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Abstract 

Choice bias, a hallmark of decision-making, is typically conceptualized as an internal 

reference, or “criterion”, against which accumulated evidence is compared. Flexible 

criterion adjustment allows organisms to adapt to the reward structure associated 

with the choice alternatives, and is assumed to arise from shifts in this reference. 

Here, in contrast, we show that criterion setting is implemented by modulating 

evidence accumulation rather than shifting an internal reference. Compared to a 

conservative criterion, experimentally inducing a liberal criterion during a visual 

detection task suppressed prestimulus oscillatory 8—12 Hz (alpha) activity in visual 

cortex, suggesting increased neural excitability. Increased excitability, in turn, 

boosted stimulus-related 59—100 Hz (gamma) activity by enhancing cortical 

response gain. Drift diffusion modeling of choice behaviour confirmed that a liberal 

criterion specifically biases the process of sensory evidence accumulation. Together, 

these findings provide a unique insight into the neural determinants of decision bias 

and its flexible adjustment. 

 

Often, our decisions are not solely based on evaluation of available evidence. 

Instead, they can be heavily biased by pre-existing attitudes 1. Such biases can be 

conceptualized as a flexible internal reference that dictates which decision to take, 

given the evidence. This reference, dubbed the criterion in signal detection theory 

(SDT) 2, is often set based on asymmetries in stimulus-response reward 

contingencies. Despite its critical role in decision making, the neural mechanism 

underlying criterion setting has yet to be identified. In principle, the criterion could be 

implemented as a flexible reference level of brain activity that is imposed on sensory 

representations, but the opposite scenario — in which not the reference but the 
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evidence accumulation process is flexibly regulated to implement criterion shifts — is 

equally plausible. Indeed, due to lack of a time dimension to track evidence 

accumulation, SDT cannot distinguish between these two possibilities 3,4. Thus far, 

trial-to-trial variations in the criterion have been shown to correspond to spontaneous 

fluctuations in neural excitability, as measured in prestimulus oscillatory cortical 

activity in the 8—12 Hz (alpha) band 4-6. Alpha oscillations, in turn, have been 

proposed to be involved in the gating of task-relevant sensory information 7, in line 

with adaptive regulation of evidence accumulation. No study, however, has directly 

demonstrated implementation of criterion setting through flexible adjustment of 

neural excitability and characterized the mechanism by which this is achieved.  

 Here, we asked whether experimentally induced criterion shifts during a visual 

target detection task result in corresponding changes in prestimulus alpha activity. 

Indeed, this approach showed that humans are able to intentionally alternate 

between conservative and liberal criteria by flexibly regulating neural excitability in 

visual cortex. Further, previous work has linked suppression of prestimulus alpha to 

heightened sensory responses by enhancing cortical response gain 8. Accordingly, 

we found that increased neural excitability boosted high-frequency cortical 

responses to sensory stimulation. This suggests that, instead of changing a decision 

boundary, a liberal criterion increases the number of reported targets by biasing the 

process of sensory evidence accumulation towards this boundary. We finally tested 

this hypothesis using the drift diffusion model (DDM) 9, a sequential sampling model 

of decision making that can be viewed as an extension of SDT into the time domain 

3. This indeed confirmed that criterion setting specifically biases accumulation of 

sensory evidence, but not its starting point. Together, our findings show that criterion 

setting involves regulation of cortical excitability and evidence accumulation, 
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providing a unique insight into the neural underpinnings of decision bias and how it 

can flexibly be adjusted. 

Results 

Experimental task manipulations induce robust criterion shifts 

Human participants viewed a continuous stream of full-screen textures (40 

ms/texture) while their EEG was recorded. The orientation of the textures varied 

randomly, but  the same orientation was never repeated twice in a row. The 

participants’ task was to detect a central orientation-defined square, and report this 

target via a button press (Figure 1A). To ensure that targets and nontargets would 

appear in a consistent context, they appeared in a short fixed-order sequence within 

the continuous random stream. This fixed-order sequence (duration 1 s) always 

consisted of the same textures in the same order, with either a target or a nontarget 

appearing in the fifth position. The start of a fixed-order sequence within the 

continuous stream was unpredictable, but the onset of a recurring sequence of 

textures implicitly signalled an upcoming target or nontarget; the same fixed-order 

sequence reappeared throughout the experiment for every target and nontarget that 

was presented. In alternating nine-minute blocks, we manipulated the participants’ 

criterion for reporting targets by instructing them either to report as many targets as 

possible (“Detect as many targets as possible!”; liberal condition), or to only report 

high-certainty targets (“Press only if you are really certain!”; conservative condition). 

Participants were free to respond at any time during a block whenever they detected 

a target. To support the task instructions, we provided auditory feedback following 

missed targets (misses) in the liberal condition and falsely detected targets (false 
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alarms) in the conservative condition, and applied monetary penalties for these 

errors (Figure 1A; see Methods for details).  

Although the appearance of targets and nontargets was only implicitly 

signaled by the onset of a fixed-order sequence, reaction times (RT’s) were 

clustered in time not only following target-present trials (hits), but also following 

target-absent trials (false alarms) (Figure S1A). This finding indicates that although 

trial onset was not explicitly cued, subjects in fact were sensitive to the onset of 

fixed-order sequences that signaled a potential target. The concurrent EEG 

recordings support this notion by revealing significant stimulus-related power 

modulations even in nontarget trials, in which a target was neither presented nor 

(falsely) detected (see next section and Figure S1B). 
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Figure 1 | Experimental task manipulations induce robust criterion shifts. A. Schematic of the 

visual stimulus and task design. Participants viewed an continuous stream of full-screen diagonally, 

horizontally and vertically oriented textures at a presentation rate of 40 ms (25 Hz). After random 

inter-trial intervals (range 0.3—2.2 s), a fixed-order sequence (duration 1 s) was presented, 

embedded in the stream. The fifth texture in each sequence either consisted of a single diagonal 

orientation (nontarget), or contained an orthogonal orientation-defined square (target of either 45° or 

135° orientation). Participants decided whether they had just seen a target, reporting detected targets 

by button press within 840 ms after target onset. Liberal and conservative conditions were 

administered in alternating nine-minute blocks by penalizing either misses or false alarms, 

respectively, using aversive tones and monetary deductions. Depicted square and fixation dot sizes 

are not to scale. B. Signal-detection-theoretic (SDT) criterion during both conditions. C. Average 

proportion of hit and false alarm rates for each condition and average sensitivity quantified by the 
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difference between hit and false alarm rates. Error bars, SEM across participants (N = 16). ***p < 

0.001; n.s., not significant.  

 

Participants adjusted their criterion (c, quantified with SDT 2; see Methods) 

depending on the experimental condition. The average criterion across participants 

was significantly greater than zero in the conservative condition (c = 0.73, all 

participants > 0, p < 0.0001, two-sided permutation test, 10,000 permutations), and 

slightly below zero in the liberal condition (c = -0.13, 11 out of 16 participants < 0, p = 

0.22). Critically, c was significantly lower in the liberal than in the conservative 

condition for all participants (p < 0.0001). Given that c = 0 indicates a neutral 

criterion (i.e. no bias), this finding indicates that participants indeed adopted more 

liberal and more conservative criteria during both experimental conditions, while 

overall maintaining a relatively conservative attitude, in line with previous studies 

10,11.  

Compared to the subjective criterion, objective target detection performance 

was relatively similar in both conditions. Specifically, hit minus false alarm rates did 

not differ between the experimental conditions (p = 0.8185; Figure 1C). Observers 

were, however, less sensitive as quantified using SDT d’ 2; see Methods)) in the 

liberal condition: d’ of 2.0 vs 2.31, p = 0.0002. Interestingly, reaction times were 

consistently shorter in the liberal condition too (mean RT liberal: 0.43 s (s.d. 0.03),  

conservative: 0.47 s (s.d. 0.05); p = 0.0002). Together, the decreased performance 

and faster responses in the liberal condition suggest that participants adapted their 

speed-accuracy tradeoff (SAT) depending on experimental condition to minimize 

losses, while detection ability remained similar 12. Consistent with this idea, whereas 

c was on average 132% (s.d. 77) lower in the liberal than in the conservative 
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condition, d’ decreased only 17% (s.d. 14)(d’ vs. c: p < 0.0001), indicating that the 

experimental manipulations primarily affected the criterion. Taken together, the 

behavioral findings validate the experimentally induced criterion manipulation by 

demonstrating that participants adapted their criterion, thereby affecting their SAT 

while objective performance largely remained constant. 

 

Task-relevant textures induce stimulus-related responses in visual cortex 

Understanding the neural mechanisms underlying criterion setting first entails a 

careful examination of the stimulus-related signals on which the criterion is thought 

to operate. Such stimulus-related signals are typically reflected in visual cortical 

population activity exhibiting rhythmic temporal structure 13. Specifically, bottom-up 

processing of visual information has previously been linked to increased high-

frequency (> 40 Hz, i.e. gamma) electrophysiological activity over visual cortex 14-17. 

Figure 2A shows time-frequency representations of EEG power modulations with 

respect to the prestimulus baseline period, recorded over visual cortex. Immediately 

following presentation of the task-relevant texture, we observed two distinct high-

frequency power increases: one from 42—58 Hz reflecting the visual stimulation 

frequency (see below), and one from 59—100 Hz reflecting genuine gamma power 

modulation (p < 0.05, cluster-corrected for multiple comparisons, two-sided)(Figure 

2A, top panel). The topography of this gamma modulation was confined to posterior 

electrodes (Figure 2B, top), in line with a role in visual cortical processing. Thus, the 

appearance of a task-relevant texture pattern in the continuous visual stream reliably 

induced a stimulus-related gamma response in visual cortex 18.  
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Concurrent with this gamma modulation, we observed several additional 

power modulations related to visual processing. First, spectral power increased in 

electrodes Pz and POz in a narrow frequency range around 25 Hz, reflecting the 

visual stimulation frequency of our experimental paradigm (Figure 2A, lower panel)19. 

This visual evoked potential was similarly expressed around 50 Hz – the first 

harmonic of the stimulation frequency (Figure 2A, top panel). Finally, we observed 

suppression of low-frequency (11—22 Hz) activity in posterior cortex, which typically 

occurs in parallel with enhanced stimulus-related gamma activity 20-23(Figure 2A, 

lower panel and 2B, right). Importantly, these low-frequency power modulations were 

significant even in correct rejection trials, in which a target was neither presented nor 

(falsely) detected (Figure S1B), indicating that participants were sensitive to the 

implicit structure of the task. To investigate criterion-related low-frequency power 

modulations in visual cortex before trial onset (described in the next section), we 

selected eleven posterior electrodes exhibiting enhanced stimulus-related gamma 

activity (highlighted electrodes in scalp maps in Figure 2B, top). 

 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/229989doi: bioRxiv preprint first posted online Dec. 7, 2017; 

http://dx.doi.org/10.1101/229989


 10

 

Figure 2 | Task-relevant textures induce stimulus-related responses in visual cortex. A. Time-

frequency representations of high- (top) and low-frequency (bottom) EEG power modulations with 

respect to the prestimulus period (-0.4 - 0 s), pooled over the two conditions. Saturated colors indicate 

clusters of significant modulation, cluster threshold p < 0.05, two-sided permutation test across 

participants, cluster-�corrected; N = 15). Solid and dotted vertical lines respectively indicate the onset 

of the trial and the target stimulus. M, power modulation. B. Scalp maps showing topography of 

stimulus-related modulations �(0.2–0.6 s (gamma and SSVEP) or 0.25–0.6 s (low frequency 

suppression) after stimulus onset; see dashed outlines �on time-frequency representations in A. 

Thick dots indicate electrodes used for the TFR’s in A and which were selected for further analysis. 

SSVEP, steady state visual evoked potential. 

 

Adopting a more liberal criterion increases neural excitability 

Previous studies have shown that neural excitability, as reflected in suppression of 

prestimulus alpha (8—12 Hz) power, correlates with a decision-maker’s propensity to 

categorize sensory input as a target 4,6. This finding, however, does not elucidate the 

role of prestimulus alpha in criterion setting. Is the suppression of alpha activity 

merely a byproduct of a more liberal criterion, or do controlled criterion shifts change 
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neural excitability correspondingly, suggesting a critical role of alpha in criterion 

setting? To address this issue, we examined the effect of experimentally induced 

criterion shifts on alpha power between 0.8 and 0.2 s before trial onset.  

The spatial topography of raw prestimulus alpha power pooled across the 

liberal and conservative conditions is plotted in Figure 3A. Alpha power was indeed 

strongest over our visual cortical electrode pooling of interest, suggesting 

involvement of this alpha activity in visual processing. Strikingly however, 

prestimulus alpha power was suppressed during the liberal compared to the 

conservative condition (Figure 3B), suggesting within-person modulation of alpha 

power during criterion setting. Expressing spectral power during the liberal condition 

as the percentage signal change from the conservative condition revealed a 

statistically significant cluster of suppressed frequencies precisely in the 8—12 Hz 

range (p < 0.05, cluster-corrected for multiple comparisons)(Figure 3D). This alpha 

suppression was located in a posterior region of the cerebral cortex largely 

overlapping with our visual electrode pooling of interest (Figure 3C). Taken together, 

these results show that experimentally induced criterion shifts are associated with a 

decrease of pre-stimulus alpha under a liberal criterion when compared to a 

conservative criterion. This finding suggests that alpha modulations are a hallmark of 

criterion setting, rather than having a spontaneously occuring haphazard influence 

on the criterion. Importantly, our finding suggests that humans are able to actively 

control the excitability of their brain in service of upcoming decisions.  
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Figure 3 | Adopting a more liberal criterion increases neural excitability. A. Scalp map of raw 

prestimulus EEG alpha power (8—12 Hz neural activity between 0.8 and 0.2 s before sequence 

onset), pooled over conditions. White symbols indicate visual cortical electrodes used for the power 

spectra in B. and D. B. Low-frequency power spectra of prestimulus neural activity for both conditions. 

C. Scalp map of power modulation in the liberal condition, expressed as percent signal change from 

the conservative condition. D. Corresponding liberal versus conservative power spectrum. Black 

horizontal bar indicates statistically significant frequency range (p < 0.05, cluster-corrected for multiple 

comparisons, two-sided). Error bars, SEM across participants (N = 15). 

 

Neural excitability boosts visual cortical responses by enhancing gain 

How could increased neural excitability result in a more liberal criterion? One 

possibility is that increased excitability enhances stimulus-related activity in target as 

well as nontarget trials, thereby increasing the likelihood that this activity passes the 
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reference activity level for detecting a target. We explored this possibility using an 

existing theoretical framework that models the output activity of visual cortex as an s-

shaped (sigmoidal) function of two factors: (1) the brain’s excitability state in the 

current trial, here represented by prestimulus alpha power, and (2) stimulus-related 

neural activity, here represented by post-stimulus visual cortical gamma power 8 

(Figure 4A). Assuming that stimulus-induced input activity is roughly similar across 

trials, the magnitude of the stimulus-related response in visual cortex is captured by 

the first derivative (i.e. the slope) of the sigmoidal function, yielding an inverted-U 

shaped response function (Figure 4B) 24,25. Thus, according to the model, 

intermediate levels of neural excitability should produce the strongest stimulus-

related activity. When heightened excitability in the liberal condition is observed, the 

model predicts enhanced stimulus processing (Figure 4B) in particular at 

intermediate prestimulus excitability levels through an increase in response gain 8 

(i.e. steeper slope of the solid blue curve compared to the red curve in Figure 4B).  

To test our prediction, we followed the method put forward by Rajagovindan 

and Ding 8. We exploited the large number of trials per participant per condition in 

our study (range 543 to 1391 trials) by sorting each participant’s trials per condition 

into ten excitability bins, as reflected in (log-transformed) prestimulus alpha power 

ranging from strong (indicating low excitability) to weak (indicating high excitability) 

(Figure 4C). We then averaged across the trials within each excitability bin the (log-

transformed) stimulus-related visual cortical gamma power, and normalized each 

participant’s binned gamma power by subtracting the lowest binned gamma 

observation in the conservative condition from all observations. Finally, we plotted 

the excitability bin number against the normalized gamma power, averaged across 

participants (see Methods for details).  
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Figure 4 | Neural excitability boosts visual cortical responses by enhancing gain. A. Theoretical 

response gain model, which describes the transformation of stimulus-related input activity to output 

activity in visual cortex as a sigmoidal function, such that the current excitability state determines the 

output strength. B. Model predictions. Stimulus-related cortical output responses (solid lines) are 

formalized as the first derivative of the sigmoidal functions (dotted lines), resulting in an inverse-U 

shaped response gain function. The model predicts that a liberal criterion increases the steepness of 

the sigmoidal function (right) compared to a conservative criterion (left), resulting in stronger stimulus-

related responses 8. C. Neural excitability reflected in single trial, log-transformed prestimulus alpha 

power sorted across ten bins from high (indicating low excitability) to low (indicating high excitability), 

separately for both conditions. D. Corresponding log-transformed gamma activity (normalized within 

participants by subtracting the minimum gamma power during the conservative condition from all 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/229989doi: bioRxiv preprint first posted online Dec. 7, 2017; 

http://dx.doi.org/10.1101/229989


 15

bins) plotted as a function of neural excitability. Error bars, within-subject SEM across participants (N 

= 14). 

 

The resulting plot closely resembles an inverted-U shaped relationship 

between excitability and stimulus-related gamma activity for both conditions, with 

particularly low gamma responses for high excitability trials (Figure 4D). Critically, 

average gamma activity was higher for the liberal than for the conservative condition, 

except during the highest excitability states (Figure 4D, rightmost two data points). 

Indeed, the flanks of the inverted-U curve for the liberal condition were steeper for 

the liberal condition, suggesting increased response gain. A three-way repeated 

measures ANOVA with factors condition (conservative, liberal), brain activity type 

(prestimulus alpha, poststimulus gamma) and bin level (1-10) revealed a significant 

three-way interaction (F(9,117) = 2.96, p = 0.003, partial η2 = 0.19, Greenhouse-

Geisser corrected p = 0.046). Importantly, the marginally significant quadratic 

contrast (F(1,13) = 3.47, p = 0.085, partial η2 = 0.21) fitted this interaction almost as 

well as a linear contrast  (F(1,13) = 4.69, p = 0.049, partial η2 = 0.265). This three-

way quadratic interaction effect indeed suggests a more steeply U-shaped curve for 

gamma responses in the liberal condition, in line with enhanced gain. Taken 

together, these findings suggest that the increased excitability during the liberal 

condition boosted sensory stimulus processing. In turn, this boosted activity might 

have increased the participant’s propensity to categorize both target and nontarget 

stimuli as signal, resulting in a more liberal response attitude. 

 

Evidence accumulation bias underlies experimentally induced liberal criterion 
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Finally, we used computational modeling of our behavioral data to investigate 

whether an experimentally induced liberal criterion specifically affects the process of 

sensory evidence accumulation, as suggested by our observed enhancement of 

stimulus-related activity. To this end, we fitted our reaction time data (Figure S1A) 

using the drift diffusion model (DDM), an established dynamic model of two-choice 

decision processes 9(Figure 5A). The DDM postulates that decisions are reached by 

accumulation of noisy sensory evidence towards one of two decision boundaries, 

which can either be explicit (for “yes” responses in our experiment), or implicit (i.e. 

without active response, for “no” decisions in our experiment) 26,27 . Within this 

model, a liberal decision bias can emerge in two different ways: either by moving the 

starting point of evidence accumulation closer to the “yes” decision boundary 

(“starting point” parameter), or by driving the evidence accumulation process itself 

more towards the “yes” boundary (“drift criterion” parameter, equivalent to a bias in 

evidence accumulation, implemented by adding an evidence-independent constant 

to the drift). Previous work has shown that an evidence accumulation bias drives a 

reduced conservative bias (i.e. a more liberal attitude) during pupil-linked arousal 10.  

To test whether an evidence accumulation bias similarly underlies decision 

bias during an experimentally induced liberal criterion, we fitted the model while 

freeing various parameters per experimental condition (drift rate, boundary 

separation, non-decision time and drift criterion) and keeping starting point fixed. 

This model (“drift criterion model”) fitted our single-participant data well (Figures 5B 

and S2). Indeed, actual drift rate was significantly lower in the liberal than in the 

conservative condition (p < 0.0001, permutation test), supported by a highly positive 

drift criterion parameter during the liberal condition and a null-level parameter for the 

conservative condition (p = 0.90 for conservative; liberal vs, conservative: p < 
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0.0001; Figure 5C, top). Strikingly, the condition-induced shifts in SDT criterion and 

DDM drift criterion were strongly correlated across participants (Pearson’s r = – 0.89, 

n = 16, p = 4.1e–6), indicating that these two measures reflect similar aspects of our 

data (Figure 5D). In addition, starting point (fixed across conditions) was below 0.5, 

indicating that this parameter was closer to the “no” boundary overall, in line with a 

generally conservative response attitude (p < 0.0001), as also observed in SDT 

criterion (compare Figures 1B and 5C, bottom left). Finally, boundary separation also 

increased slightly (but reliably) during the liberal condition (p = 0.0001) (Figure 5C, 

top left), whereas non-decision time decreased (p = 0.0001) (Figure 5C, bottom 

right). 

As a first control of the goodness of fit of the condition-dependent effect on 

drift criterion, we re-fitted the model while fixing both drift criterion and starting point 

for both conditions, but still allowing all other of the above (non-bias-related) 

parameters to vary freely. This “basic model” provided a worse fit to the data, as 

indicated by higher Bayesian Information Criterion (BIC) estimates than for the drift 

criterion model (Figure 5E)(see Methods for details). As a second control, we fitted 

the model again while fixing drift criterion for both experimental conditions, and 

instead allowing starting point and all other of the above parameters to vary (“starting 

point model”). This model also provided a worse fit to the data (Figure 5E). 

Specifically, for 12 out of 16 participants the drift criterion model provided better fits 

to behavior than the starting point model, for 10 of which delta BIC was greater than 

10 (indicating very strong evidence against the starting point model). Taken together, 

our modelling results suggest that participants achieved a liberal decision bias 

specifically by biasing the evidence accumulation process towards “yes” decisions 

(not its starting point), while non-bias-related parameters were also affected.  

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/229989doi: bioRxiv preprint first posted online Dec. 7, 2017; 

http://dx.doi.org/10.1101/229989


 18

 

Figure 5 | Evidence accumulation bias underlies experimentally induced liberal criterion. A. 

Schematic and simplified equation of drift diffusion model accounting for RT distributions for explicit 

“yes”- and implicit “no”-choices (‘stimulus coding’; see Methods). Notation: dy, change in decision 

variable y per unit time dt; v·dt, mean drift (multiplied with 1 for signal+noise (target) trials, and -1 for 

noise (non-target) trials); dc·dt, drift criterion (an evidence-independent constant added to the drift); 

and cdW, Gaussian white noise (mean = 0, variance = c2·dt). B. RT distributions of an example 

subject for “yes”- choices and the number of implicit “no” choices, separately for the two conditions. 

See Figure S2 for all participant data. Green bars, observed RT quantiles. C. Estimated model 

parameters for the drift criterion model. Conventions as in Figure 1. N = 16 participants. D. Across-

participant Pearson correlation between experimentally induced (Liberal—conservative) shifts in SDT 

criterion and DDM drift criterion. E. BIC goodness of fit estimates for the starting point and drift 

criterion models, expressed with respect to a basic model without bias parameters. A lower delta BIC 

value indicates a better fit. 
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Discussion 

Our subjective criterion for choosing a course of action plays a central role in every 

decision we make. To date, however, the neural underpinnings of criterion setting 

have remained elusive. Here, we demonstrated that instructed modulations of an 

observer’s criterion resulted in robust changes in the excitability state of the brain, as 

reflected in prestimulus alpha activity over posterior cortex. Revealing the underlying 

mechanism, we showed that a more excitable prestimulus brain state associated 

with a liberal criterion boosted stimulus-related high-frequency cortical responses 

over visual cortex by increasing response gain. Drift diffusion modeling of our 

behavioral data confirmed that criterion shifts are achieved by biasing the evidence 

accumulation process. Together, these findings show that humans implement 

decision biases by flexibly adapting neural excitability and sensory evidence 

accumulation. 

One neural mechanism that could underlie this enhanced processing may be 

under control of the catecholaminergic neuromodulatory systems, consisting of the 

noradrenaline-releasing locus coereleus (LC) and dopamine systems 28. These 

systems are able to modulate the level of arousal and neural gain, and show tight 

links with pupil responses 10,11,29,30. Accordingly, prestimulus alpha power 

suppression has also recently been linked to pupil dilation 21. From this perspective, 

our results reconcile previous studies showing relationships between a liberal 

criterion, suppression of spontaneous alpha power and increased pupil size. 

Consistent with this, a recent monkey study observed increased neural activity 

during a liberal criterion in the superior colliculus 31, a mid-brain structure 

interconnected with the LC 29. Taken together, a more liberal within-person criterion 

(following experimental instruction) might activate neuromodulatory systems that 
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subsequently increase cortical excitability and enhance sensory responses for both 

stimulus and “noise” signals in visual cortex, thereby increasing a person’s 

propensity for “yes” responses 4. 

One difference relative to previous studies investigating the link between 

neural excitability and decision criterion is that previous experiments contained 

active “no” decisions 4,6, whereas our participants only executed active “yes” 

decisions (“no” decisions were implicit). This design was chosen to create a 

naturalistic setting in which participants were encouraged to continuously detect 

targets. Although our finding of increased neural excitability during a liberal criterion 

is consistent with previous studies, future studies could include active “no” decisions 

to test whether a liberal response attitude increases excitability similarly when both 

choice alternatives entail active responses. In any case, despite the naturalistic form 

of our continuous experimental paradigm, both hits and false alarms showed 

typically observed reaction time distributions (Figure S1A), suggesting that 

participants were well able to extract the implicit task structure. The tight drift 

diffusion model fits (Figure S2), as well as the low-frequency EEG power 

modulations (Figure S1B) further confirm this notion. Regarding our observed shorter 

RT’s in the liberal condition, we speculate that a more liberal response attitude might 

in general be associated with an emphasis on speed versus accuracy. As previous 

criterion studies do not report reaction times, future studies should further address 

this issue by taking into account the temporal aspect of evidence accumulation, as is 

done in drift diffusion models.  

Although one could argue that observed change in cortical excitability may 

reflect a change in detection sensitivity rather than an intentional criterion shift, we 

deem this scenario unlikely because it invokes effects opposite to those we 
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observed. We found increased excitability in the liberal condition when compared to 

the conservative condition. If this were due to improved detection performance, one 

would predict higher sensitivity in the liberal condition, while in fact we found higher 

sensitivity in the conservative condition. This finding convincingly ties cortical 

excitability in our paradigm to a strategically applied criterion shift, as opposed to a 

change in detection sensitivity. Convergently, other studies also report a link 

between prestimulus low-frequency EEG activity and subjective perception, but not 

objective task performance 32,33.  

Finally, we do not believe that the observed high-frequency EEG power 

modulation in the current study was driven by microsaccade-related activity 34 for 

several reasons. First, our highly dynamic and salient visual stimulus was optimal to 

elicit high-frequency responses, as shown with MEG, a technique less susceptible to 

microsaccades 35,36. Second, we reduced the sensitivity of the EEG to 

microsaccades by using the earlobes instead of the nose as the reference 34, by 

removing microsaccade-related activity from the data 37,38, and by applying a current 

source density transformation to our data 39(see Methods for details). Third, the 

onset of a task-relevant event is often associated with a drop in microsaccade rate 

40,41, which should have resulted in a corresponding drop in high-frequency power; 

conversely, we find that high frequency power increases at target onset. Future work 

could further address this issue by measuring eye movements during the 

experimental tasks.  

Overall, our results suggest that stimulus-related responses are boosted 

during a liberal criterion due to increased cortical response gain, which is further 

supported by recent work linking alpha power suppression to enhanced gain 42. 

Explicit manipulation of cortical response gain during a criterion manipulation by 
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pharmacological manipulation of the noradrenergic LC-NE system 43 or by 

enhancing occipital alpha power using transcranial stimulation 44 would further 

establish the underlying mechanisms involved in criterion setting. In the end, 

although one may be unaware, every decision we make is influenced by implicit 

biases that operate on the noisy evidence accumulation process towards one of the 

alternatives. Understanding how these biases affect our decisions is key to 

becoming aware of these biases 45, allowing us to control or invoke them adaptively. 

We argue that pinpointing the neural mechanisms underlying bias in an elementary 

perceptual task (as used here) paves the way for understanding how more abstract 

and high-level decisions may be modulated by choice bias 46. 
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Materials and Methods 

Participants Sixteen participants (eight female, mean age 24.1 years, ± 1.64) took 

part in the experiment, either for financial compensation or in partial fulfillment of first 

year course requirements. Each participant completed three experimental sessions 

on different days, each session lasting ca. 1.5 hours, including preparation and 

breaks. One participant completed only two sessions, yielding a total number of one-

hour measurements across subjects of 47. Due to technical issues, for one session 

only data for the liberal condition was available. One participant was an author. All 

participants were included in the behavioral and drift diffusion modeling analyses. 

One participant was excluded from the stimulus-related (Figure 2) and the alpha-

power analysis (Figure 3) due to excessive noise (EEG power spectrum opposite of 

1/frequency). One further participant was excluded from the single-trial gamma 

power modulation analyses (Figure 4) because the liberal-conservative difference in 

gamma power in this participant was > 3 standard deviations away from the other 

participants. In summary, 16 participants were included in the analyses presented in 

Figures 1, 5 and S2, 15 participants in Figures 2, 3 and S2, and 14 participants in 

Figure 4. All participants had normal or corrected-to-normal vision and were right 

handed. Participants provided written informed consent before the start of the 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/229989doi: bioRxiv preprint first posted online Dec. 7, 2017; 

http://dx.doi.org/10.1101/229989


 27

experiment. All procedures were approved by the ethics committee of the University 

of Amsterdam.  

Stimuli Stimuli consisted of a continuous semi-random rapid serial visual 

presentation (rsvp) of full screen texture patterns. The texture patterns consisted of 

line elements approx. 0.07° thick and 0.4° long in visual angle. Each texture in the 

rsvp was presented for 40 ms (i.e. stimulation frequency 25 Hz), and was oriented in 

one of four possible directions: 0°, 45°, 90° or 135°. Participants were asked to fixate 

on a red dot in the center of the screen. At random inter trial intervals (ITI’s) sampled 

from a uniform distribution (ITI range 0.3-2.2 s), the rsvp contained a fixed sequence 

of 25 texture patterns, which in total lasted one second. This fixed sequence 

consisted of four stimuli preceding a (non-)target stimulus (orientations of 45°, 90°, 

0°, 90° respectively) and twenty stimuli following the (non)-target (orientations of 0°, 

90°, 0°, 90°, 0°, 45°, 0°, 135°, 90°, 45°, 0°, 135°, 0°, 45°, 90°, 45°, 90°, 135°, 0°, 

135° respectively) (Figure 1). The fifth texture pattern within the sequence (occurring 

from 0.16 s after sequence onset) was either a target or a nontarget stimulus. 

Nontargets consisted of either a 45° or a 135° homogenous texture, whereas targets 

contained a central orientation-defined square of 2.42° visual angle, thereby 

consisting of both a 45° and a 135° texture. 50% of all targets consisted of a 45° 

square and 50% of a 135° square. Of all trials, 75% contained a target and 25% a 

nontarget. Target and nontarget trials were presented in random order. To avoid 

specific influences on target stimulus visibility due to presentation of similarly or 

orthogonally oriented texture patterns temporally close in the cascade, no 45° and 

135° oriented stimuli were presented directly before or after presentation of the 

target stimulus. All stimuli had an isoluminance of 72.2 cd/m2. Stimuli were created 
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using MATLAB (The Mathworks, Inc., Natick, MA, USA) and presented using 

Presentation (Neurobehavioral systems, Inc., Albany, CA, USA).  

Experimental design The participants’ task was to detect targets and actively report 

them by pressing a button using their preferred hand. Presumably due to constant 

forward and backward masking by the continuous cascade of stimuli and 

unpredictability of target timing, targets occasionally went unreported 47. The onset of 

the fixed order of texture patterns preceding and following (non-)target stimuli was 

neither signaled nor apparent.  

At the beginning of the experiment, participants were informed they could 

earn a total bonus of EUR 30, on top of their regular pay or course credit. In two 

separate conditions within each session of testing, we encouraged participants to 

use either a conservative or a liberal criterion for reporting targets using both 

aversive sounds as well as reducing their bonus after errors. In the conservative 

condition, participants were instructed to only press the button when they were 

relatively sure they had seen the target. The instruction on screen before block onset 

read as follows: “Try to detect as many targets as possible. Only press when you are 

relatively sure you just saw a target.” To maximize effectiveness of this instruction, 

participants were told the bonus would be diminished by ten cents after a false 

alarm. During the experiment, a loud aversive sound was played after a false alarm 

to inform the participant about an error. During the liberal condition, participants were 

instructed to miss as few targets as possible. The instruction on screen before block 

onset read as follows: “Try to detect as many targets as possible. If you sometimes 

press when there was nothing this is not so bad”. In this condition, the loud aversive 

sound was played twice in close succession whenever they failed to report a target, 

and three cents were subsequently deducted from their bonus. The difference in 
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auditory feedback between both conditions was included to inform the participant 

about the type of error (miss or false alarm), in order to facilitate the desired criteria 

in both conditions. After every block, the participant’s score (number of missed 

targets in the liberal condition and number of false alarms in the conservative 

condition) was displayed on the screen, as well as the remainder of the bonus. After 

completing the last session of the experiment, every participant was paid the full 

bonus as required by the ethical committee. 

During a block, participants continuously monitored the screen and were free 

to respond by button press whenever they thought they saw a target. Participants 

performed six blocks per session. Each block contained 240 trials, 180 target and 60 

nontarget trials. The task instruction was presented on the screen before the block 

started. The condition of the first block of a session was counterbalanced across 

participants. Prior to EEG recording in the first session, participants performed a 10-

minute practice run of both conditions, in which visual feedback directly after a miss 

(liberal condition) or false alarm (conservative) informed participants about their 

mistake, allowing them to adjust their decision criterion accordingly. 

Behavioral analysis  We calculated participants criterion c 2 across the trials in 

each condition as follows: 

� � �
1

2
 ��	
��‐ �����  �  �	��‐ ������ 

where Z(...) is the inverse standard normal distribution. Furthermore, we calculated 

objective sensitivity measure d’ using: 

 

�� � �	
��‐ ����� �  �	��‐ ����� 
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as well as by subtracting hit and false alarm rates. Reaction times (RT’s) were 

measured as the period between target onset and button press. 

EEG recording Continuous EEG data were recorded at 256 Hz using a 48-channel 

BioSemi Active-Two system (Biosemi, the Netherlands), connected to a standard 

EEG cap according to the international 10-20 system. Electrooculography (EOG) 

was recorded using two electrodes at the outer canthi of the left and right eyes and 

two electrodes placed above and below the right eye. Horizontal and vertical EOG 

electrodes were referenced against each other, two for horizontal and two for vertical 

eye movements (blinks). We used the Fieldtrip toolbox 48 and custom software in 

MATLAB (version R2016b, The Mathworks) to process the data (see below). Data 

were re-referenced to the average voltage of two electrodes attached to the 

earlobes.  

Trial extraction and preprocessing We extracted trials of variable duration from 1 

s before target sequence onset until 1.25 after button press for trials that included a 

button press (hits and false alarms), and until 1.25 s after stimulus onset for trials 

without a button press (misses and correct rejects). The following constraints were 

used to classify (non-)targets as detected (hits and false alarms), while avoiding the 

occurrence of button presses in close succession to target reports and button 

presses occurring outside of trials: 1) A trial was marked as detected if a response 

occurred within 0.8 s after target offset; 2) when the onset of the the next target 

stimulus sequence started before trial end, the trial was terminated at next trials 

onset; 3) when a button press occurred in the 1.5 s before trial onset, the trial was 

extracted from 1.5 s after this button press; 4) when a button press occurred 

between 0.5 s before until 0.2 s after sequence onset, the trial was discarded. See 
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Kloosterman et al.  20 and Meindertsma et al. 21 for a similar trial extraction 

procedure. After trial extraction, channel time courses were linearly detrended and 

the mean of every channel was removed per trial.  

Artifact rejection Trials containing muscle artifacts were rejected from further 

analysis using a standard semi-automatic preprocessing method in Fieldtrip. This 

procedure consists of bandpass-filtering the trials of a condition block in the 110–125 

Hz frequency range, which typically contains most of the muscle artifact activity, 

followed by a Z-transformation. Trials exceeding a threshold Z-score were removed 

completely from analysis. We used as the threshold the absolute value of the 

minimum Z-score within the block, + 1. To remove eye blink artifacts from the time 

courses, the EEG data from a complete session were transformed using 

independent component analysis (ICA), and components (typically one or two of the 

48) due to blinks was removed from the data. In addition, to remove microsaccade-

related artifacts we included two virtual channels based on channels Fp1 and Fp2 in 

the ICA, which included transient spike potentials as identified using the algorithm 

from Hassler et al. 37. The two components loading high on these virtual electrodes 

were also removed. Blinks and eye movements were then semi-automatically 

detected from the horizontal and vertical EOG (frequency range 1–15 Hz; z-value 

cut-off 4 for vertical; 6 for horizontal) and trials containing eye artefacts within 0.1 s 

around target onset were discarded. This step was done to remove trials in which the 

target was not seen because the eyes were closed. Finally, trials exceeding a 

threshold voltage range of 200 μV were discarded. To attenuate volume conduction 

effects and suppress any remaining microsaccade-related activity, the scalp current 

density (SCD) was computed using the second-order derivative (the surface 

Laplacian) of the EEG potential distribution 49. 
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Spectral analysis of EEG power We used a sliding window Fourier transform (50; 

step size, 50 ms; window length, 400 ms; frequency resolution, 2.5 Hz) to calculate 

time-frequency representations (spectrograms) of the EEG power for each electrode 

and each trial. We used a single Hann taper for the frequency range of 3–35 Hz 

(spectral smoothing, 4.5 Hz, bin size, 1 Hz) and the multitaper technique for the 

frequency range of 36 – 100 Hz (spectral smoothing, 8 Hz; bin size, 2 Hz; five 

tapers). See Kloosterman et al. 20 and Meindertsma et al. 21 for similar settings. 

Spectrograms were aligned to the onset of the stimulus sequence containing 

the (non)target. Power modulations (denoted as M in Figure 2) during the trials were 

quantified as the percentage of power change at a given time point and frequency 

bin, relative to a baseline power value for each frequency bin. We used as a baseline 

the mean EEG power in the interval 0.4 to 0 s before trial onset. If this interval was 

not completely present in the trial due to preceding events (see Trial extraction), this 

period was shortened accordingly. We subtracted the trial-specific baseline value 

from each sample in the time course per frequency bin and divided by the mean 

baseline power across all trials within a session. For the analysis of raw prestimulus 

power modulations no baseline correction was applied. We focused our analysis of 

EEG power modulations around target onsets on those electrodes that processed 

the visual stimulus. To this end, we averaged the power modulations or raw power 

across eleven occipito-parietal electrodes that showed stimulus-induced responses 

in the gamma-band range (59–100 Hz). See Kloosterman et al. 20 and Meindertsma 

et al. 21 for a similar procedure. 

Condition-related EEG power modulation To test at which frequencies raw EEG 

power differed for the liberal and conservative conditions, we averaged power 

modulation from 0.8 s up to 0.2 s (i.e. up to half the window size used for spectral 
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analysis, to avoid contamination of post- with pre-stimulus activity 4) from trial onset. 

Then, we expressed the power at each frequency in units of percent signal change 

with respect to the conservative condition and statistically tested whether this signal 

differed from zero (Figure 4D) (see Statistical comparisons). 

Response gain model test To test the prediction of increased gain during liberal of 

the gain model, we first averaged activity in the 8–12 Hz range from 0.8 to 0.2 s 

before trial onset (staying half our window size from trial onset, to avoid mixing pre- 

and post-stimulus activity, also see Iemi et al. 4) and took the log transform, yielding 

a single scalar value per trial expressing neural excitability. If this interval was not 

completely present in the trial due to preceding events (see Trial extraction), this 

period was shortened accordingly. Trials in which the scalar was > 3 standard 

deviations away from the participant’s mean were excluded. We then sorted all 

single trials for each participant in ascending order of excitability and assigned them 

to ten equally-spaced bins ranging from the lowest to the highest excitability scalars 

present within that participant. Adjacent bin ranges overlapped for 50% to stabilize 

estimates (see Rajagovindan and Ding 8 for a similar procedure). Then we averaged 

the corresponding log-transformed gamma modulation of these trials (consisting of 

the average power within 59–100 Hz 0.2 to 0.6 s after trial onset) and normalized 

each participants response by subtracting the minimum gamma power during the 

conservative condition from all bins. Finally, we averaged across participants and 

plotted the excitability bin number against the normalized gamma power for each 

condition. To statistically test the gain prediction, we employed a three-way repeated 

measures ANOVA (see Statistical comparisons). For plotting purposes (Figure 4D), 

we computed within-subject error bars by removing within each participant the mean 

across conditions from the estimates. 
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Drift diffusion modeling We fitted the drift diffusion model to our behavioural data, 

for each subject individualy, and separately for the liberal and conservative 

conditions. We fitted the model using a G square method based on quantile RT’s 

(RT cutoff, 200 ms, for details, see Ratcliff et al. 27), using a tailored version of the 

HDDM 0.6.0 package 51 (code available at Github). The RT distributions for “yes” 

responses were represented by the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles, and, along 

with the associated response proportions, contributed to G square. In addition, a 

single bin containing the number of “no” responses contributed to G square. Fitting 

the model to RT distributions for “yes” and “no” choices (termed ‘stimulus coding’ in 

Wiecki  et al. 51), as opposed to the more common fits of correct and incorrect choice 

RT’s (termed “accuracy coding” in Wiecki  et al. 51), allowed us to estimate 

parameters that could have induced biases in subjects’ behavior. 

 Parameter recovery simulations showed that letting both the the starting point 

of the accumulation process and drift criterion (an evidence-independent constant 

added to the drift toward one or the other bound) free to vary with experimental 

conditions is problematic for data with no overt “no” responses (data not shown). 

Thus, to test whether shifts in drift criterion or starting point underlied bias we fitted 

three separate models. In the first model (“basic model”), we allowed only the 

following parameters to vary between the liberal and conservative condition: (i) the 

mean drift rate across trials; (ii) the separation between both decision bounds (i.e., 

response caution); and (iii) the non-decision time (sum of the latencies for sensory 

encoding and motor execution of the choice). Additionaly, the bias parameters 

starting point and drift criterion were fixed with experimental condition. This model 

served as the baseline against which to compare the two models that could explain 

shifts in choice bias. The second model (“starting point model”) was the same as the 
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basic model, except that we let the starting point of the accumulation process vary 

with experimental condition, whereas the drift criterion was kept fixed for both 

conditions. The third model (“drift criterion model”) was the same as the basic model, 

except that we let the drift criterion vary with experimental condition, but the starting 

point was kept fixed for both conditions. We used Bayesian Information Criterion 

(BIC) to select the model which provided the best fit to the data 52. The BIC 

compares models based on their maximized log-likelihood value, while penalizing 

for the number of parameters. 

Statistical comparisons We used two-sided permutation tests (10,000 

permutations) 53 to test the significance of behavioral effects and the model fits 

(Figures 1, 5). To quantify power modulations after (non-)target onset, we tested the 

overall power modulation for significant deviations from zero. For these tests, we 

used a cluster-based permutation procedure to correct for multiple comparisons 54. 

For time-frequency representations of power modulation (Figure 2), this procedure 

was conducted across all time-frequency bins. For frequency spectra (Figure 3D), 

this procedure was performed across all frequency bins. To test whether there was 

any evidence for increased gain in the liberal compared to the conservative 

condition, we conducted a three-way repeated measures ANOVA (condition 

(conservative, liberal) x brain activity type (prestimulus alpha, poststimulus gamma 

power) x bin level (1–10)) using SPSS 23 (IBM, Inc.), inspecting linear and quadratic 

contrasts. As sphericity was violated in this model (p < 0.0001), we report both the 

uncorrected and Greenhouse-Geisser-corrected p-values. 
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Supplemental Information 

 

 

Figure S1 | Behavioral and neurophysiological evidence that participants were sensitive to the 

implicit task structure. Related to Figures 1 and 3. A. Subject-average RT distributions for hits and 

false alarms in both conditions, indicating that participants were sensitive to trial onset despite the fact 

that trial onsets were only implicitly signaled. B. Time-frequency representations of low-frequency 

EEG power modulations with respect to the prestimulus period (–0.4 – 0 s), pooled over the two 

conditions, indicating that participants detected the onset of a trial even when neither a target was 

presented nor a response was given (correct rejections). Saturated colors indicate clusters of 

significant modulation, cluster threshold p < 0.05, two-sided permutation test across participants, 

cluster-�corrected; N = 15). Solid and dotted vertical lines respectively indicate the onset of the trial 

and the target stimulus. M, power modulation. 
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Figure S2 | Drift diffusion model fits for both conditions and for each participant. Related to 

Figure 5. Pink bars, number of “No” trials; Green bars, RT distribution for “Yes” trials; dotted lines, 

model fits for the drift criterion model. 
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