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Abstract

This work is concerned with the analytical and numerical solutions of linear and nonlinear

two-dimensional general rate models (2D-GRMs) describing the transport of single-solute

and multi-component mixtures through chromatographic columns of cylindrical geometry

packed with core-shell particles. The finite Hankel and Laplace transformations are suc-

cessively applied to derive analytical solutions for a single-solute model considering linear

adsorption isotherms and two different sets of boundary conditions. Moreover, analytical

temporal moments are derived from the Laplace domain solutions. The process is further

analyzed by numerically approximating the nonlinear 2D-GRM for core-shell particles con-

sidering multi-component mixtures and nonlinear Langmuir isotherm. A high resolution finite

volume scheme is extended to solve the considered 2D-model equations. Several case studies

of single-solute and multi-component mixtures are considered. The derived analytical re-

sults are validated against the numerical solutions of a high resolution finite volume scheme.

Typical performance criteria are utilized to analyze the performance of the chromatographic

process. The results obtained are considered to be useful to support further development of

liquid chromatography.
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1. Introduction

Chromatography exploits specific interactions of the components present in the mixtures to

be separated with dedicated solid stationary phases. Numerous types of particles have been

developed and are applied successfully [1–8]. Nonporous particles have been found successful

in analytical liquid chromatography because they provide fast separation times [2–4]. The

widely applied fully porous particles cause intraparticle mass transfer limitations reducing

the column efficiencies. The use of core-shell particles (or superficially porous [1] or fused-

core [6] or cored beads [7]) can provide optimum conditions by avoiding the shortcomings

of fully porous and nonporous particles. Fully porous particles can offer the large binding

capacities with only moderate intraparticle mass transfer resistances [8]. The use of core-shell

particles has generated recently considerable interests in both analytical and preparative liquid

chromatography [9–11]. They have been used for example, for the separation of peptides and

other compounds [10, 12], nucleotides [1], and proteins [13]. Moreover, several theoretical

investigations have been carried out on the use of core-shell particles by considering one-

dimensional (1D) chromatographic models. Kaczmarski and Guichon [14] used the general

rate model to study fully porous particles and the lumped particle model to study thin-shelled

coated beads. Li et al. [15] carried out optimization of core size for linear chromatography by

minimizing HETP numbers. Miyabe [5] showed that a column packed with cored beads can

achieve higher resolution as compared to a column packed with fully-porous beads. Yang and

Hu [16] derived the theoretical expressions of elution and frontal linear chromatography for

ion-exchange resins that were cored beads. Wang et al. [7] studied the pressure-flow correlation

with the ion-exchange resin of cored beads. They found that cored beads provided significantly

enhanced rigidity and permeability compared to fully-porous homogeneous agarose beads [17].

Gu et al. [8] used the general rate model to study the optimization of the core radius fraction

for multi-component isocratic elution with cored beads.

Analytical solutions and temporal moments of the 1D-models have been derived for linear

isotherms using the Laplace transformation [18–23]. Moment analysis is a useful and effec-

tive technique for deducing important information about the retention equilibrium and mass

transfer kinetics in a fixed-bed column. The moment generating property of the Laplace do-

main solutions can be used to derive analytical temporal moments. These moments can be

used to get important information about the retention times, band broadenings, and front
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asymmetries. Several authors have derived moments for various boundary conditions (BCs)

[18–37].

Recently, we have also derived analytical solutions and temporal moments of linear 2D-models

for cylindrical columns packed with fully-porous particles [38–41]. Very recently, Qamar et al.

[22, 42] have investigated linear and nonlinear 1D-models for core-shell particles. However,

2D-models have never been analyzed before for cylindrical columns packed with core-shell

particles. This article extends the works carried out in [22, 42] for 1D-models to linear and

nonlinear 2D-GRMs considering core-shell particles.

For nonlinear adsorption equilibria the column model equations need to be solved numeri-

cally. The finite volume schemes have been widely applied to numerically approximate dif-

ferent chromatographic models and have been found suitable for simulating such nonlinear

convection dominated problems [42–45]. These schemes were initially introduced for nonlinear

hyperbolic equations. The slopes or flux limiters of these numerical schemes avoid numerical

oscillations and over-predictions in the solutions and, thus, have capability to produce stable

and accurate results [46].

In this article, analytical solutions and moments are derived for a linear single-solute 2D-GRM

to study the effects of different kinetic parameters, especially the effects of radial dispersion

on the elution profiles. Furthermore, the nonlinear multi-component 2D-GRM for core-shell

particles is numerically approximated. A high resolution finite volume scheme, presented in

[42, 43] for the 1D-models, is extended to solve the current 2D model equations.

2D models can be valuable in various situations, e.g. a) the injection at the column inlet

is not perfect (i.e. a radial profile is introduced at the column inlet), b) the column is not

homogeneously packed (which is more and more probable the larger the columns are), c)

there are radial temperature gradients, which are connected also with radial concentration

gradients. All these issues occur in reality. Often they might be minor and even negligible,

then justifying the 1D model. However, for evaluating the magnitude of the related effects 2D

models are required. With already available isothermal models we could just study a special

case for situation a) by assuming injections in inner cylinders or outer annuli. Situations b)

and c) are more complicated and require further model extensions (considering non-constant

column porosities and an energy balance), which are currently under investigation. The

already developed simplified 2D-models and numerical scheme are more general and flexible
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compared to the classical 1D-models and numerical schemes [18–23, 43].

The remaining parts of this article are organized as follows. In Section 2, the 2D-GRM

model is introduced. In Section 3, the analytical solutions of a linear single-solute 2D-GRM

are derived for the considered two sets of boundary conditions. In Section 4, the analytical

temporal moments are derived. Section 5 explains the proposed finite volume scheme applied

to solve the nonlinear 2D-GRM. In Section 6, several case studies are presented. Lastly,

concluding remarks are given in Section 7.

2. The mathematical model of 2D-GRM

In liquid chromatography, the GRM considers several contributions of the mass transfer pro-

cesses that lead to band broadening. Mass transfer between the stationary and mobile phases,

axial dispersion, and intraparticle pore diffusion are incorporated in the mass balance equa-

tions.

Figure 1: Schematic diagram of a chromatographic column of cylindrical geometry.

Let t denotes the time coordinate, z represents the axial coordinate along the column length,

and r is the radial coordinate along the column radius. The solute travels along the column

axis in the z-direction by advection and axial dispersion and spreads along the column radius

in the r-direction by radial dispersion. The following particular injection conditions are

assumed to amplify the effects of mass transfer in the radial direction. A new parameter r̃ is

introduced to split the inlet cross section of the column into an inner cylindrical core and an

outer annular ring (see Figure 1). Thus, sample can be injected to the column either through
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an inner, through an outer ring, or through the whole cross section. The latter case results

if r̃ is set equal to the radius of the column denoted by Rc. As no initial radial gradients

are introduced in the latter case, the solutions should converge into the solution of simpler

1D-model [22].

In the above setup, both the axial and radial dispersions are considered. The mass balance

equations in bulk of fluid for a multi-component mixture percolating through a cylindrical

column packed with spherical particles are given as

∂ci
∂t

+ u
∂ci
∂z

= Dz,i
∂2ci
∂z2

+Dr,i

(

∂2ci
∂r2

+
1

r

∂ci
∂r

)

−
3

Rp
Fekext,i (ci − cp,i(rp = Rp)) , (1)

where i = 1, 2, · · · , Nc and Nc denotes the number of components in the mixtures. Here, ci

is the concentration of ith component in the bulk of fluid, cp,i is the concentration of the

same component in the particle pores, u is the interstitial velocity, Dz,i is the axial dispersion

coefficient of ith component, and Fe = (1 − ǫ)/ǫ is the phase ratio with ǫ as the external

porosity. Moreover, Dr,i represents the radial dispersion coefficient and kext,i is the external

mass transfer coefficient of ith component. Lastly, rp denotes the radial coordinate of spherical

particles of radius Rp.

The corresponding mass balance equations inside the particles pores are given as

ǫp
∂cp,i
∂t

+ (1− ǫp)
∂qp,i
∂t

=
ǫpDp,i

r2p

∂

∂rp

(

r2p
∂cp,i
∂rp

)

, i = 1, 2, · · · , Nc, (2)

where qp,i is the local equilibrium concentration of the solute in stationary phase for ith

component, Dp,i is the pore diffusivity, and ǫp is the internal porosity.

To simplify the notations and reduce the number of variables, the following dimensionless

quantities are introduced:

Ci =
ci
cinj,i

, Cp,i =
cp,i
cinj,i

, q∗p,i =
qp,i
cinj,i

, τ =
ut

L
, x =

z

L
, ρ =

r

Rc
, ρp =

rp
RP

,

P ez,i =
Lu

Dz,i
, P eρ,i =

R2
cu

Dr,iL
, ζi =

kext,iRp

ǫpDp,i
, ηi =

ǫpDp,iL

R2
pu

, ξi = 3ζiηiFe . (3)

In the above equation, cinj,i denotes the non-zero injected bulk concentration of ith component,

Pez,i is the Peclet number based on column length, ζi represents the modified Biot number,

and ηi describes the ratio of space time and interaparticle diffusion time for the ith component.

Using the above dimensionless variables, the model Eqs. (1) and (2) can be rewritten

∂Ci

∂τ
+
∂Ci

∂x
=

1

Pez,i

∂2Ci

∂x2
+

1

Peρ,i

(

∂2Ci

∂ρ2
+

1

ρ

∂Ci

∂ρ

)

− ξi [Ci − Cp,i(ρp = 1)] , (4)

5



ǫp
∂Cp,i

∂τ
+ (1− ǫp)

∂q∗p,i
∂τ

= ηi

(

∂2Cp,i

∂ρ2p
+

1

ρp

∂Cp,i

∂ρp

)

, i = 1, 2, · · · , Nc. (5)

In liquid chromatography, the frequently applied convex nonlinear Langmuir isotherm is de-

fined as [24, 47]

q∗p,i =
aiCp,i

1 +
Nc
∑

j=1
(bjcinj,j)Cp,j

, i = 1, 2, · · · , Nc. (6)

Here, ai denotes the Henry’s constant and bi represents the extent of nonlinearly for com-

ponent i. In the case of linear isotherms, bi = 0 for i = 1, 2, · · · , Nc. Thus, Eq. (6) reduces

to

q∗p,i = aiCp,i, i = 1, 2, · · · , Nc. (7)

For fully porous particles ρp ranges from 0 to 1, while for core-shell particles it ranges from

ρcore = Rcore/Rp to 1. As this study is concerned with the core-shell particles of arbitrary

core radius fraction ρcore, it is necessary to allow the core radius to be changed. For core-shell

particles (c.f. Eq. (5)), ρcore ≤ ρp ≤ 1. For fully porous particles ρcore=0, while ρcore 6= 0 for

core-shell particles. Thus, following [8], it is helpful to replace ρp-axis by 0 ≤ γ ≤ 1, where

γ =
ρp − ρcore
1− ρcore

. (8)

On substituting

ρp = γ(1− ρcore) + ρcore , (9)

in Eqs. (4) and (5) and using Eq. (6), they yield for i = 1, 2, · · · , Nc

∂Ci

∂τ
+
∂Ci

∂x
=

1

Pez,i

∂2Ci

∂x2
+

1

Peρ,i

(

∂2Ci

∂ρ2
+

1

ρ

∂Ci

∂ρ

)

− ξi (Ci − Cp,i|γ=1) , (10)

ǫp
∂Cp,i

∂τ
+ (1− ǫp)

∂q∗p,i
∂τ

= ηi

[

1

(1− ρcore)2
∂2Cp,i

∂γ2
+

2

γ(1− ρcore)2 + ρcore(1− ρcore)

∂Cp,i

∂γ

]

.

(11)

The Eqs. (10) and (11) are subjected to the initial and boundary conditions. The initial

conditions for an initially regenerated column are given as

Ci(x, ρ, τ = 0) = 0, Cp,i(x, ρ, γ, τ = 0) = 0 , ∀ x, ρ, γ ∈ (0, 1), i = 1, 2, · · · , Nc. (12)
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The following boundary conditions for Eq. (10) are used along the column radius at ρ = 0

and ρ = 1

∂Ci(x, ρ = 0, τ)

∂ρ
= 0 ,

∂Ci(x, ρ = 1, τ)

∂ρ
= 0 . (13)

The first and second boundary conditions corresponds to the symmetry of radial profile and

the impermeability of the column wall, respectively. The following boundary conditions at

γ = 0 and γ = 1 are assumed for Eq. (11)

∂Cp,i

∂γ

∣

∣

∣

∣

γ=0

= 0 ,
∂Cp,i

∂γ

∣

∣

∣

∣

γ=1

= (1− ρcore)ζi(Ci − Cp,i|γ=1) . (14)

Two sets of boundary conditions are considered at the column inlet and outlet as summarized

below:

Case 1: Concentration pulse of finite width is injected as Dirichlet inlet BCs:

For injection in the inner circular region, it is expressed as:

Ci(x = 0, ρ, τ) =







1 , if 0 ≤ ρ ≤ ρ̃ and 0 ≤ τ ≤ τinj ,

0 , if ρ̃ < ρ ≤ 1 or τ > τinj ,
(15)

For injection in the outer annular zone, it is expressed as:

Ci(x = 0, ρ, τ) =







1 , if ρ̃ < ρ ≤ 1 and 0 ≤ τ ≤ τinj ,

0 , if 0 ≤ ρ ≤ ρ̃ or τ > τinj .
(16)

and

ρ̃ = r̃/Rc . (17)

For injection over the whole inlet cross section of the column, either ρ̃ = 1 in Eq. (15) or ρ̃ = 0

in Eq. (16). In the case of more complicated boundary conditions, the analytical solutions

may not be possible. However, the proposed numerical scheme is able to handle more general

boundary conditions.

At the outlet of the column of hypothetically infinite length, x = ∞, the following outflow

Neumann boundary condition is considered:

∂Ci(x, ρ, τ)

∂x

∣

∣

∣

∣

x=∞

= 0 . (18)

Case 2: Concentration pulse of finite width injected as Danckwerts inlet BCs :
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For the inner zone injection, the boundary condition is expressed as:

Ci(x = 0, ρ, τ) −
1

Pez,i

∂Ci(x = 0, ρ, τ)

∂x
=







1 , if 0 ≤ ρ ≤ ρ̃ and 0 ≤ τ ≤ τinj ,

0 , ρ̃ < ρ ≤ 1 or τ > τinj ,
(19)

For the injection through outer annular zone, it is expressed as:

Ci(x = 0, ρ, τ) −
1

Pez,i

∂Ci(x = 0, ρ, τ)

∂x
=







1 , if ρ̃ < ρ ≤ 1 and 0 ≤ τ ≤ τinj ,

0 , 0 ≤ ρ ≤ ρ̃ or τ > τinj ,
(20)

together with the Neumann condition at the outlet of a finite length column

∂Ci(x, ρ, τ)

∂x

∣

∣

∣

∣

x=1

= 0 . (21)

The Danckwerts boundary condition tends to the Dirichlet boundary condition for large values

of Pez,i.

3. Derivation of analytical solutions for linear single-solute model

Here, we consider the flow of single-solute (Nc = 1) and linear adsorption isotherm (c.f. Eq.

(7)) for deriving analytical solutions and moments. This assumption of linear chromatography

is valid for diluted sample. After using Eq. (7) in Eqs. (10) and (11) and considering Nc = 1,

C1 = C, Cp,1 = Cp, we obtain

∂C

∂τ
+
∂C

∂x
=

1

Pez

∂2C

∂x2
+

1

Peρ

(

∂2C

∂ρ2
+

1

ρ

∂C

∂ρ

)

− ξ (C − Cp|γ=1) , (22)

(1− ρcore)
2a∗

∂Cp

∂τ
− η

(

∂2Cp

∂γ2
+

2(1 − ρcore)

(γ(1− ρcore) + ρcore)

∂Cp

∂γ

)

= 0 , (23)

where

a∗ = ǫp + a (1− ǫp) . (24)

The above chromatographic model and its associated initial and boundary conditions are an-

alytically solved by successive implementation of the finite Hankel transform and the Laplace
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transform. The zeroth-order finite Hankel transform of C(x, ρ, τ) is defined below as (c.f.

[48–51])

CH(x, λn, τ) = H[C(x, ρ, τ)] =

1
∫

0

C(x, ρ, τ)J0 (λnρ) ρdρ . (25)

The inverse Hankel transform is given as

C(x, ρ, τ) = 2CH(x, λn = 0, τ) + 2

∞
∑

n=1

CH(x, λn, τ)
J0(λnρ)

|J0(λn)|2
. (26)

Eq. (23) is rephrased as

(1− ρcore)
2 a∗

∂

∂τ
[(γ(1− ρcore) + ρcore)Cp]− η

∂2

∂γ2
((γ(1− ρcore) + ρcore)Cp) = 0 , (27)

with (c.f. Eq. (14))

∂Cp

∂γ
|γ=0 = 0 ,

∂Cp

∂γ
|γ=1 = (1− ρcore)ζ (C −Cp|γ=1) . (28)

The remaining solution procedure is similar to one presented in our previous article [41] and

is, therefore, omitted here. Thus, the general Hankel-Laplace domains solution is given as

C̄H (x, λn, s) = A0e
m1x +B0e

m2x, (29)

where

m1,2 =
Pez
2



1±

√

1 +
4φ(s, λn)

Pez



 . (30)

In Eq. (30), m1 is obtained by using the plus sign and m2 is extracted using the minus sign.

The next step is to find the integration constants A0 and B0 by using the considered two

types of boundary conditions.

Case 1: Concentration pulse of finite width is injected as Dirichlet inlet BCs:

The Hankel transformations of Eqs. (15) (or Eqs. (16)) and (18) are given as

CH(x, λn, τ) =







F (λn) , if 0 ≤ τ ≤ τinj ,

0 , if τ > τinj ,
(31)

∂CH(x, λn, τ)

∂x

∣

∣

∣

∣

x=∞

= 0 . (32)

For injection at the inner cylindrical core, F (λn) is given as

F (λn) =







ρ̃2

2 , if λn = 0 ,

ρ̃
λn
J1 (λnρ̃) , if λn 6= 0 ,

(33)

9



while for injection at the outer annular ring, it becomes

F (λn) =







(

1
2 −

ρ̃2

2

)

, if λn = 0 ,

− ρ̃
λn
J1 (λnρ̃) , if λn 6= 0 .

(34)

After applying the Laplace transformation on boundary conditions in Eqs. (31) and (32), we

obtain

C̄H(x, λn, s) =
F (λn)

s

(

1− e−sτinj
)

,
∂C̄H

∂x

∣

∣

∣

∣

x=∞

= 0 . (35)

Now, using Eq. (35) in Eq. (29), we obtain the following solution for the Dirichlet boundary

conditions

C̄H(x, λn, s) =
(1− e−sτinj)

s
F (λn)e

m2x , (36)

where m2 is given by Eq. (30) for the lower negative sign.

Case 2: Concentration pulse of finite width injected as Danckwerts inlet BCs :

The Hankel transformations of Eqs. (19) (or Eqs. (20)) and (21) are given as

CH(x = 0, λn, τ)−
1

Pez

∂CH(x = 0, λn, τ)

∂x
=







F (λn) , if 0 ≤ τ ≤ τinj ,

0 , if τ > τinj ,
(37)

together with the Neumann condition at the outlet of the column

∂CH(x, λn, τ)

∂x

∣

∣

∣

∣

x=1

= 0 . (38)

Here, F (λn) is given by Eq. (33) for the inner injection and by Eq. (34) for the outer annular

injection.

After applying the Laplace transformation on these boundary conditions, we get

C̄H(x = 0, λn, s)−
1

Pez

∂C̄H(x = 0, λn, s)

∂x
=
F (λn)

s

(

1− e−sτinj
)

, (39)

and
∂C̄H

∂x

∣

∣

∣

∣

x=1

= 0 . (40)

On using Eqs. (39) and (40) in Eq. (29), we obtain the following solution for the Danckwerts

boundary conditions

C̄H(x, λn, s) =

[

m2e
m2+m1x −m1e

m1+m2x
]

[

F (λn)
s

(1− e−sτinj)
]

m2em2

(

1− m1
Pez

)

−m1em1

(

1− m2
Pez

) . (41)

10



Analytical Laplace inversion is not possible for the solutions of both the Dirichlet and Danck-

werts boundary conditions. Thus, the numerical Laplace inversion will be applied to get

semi-analytical solutions in the actual time domain [52, 53]. In this technique, the integral

term appearing in the inverse Laplace transform is approximated by Fourier series, see [52]

for more details.

4. Moment Analysis

Moment analysis is a well known useful technique for collecting relevant information about

the retention equilibrium and mass transfer kinetics in a column. A set of statistical tem-

poral moments can be used to describe the appearance of elution profile. For instance, the

appropriate forms of first, second, third and fourth moments can describe the mean, spread,

skewness, and kurtosis of the elution profiles, respectively. The experimental values measured

for these moments can be compared with their theoretical expressions to estimate mass trans-

fer coefficients. If there are baseline shifts, specific measures are required to take them into

account.

The normalized i-th moment averaged over the radial coordinate (ρ) of the band profile at

any position in the column can be obtained through the following expression

µ0,av =

∫

∞

0
Cav(x, τ)dτ , µi,av =

∫

∞

0 Cav(x, τ) τ
idτ

µ0,av
, i = 1, 2, 3, · · · , (42)

where

Cav(x, τ) = 2

1
∫

0

C(x, ρ, τ)ρdρ. (43)

Due to its moment generating property, the Laplace transformation can be used to obtain

analytical expressions for the moments. Temporal moments are derived analytically as func-

tions of radial coordinate ρ at the outlet of the column (x = 1). The following relation is

utilized to obtain analytical temporal moments from the Hankel and Laplace transformed

concentration C̄H in Eq. (36) or (41)

µi,H = (−1)i lim
s→0

di(C̄H(x, λn, s))

dsi
, i = 0, 1, 2, · · · . (44)

The true moments µi(ρ) are obtained from Eq. (26) by taking the i-th moment of concentra-

tion on the both sides of that equation. Thus, on multiplying both sides of Eq. (26) with τ i
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and integrating over τ from 0 to ∞, we get

µi(ρ) = 2µi,H(λn = 0) + 2
∞
∑

n=1

µi,H(λn)
J0(λnρ)

|J0(λn)|2
. (45)

Further, the averaged non-normalized temporal moments Mi,av are determined as

Mi,av = 2

1
∫

0

µi(ρ)ρdρ , i = 0, 1, 2, · · · . (46)

Lastly, the normalized averaged temporal moments, defined in Eq. (42) and frequently used

in chemical engineering [24], are given as

µi,av =
Mi,av

µ0,av
, µ0,av =M0,av, i = 1, 2, 3, · · · . (47)

The above temporal moments µi,av up to fourth order are obtained to interpret the behavior

of a solute moving through the column. The first three central moments can be obtained as

[24]

µ′2,av = µ2,av − µ21,av , (48)

µ′3,av = µ3,av − 3µ1,avµ2,av + 2µ31,av , (49)

µ′4,av = µ4,av − 4µ1,avµ3,av + 6µ21,avµ2,av − 3µ41,av . (50)

The corresponding numerical i-th moment of the band profile at the outlet of the column of

length x = 1 is obtained as

µi,av =

∫

∞

0 Cav(x = 1, τ) τ idτ

µ0,av
, i = 2, 3, 4, · · · , (51)

where, µ0,av for x = 1 is given by Eq. (42). The trapezoidal rule is utilized to approximate

the integrals appearing in Eqs. (42) and (51).

The column efficiency N , which is also known as the plate number, and the height of an

equivalent theoretical plate (HETP) can be calculated using the moments [15, 24]. This

is a well known common measure for ideal mass transfer within packed beds in chemical

engineering and is calculated for negligible pulse width as:

N =
µ21,av
µ′2,av

, HETP =
1

N
, (52)

where µ21,av is the square of the first averaged moment and µ′2,av is the second central averaged

moment.

The analytical moments of 2D-GRM for the considered two sets of boundary conditions are

presented in Appendix A.
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5. Numerical Scheme

Various numerical schemes have been applied in the literature to approximate 1D chromato-

graphic models of different complexities [20, 24, 43, 54]. In this work, a semi-discrete high

resolution flux-limiting finite volume scheme, presented in [20, 43, 54] for the 1D models, is

extended to approximate the current 2D-model solutions. A second order total variation di-

minishing Rung-Kutta (TVD-RK) method of order 2 is applied to solve the resulting system

of ordinary differential equations [55]. In our previous article [43], we have proved analytically

and numerically that this scheme is second order accurate.

For the sake of simplicity and better understanding, we derive the scheme for the case of one-

component 2D-GRM only. Extension of this scheme to two and three-component mixtures is

straightforward.

In order to derive this scheme, let Nx, Nρ and Nγ be the large integers in x, ρ and γ

coordinates respectively. We consider a domain [0, 1] × [0, 1] × [0, 1] which is covered by

cells Ωklm ≡ [xk− 1
2
, xk+ 1

2
] × [ρl− 1

2
, ρl+ 1

2
] × [γm−

1
2
, γm+ 1

2
] for 1 ≤ k ≤ Nx, 1 ≤ l ≤ Nρ and

1 ≤ m ≤ Nγ . The representative coordinate points in the cell Ωklm are denoted by (xk, ρl, γm).

Here,

xk =
xk− 1

2
+ xk+ 1

2

2
, ρl =

ρl− 1
2
+ ρl+ 1

2

2
, γm =

γm−
1
2
+ γm+ 1

2

2
(53)

and for the current uniform mesh

∆x = xk− 1
2
− xk+ 1

2
, ∆ρ = ρl− 1

2
− ρl+ 1

2
, ∆γ = γm−

1
2
− γm+ 1

2
. (54)

Note that

C := C(x, ρ, t) and Cp := Cp(x, ρ, γ, t). (55)

Therefore, for Ikl := [xk− 1
2
, xk+ 1

2
] × [ρl− 1

2
, ρl+ 1

2
] and Ωklm := [xk− 1

2
, xk+ 1

2
] × [ρl− 1

2
, ρl+ 1

2
] ×

[γm−
1
2
, γm+ 1

2
], the cell averaged values Ck,l(t) and Cp,k,l,m(t) at any time t are expressed as

Ck,l = Ck,l(t) =
1

∆xk∆ρl

∫

Ik

C(ρ, x, t)dρdx, (56)

Cp,k,l,m = Cp,k,l,m(t) =
1

∆xk∆ρl∆γm

∫

Ωklm

C(γ, ρ, x, t)dγdρdx (57)
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On integrating Eq. (10) for Nc = 1 over the interval Ikl and using Eqs. (56) and (57), we

obtain

dCk,l

dτ
=−

Ck+ 1
2
,l − Ck− 1

2
,l

∆x
+

1

∆xPez

[

(

∂C

∂x

)

k+ 1
2
,l

−

(

∂C

∂x

)

k− 1
2
,l

]

− ξ
(

Ck,l − Cp,k,l,Nγ

)

+
1

∆ρPeρ

[

(

∂C

∂ρ

)

k,l+ 1
2

−

(

∂C

∂ρ

)

k,l− 1
2

+
Ck,l+ 1

2
−Ck,l− 1

2

ρl+ 1
2

]

, (58)

where k = 1, 2, ..., Nx and l = 1, 2, ..., Nρ. The differential terms of the axial and radial

diffusion parts can be approximated as:

(

∂C

∂x

)

k± 1
2
,l

= ±
(Ck,±1,l − Ck,l)

∆x
(59)

and

(

∂C

∂ρ

)

k,l± 1
2

= ±
(Ck,l±1 −Ck,l)

∆ρ
. (60)

Moreover, integration of Eq. (11) over the interval Ωklm gives

dCp,k,l,m

dτ
=

η

Jk,l,m(1− ρcore)2∆γ

[

(

∂Cp

∂γ

)

k,l,m+ 1

2

−

(

∂Cp

∂γ

)

k,l,m−
1

2

+
2(Cp,k,l,m+ 1

2

− Cp,k,l,m−
1

2

)

γm+ 1

2

+ ρcore

(1−ρcore)

]

,

(61)

where due to Langmuir isotherm in Eq. (6)

Jk,l,m = ǫp +
(1− ǫp)a

(1 + (bcinj)Cp,k,l,m)2
(62)

and

(

∂Cp

∂γ

)

k,l,m±
1
2

= ±
(Ck,l,m±1 − Ck,l,m)

∆γ
. (63)

The next step is to device a procedure for approximating concentration fluxes at the cell

interfaces xk± 1
2
, ρl± 1

2
and γm±

1
2
in Eqs. (58) and (61). Several numerical schemes can be used

for approximating these fluxes. In this study, the following first and second order accurate

methods are used to approximate concentrations at the cell interfaces, while the TVD-RK

scheme is applied to obtain a second order accuracy in time [54, 55].

Since η
Jk,l,m(1−ρcore)2∆γ

and the velocity u are both positive, the contractions C and Cp at the

cell interfaces are approximated in the following manner

Ck,l+ 1
2
= Ck,l Ck,l− 1

2
= Ck,l−1, (64)
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Cp,k,l,m+ 1
2
= Cp,k,l,m Cp,k,l,m−

1
2
= Cp,k,l,m−1. (65)

Eqs. (64) and (65) give a first order accuracy of the numerical scheme in the axial- and

radial-coordinates. To obtain second order accurate scheme, the fluxes are approximated as

Ck,l+ 1
2
= Ck,l +

1

2
ϕ(µk,l)(Ck,l − Ck,l−1), µk,l =

Ck,l+1 − Ck,l + ξ

Ck,l − Ck,l−1 + ξ
, (66)

Cp,k,l,m+ 1

2

= Cp,k,l,m +
1

2
φ(νk,l,m)(Cp,k,l,m − Cp,k,l,m−1), νk,l,m =

Cp,k,l,m+1 − Cp,k,l,m + ξ

Cp,k,l,m − Cp,k,l,m−1 + ξ
. (67)

Eqs. (66) and (67) produce a flux-limiting high resolution scheme. Here, a small number

ξ = 10−10 is used to prevent division by zero. The flux limiting functions ϕ and φ are used

to preserve the local monotonicity (positivity) of the scheme as defined below [43, 54]

ϕ(µk,l) = max

(

0,min

(

2µk,l,min

(

1

3
+

2

3
µk,l, 2

)))

, (68)

φ(νk,l,m) = max

(

0,min

(

2νk,l,m,min

(

1

3
+

2

3
νk,l,m, 2

)))

. (69)

At the boundary intervals, the proposed high resolution scheme is not applicable. Thus, the

first order backward approximation is applied at the cell boundary fluxes, while the high

resolution scheme is used to compute the fluxes at all interior cell interfaces. It is should be

noted that the use of first order scheme will not diminish the global accuracy of the proposed

numerical scheme, see [54] for more details.

Finally, a second order TVD-RK scheme is used to solve Eqs.(58)-(69) to obtain the second

order accuracy in time [55]. The right-hand-side of Eqs. (58) and (61) are denoted as

L(C,Cp |γ=1) and M(Cp). The following stages are used to update C and Cp by a second

order TVD Runge-Kutta scheme [55]:

C(1) = Cn +∆τL(Cn, Cn
p |γ=1), C(1)

p = Cn
p +∆τM(Cn

p ), (70)

Cn+1 =
1

2
[Cn + C(1) +∆τL(C(1), C(1)

p |γ=1)], Cn+1
p =

1

2
[Cn

p + C(1)
p +∆τM(C(1)

p )], (71)

where C and Cp are solutions at the previous time step τn and Cn+1 and Cn+1
p are updated

solutions at the next time step τn+1. Here, the time step ∆τ is calculated under the following

Courant-Friedrichs-Lewy (CFL) condition:

∆τ ≤
1

2
min

(

∆x,∆x2 min(Pez,i),
∆γ2(1− ρcore)

2

max(J−1
k,l,mη)

,
ρcore(1− ρcore)∆γ

2max(J−1
k,l,mη)

)

. (72)
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The above numerical scheme was programmed in C language with 50 × 20 × 20 grid points

and was executed on a laptop computer containing dual-core Intel processor with a random

access memory of 8 gigabytes.

5.1. Process performance criteria

Industrial processes need optimization for efficiency, productivity and purity, the same is

also true for preparative chromatographic processes. A performance criterion needed for the

assessment of quality of a product was introduced in [56]. The same criteria is utilized in

this work to assess the performance of a cylindrical chromatographic column packed with

core-shell particles. A two component mixture is considered in which component 1 has lower

affinity for the stationary phase as compared to the component 2, i.e. a1 < a2. Let ci = cinj,iCi

denote the concentration of ith component in grams per liter, where Ci is the dimensionless

concentration normalized with cinj,i as defined in Eq. (3). Let τ1 be the dimensionless time

at which the fraction of component 1 exceeds some threshold, i.e. c1 ≥ ǫcinj,1, where ǫ = 10−5

in this case. Moreover, let τ2 be the time at which the fraction of component 2 drops below

some threshold c2 ≤ ǫcinj,1. The cycle time is the time lapse between two successive injections

and is denoted by:

τcyc = τ2 − τ1. (73)

The cut time of component 1 is the time at which fractionation of this component stops. The

following equation is used to calculate the cut time τcut of component 1:

Pur =

∫ τcut
τ1

cav,1(x = 1, τ) dτ
∫ τcut
τ1

[cav,1(x = 1, τ) + cav,2(x = 1, τ) ]dτ
, (74)

where cav = cinj,1Cav is defined by Eq. (43). The required peak area based purity was set

equal to 99%. A reduced productivity Pr is the amount of desired compound produced per

time cycle. For component 1, it is defined as:

Pr =

∫ τcut
τ1

cav,1(x = 1, τ) dτ

τcyc
. (75)

This reduced productivity can be easily back transformed to the usual dimensional form by

multiplying with the volumetric flow rate. The recovery yield is the ratio of the amount of

desired component in purified fraction and the amount injected at the column inlet. For
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component 1, it is expressed as:

Y =

∫ τcut
τ1

cav,1(x = 1, τ) dτ
∫ τ2
τ1
cav,1(x = 1, τ) dτ

. (76)

6. Numerical test problems

In this section, several test problems of the linear and nonlinear liquid chromatography are

considered. In the case of linear isotherm, the semi-analytical solutions and moments de-

rived in Sections 3 and 4 are validated. The high resolution finite volume scheme (HR-FVS)

discussed in Section 5 is also applied to numerically approximate the model equations for

verifying the correctness of the semi-analytical results. In the case of nonlinear isotherm, the

solutions of the model equations are numerically approximated by the same HR-FVS. In all

test problems, we have used 50× 20× 20 grid points for the HR-FVS. In the considered test

problems, the effects of the core radius fraction ρcore and cinj,i are analyzed. Moreover, the

effects of Pez, Peρ, ζ, and η characterizing the axial dispersion, radial dispersion, film mass

transfer resistance, and intraparticle diffusion resistance, are analyzed on the elution profiles

and moments. For the case of nonlinear isotherm, one, two and three components mixture

are examined for two different values (0 and 0.8) of the core radius fraction ρcore. Unless

otherwise stated, the parameters used in the test problems are given in Table 1. All these

parameters are chosen in accordance with ranges typically encountered in HPLC applications

[24]. However, we must point out that these parameters do not belong to any particular

experiment.

6.1. Linear isotherm: effects of the core radius fraction ρcore on the elution profiles

Figures 2 (a) and (b) shows a comparison of the concentration profiles for different core radius

fractions including fully porous beads. As ρcore increases from 0 (fully porous beads) to 0.85

(beads with a thin shell), the elution profiles becomes sharper, i.e. efficiency increases and this

reduces the residence time in the column i.e., capacity decreases. The visible sharpening and

the increased symmetry of the peaks in Figure 2 are due to the reduced intraparticle diffusional

mass transfer resistance. The shorter retention times are due to the loss of binding sites with a

larger ρcore value, resulting in less interaction between the mobile and the stationary phases for

adsorption and desorption. Also, Figure 2 (b) shows that the semi-analytical and numerical

solutions of HR-FVS are in good agreement for all values of ρcore. Table 2 shows CPU times
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of both analytical and HR-FVS solutions, as well as the L1−errors in time of the HR-FVS

at the outlet of the column and at the center of cross-sectional area, i.e. at x = 1 and ρ = 0.

Here, the following formula was used

L1 − error =

NT
∑

n=1

|Cn
A − Cn

N |∆t , (77)

where Cn
A := CA(x = 1, ρ = 0, τn) denotes the analytical solution at the column outlet and at

the center of cross-sectional area at time τn and Cn
N := CN (x = 1, ρ = 0, τn) represents the

corresponding numerical solution. Moreover, NT denotes the total number of time steps and

∆t represents the time step size. The results indicates the good accuracy of our proposed

numerical algorithm and provides further confidence on the derived semi-analytical solutions.

6.2. Linear isotherm: effects of kinetic parameters

Figures 3 to 6 show the effects of model parameters Pez, Peρ, ζ and η on the elution profiles

for two different values of ρcore. Figure 3 shows the effects of the radial Peclet number on

the elution profiles for core-shell particles (ρcore = 0.8). The results were obtained for an

injection through the inner zone using smaller and larger Peclet numbers (i.e. Peρ = 1.5 and

Peρ = 150) which corresponds to columns of smaller and larger diameters, respectively. The

other parameters are exactly the same as given in Table 1. In the case of larger radial Peclet

number (i.e. larger diameter column), the difference between 1D (see [22]) and 2D models is

more pronounced, compared to the case of smaller radial Peclet number (i.e. smaller diameter

column). Also, the 1D plots (i.e. Figure 3 (c)) of the radial concentration profiles at the middle

of the column (x = 0.5) are obtained, using two different values of Peρ and keeping Pez=

600 fixed. It can be observed that the imposed step profile deteriorated faster for the small

Peρ (or larger radial dispersion coefficient Dr) and the limiting case, Peρ = 1.5 corresponds

to the elimination of injection profiles. These calculations confirm that the model correctly

describe the evolution of radial mass transfer and, thus, provides more detailed insight into

the column dynamics.

Figures 4 show the same case study for outer zone injection as considered in Figures 3 for

inner zone injection. Similar conclusions can obviously be drawn as in the case of inner zone

injection. Figures 5 (a) and (b) show the effects of the axial Peclet number for ρcore = 0 and

ρcore = 0.8, respectively. It can be seen that if the axial dispersion is more rate limiting, the

peak becomes wider and its height decreases. In other words, the column efficiency reduces
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whenever the value of Pez is decreased. Also, the effects of the different values of ρcore can

clearly be seen on these plots. Figure 6 show that for small values of ζ and η, the mass

transfer and diffusion rates are relatively slow. Thus, the peak are tailed and broadened.

6.3. Linear isotherm: discussion on analytical moments and HETP-curves

Figure 7 gives a quantitative comparison of analytical and numerical averaged moments for

different core radius fractions ρcore. It can be seen that as ρcore increases from 0 (fully porous

beads) to 0.8 (beads with a thin shell), the values of the moments are decreasing. With an

increase of ρcore, the first moment µ1, describing the retention time of the elution profile,

decreases. As ρcore increases, the profiles become sharper, giving a reduction in the second

central moment µ′2 which measures the variance of the elution profiles. The third central

moment µ′3, which measures the asymmetry of the elution profiles, is also decreasing with

increasing ρcore. Furthermore, the fourth central moment µ′4, which measures the tailedness

or peakedness of the the elution profiles also decreases with increasing ρcore. A good agreement

can be seen between analytical and numerical results. The scale of Figure 7 (d) ranges from

0 to 8000 and the large analytical expression of µ′4 involves several arithmetic operations.

Thus, large values of the µ′4 and errors in the calculations of both analytical and numerical

solutions lead to this visible difference between the two solutions. However, this difference is

acceptable for this high order complicated moment, as these results are obtained after several

truncation and round off errors. Figure 8 shows inner zone injection effects of the radial

peclet number Peρ on the local moments for ρcore = 0.8. The plots of this figure show that

moments approach to constant values along the radial coordinate for smallest value of Peρ

or largest Dr. For the smallest value of Peρ = 1.5, the results correspond to the 1D results

presented in Appendix A of Qamar et al. [20]. Since the concentration is injected via the

inner cylindrical core, all moments do not change close to the column center. The changes

clearly occur in the outer section. Although, trends of the moments are similar, on inspecting

closer the y-axis, the magnitudes reveal that higher moment change more significantly with

changing the Peρ. Similar trends were also observed in the case of injection through outer

zone. These results are in agreement with the results in Figure 3 (c). For the effects of Peρ

on fully porous particles, see Qamar et al. [41]. Figures 9 (a)-(d) shows plots of the local

moment on the radial coordinate this time for ρcore = 0, 0.5 and 0.8. It can be seen that the

values of the moments are decreasing as the value of ρcore is increased from 0 to 0.8. Figure
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9 (e) shows the results of the plotted plate heights HETP (c.f. Eq. (52)) as a function of the

velocity u. The illustrated calculations were done for the Dirichlet BC and different values of

ρcore. It can be seen that an increase in ρcore, (i.e. a decrease of the thickness of the porous

layer), causes smaller HETP-values. For a detailed result and analysis of the HETP curves,

see Qamar et al. [22].

6.4. Nonlinear isotherms: one, two and three components mixture

Figure 10 show the results for nonlinear isothermal model case (b = 10), for ρcore =0, 0.6 and

0.85. Comparing these results with the results of Figure 2, it is apparent that the nonlinear

effects caused further reduction in the retention times and more pronounced peak tailings.

Figure 11 shows the effect of ρcore on the retention times and band broadening of the elution

profiles for a two-component mixture. It can be seen that for fully porous particles the overlap

in the elution profiles is very significant and the separation of the two peaks is not achieved

in this case. However, for core-shell particles with ρcore = 0.8 the elution peaks are sharper,

retention times of both components are shorter and the resolution is much better. It can also

be observed that separation of the two peaks is almost achieved due to the decrease in band

broadening. Moreover, the aggregate dimensionless time required for both elution peaks to be

fully observed is significantly reduced from 140 for fully porous particles to 60 for ρcore = 0.8,

thereby offering larger productivity in a repetitive batch regime. Figure 12 shows the effect

of ρcore on retention times and band broadening of the elution profiles for a three-component

mixture. The same situation seen in the two-component case (c.f. Figure 11) is observed here

as ρcore = 0.8 improved the separation of the mixtures. The aggregate dimensionless time

required for the three elution peaks to be fully observed was also significantly reduced from

140 for ρcore = 0 to 60 for ρcore = 0.8.

6.5. Process performance assessment

Figure 13 shows the plot of τcut, τcyc, Pr, and Y (c.f. (73)(76)) over ρcore. It can be seen

that the cut time decreases from 34.38 for fully porous particles to 13.01 for core-shell par-

ticles having ρcore = 0.875. Similarly, the cycle time decreases from 134.32 to 37.81. The

productivity increases till ρcore = 0.8 and decreases afterwards. Also, the yield Y increases

till ρcore = 0.85 and a little decreases at ρcore = 0.875. Figure 14 shows the effect of the

injection concentration cinj on the parameters τcut, τcyc, Pr, and Y (c.f. Eqs. (73)-(76)) for
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four different values of ρcore. Here, we have chosen cinj,1 = cinj,2. On increasing cinj,1, the

productivity increases and achieves a maximum value after which it maintains a steady value

for all values of ρcore. Table 3 lists the maximum values of productivity along with other

parameters at the given values of ρcore and cinj,1. It can be seen in Table 3 and Figure 14

that maximum values of productivity were achieved in the range of 5.0g/l ≤ cinj,1 ≤ 9.0g/l

for 0 ≤ ρcore ≤ 0.85. In this range, the maximum productivity is found at ρcore = 0.8 and

cinj,1 = 8.0. It should be noted that an increase in the feed concentration is equivalent to

the increase of bj as shown in the isotherm expression given by Eq. (6). The effects of two

kinetic parameters (a) the external mass transfer resistance, expressed as ζ (Biot number)

and (b) the intraparticle diffusion resistance, expressed as η, are further evaluated. Figure 15

shows that the optimal values of ρcore depend on the kinetic parameter ζ. Taking the results

of Figures 13(c) and (d) generated for ζ = 50 as a reference, two other Biot numbers were

considered (ζ = 15 and ζ = 150). A decrease and an increase of the mass transfer rate around

the particles changed in the same way the ratio between external and internal mass transfer

resistances. Figure 15(a) shows that the optimal ρcore values, which lead to the highest pro-

ductivity for collecting the first eluting component, move to larger values on decreasing ζ, i.e.

to thinner shell layers. Simultaneously, the recovery drops with a decrease in mass transfer

rate. The differences in productivity and yield for Biot numbers of 50 or 150 are significant

as compared to the differences between Biot numbers of 15 and 50. This indicates that for

ζ = 50 the effect of the transport through the laminar boundary layer is not negligible. Band

shapes under such conditions are essentially controlled by internal mass transfer resistances

and axial dispersion. Lastly, the results displayed in Figure 15(c) and (d) show the depen-

dence of optimal ρcore values on the parameter η. Once again, taking the results of Figures

13(c) and (d) generated for η = 2.0 as a reference, two other η numbers were considered (i.e.

η = 0.5, 2.5). Figure 15(c) shows that the optimal ρcore values, which lead to the highest

productivity for collecting the first eluting component, move to lower values on increasing η.

For η = 2.5 the optimum ρcore is roughly 0.8 at a higher output than for η = 2.0. Thus, faster

transfer rates in the shell allow us to thicken this layer. Simultaneously, the recovery drops

monotonously with a decrease in η value. It should be emphasized that these results in Figure

15 are just valid for the given feed composition. Changes in the optima would occur for other

injections concentrations as illustrated in Figure 14. With the model applied and the accurate
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solution method investigated, the impact of all other relevant parameters could be studied in

detail. The selected case studies of this manuscript clearly indicate that a full optimization of

core-shell particles for applications in nonlinear preparative chromatography is a challenging

task. For application in preparative chromatography, a rational optimization needs to be

carefully considered, besides the geometric, kinetic and thermodynamic parameters, also the

operating parameters, in particular the injection concentrations.

7. Conclusion

Analytical and numerical solutions of a two-dimensional general rate model were derived

to simulate single and multi-component solutes transports in the chromatographic columns

of cylindrical geometry packed with core-shell particles. For the linear model equations, the

analytical solutions were derived by successively applying the finite Hankel and Laplace trans-

formations. The solutions were derived for two sets of boundary conditions and considering

injections through inner and outer zones of the column inlet cross section. The developed ana-

lytical solutions extend our previous analysis by incorporating the influences of mass transfer

coefficient, intraparticle diffusion, and longitudinal and radial dispersion coefficients. The

derived analytical solutions were compared with the numerical solutions of a high resolution

flux limiting finite volume scheme. Typical case studies were considered and analyzed. Such

analytical solutions are useful to perform initial or approximated analysis of the field scale

scenarios, to analyze the underlying transport process, to do sensitivity analysis, and to vali-

date numerical solutions, and to determine longitudinal and radial dispersion coefficients from

experimental moments. For the nonlinear model equations, the same high resolution finite

volume scheme was used to obtain approximate solutions of the nonlinear model for one, two

and three components mixture. The current 2D-GRM is more useful than 1D models when

the radial dispersion is rate limiting.

Appendix A

In this work, the first four moments are calculated for both Dirichlet (Eq.(36) and Eq.(44))

and Danckwert boundary conditions (Eq.(41) and Eq.(44)).

Case 1: Rectangular concentration pulse injection as Dirichlet BCs (Eq. (31) and

(32)):
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The zeroth moment: It is obtained for i = 0:

Let us define

v =

√

Pe2z +
4Pezλ2n
Peρ

. (A-1)

Then

µ0,H = τinjF (λn) exp

(

Pez − v

2

)

, (A-2)

where, F (λn) is given by Eqs. (33) and (34).

First moment: for i = 1:

µ1,H =

[

τinj
2

+
Pez

(

1 + (1− ρcore)
2a∗F

)

v

]

µ0,H , (A-3)

where a∗ is given by Eq. (24).

Second moment: for i = 2:

µ2,H =

[

τ2inj
3

+
Pez

(

1 + (1− ρcore)
2a∗F

)

v
τinj +

2Pe2z + Pe2zv

v3
(

1 + (1− ρcore)
2a∗F

)2

+
2Pe2z(1− ρcore)

4a∗
2
F (ζ + 5)

15vηζ

]

µ0,H . (A-4)

Third moment: for i = 3:

µ3,H =

[

τ3inj
4

+
τ2injPez

v

(

1 + (1− ρcore)
2a∗F

)

+

(

3Pe2z (2 + v)

2v3
(

1 + (1− ρcore)
2a∗F

)2

+
Pez(1− ρcore)

4a∗
2
F (ζ + 5)

5vηζ

)

τinj +
12Pe3z + Pe3zv

2 + 6Pe3zv

v5
(

1 + (1− ρcore)
2a∗F

)3

+
2Pe2z

(

1 + (1− ρcore)
2a∗F

)

(1− ρcore)
4a∗

2
F (ζ + 5) (v + 2)

5v3ζη

+
2Pez(1− ρcore)

6a∗
3
F
(

2ζ3 + 14ζ + 35
)

105vζ2η3

]

µ0,H . (A-5)

Fourth moment: for i = 4

µ4,H =

[

τ4inj
5

+
Pez

(

1 + (1− ρcore)
2a∗F

)

v
τ3inj +

(

2Pe2z (2 + v)
(

1 + (1 − ρcore)
2a∗F

)2

v3

+
4Pez(1− ρcore)

4a∗
2

F (ζ + 5)

15vζη

)

τ2inj +

(

2
(

12Pe3z + Pe3zv
2 + 6Pe3zv

)

v5
(

1 + (1− ρcore)
2a∗F

)3
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+
4Pe2z(1− ρcore)

4a∗
2

F (ζ + 5)

5v3ζη
(2 + v) +

4Pez(1 − ρcore)
6a∗

3

F
(

2D∗
2

+ 14ζ + 35
)

105vζ2η2



 τinj

+
Pe4z[120 + 12v2 +

(

v2 + 60
)

v]

v7
(

1 + (1− ρcore)
2a∗F

)4

+
4Pe3z

(

1 + (1− ρcore)
2a∗F

)2
(1− ρcore)

4a∗
2

F (ζ + 5)

5v5ζη

(

v2 + 6v + 12
)

+
8Pe2z

(

1 + (1− ρcore)
2a∗F

)

(1− ρcore)
6a∗

3

F
(

2ζ2 + 14ζ + 35
)

105v3ζ2η2
(v + 2)

+
4Pe2z(1− ρcore)

8a∗
4

F 2 (ζ + 5)
2

75v3ζ2η2
(v + 2) +

8Pez(1− ρcore)
8a∗

4

F

1575vζ3η3
·

(

17ζ2 + 105ζ + 175
)]

µ0,H . (A-6)

Case 2: Rectangular concentration pulse injection as Danckwert BC:(Eqs. (37)

and (38)).

Zeroth moment: By defining

w =

√

1 +
4λ2n

PezPeρ
, (A-7)

we have

µ0,H =
4τinjF (λn)e

Pezw

(w + 1)2 e
Pez (w+1)

2 − (w − 1)2 e−
Pez(w−1)

2

. (A-8)

First Moment:

The first moment for i = 1 is given as

µ1,H =

[

τinj
2

+
(1 + (1− ρcore)

2a∗F )

Pezw

(

ψ3ψ1 − ψ4ψ2

ψ7
−

2

w

)]

µ0,H , (A-9)

where

ψ1 = e
Pez (w+1)

2 , ψ2 = e
−Pez(w−1)

2 , ψ3 = 4(w + 1) + Pez(w + 1)2, (A-10)

ψ4 = 4(w − 1)− Pez(w − 1)2, ψ5 = w + 1, ψ6 = w − 1, (A-11)

ψ7 = (w + 1)2e
Pez(w+1)

2 − (w − 1)2e
−Pez (w−1)

2 . (A-12)

Second Moment:

Using the above definitions and equations for i = 2, we have obtain

µ2,H =

[

τ2inj
3

+

[

(1 + (1− ρcore)
2a∗F )

Pezw

(

ψ3ψ1 − ψ4ψ2

ψ7
−

2

w

)]

τinj +
2(1 + (1− ρcore)

2a∗F )2

Pe2zw
2

(

ψ3ψ1 − ψ4ψ2

ψ7

)2

−
4
(

1 + (1− ρcore)
2a∗F

)2

Pe2zw
3

(

ψ3ψ1 − ψ4ψ2

ψ7

)

+
2(1 + (1 − ρcore)

2a∗F )(ψ2
5ψ1 + ψ2

6ψ2)

Pezw3ψ7
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+
8(1 + (1− ρcore)

2a∗F )2(ψ1 − ψ2)

Pe2zw
2ψ7

+
(1 + (1 − ρcore)

2a∗F )2

w2

+
2

15

(

(ψ3ψ1 − ψ4ψ2)− (ψ2
5ψ1 + ψ2

6ψ2)

Pezwζηψ7

)

(1− ρcore)
4a∗2F (ζ + 5)

−
8(1 + (1− ρcore)

2a∗F )2(ψ6ψ2 + ψ5ψ1)

Pezw2ψ7
+

8(1 + (1− ρcore)
2a∗F )2(ψ6ψ2 − ψ5ψ1)

Pe2zw
3ψ7

+
4

Pezw2

(

(1 − ρcore)
4a∗2F (ζ + 5)

15ζη
−

(1 + (1− ρcore)
2a∗F )2

Pezw2

)

+
8(1− ρcore)

4a∗2F (ζ + 5)(ψ5ψ1 − ψ6ψ2)

15Pezwζηψ7

]

µ0,H . (A-13)

Third Moment:

Let us define

ψ8 =
ψ3ψ1 − ψ4ψ2

Pezwψ7
(1 + (1− ρcore)

2a∗F ), (A-14)

ψ9 =
(1− ρcore)

4a∗2F (ζ + 5)

5Pezw2ζη
−

3(1 + (1− ρcore)
2a∗F )2

Pe2zw
4

, ψ10 =
ψ2
5ψ1 + ψ2

6ψ2

Pezw3ψ7
, (A-15)

ψ11 =
ψ6ψ2 + ψ5ψ1

Pezw2ψ7
, ψ12 =

ψ1 − ψ2

Pe2zw
2ψ7

, ψ13 =
ψ6ψ2 − ψ5ψ1

Pezw2ψ7
, (A-16)

ψ14 =

[

(ψ3ψ1 − ψ4ψ2)− (ψ2
5ψ1 − ψ2

6ψ2)

5Pezwζηψ7

]

(1− ρcore)
4a∗2F, (A-17)

ψ15 =
(1− ρcore)

4a∗2F (ψ5ψ1 − ψ6ψ2)

5Pezwζηψ7
, ψ16 =

(1 + (1− ρcore)
2a ∗ F )(ψ1 + ψ2)

Pe2zw
2ψ7

. (A-18)

Then we have

µ3,H =

[

τ3inj
4

−

(

ψ8 −
2

Pezw2

)

τ2inj −

[

6(1 + (1− ρcore)
2a∗F )

Pezw
ψ8 + 3(1 + (1 − ρcore)

2a∗F )ψ10 + (ζ + 5)ψ14

+ 4(ζ + 5)ψ15 + 4ψ9 + 3ψ2
8 − (1 + (1− ρcore)

2a∗F )2
(

12ψ11 − 12ψ12 −
3

2w2
−

12ψ13

Pez

)]

τinj

+

(

6ψ8 −
6(1 + (1− ρcore)

2a∗F )

Pezw2

)

[

2(1 + (1− ρcore)
2a∗F )ψ10 − (1 + (1− ρcore)

2a∗F )2

(

8ψ11 − 8ψ12 −
1

w2
−

8ψ13

Pezw

)

−
2(1− ρcore)

4a∗2FPezw
2(ζ + 5)ψ10

15ζη
+

8

3
(ζ + 5)ψ15

]

+ (1 + (1− ρcore)
2a∗F )

(

16(ζ + 5)ψ15

Pezw2
−

4(1− ρcore)
4a∗2Fψ10

5ζη
−

8(1− ρcore)
4a∗2F (ζ + 5)

Pe2zw
4

+
24ψ16

w
+

2(1− ρcore)
4a∗2F (ζ + 5)Pezψ13

5ζη
+

16(1− ρcore)
4a∗2F (ζ + 5)Pezψ11

5ζη
+

12ψ2
8

Pezw2

)

+ (1 + (1− ρcore)
2a∗F )3

(

12ψ13 + Pezψ10 +
12ψ10

Pezw2
+

48ψ13

Pe2zw
3
+

6

Pezw4
−

48ψ11

Pezw2
+

48ψ12

Pezw2

+
24

Pe3zw
6

)

+

(

35

2
+ 7ζ + ζ2

)(

16(1− ρcore)
2a∗Fψ15

21ζη
+

4(1− ρcore)
6a∗3Fψ10w

2

105ζ2η2
+

8(1− ρcore)
6a∗3F

105Pezw2ζ2η2

)

−
2(ζ + 5)

5

(

8(1− ρcore)
4a∗2Fψ12

ζη
+

(1− ρcore)
4a∗2FPezwψ11

3ζη

)

− 6ψ3
8 + 4ψ9ψ8

]

µ0,H .

(A-19)
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Fourth Moment:

First, we also define the following

ψ17 =2(1 + (1− ρcore)
2a∗F )ψ10 − (1 + (1− ρcore)

2a∗F )2
(

8ψ11 − 8ψ12 −
1

w2
−

8ψ13

Pezw

)

−
2(1− ρcore)

4a∗2FPezw
2(ζ + 5)ψ10

15ζη
+

8

3
(ζ + 5)ψ15, (A-20)

ψ18 =(1 + (1 − ρcore)
2a∗F )3

(

12ψ13 + Pezψ10 +
12ψ10

Pezw2
+

48ψ13

Pe2zw
3
+

6

Pezw4
−

48ψ11

Pezw2
+

48ψ12

Pezw2

)

,

(A-21)

ψ19 =(1 + (1 − ρcore)
2a∗F )

(

16(ζ + 5)ψ15

Pezw2
−

4(1− ρcore)
4a∗2Fψ10

5ζη
+

24ψ16

w
+

2(1− ρcore)
4a∗2F (ζ + 5)Pezψ13

5ζη

+
16(1− ρcore)

4a∗2F (ζ + 5)Pezψ11

5ζη

)

, (A-22)

ψ20 =

(

35

2
+ 7ζ + ζ2

)(

16(1− ρcore)
2a∗Fψ15

21ζη
+

4(1− ρcore)
6a∗3Fψ10w

2

105ζ2η2

)

+
16(1− ρcore)

4a∗2F (ζ + 5)ψ12

5ζη
,

(A-23)

ψ21 =
(1 + (1 − ρcore)

2a∗F )(ζ + 5)a∗2F

5Pe2zw
4ζη

−
3(1 + (1− ρcore)

2a∗F )3

Pe3zw
6

+
8(1− ρcore)

6a∗3F (352 + 7ζ + ζ2)

315Pezw2ζη
,

(A-24)

ψ22 =
15(1 + (1 − ρcore)

2a∗F )4

Pe4zw
8

−
2(1− ρcore)

4a∗2F (1 + (1− ρcore)
2a∗F )2(ζ + 5)

5Pe3zw
6ζη

+
(1− ρcore)

8a∗4F 2(ζ + 5)2

675Pe2zw
4ζ2η2

−
4(1− ρcore)

6a∗3F (1 + (1 − ρcore)
2a∗F )(352 + 7ζ + ζ2)

315Pe2zw
4ζ2η2

+
16(1− ρcore)

8a∗4F 2(175 + 105ζ + 27ζ2)

4725Pezw2ζ3η3
,

(A-25)

ψ23 =
ψ2
6ψ2 − ψ1ψ

2
5

Pezw2ψ7
. (A-26)

Then the fourth moment is expressed as

µ4,H =

[

τ4inj
5

+

(

ψ8 +
2

Pezw2

)

τ3inj +

(

2ψ17 −
8(1 + (1− ρcore)

2a∗F )2ψ13

Pezw2
+ 4ψ2

8 − 8ψ9

)

τ2inj

+

(

12ψ17

(

1 + (1− ρcore)
2a∗F

Pezw2
− ψ8

)

+ 16ψ21 + 12ψ3
8 − 8ψ9ψ8 + 2(ψ18 + ψ19 + ψ20)

−
24(1 + (1− ρcore)

2a∗F )ψ2
8

Pezw2

)

τinj + 8ψ9ψ17 + 32ψ8ψ21 + 6ψ2
17 + 16ψ9ψ

2
8 + 24ψ4

8 −
16ψ22

Pezw

+
8(1 + (1 − ρcore)

2a∗F )

Pezw2
(6ψ8ψ17 − 6ψ3

8 − ψ18) + 8ψ8ψ18 − 36ψ2
8ψ17 + 4(1 + (1− ρcore)

2a∗F )2(ζ + 5)

(

12(1− ρcore)
4a∗2F

5Pezw2ζη
(ψ10 − 4ψ11 − 4ψ12) +

12ψ15

w2
+
Pezψ10

5ψη
+

6(1− ρcore)
4a∗2F

5wζη
(ψ21 + 4ψ12) +

4ψ15

Pe2zw
4

)

+ 4(1 + (1− ρcore)
2a∗F )4

(

36

Pezw3
(ψ13 − ψ16) +

Pezψ10

4w
+

4ψ10

w
+

3

w2
(4ψ12 − ψ10)−

30ψ10

Pe2zw
4

+
120

Pe2zw
4
(ψ11 − ψ10) +

120ψ13

Pe3zw
5
+

15ψ21

w4

)

+ 4(1 + (1− ρcore)
2a∗F )(

35

2
+ 7ζ + ζ2)

(

4(1− ρcore)
6a∗3F

105ζ2η2
(Pezψ21 + 2ψ10 − 8ψ11 − 8ψ12) +

32(1− ρcore)
2a∗Fψ15

21Pezw2ζ2η2

)

+
4(1− ρcore)

8a∗4F 2(ζ + 5)

75ζ2η2
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(

2(ζ + 5)(4ψ11 − ψ10) + 8ψ12 + Pezψ21 +
8(ψ + 5)ψ13

Pezw

)

+
8(175 + 105ζ + 27ζ2)

ζ2η2

(

(1− ρcore)
8a∗4F 2Pezw

2ψ10

1575ζη
+

4ψ15

315(1− ρcore)2a∗F

)]

µ0,H . (A-27)

The analytical expressions of solutions and moments have been implemented in Matlab

software. The corresponding author of this article is willing to provide these Matlab codes

to readers. The soft copies of these Matlab codes will also be available in the library of Max

Planck Institute Magdeburg, Germany.
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Table 1: Standard Parameters Used for the Computer Simulation.

Fig. nr. Comp. nr. ǫp,i ǫb Pez,i Peρ,i ai ηi ζi bi Ci ξ

2-5 1 0.333 0.4 600 15 4 2 50 0 1.0 450

6 1 0.333 0.4 600 15 4 0.2,2,20 0.5,5,50 0 1.0 450

7-9 1 0.333 0.4 600 15 4 2 50 0 1.0 450

10 1 0.333 0.4 1500 37.5 10 2 50 10 1.0 450

11 1 10 1.0 0.1

2 0.5 0.4 1500 37.5 30 2 50 1.0 0.1 450

12 1 10 0.5 0.1

2 30 1.5 0.1

3 0.5 0.4 1500 37.5 70 2 50 3.5 0.4 450

13-15 1 10 1.0 1.0

2 0.5 0.4 1500 37.5 30 2 50 1.0 1.0 450

Table 2: Single component elution: CPU times and L1-errors in the solutions of Figure 2

ρcore Analytical CPU(min) Numerical CPU(min) L1-error (HR-FVS)

0 3.5 11 4.95 × 10−5

0.6 3.6 12 4.95 × 10−5

0.85 3.7 16 5.03 × 10−5

Table 3: Optimum values of parameters used for assessment.

ρcore cinj,1 Pr Y τcyc τcut

0 9.0 0.0027 0.85 128.82 30.14

0.4 8.0 0.0016 0.87 113.64 29.04

0.8 8.0 0.0038 0.98 53.64 17.08

0.85 5.0 0.0023 0.99 41.88 14.08
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Figure 2: Linear isotherm and inner zone injection: Effect of core-radius fraction on the elution profiles for

the Danckwerts BCs.
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Figure 3: Linear isotherm and inner zone injection: Effects of radial Peclet number (Peρ) on the concentration

profiles for ρcore = 0.8. The 1D plots in (c) are given at the centre of the column x = 0.5. The results were

obtained using the Danckwerts BC.

35



0
5

10
15

0

0.5

1
0

0.2

0.4

0.6

 

τ

Outer zone inj. Pe
ρ
=1.5, ρ

core
=0.8

ρ
 

C
(ρ

,x
=

1,
τ)

(a)

0
5

10
15

0

0.5

1
0

0.2

0.4

0.6

0.8

1

τ

Outer zone inj. Pe
ρ
=150, ρ

core
=0.8

ρ
C

(ρ
,x

=
1,

τ)

(b)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

ρ

C
(ρ

,x
=

0.
5,

τ=
1)

Outer zone inj.

 

 

Peρ=1.5

Peρ=150

(c)

ρ
core

=0.8

Figure 4: Linear isotherm and outer zone injection: Effects of the radial Peclet number (Peρ) on the concen-

tration profiles for ρcore = 0.8. The 1D plots in (c) are given at the centre of the column x = 0.5. The results

were obtained using the Danckwerts BC.
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Figure 5: Linear isotherm and inner zone injection: 1D plots at ρ = 0 and x = 1 for showing the effect of axial

Peclet number (Pez) on the elution profiles using Danckwerts BC.
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Figure 6: Linear isotherm and inner zone injection: Effects of mass transfer coefficients ζ and η on the

concentration profiles using Danckwerts BC.
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Figure 7: Linear isotherm and inner zone injection: Comparison of analytical and numerical moments for

different values of ρcore using Dirichlet BC.
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Figure 8: Linear isotherm and inner zone injection: Local moments showing the effect of radial peclet

number(Peρ) for ρcore = 0.8 using Dirichlet BC.
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Figure 9: Linear isotherm: Plots (a)-(d) show the effects ρcore on local moments for Peρ = 150 and Pez = 600.

Plot (e) shows HETP curves for different values of ρcore over u (c.f. Eq. (52)). The results were obtained using

the Danckwerts BC.
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Figure 10: Nonlinear isotherm and inner zone injection: 3D and 1D plots of the nonlinear single-component

elusion using Danckwerts BC.
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Figure 11: Nonlinear isotherm and inner zone injetion: 3D and 1D profiles for two-component mixture elusion

using Danckwerts BC. Here, ρcore = 0 and ρcore = 0.8.
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Figure 12: Nonlinear isotherm and inner zone injection: 3D and 1D profiles for three-component mixture

elusion using Danckwerts BC. Here, ρcore = 0 and ρcore = 0.8.
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Figure 13: Nonlinear isotherm and two-component mixture: plots of (a) τcut, (b) τcyc, (c) Pr, and (d) Y as

functions of ρcore for fixed values of cinj,1 = 1 = cinj,2, τinj = 0.1 and b1 = 1 = b2. The results were obtained

using the Danckwerts BC. The values of other standard parameters are given in Table 1.
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Figure 14: Nonlinear isotherm and two-component mixture: Plots of (a) τcut, (b) τcyc, (c) Pr, and (d) Y as

functions of cinj for different values of ρcore with cinj,1 = cinj,2, τinj = 0.1 and b1 = 1 = b2. The results were

obtained using the Danckwerts BC. The values of other standard parameters are given in Table 1.
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Figure 15: Nonlinear isotherm and two-component mixture: Plots (a), (b), (c) and (d) show the effects of ζ

and η on Pr and Y . Here, cinj,1 = 1.0 = cinj,2, τinj = 0.1 and b1 = 1 = b2. The results were obtained using

the Danckwerts BC. The values of other standard parameters are given in Table 1.

47


