topographic distributions (Figure 3B, compare top and lower 290 

panel).  291 
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Third, we observed a 59—100 Hz gamma power modulation (Figure 3C, top 292 

panel), after carefully controlling for high-frequency EEG artifacts due to small 293 

fixational eye movements (microsaccades) by removing microsaccade-related activity 294 

from the data (Hassler, Trujillo-Barreto, & Gruber, 2011; Hipp & Siegel, 2013; Yuval-295 

Greenberg, Tomer, Keren, Nelken, & Deouell, 2008), and by suppressing non-neural 296 

EEG activity through scalp current density transformation (Melloni, Schwiedrzik, 297 

Wibral, Rodriguez, & Singer, 2009; Perrin, Pernier, Bertrand, & Echallier, 1989) (see 298 

Methods for details). Importantly, the topography of the observed gamma modulation 299 

was confined to posterior electrodes (electrodes highlighted in Figures 3B and 3C, top 300 

panels), in line with the role of gamma in stimulus-related processing in visual cortex 301 

(Ni et al., 2016). Finally, we observed suppression of low-frequency beta (11—22 Hz) 302 

activity in posterior cortex, which typically occurs in parallel with enhanced stimulus-303 

related gamma activity (Donner & Siegel, 2011; Kloosterman et al., 2015; 304 

Meindertsma, Kloosterman, Nolte, Engel, & Donner, 2017; Werkle-Bergner et al., 305 

2014)(Figure 3A and 3C, lower panels). In the next section, we used the topographies 306 

of the high-frequency post-stimulus effects in visual cortex (Figures 3B and 3C, top 307 

panels) to identify a prestimulus neural mechanism that could explain the observed 308 

biased evidence accumulation resulting from the experimental decision bias 309 

manipulation.  310 

 311 

 312 
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Figure 3 | Task-relevant textures induce stimulus-related responses in visual cortex. A. Time-313 
frequency representations of high- (top) and low-frequency (bottom) EEG power modulations with 314 
respect to the prestimulus period (-0.4 - 0 s), pooled over the two conditions. Saturated colors indicate 315 
clusters of significant modulation, cluster threshold p < 0.05, two-sided permutation test across 316 
participants, cluster- corrected; N = 15). Solid and dotted vertical lines respectively indicate the onset of 317 
the trial and the target stimulus. M, power modulation. B. Scalp maps showing topography of the SSVEP 318 
power modulation around 25 Hz (top) and its harmonic from 42 – 58 Hz (bottom),  from 0.2 – 0.6 s after 319 
trial onset. C. 59-100 Hz gamma power modulation from 0.2 – 0.6 s (top) and concurrent low frequency 320 
(‘beta’) power suppression from 11 – 22 Hz; see dashed outlines  on time-frequency representations in 321 
A. Thick dots indicate electrodes used for the time-frequency representations in A, and which were 322 
selected for further analysis.  323 

 324 

Adopting a liberal decision bias suppresses prestimulus alpha power 325 

As a first step, we examined prestimulus power between 0.8 and 0.2 s before trial 326 

onset, using the same electrodes that showed the strongest post-stimulus effects 327 

(Figure 4A). This uncovered a highly specific modulation in the alpha range, which we 328 

confirmed to be strongest over the same cortical region that showed strong modulation 329 

in the gamma range (Figure 4B, white dots indicate electrodes showing stimulus-330 

related gamma modulation). Indeed, when expressing spectral power during the 331 

liberal condition as the percentage signal change from the conservative condition, we 332 

observed a statistically significant cluster of suppressed frequencies precisely in the 333 

8—12 Hz frequency range (p < 0.05, cluster-corrected for multiple comparisons) 334 

(Figure 4C), which again showed a posterior topography (Figure 4D). This shows that 335 

an experimentally induced liberal decision bias suppresses prestimulus alpha power, 336 

suggesting that alpha modulations are a hallmark of strategic bias adjustment rather 337 

than a mere correlate of spontaneous shifts in decision bias. Importantly, this finding 338 

implies that humans are able to actively control prestimulus alpha power in visual 339 

cortex, plausibly acting to bias sensory evidence accumulation towards the response 340 

alternative that maximizes rewards. 341 
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 342 

Figure 4 | Adopting a liberal decision bias suppresses prestimulus alpha power. A. Low-343 
frequency power spectra of prestimulus neural activity for both conditions based on the electrodes that 344 
show large post-stimulus power modulations in Figure 3B and C (top panels). B. Scalp map of raw 345 
prestimulus EEG alpha power (8—12 Hz neural activity between 0.8 and 0.2 s before sequence onset), 346 
pooled over conditions. White symbols indicate visual cortical electrodes used for the power spectra in 347 
A. and C. C. Liberal versus conservative power spectrum. Black horizontal bar indicates statistically 348 
significant frequency range (p < 0.05, cluster-corrected for multiple comparisons, two-sided). Error bars, 349 
SEM across participants (N = 15). D. The corresponding scalp map of power modulation in the liberal 350 
condition, expressed as percent signal change from the conservative condition.  351 

 352 

 353 

Alpha suppression enhances the gain of cortical gamma responses  354 

How could suppression of prestimulus alpha activity bias the process of sensory 355 

evidence accumulation? One possibility is that alpha suppression influences evidence 356 

accumulation by modulating the susceptibility of visual cortex to sensory stimulation, 357 

a phenomenon dubbed ‘neural excitability’ (Iemi et al., 2017; Jensen & Mazaheri, 358 

2010). We explored this possibility using a theoretical framework put forward by 359 

Rajagovindan  and Ding (2011). This framework assumes that the relationship 360 

between total synaptic input activity that a neuronal ensemble receives and the total 361 
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output activity it produces is characterized by a sigmoidal function (Figure 5A); a notion 362 

that is biologically plausible (Destexhe, Rudolph, Fellous, & Sejnowski, 2001; 363 

Freeman, 1979). Within this framework, both sensory input (i.e. as a result of sensory 364 

stimulation) and ongoing fluctuations in endogenous neural activity (i.e. levels of 365 

neural excitability) contribute to the synaptic input into visual cortex. The isolated effect 366 

of sensory input on the total output (i.e. the gain of the output response as caused by 367 

an input stimulus; see marked interval in Figure 5A), can then be expressed as the 368 

first order derivative (the slope) of the sigmoid in Figure 5A. In our experiment, 369 

stimulus-related input activity can be assumed to be more or less constant across trials 370 

since the same stimulus sequence was shown in each trial (see Figure 2A). Thus, 371 

modulations in the stimulus-related output gain generated in visual cortex are largely 372 

determined by the brain’s excitability state. This can be seen in Figure 5B, where the 373 

stimulus-related output gain (the first order derivative, or slope from Figure 5A) is 374 

plotted as a function of neural excitability, yielding an inverted-U shaped function. 375 

Figure 5B then shows the effective range in which the impact of neural 376 

excitability on the stimulus-related output response is largest, while its impact during 377 

low and high excitability is lower. When heightened excitability in the liberal condition 378 

is observed, this framework predicts enhanced output activity in visual cortex when 379 

compared to the conservative condition (Figure 5B), in particular when excitability 380 

differences between conditions occur in its effective range (Rajagovindan & Ding, 381 

2011) (i.e. steeper slope of the solid blue curve compared to the red curve in Figure 382 

5B).  383 

We tested this model in our data by following the method put forward by 384 

Rajagovindan and Ding (2011), in which we operationalized neural excitability as pre-385 

stimulus alpha (Jensen & Mazaheri, 2010), and stimulus-related output gain as post-386 

stimulus gamma (Ni et al., 2016). We exploited the large number of trials per 387 

participant per condition across the multiple sessions in our study (range 543 to 1391 388 

trials) by sorting each participant’s trials into ten excitability bins based on equal-sized 389 

ranges of descending (log-transformed) prestimulus alpha power (indicating 390 

increasing excitability), separately for the conservative and liberal conditions. We 391 

subsequently computed and averaged the (log-transformed) gamma power across the 392 

trials within each excitability bin. Following Rajagovindan and Ding (2011), we 393 
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removed individual differences in overall gamma power magnitude by subtracting the 394 

lowest binned gamma observation in the conservative condition from all observations. 395 

Finally, we plotted normalized gamma power as a function of excitability, separately 396 

for liberal and conservative (Figure 5C, see Methods for details).  397 

 398 

Figure 5 | Neural excitability boosts visual cortical responses by enhancing gain. A. Theoretical 399 
response gain model, which describes the transformation of input (both stimulus-related and 400 
endogenous) to the total output activity in visual cortex as a sigmoidal function. B. Model predictions. 401 
Stimulus-related output responses (solid lines) are formalized as the first derivative of the sigmoidal 402 
functions (dotted lines), resulting in inverse-U shaped response gain functions. The model predicts that 403 
a liberal decision bias increases the steepness of the sigmoidal function (right) compared to a 404 
conservative bias (left), resulting in stronger stimulus-related responses due to higher gain 405 
(Rajagovindan & Ding, 2011). C. Corresponding empirical test. Log-transformed gamma activity 406 
(normalized within participants by subtracting the minimum gamma power during the conservative 407 
condition from all bins) plotted as a function of neural excitability. Error bars, within-subject SEM across 408 
participants (N = 14). 409 

 410 

The resulting plot indeed closely follows an inverted-U shaped relationship 411 

between excitability and stimulus-related gamma activity for both conditions, with 412 

particularly low gamma responses for the highest excitability bins (Figure 5C). 413 

Critically, average gamma power was higher in the liberal than in the conservative 414 

condition, except during the highest excitability bins (Figure 5C, rightmost two data 415 

points). Indeed, the flanks of the inverted-U curve for the liberal condition were steeper 416 

for the liberal condition, suggesting increased response gain. A three-way repeated 417 

measures ANOVA with factors condition (conservative, liberal), brain activity type 418 

(prestimulus alpha, poststimulus gamma) and bin level (1–10) revealed a significant 419 

three-way interaction (F(9,117) = 2.96, p = 0.003, partial h2 = 0.19, Greenhouse-420 
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Geisser corrected p = 0.046). Importantly, the marginally significant quadratic contrast 421 

(F(1,13) = 3.47, p = 0.085, partial h2 = 0.21) fitted this interaction almost as well as a 422 

linear contrast  (F(1,13) = 4.69, p = 0.049, partial h2 = 0.265). This three-way quadratic 423 

interaction effect indeed suggests a more steeply U-shaped curve for gamma 424 

responses in the liberal condition, in line with enhanced gain. Taken together, these 425 

findings indicate that increased excitability during the liberal condition boosted input-426 

related activity, which in turn indiscriminately biased sensory evidence accumulation 427 

towards ‘yes’ responses. In the next section, we confirm a direct link between drift bias 428 

and cortical stimulus response gain as measured through gamma. 429 

 430 

Visual cortical gamma activity predicts strength of evidence accumulation bias 431 

The findings presented so far suggest that behaviorally, a liberal decision bias shifts 432 

evidence accumulation towards ‘yes’ responses (drift bias in the DDM), while neurally 433 

it results in an increase of prestimulus cortical excitability concomitant with post-434 

stimulus response gain expressed in gamma modulation in visual cortex. In a final 435 

analysis, we asked whether increases in gamma activity are directly related to a 436 

stronger drift bias. We predicted such a direct correspondence during the liberal 437 

condition, in which both drift bias and gamma activity were increased (see Figures 2F 438 

and 5C), but not during the conservative condition, in which drift bias was around zero 439 

and gamma was weaker than during liberal.  440 

To test these predictions, we again applied the drift bias DDM to the behavioral 441 

data, but now freed the drift bias parameter not only for the two conditions, but also 442 

for the ten alpha suppression bins used to show the inverted-U-shaped relationship 443 

between excitability and stimulus-related gamma (see Figure 5C). We normalized the 444 

bin-resolved drift bias and gamma scalar values by z-scoring within each participant 445 

to remove individual differences in their ranges and averaged across participants 446 

within each alpha (excitability) bin. Finally, we directly tested the correspondence 447 

between drift bias and gamma using a within-subject group regression. Gamma 448 

activity indeed accurately predicted drift bias in the liberal condition (R2(9) = 0.77, p = 449 

0.0008, Figure 6 left panel). In contrast, drift bias was not well predicted by the 450 

corresponding gamma activity in the conservative condition (R2(9) = 0.0001, p = 0.98, 451 
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Figure 6 right panel), which is perhaps unsurprising given the fact that drift bias was 452 

around zero in the conservative condition (see Figure 2F). Accordingly, predictive 453 

power was significantly greater in the liberal than in the conservative condition (R2LIB 454 

– R2CONS = 0.77, p = 0.01). The increase in gamma power in liberal versus conservative 455 

also predicted the increase in drift bias across the conditions (R2(9) = 0.56, p = 0.0126, 456 

Figure S4), further suggesting that the experimental bias manipulation indeed 457 

enhanced gamma activity across excitability bins. We obtained qualitatively similar 458 

results without averaging across participants, but instead correlating across bins of all 459 

participants together using either ten or five bins per participant, suggesting these 460 

effects were not driven by single participants (data not shown). Taken together, these 461 

results show that enhanced post-stimulus gamma activity during the liberal condition 462 

underlies the evidence accumulation bias reflected in the drift bias parameter of the 463 

drift diffusion model. 464 

 465 
Figure 6 | Visual cortical gamma activity predicts strength of evidence accumulation bias.  Linear 466 
regression of drift bias on gamma activity, separately for the two conditions. Gamma activity accurately 467 
predicts drift bias in the liberal (left), but not the conservative condition (right). Each dot represents an 468 
excitability bin and is obtained after averaging across participants (N = 14, see Methods for details). 469 
Error bars, SEM across participants. 470 

 471 

Discussion 472 

Humans possess a remarkable ability to strategically shift decision biases in order to 473 

flexibly adapt to the environment and maximize rewards. Traditionally, bias has been 474 

conceptualized in SDT as a criterion threshold that can be shifted towards or away 475 

from a noise or signal distribution. To date, however, the neural underpinnings of such 476 

bias shifts have remained elusive. Here, in contrast, we use a DDM drift bias model to 477 
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demonstrate that an experimentally induced bias shift affects the process of sensory 478 

evidence accumulation itself, rather than shifting a threshold entity as SDT implies. 479 

Moreover, we reveal the neural signature of drift bias, by showing that a liberal 480 

decision bias increases alpha suppression (neural excitability) of visual cortex. 481 

Although previous studies have shown correlations between suppression of 482 

prestimulus alpha (8—12 Hz) power and a liberal decision bias (Iemi et al., 2017; 483 

Limbach & Corballis, 2016), these studies have not established the effect of 484 

experimentally induced bias shifts. In the current study, by experimentally 485 

manipulating decision bias we show for the first time that prestimulus alpha plays an 486 

instrumental, and not merely a correlational role in decision bias. Further, we show 487 

that alpha suppression in turn boosts stimulus-related gamma activity through 488 

increased cortical response gain. Critically, gamma activity accurately predicted the 489 

strength of the drift bias parameter in the DDM drift bias model. Together, these 490 

findings show for the first time that humans are able to actively implement decision 491 

biases by flexibly adapting neural excitability to strategically shift sensory evidence 492 

accumulation towards one of two decision bounds. 493 

Based on our results, we propose that decision biases are implemented by 494 

flexibly adjusting neural excitability in visual cortex. Figure 7 summarizes this 495 

proposed mechanism graphically by visualizing a hypothetical transition in neural 496 

excitability following an experimentally induced liberal decision bias, as reflected in 497 

visual cortical alpha suppression (left panel). This increased excitability translates into 498 

stronger gamma-band responses following stimulus onset (right panel, top). This 499 

increased gamma gain finally biases evidence accumulation towards the ‘yes’ decision 500 

boundary during a liberal state, resulting in more ‘yes’ responses, whereas ‘no’ 501 

responses are decimated (blue RT distributions; right panel, bottom). Our 502 

experimental manipulation of decision bias in different blocks of trials suggests that 503 

decision makers are able to control this biased evidence accumulation mechanism 504 

willfully by adjusting excitability, as reflected in alpha. 505 

 506 
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 507 

Figure 7 | Illustrative graphical depiction of the excitability state transition from conservative to 508 
liberal, and subsequent biased evidence accumulation under a liberal bias. The left panel shows 509 
the transition from a conservative to a liberal stimulus block. The experimental induction of a liberal 510 
decision bias causes alpha suppression in visual cortex, which increases neural excitability. The right 511 
top panel shows increased gamma-gain for incoming sensory evidence under conditions of high 512 
excitability. The right bottom panel shows how increased gamma-gain causes a bias in the drift rate, 513 
resulting in more ‘target present’ responses than in the conservative state. 514 

 515 

A neural mechanism that could underlie bias-related alpha suppression may be 516 

under control of the catecholaminergic neuromodulatory systems, consisting of the 517 

noradrenaline-releasing locus coereleus (LC) and dopamine systems (Aston-Jones & 518 

Cohen, 2005). These systems are able to modulate the level of arousal and neural 519 

gain, and show tight links with pupil responses (de Gee et al., 2017; de Gee, Knapen, 520 

& Donner, 2014; Joshi, Li, Kalwani, & Gold, 2015; McGinley, David, & McCormick, 521 

2015). Accordingly, prestimulus alpha power suppression has also recently been 522 

linked to pupil dilation (Meindertsma et al., 2017). From this perspective, our results 523 

reconcile previous studies showing relationships between a liberal bias, suppression 524 

of spontaneous alpha power and increased pupil size. Consistent with this, a recent 525 

monkey study observed increased neural activity during a liberal bias in the superior 526 

colliculus (Crapse, Lau, & Basso, 2018), a mid-brain structure tightly interconnected 527 

with the LC (Joshi et al., 2015). Taken together, a more liberal within-person bias 528 

(following experimental instruction) might activate neuromodulatory systems that 529 

subsequently increase cortical excitability and enhance sensory responses for both 530 
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stimulus and ‘noise’ signals in visual cortex, thereby increasing a person’s propensity 531 

for ‘yes’ responses (Iemi et al., 2017). 532 

Rather than a link between alpha activity and decision bias, several previous 533 

studies have reported a link between alpha and task performance, particularly in the 534 

phase of alpha oscillations (Busch, Dubois, & VanRullen, 2009; Mathewson, Gratton, 535 

Fabiani, Beck, & Ro, 2009). Our findings can be reconciled with those by considering 536 

that detection sensitivity in many previous studies was often quantified in terms of raw 537 

stimulus detection rates, which do not dissociate objective sensitivity from response 538 

bias (see Figure 2B) (Green & Swets, 1966). Indeed, our findings are in line with 539 

recently reported links between decision bias and spontaneous fluctuations in 540 

excitability (Iemi et al., 2017; Iemi & Busch, 2017; Limbach & Corballis, 2016), 541 

suggesting an active role of neural excitability in decision bias.  542 

Relatedly, a concern regarding our findings could be that the observed change 543 

in cortical excitability reflects a change in detection sensitivity (drift rate) rather than 544 

an intentional bias shift. This is unlikely because that would predict effects opposite to 545 

those we observed. We found increased excitability in the liberal condition compared 546 

to the conservative condition. If this were related to improved detection performance, 547 

one would predict higher sensitivity in the liberal condition, while in fact we found 548 

higher sensitivity in the conservative condition (compare drift rate to drift bias in both 549 

conditions in Fig. 2C). This finding convincingly ties cortical excitability in our paradigm 550 

to a strategically applied bias shift, as opposed to a change in detection sensitivity. 551 

Convergently, other studies also report a link between prestimulus low-frequency EEG 552 

activity and subjective perception, but not objective task performance (Benwell et al., 553 

2017; Iemi & Busch, 2017).  554 

Summarizing, our results show that stimulus-related responses are boosted 555 

during a liberal decision bias due to increased cortical excitability, in line with recent 556 

work linking alpha power suppression to response gain (Peterson & Voytek, 2017). 557 

Future studies can now establish whether this same mechanism is at play in other 558 

subjective aspects of decision-making, such as confidence and meta-cognition 559 

(Fleming, Putten, & Daw, 2018; Samaha et al., 2017) as well as in a dynamically 560 

changing environment (Norton, Fleming, Daw, & Landy, 2017). Explicit manipulation 561 
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of cortical response gain during a bias manipulation by pharmacological manipulation 562 

of the noradrenergic LC-NE system (Servan-Schreiber, Printz, & Cohen, 1990) or by 563 

enhancing occipital alpha power using transcranial stimulation (Zaehle, Rach, & 564 

Herrmann, 2010) would further establish the underlying mechanisms involved in 565 

decision bias. In the end, although one may be unaware, every decision we make is 566 

influenced by biases that operate on the noisy evidence accumulation process 567 

towards one of the decision bounds. Understanding how these biases affect our 568 

decisions is key to becoming aware of these biases (Pleskac, Cesario, & Johnson, 569 

2017), allowing us to control or invoke them adaptively. Pinpointing the neural 570 

mechanisms underlying bias in an elementary perceptual task (as used here) may 571 

paves the way for understanding how more abstract and high-level decisions are 572 

modulated by decision bias (Tversky & Kahneman, 1974). 573 
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 779 
 780 

Materials and Methods 781 

Participants Sixteen participants (eight female, mean age 24.1 years, ± 1.64) took 782 

part in the experiment, either for financial compensation or in partial fulfillment of first 783 

year course requirements. Each participant completed three experimental sessions on 784 

different days, each session lasting ca. 2 hours, including preparation and breaks. One 785 

participant completed only two sessions, yielding a total number of sessions across 786 

subjects of 47. Due to technical issues, for one session only data for the liberal 787 

condition was available. One participant was an author. All participants were included 788 

in the signal-detection-theoretical and drift diffusion modeling analyses (Figure 2). One 789 

participant was excluded from the stimulus-related and the prestimulus alpha analysis 790 

(Figures 3 and 4) due to excessive noise (EEG power spectrum opposite of 791 

1/frequency). One further participant was excluded from the alpha-versus-gamma 792 

power modulation (Figure 5) and gamma-versus-drift bias analyses (Figure 6) 793 

because the liberal-conservative difference in gamma power in this participant was > 794 

3 standard deviations away from the other participants. All participants had normal or 795 

corrected-to-normal vision and were right handed. Participants provided written 796 

informed consent before the start of the experiment. All procedures were approved by 797 

the ethics committee of the University of Amsterdam.  798 

Stimuli Stimuli consisted of a continuous semi-random rapid serial visual presentation 799 

(rsvp) of full screen texture patterns. The texture patterns consisted of line elements 800 

approx. 0.07° thick and 0.4° long in visual angle. Each texture in the rsvp was 801 

presented for 40 ms (i.e. stimulation frequency 25 Hz), and was oriented in one of four 802 

possible directions: 0°, 45°, 90° or 135°. Participants were instructed to fixate a red 803 

dot in the center of the screen. At random inter trial intervals (ITI’s) sampled from a 804 

uniform distribution (ITI range 0.3–2.2 s), the rsvp contained a fixed sequence of 25 805 

texture patterns, which in total lasted one second. This fixed sequence consisted of 806 

four stimuli preceding a (non-)target stimulus (orientations of 45°, 90°, 0°, 90° 807 
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respectively) and twenty stimuli following the (non)-target (orientations of 0°, 90°, 0°, 808 

90°, 0°, 45°, 0°, 135°, 90°, 45°, 0°, 135°, 0°, 45°, 90°, 45°, 90°, 135°, 0°, 135° 809 

respectively) (Figure 2). The fifth texture pattern within the sequence (occurring from 810 

0.16 s after sequence onset) was either a target or a nontarget stimulus. Nontargets 811 

consisted of either a 45° or a 135° homogenous texture, whereas targets contained a 812 

central orientation-defined square of 2.42° visual angle, thereby consisting of both a 813 

45° and a 135° texture. 50% of all targets consisted of a 45° square and 50% of a 135° 814 

square. Of all trials, 75% contained a target and 25% a nontarget. Target and 815 

nontarget trials were presented in random order. To avoid specific influences on target 816 

stimulus visibility due to presentation of similarly or orthogonally oriented texture 817 

patterns temporally close in the cascade, no 45° and 135° oriented stimuli were 818 

presented directly before or after presentation of the target stimulus. All stimuli had an 819 

isoluminance of 72.2 cd/m2. Stimuli were created using MATLAB (The Mathworks, 820 

Inc., Natick, MA, USA) and presented using Presentation (Neurobehavioral systems, 821 

Inc., Albany, CA, USA).  822 

Experimental design The participants’ task was to detect targets and actively report 823 

them by pressing a button using their preferred hand. Targets occasionally went 824 

unreported, presumably due to constant forward and backward masking by the 825 

continuous cascade of stimuli and unpredictability of target timing (Fahrenfort, Scholte, 826 

& Lamme, 2007). The onset of the fixed order of texture patterns preceding and 827 

following (non-)target stimuli was neither signaled nor apparent.  828 

At the beginning of the experiment, participants were informed they could earn 829 

a total bonus of EUR 30, on top of their regular pay or course credit. In two separate 830 

conditions within each session of testing, we encouraged participants to use either a 831 

conservative or a liberal bias for reporting targets using both aversive sounds as well 832 

as reducing their bonus after errors. In the conservative condition, participants were 833 

instructed to only press the button when they were relatively sure they had seen the 834 

target. The instruction on screen before block onset read as follows: “Try to detect as 835 

many targets as possible. Only press when you are relatively sure you just saw a 836 

target.” To maximize effectiveness of this instruction, participants were told the bonus 837 

would be diminished by ten cents after a false alarm. During the experiment, a loud 838 

aversive sound was played after a false alarm to inform the participant about an error. 839 
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During the liberal condition, participants were instructed to miss as few targets as 840 

possible. The instruction on screen before block onset read as follows: “Try to detect 841 

as many targets as possible. If you sometimes press when there was nothing this is 842 

not so bad”. In this condition, the loud aversive sound was played twice in close 843 

succession whenever they failed to report a target, and three cents were subsequently 844 

deducted from their bonus. The difference in auditory feedback between both 845 

conditions was included to inform the participant about the type of error (miss or false 846 

alarm), in order to facilitate the desired bias in both conditions. After every block, the 847 

participant’s score (number of missed targets in the liberal condition and number of 848 

false alarms in the conservative condition) was displayed on the screen, as well as the 849 

remainder of the bonus. After completing the last session of the experiment, every 850 

participant was paid the full bonus as required by the ethical committee. 851 

During a block, participants continuously monitored the screen and were free 852 

to respond by button press whenever they thought they saw a target. Each block 853 

contained 240 trials, of which 180 target and 60 nontarget trials. Participants 854 

performed six blocks per session. The task instruction was presented on the screen 855 

before the block started. The condition of the first block of a session was 856 

counterbalanced across participants. Prior to EEG recording in the first session, 857 

participants performed a 10-minute practice run of both conditions, in which visual 858 

feedback directly after a miss (liberal condition) or false alarm (conservative) informed 859 

participants about their mistake, allowing them to adjust their decision bias 860 

accordingly. 861 

Behavioral analysis  We calculated participants criterion c (Green & Swets, 1966) 862 

across the trials in each condition as follows: 863 

𝑐	 = −
1
2	[𝑍(𝐻𝑖𝑡- 𝑟𝑎𝑡𝑒) 	+ 	𝑍(𝐹𝐴- 𝑟𝑎𝑡𝑒)] 864 

where Z(...) is the inverse standard normal distribution. Furthermore, we calculated 865 

objective sensitivity measure d’ using: 866 

 867 

𝑑′	 = 𝑍(𝐻𝑖𝑡- 𝑟𝑎𝑡𝑒) − 	𝑍(𝐹𝐴- 𝑟𝑎𝑡𝑒) 868 

 869 
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as well as by subtracting hit and false alarm rates. Reaction times (RT’s) were 870 

measured as the period between target onset and button press. 871 

Drift diffusion modeling of choice behavior We fitted the drift diffusion model to our 872 

behavioural data for each subject individually, and separately for the liberal and 873 

conservative conditions. We fitted the model using a G square method based on 874 

quantile RT’s (RT cutoff, 200 ms, for details, see Ratcliff et al. (2016)), using a modified 875 

version of the HDDM 0.6.0 package (Wiecki, Sofer, & Frank, 2013) (code will be made 876 

available). The RT distributions for ‘yes’ responses were represented by the 0.1, 0.3, 877 

0.5, 0.7 and 0.9 quantiles, and, along with the associated response proportions, 878 

contributed to G square. In addition, a single bin containing the number of ‘no’ 879 

responses contributed to G square. Fitting the model to RT distributions for ‘yes’ and 880 

‘no’ choices (termed ‘stimulus coding’ in Wiecki  et al. (2013)), as opposed to the more 881 

common fits of correct and incorrect choice RT’s (termed ‘accuracy coding’ in Wiecki  882 

et al. (2013)), allowed us to estimate parameters that could have induced biases in 883 

subjects’ behavior. 884 

 Parameter recovery simulations showed that letting both the the starting point 885 

of the accumulation process and drift bias (an evidence-independent constant added 886 

to the drift toward one or the other bound) free to vary with experimental conditions is 887 

problematic for data with no explicit “no” responses (data not shown). Thus, to test 888 

whether shifts in drift bias or starting point underlied bias we fitted three separate 889 

models. In the first model (‘fixed model’), we allowed only the following parameters to 890 

vary between the liberal and conservative condition: (i) the mean drift rate across trials; 891 

(ii) the separation between both decision bounds (i.e., response caution); and (iii) the 892 

non-decision time (sum of the latencies for sensory encoding and motor execution of 893 

the choice). Additionaly, the bias parameters starting point and drift bias were fixed for 894 

the experimental conditions. The second model (‘starting point model’) was the same 895 

as the fixed model, except that we let the starting point of the accumulation process 896 

vary with experimental condition, whereas the drift bias was kept fixed for both 897 

conditions. The third model (‘drift bias model’) was the same as the fixed model, except 898 

that we let the drift bias vary with experimental condition, while the starting point was 899 

kept fixed for both conditions. We used Bayesian Information Criterion (BIC) to select 900 

the model which provided the best fit to the data (Neath & Cavanaugh, 2012). The BIC 901 
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compares models based on their maximized log-likelihood value, while penalizing 902 

for the number of parameters. 903 

EEG recording Continuous EEG data were recorded at 256 Hz using a 48-channel 904 

BioSemi Active-Two system (Biosemi, Amsterdam, the Netherlands), connected to a 905 

standard EEG cap according to the international 10-20 system. Electrooculography 906 

(EOG) was recorded using two electrodes at the outer canthi of the left and right eyes 907 

and two electrodes placed above and below the right eye. Horizontal and vertical EOG 908 

electrodes were referenced against each other, two for horizontal and two for vertical 909 

eye movements (blinks). We used the Fieldtrip toolbox (Oostenveld, Fries, Maris, & 910 

Schoffelen, 2011) and custom software in MATLAB R2016b (The Mathworks Inc., 911 

Natick, MA, USA) to process the data (see below). Data were re-referenced to the 912 

average voltage of two electrodes attached to the earlobes.  913 

Trial extraction and preprocessing We extracted trials of variable duration from 1 s 914 

before target sequence onset until 1.25 after button press for trials that included a 915 

button press (hits and false alarms), and until 1.25 s after stimulus onset for trials 916 

without a button press (misses and correct rejects). The following constraints were 917 

used to classify (non-)targets as detected (hits and false alarms), while avoiding the 918 

occurrence of button presses in close succession to target reports and button presses 919 

occurring outside of trials: 1) A trial was marked as detected if a response occurred 920 

within 0.84 s after target onset; 2) when the onset of the next target stimulus sequence 921 

started before trial end, the trial was terminated at the next trial’s onset; 3) when a 922 

button press occurred in the 1.5 s before trial onset, the trial was extracted from 1.5 s 923 

after this button press; 4) when a button press occurred between 0.5 s before until 0.2 924 

s after sequence onset, the trial was discarded. See Kloosterman et al.  (2015) and 925 

Meindertsma et al. (2017) for similar trial extraction procedures. After trial extraction, 926 

channel time courses were linearly detrended and the mean of every channel was 927 

removed per trial.  928 

Artifact rejection Trials containing muscle artifacts were rejected from further 929 

analysis using a standard semi-automatic preprocessing method in Fieldtrip. This 930 

procedure consists of bandpass-filtering the trials of a condition block in the 110–125 931 

Hz frequency range, which typically contains most of the muscle artifact activity, 932 
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followed by a Z-transformation. Trials exceeding a threshold Z-score were removed 933 

completely from analysis. We used as the threshold the absolute value of the minimum 934 

Z-score within the block, + 1. To remove eye blink artifacts from the time courses, the 935 

EEG data from a complete session were transformed using independent component 936 

analysis (ICA), and components (typically one or two of the 48) due to blinks was 937 

removed from the data. In addition, to remove microsaccade-related artifacts we 938 

included two virtual channels in the ICA based on channels Fp1 and Fp2, which 939 

included transient spike potentials as identified using the algorithm from Hassler et al. 940 

(2011). The two components loading high on these virtual electrodes (typically with a 941 

frontal topography) were also removed. Blinks and eye movements were then semi-942 

automatically detected from the horizontal and vertical EOG (frequency range 1–15 943 

Hz; z-value cut-off 4 for vertical; 6 for horizontal) and trials containing eye artefacts 944 

within 0.1 s around target onset were discarded. This step was done to remove trials 945 

in which the target was not seen because the eyes were closed. Finally, trials 946 

exceeding a threshold voltage range of 200 µV were discarded. To attenuate volume 947 

conduction effects and suppress any remaining microsaccade-related activity, the 948 

scalp current density (SCD) was computed using the second-order derivative (the 949 

surface Laplacian) of the EEG potential distribution (Perrin et al., 1989). 950 

Spectral analysis of EEG power We used a sliding window Fourier transform ((Mitra 951 

& Pesaran, 1999); step size, 50 ms; window length, 400 ms; frequency resolution, 2.5 952 

Hz) to calculate time-frequency representations (spectrograms) of the EEG power for 953 

each electrode and each trial. We used a single Hann taper for the frequency range 954 

of 3–35 Hz (spectral smoothing, 4.5 Hz, bin size, 1 Hz) and the multitaper technique 955 

for the 36 – 100 Hz frequency range (spectral smoothing, 8 Hz; bin size, 2 Hz; five 956 

tapers). See Kloosterman et al. (2015) and Meindertsma et al. (2017) for similar 957 

settings. 958 

Spectrograms were aligned to the onset of the stimulus sequence containing 959 

the (non)target. Power modulations (denoted as M in Figure 3) during the trials were 960 

quantified as the percentage of power change at a given time point and frequency bin, 961 

relative to a baseline power value for each frequency bin. We used as a baseline the 962 

mean EEG power in the interval 0.4 to 0 s before trial onset. If this interval was not 963 

completely present in the trial due to preceding events (see Trial extraction), this 964 
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period was shortened accordingly. We subtracted the trial-specific baseline value from 965 

each sample in the time course per frequency bin and divided by the mean baseline 966 

power across all trials within a session. For the analysis of raw prestimulus power 967 

modulations no baseline correction was applied. We focused our analysis of EEG 968 

power modulations around target onsets on those electrodes that processed the visual 969 

stimulus. To this end, we averaged the power modulations or raw power across eleven 970 

occipito-parietal electrodes that showed stimulus-induced responses in the gamma-971 

band range (59–100 Hz). See Kloosterman et al. (2015) and Meindertsma et al. (2017) 972 

for a similar procedure. 973 

Condition-related EEG power modulation To test at which frequencies raw EEG 974 

power differed for the liberal and conservative conditions, we averaged power 975 

modulation from 0.8 s up to 0.2 s (i.e. up to half the window size used for spectral 976 

analysis, to avoid contamination of post- with pre-stimulus activity (Iemi et al., 2017)) 977 

from trial onset. Then, we expressed the power at each frequency in units of percent 978 

signal change with respect to the conservative condition and statistically tested 979 

whether this signal differed from zero (Figure 4C) (see Statistical comparisons). 980 

Response gain model test To test the prediction of increased gain during liberal of 981 

the gain model, we first averaged activity in the 8–12 Hz range from 0.8 to 0.2 s before 982 

trial onset (staying half our window size from trial onset, to avoid mixing pre- and post-983 

stimulus activity, also see Iemi et al. (2017)) and took the log transform, yielding a 984 

single scalar alpha power value per trial expressing neural excitability. If this interval 985 

was not completely present in the trial due to preceding events (see Trial extraction), 986 

this period was shortened accordingly. Trials in which the scalar was > 3 standard 987 

deviations away from the participant’s mean were excluded. We then sorted all single 988 

trials for each participant in ascending order of excitability and assigned them to ten 989 

equally-spaced bins ranging from the lowest to the highest excitability scalars of that 990 

participant. Adjacent bin ranges overlapped for 50% to stabilize estimates. Then we 991 

averaged the corresponding log-transformed gamma modulation of these trials 992 

(consisting of the average power within 59–100 Hz 0.2 to 0.6 s after trial onset) and 993 

normalized each participants response by subtracting the minimum gamma power 994 

during the conservative condition from all bins. Finally, we averaged across 995 

participants and plotted the excitability bin number against the normalized gamma 996 
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power for each condition. See Rajagovindan and Ding (2011) for a similar procedure. 997 

To statistically test the gain prediction, we employed a three-way repeated measures 998 

ANOVA (see Statistical comparisons). For plotting purposes (Figure 5C), we 999 

computed within-subject error bars by removing within each participant the mean 1000 

across conditions from the estimates. 1001 

Correlation between gamma power and drift bias To link DDM drift bias and cortical 1002 

gamma power, we re-fitted the DDM drift bias model while freeing the drift bias 1003 

parameter within each condition for the ten neural excitability bins as determined by 1004 

prestimulus alpha suppression (see section Response gain model test), while freeing 1005 

the other parameters (drift rate, boundary separation, non-decision time) for each 1006 

condition and fixing starting point across conditions. Then, we normalized the obtained 1007 

scalars for gamma power and drift bias separately within participants using a Z-1008 

transformation, and averaged across participants. Finally, we used within-subject 1009 

group regression of the two measures across the ten bins for both conditions 1010 

separately. In a control analysis, we conducted this regression after taking the liberal 1011 

– conservative difference for each excitability bin before regressing, and obtained 1012 

convergent results (Figure S4). 1013 

Statistical comparisons We used two-sided permutation tests (10,000 permutations) 1014 

(Efron & Tibshirani, 1998) to test the significance of behavioral effects and the model 1015 

fits. To quantify power modulations after (non-)target onset, we tested the overall 1016 

power modulation for significant deviations from zero. For these tests, we used a 1017 

cluster-based permutation procedure to correct for multiple comparisons (Maris & 1018 

Oostenveld, 2007). For time-frequency representations of power modulation, this 1019 

procedure was conducted across all time-frequency bins. For frequency spectra, this 1020 

procedure was performed across all frequency bins. To test whether there was 1021 

evidence for increased gain in the liberal compared to the conservative condition, we 1022 

conducted a three-way repeated measures ANOVA (condition (conservative, liberal) 1023 

x brain activity type (prestimulus alpha, poststimulus gamma power) x bin level (1–1024 

10)) using SPSS 23 (IBM, Inc.), inspecting linear and quadratic contrasts. As sphericity 1025 

was violated in this model (p = 0.0001), we report both the uncorrected and 1026 

Greenhouse-Geisser-corrected p-values. We used Pearson correlation to test the link 1027 

between gamma power and drift bias. We tested the difference in correlation between 1028 
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the liberal and conservative conditions using the Fisher r-to-Z transformation and 1029 

obtained the corresponding two-tailed p-value. 1030 

  1031 
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Supplemental Information 1032 

 1033 

Figure S1 | Behavioral and neurophysiological evidence that participants were sensitive to the 1034 
implicit task structure. A. Participant-average RT distributions for hits and false alarms in both 1035 
conditions. The presence of similar RT distributions for false alarms and hits indicates that participants 1036 
were sensitive to trial onset despite the fact that trial onsets were only implicitly signalled. Error bars, 1037 
SEM. B. Time-frequency representations of low-frequency EEG power modulations with respect to the 1038 

prestimulus period (–0.4 – 0 s), pooled across the two conditions. Significant low-frequency modulation 1039 
occurred even for nontarget trials without overt response (correct rejections), indicating that participants 1040 
detected the onset of a trial even when neither a target was presented nor a response was given. 1041 
Saturated colors indicate clusters of significant modulation, cluster threshold p < 0.05, two-sided 1042 
permutation test across participants, cluster- corrected; N = 15). Solid and dotted vertical lines 1043 
respectively indicate the onset of the trial and the target stimulus. M, power modulation. 1044 

 1045 
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 1046 

Figure S2 | Signal-detection-theoretic (SDT) behavioral measures during both conditions 1047 
correspond closely to drift diffusion modeling (DDM) parameters. A. Across-participant Pearson 1048 
correlation between criterion and DDM drift bias for the two conditions. The correlation is negative due 1049 
to a lower criterion reflecting a stronger liberal bias. Each dot represents a participant. B. As A. but for 1050 
correlation between dprime and drift rate. C. Left panel, mean reaction times (RT) for hits and false 1051 
alarms for the two conditions. Middle and right panels, As A. but for correlation between RT and drift 1052 
bias. D. Parameter estimates in the drift bias DDM not related to evidence accumulation (drift). ***p < 1053 
0.001; n.s., not significant.  1054 
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 1056 

Figure S3 | Single-participant drift diffusion model fits for the drift bias model for both conditions 1057 
Pink bars, number of “No” trials; Green bars, RT quantiles for “Yes” trials; dotted lines, model fits for 1058 
the drift bias model. 1059 

 1060 
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 1061 

Figure S4 | Liberal – conservative gamma activity predicts corresponding drift bias increase, 1062 
showing that the experimental bias manipulation enhanced gamma activity. A. Linear regression 1063 
of drift bias on gamma power across excitability bins for the liberal – conservative contrast. Gamma 1064 
and drift bias values were computed within participant within ten alpha suppression bins reflecting 1065 
neural excitability, then Z-scored, and finally the conservative – liberal difference across bins was taken. 1066 
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