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ABSTRACT
We investigate the time domain model order reduction (MOR)
framework using general orthogonal polynomials by Jiang and
Chen [1] and extend their idea by exploiting the structure of the
corresponding linear system of equations. Identifying an equiva-
lent Sylvester equation, we show a connection to a rational Krylov
subspace, and thus to moment matching. This theoretical link
between the MOR techniques is illustrated by three numerical
examples. For linear time-invariant systems, the link also motivates
that the time-domain approach can be at best as accurate as
moment matching, since the expansion points are fixed by the
choice of the polynomial basis, while in moment matching they
can be adapted to the system.
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1. Introduction

Various mathematical and physical processes can be modeled as linear time-invariant
(LTI) input-output systems

E _xðtÞ ¼ AxðtÞ þ BuðtÞ;
yðtÞ ¼ CxðtÞ; (1)

where E;A 2 R
n�n are sparse matrices, B 2 R

n�p and C 2 R
q�n are input and output

matrices, respectively, xðtÞ 2 R
n is the state vector, uðtÞ 2 R

p is the input vector, yðtÞ 2
R

q is the output vector and t 2 R represents time.
Since the order of the LTI system in (1) is often huge n � 103, a numerical

simulation might be too expensive or even impossible, caused by immense computa-
tional time and memory requirements. Nevertheless, the input-output behaviour of (1)
can be computed fast and accurately if the given system is reduced to a system

Er _xrðtÞ ¼ ArxrðtÞ þ BruðtÞ;
yrðtÞ ¼ CrxrðtÞ; (2)

that approximates the dynamic behaviour of (1), but Er;Ar 2 R
r�r, Br 2 R

r�p,
Cr 2 R

q�r, xrðtÞ 2 R
r, yrðtÞ 2 R

q with the reduced order r � n.
The aim of MOR is to approximate a system (1) with a huge order n by a system (2)

with a much smaller order r, such that structural properties are preserved and the
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approximation error yðtÞ � yrðtÞ over a given time interval ½t0; tf �, or the error of the
transfer functions GðsÞ � GrðsÞ over a frequency range ½s0; s1�, is small.

Transfer functions describe the relation between input and output in frequency
domain. For (1), (2) with zero initial states and an evaluation point s in frequency
domain, these are given by

GðsÞ ¼ CðsE� AÞ�1B; (3)

GrðsÞ ¼ CrðsEr � ArÞ�1Br: (4)

There exist numerous MOR approaches. H2 optimal MOR techniques like the iterative
rational Krylov algorithm (IRKA) (see, e.g. [2]) or the two-sided iteration algorithm
(see, e.g. [3]) measure their approximation error �2 in the H2 system norm (see, e.g. [4,
Chapter 5])

�2 :¼ k GðsÞ � GrðsÞkH2 :

These techniques are just two types of projection based MOR methods. There, the
system (1) is reduced using so-called projection matrices V;W 2 R

n�r that map the
matrices E;A;B and C onto a subspace approximating the space of the state vector xðtÞ.
The reduced system is given as

WTEV|fflfflffl{zfflfflffl}
Er

_xrðtÞ ¼ WTAV|fflfflffl{zfflfflffl}
Ar

xrðtÞ þ WTB|ffl{zffl}
Br

uðtÞ;

yrðtÞ ¼ CV|{z}
Cr

xrðtÞ; (5)

where xðtÞ � VxrðtÞ. A more simple example for projection methods is moment
matching, where V and W are computed to approximate the moments of the transfer
function. This method and its relevant properties are repeated in Section 4.1. It
represents one step in the procedure behind the IRKA iteration.

Also the balanced truncation technique falls into the class of projection based
reduction methods. Its error �1 is measured in the H1 norm (see, e.g. [4, Chapter 5])

�1 :¼k GðsÞ � GrðsÞkH1 :

Applying this method, the system (1) is first balanced, i.e. the observability and
controllability Gramians PO and PC, given as the solutions of two Lyapunov equations

ATPOEþ ETPOA ¼ �CTC;

APCE
T þ EPCA

T ¼ �BBT ;

are made equal and diagonal, such that PO ¼ PC ¼ diagðσ1 � � � σnÞ and σ1 	 � � � 	
σn > 0 are the systems invariant Hankel singular values (HSVs). The discardable
portions are identified and truncated according to the magnitude of the HSVs. More
details about this method can be found, e.g. in [4, Chapter 7].

The above MOR techniques are motivated and derived by frequency domain
considerations.
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In contrast to that, we next review the idea of Jiang and Chen [1] presenting a time
domain MOR framework based on orthogonal polynomials. In this paper, we only
consider single-input single-output (SISO) systems, i.e. p ¼ q ¼ 1 in (1) to simplify the
notation. Drawbacks of this method are the dependence of the reduced order model
(ROM) on the input uðtÞ and the initial state xðt0Þ ¼ x0.

The dependence on the input can be neglected, since we will see that piecewise
constant controls, which are the most important ones in practical applications anyway,
allow for a joint ROM to exist. However, a ROM depending on the initial state is
undesirable since the reduced system needs to be recomputed for each initial state or
ROMs need to be stored for all possible initial values.

Frequency domain based model reduction methods, such as balanced truncation or
moment matching, assume xðt0Þ ¼ 0 � � � 0½ �T ¼: O n;1 2 R

n, in the first place, in order
to avoid additional terms in the transfer function representation (3). For the compar-
ison, we will do the same in the time domain case in the following.

The remainder of this paper is organized as follows. The time domain MOR
approach based on general orthogonal polynomials by Jiang and Chen [1] is introduced
in Section 2. In Section 3, the structure of the resulting linear system of equations is
exploited to derive an equivalent Sylvester equation. Further a slight variation of the
approach is discussed that eliminates the initial condition in the case it is assumed to be
zero, which also simplifies the structure of the coefficients in the Sylvester equation.
Since we want to show a connection to moment matching, we briefly introduce this
Krylov subspace method in Section 4 concluding with an important equivalence to the
approaches of Section 3. Still, the additional freedom in the choice of the coefficients in
the Sylvester equation makes moment matching theoretically more flexible and better
adaptable to the original system under investigation. Numerical examples illustrated in
Section 5 demonstrate this advantage. Concluding remarks are given in Section 6.

2. Time Domain MOR Based on Orthogonal Polynomials (TDMOR)

As already mentioned above, we restrict ourselves to SISO systems, i.e. p ¼ q ¼ 1.
The framework in [1] uses W ¼ V in (5) and obtains the projection matrix V 2

R
n�r from the vector valued coefficients in series expansions of the state and input,

sampling their time dependence via orthogonal polynomials [5, Chapter 22].
The key property of orthogonal polynomials for the derivation of the framework in

[1] is given by the following theorem.
Theorem 2.1 (Differential recurrence formula, e.g. [6, Section 2.15]) For three subse-
quent orthogonal polynomials giðtÞ (i 2 N0) holds

gnðtÞ ¼ αn _gnþ1ðtÞ þ βn _gnðtÞ þ γn _gn�1ðtÞ; "n 2 N ;

where αn; βn and γn are differential recurrence coefficients. A list of such coefficients for
selected families can be found in Table 1.

We restrict our considerations to the polynomials investigated in [1]. Other poly-
nomials fulfilling Theorem 2.1 are for instance the Gegenbauer polynomials, a general-
ization of the Legendre polynomials (see, e.g. [6, Section 2.11]).
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The following repeats some of the details of the derivation in [1]. First, the state, the
initial condition and the input vector are approximated by the following truncated
series expansions:

xðtÞ � xrðtÞ ¼
Xr�1

i¼0

vigiðtÞ; (6)

x0 ¼ xðt0Þ � xrðt0Þ ¼
Xr�1

i¼0

vigiðt0Þ; (7)

uðtÞ � urðtÞ ¼
Xr�1

i¼1

wi _giðtÞ; (8)

where vi 2 R
n and wi 2 R are weights determining the subspace span Vf g and giðtÞ are

orthogonal polynomials representing the time dependence. Note, that the open litera-
ture provides no information about the remainder terms in equations (6)–(8). Thus, the
estimation of approximation errors, and resulting model reduction errors, is at best
difficult.

The approximations of the state (6) and the input (8) are inserted into the state
equation of (1) and using Theorem 2.1, one obtains an expression that only depends on
_giðtÞ, since g0 is always constant:

B
Xr�1

i¼1

wi _giðtÞ
 !

¼
Xr�1

i¼1

E� βiA
� �

vi _giðtÞ � Av0g0ðtÞ �
Xr
i¼2

αi�1Avi�1 _giðtÞ

�
Xr�2

i¼1

γiþ1Aviþ1 _giðtÞ:

A comparison of coefficients leads to the huge ðnr � nrÞ linear system of equations
Hv ¼ f presented in (9), where the approximation of the initial state (7) is only required
to obtain a square matrix

Table 1. Differential recurrence coefficients.
polynomial class αi βi γi
Chebychev-1 1

2iþ2
0 � 1

2i�2

Chebychev-2 1
2iþ2

0 � 1
2iþ2

Hermite 1
2iþ2

0 0

Jacobi ða; b > � 1Þ 2ðaþbþiþ1Þ
ðaþbþ2iþ2Þðaþbþ2iþ1Þ

2ða�bÞ
ðaþbþ2iÞðaþbþ2iþ2Þ � 2ðaþiÞðbþiÞ

ðaþbþ2iþ1Þðaþbþ2iÞðaþbþiÞ
Laguerre −1 1 0
Legendre 1

2iþ1
0 � 1

2iþ1
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g0ðt0ÞIn g1ðt0ÞIn g2ðt0ÞIn g3ðt0ÞIn � � � gr�1ðt0ÞIn
� g0ðtÞ

_g1ðtÞA E� β1A �γ2A
�α1A E� β2A �γ3A

. .
. . .

. . .
.

�αr�3A E� βr�2A �γr�1A
�αr�2A E� βr�1A

2
66666664

3
77777775

v0
v1
v2
..
.

vr�2

vr�1

2
66666664

3
77777775
¼

x0
Bw1

Bw2

..

.

Bwr�2

Bwr�1

2
66666664

3
77777775
; (9)

and In denotes the n -dimensional identity matrix.
In [1], this linear system of equations, with matrix H 2 R

nr�nr and right hand side
f 2 R

nr, is solved using an iterative algorithm. The solution vector v 2 R
nr is then used

to compute the projection matrix V 2 R
n�r by orthogonalizing the span of v1; � � � ; vr½ �.

In the following context, we will call this method TDMOR.
Note that H is not depending on time, since both g0 and _g1 are constant in time.

Further, the matrix H has a certain block-structure. We exploit this structure in the
following section to derive an equivalent formulation and a more well-posed variation
of this MOR method.

3. Structure Exploitation and a Slight Variation

3.1. Structure Exploitation (SYLTDMOR1)

We multiply the first equation in (9) by A and obtain the following equivalent linear
system of equations in Kronecker product (see, e.g. [7, Section 4.2]) form

~E
T 
 Aþ ~A

T 
 E
� �

v ¼ ~f :

Here

~ET ¼

g0ðt0Þ g1ðt0Þ g2ðt0Þ g3ðt0Þ � � � gr�1ðt0Þ
� g0ðtÞ

_g1ðtÞ �β1 �γ2
�α1 �β2 �γ3

. .
. . .

. . .
.

�αr�3 �βr�2 �γr�1
�αr�2 �βr�1

2
66666664

3
77777775
2 R

r�r;

~AT ¼ O 1;1 O 1;r�1

O r�1;1 Ir�1

� �
2 R

r�r;

~f ¼ ðAx0ÞT ðBw1ÞT . . . ðBwr�1ÞT
	 
T 2 R

nr:

Using the equivalence

BT 
 A
� �

vecðXÞ ¼ vecðCÞ , AXB ¼ C; (10)

(see, e.g. in [7, Section 4.3]), we obtain a Sylvester equation

AV ~Eþ EV ~A ¼ ~F; (11)

where v ¼ vecðVÞ, ~f ¼ vec ~F
� �

and vecð:Þ of a matrix A 2 R
m�n is defined as in
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vecðAÞ ¼ a1;1; . . . ; am;1; a1;2; . . . ; am;2; . . . ; a1;n; . . . ; am;n½ �T

and is called a vectorization (see, e.g. [7, Section 4.2]). A further orthogonalization of V
leads to the desired projection matrix. In the following, we will refer to this algorithm as
SYLTDMOR1.

Note that the matrix pencil ð~A; ~EÞ has at least one eigenvalue equal to zero caused by
the structure of ~A, which arises from the initial state condition. Therefore, the matrix H
in (9) is not invertible resulting in an infinite number of solutions and thus in a possibly
infinite number of ROMs. Hence, this method is not well-posed and its solution not
well-defined.

3.2. Variation of the Presented Algorithm (SYLTDMOR2)

In the approach of Jiang and Chen [1], the approximation of the initial state is only
required to obtain a square matrix. As a conclusion of Section 3.1, this condition turns
out to be linearly dependent anyway. Besides, a ROM depending on the initial state is
not desirable.

In Section 5, we compare to the frequency domain methods, thus also here we fix the
initial state to x0 ¼ xðt0Þ ¼ O n;1.

Doing so, we can neglect the constant polynomials g0ðtÞ in the approximation (6). In
order to keep an r dimensional approximation, we shift the sums by 1. Using the same
procedure as in Section 2, we end up with an nr � nr linear system of equations

Ĥv̂ ¼ f̂ . Rewriting it, again using the Kronecker product, we obtain

Ê
T 
 Aþ Â

T 
 E
� �

v̂ ¼ f̂ ;

where now

ÊT ¼ �

β1 γ2
α1 β2 γ3

. .
. . .

. . .
.

αr�2 βr�1 γr
αr�1 βr

2
666664

3
777775 2 R

r�r; ÂT ¼ Ir;

v̂ ¼ v̂T1 . . . v̂Tr
	 
2 R

nr; f̂ ¼ Bw1ð ÞT . . . Bwrð ÞT
	 
T2 R

nr:

Exploiting the equivalence (10) and the fact Â ¼ Ir, the linear system of equations

Ĥv̂ ¼ f̂ can be reformulated as the Sylvester equation

AV̂ Êþ E V̂ ¼ F̂; (12)

where v̂ ¼ vec V̂
� �

and f̂ ¼ vec F̂
� �

. As in Section 3.1, the projection matrix can be

obtained by orthogonalization of V̂ . In the following, we will call this method
SYLTDMOR2.

Compared to (11), Sylvester equation (12) does not depend on the initial state.
Moreover, the pencil ðIr; ÊÞ does not have a zero eigenvalue, such that (in contrast to
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(11)) (12) always allows for a unique solution. Thus, this method is well-posed and the
ROM is well-defined.

3.3. Reincorporation of Non-Zero Initial Conditions in SYLTDMOR2

Although we removed it in the formulation, it is possible to use the initial state
condition in SYLTDMOR2. One way to include the initial condition is given by the
approach presented in [8], where the given SISO system is reformulated to a multiple-
input single-output (MISO) system, by adding the initial state as a column in B and
using a corresponding Dirac input. Another and more flexible method is described in
[9] for the frequency domain MOR methods, we want to compare with. Here, a whole
variety of initial state conditions, instead of only one condition, can be considered using
an approach splitting the problem into a homogeneous and inhomogeneous part, that
can be solved separately. This method preserves the SISO system and can also be
applied to the time domain MOR approach. If the subspace of relevant initial condi-
tions is known, this method clearly offers a more flexible setting and overcomes the
problem of storing a separate reduced model for every possible initial condition.

4. Moment Matching and its Relation to SYLTDMOR2

Our main goal in this paper is to show a connection between the above mentioned time
domain MOR approaches and moment matching. To this end, we repeat the basics of
this Krylov subspace technique by first introducing a standard Krylov subspace (see, e.g.
[10, Section 1.6]) of order r for a matrix A 2 R

n�n and a vector b 2 R
n as

KrðA; bÞ ¼ span b;Ab; � � � ;Ar�1b
� �

:

4.1. Moment Matching

Moment matching is a projection based MOR technique. It constructs the projection
matrix starting from a series expansion of the transfer function rather than the state
exploiting the Neumann series (see, e.g. [11])

In � Tð Þ�1 ¼
X1
k¼0

Tk; (13)

where T 2 R
n�n is a matrix, such that ðIn � TÞ is in fact invertible.

Assuming, that ðs0E� AÞ is invertible, and using (13), the transfer function of the
original system can be expressed as

GðsÞ ¼
X1
k¼0

C �ðs0E� AÞ�1E
� �kðs0E� AÞ�1B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M
s0
k

ðs� s0Þk;

where Ms0
k are called moments of the original transfer function around s0.
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The aim of moment matching is to find a reduced system of order r � n, such that
for some k ¼ 0; :::;1 for the moments of the reduced order transfer function we
have M̂s0

k ¼ Ms0
k .

This equality of moments can be guaranteed by using an orthonormal basis of the
input or output Krylov subspace around a single expansion point s0 2 C to form the
orthogonal matrices Q1 and Q2

Km ðA� s0EÞ�1E; ðA� s0EÞ�1B
� � ¼ span Q1f g;

Km ðA� s0EÞ�TET ; ðA� s0EÞ�TCT
� �

¼ span Q2f g:

If the one-sided Krylov subspace method is used, i.e. V ¼ W ¼ Q1 is used to project, r
moments will match (see, e.g. [4, Chapter 11]). In [12, Chapter 3], it is pointed out that
this property also holds if Q2 is used instead of Q1. In contrast, if both V ¼ Q1 and
W ¼ Q2, then 2r moments of the original and reduced order systems will match (see,
e.g. [4, Chapter 11]). This method is called two-sided Krylov subspace method.

If multiple expansion points s1; . . . ; sk 2 C are given, Q1 and Q2 can be obtained as a
basis of the union of Krylov subspaces, that belong to the expansion points:

[k
i¼1

Kri ðA� siEÞ�1E; ðA� siEÞ�1B
� � ¼ span Q1f g;

[k
i¼1

Kri ðA� siEÞ�TET ; ðA� siEÞ�TCT
� �

¼ span Q2f g;

where
Pk
i¼1

ri ¼ r. Using only V ¼ W ¼ Q1 to project, the first ri moments around si of

the original and reduced order model match for i ¼ 1; . . . ; k. In the two-sided Krylov
subspace method using multiple expansion points 2ri moments will match around si for
i ¼ 1; . . . ; k (see, e.g. [12], Chapter 3]).

4.2. Moment Matching and Sylvester Equations

Since TDMOR presented in Section 2 and SYLTDMOR1 and SYLTDMOR2 presented
in Section 3 only use one projection matrix V to obtain a ROM, we will only focus on
the one-sided Krylov subspace method.

On the one hand, the projection matrix V can be obtained using the approach
presented in Section 4.1. On the other hand, there is a very useful result describing a
relation between the basis of a Krylov subspace and the solution of a Sylvester equation,
which can be found in [13, Section 3.4] and [10, Section 2.3]. This connection requires
the observability of a matrix pair ðS; LÞ 2 C

r�r � C
p�r. This is, e.g. given (see, e.g. [4,

Chapter 4]), when the corresponding observability matrix

ObðS; LÞ ¼ LH LSð ÞH LS2ð ÞH � � � LSr�1ð ÞH
	 
H

has full rank. One then has the following theorem.
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Theorem 4.1 (Single expansion point duality, e.g. [10, Section 2.3]). Given the expan-
sion point s0 2 C , such that s0 is not an eigenvalue of E�1A, the columns of V 2 C

n�r

form a basis of a rational Krylov subspace

span Vf g ¼ Kr ðA� s0EÞ�1E; ðA� s0EÞ�1B
� �

;

if and only if there exists an observable pair ðS; LÞ, where S 2 C
r�r, L 2 C

1�r,which
admits the Jordan canonical form J,

T�1ST ¼ J ¼

s0 1
. .
. . .

.

. .
.

1
s0

2
6664

3
7775;

for an appropriate transformation matrix T 2 C
r�r, such that the Sylvester equation

AV � EVS ¼ BL (14)

is satisfied.
Moreover, the reduced model GrðsÞ ¼ CrðsEr � ArÞ�1Br from (2) matches the

moments Ms0
i ¼ M̂s0

i ; i ¼ 0; . . . ; r � 1, if s0 is not a pole of GrðsÞ.
This theorem also extends to the case of multiple expansion points.

Theorem 4.2 (Multiple expansion point duality, e.g. [10, Section 2.3]). Given r distinct
expansion points s1 . . . ; sr 2 C , such that none of them is an eigenvalue of E�1A, the
columns of V 2 C

n�r form a basis of a rational Krylov subspace

span Vf g ¼ span ðA� s1EÞ�1B; . . . ; ðA� srEÞ�1B
� �

;

if and only if there exists an observable pair ðS; LÞ with S 2 C
r�r, L 2 C

1�r, which
admits the Jordan canonical form J,

T�1ST ¼ J ¼ diagðs1; . . . ; srÞ and LT ¼ 1 . . . 1½ �
for an appropriate transformation matrix T 2 C

r�r, such that the Sylvester equation

AV � EVS ¼ BL (15)

is satisfied.
Moreover, the reduced model GrðsÞ ¼ CrðsEr � ArÞ�1Br from (2) matches the

moments Msi
0 ¼ M̂si

0 ; i ¼ 0; . . . ; r � 1, if none of the si is a pole of GrðsÞ.
Theorems 4.1 and 4.2 describe an important connection between a Krylov subspace

MOR technique and the solution of a Sylvester equation. Every basis of a rational
Krylov subspace solves a certain Sylvester equation consisting of an observable matrix
pair ðS; LÞ. Here, the eigenvalues of S correspond to the expansion points in moment
matching. Following [13, Theorem 3.23], the eigenvalues of S are either interpolation
points between GðsÞ and GrðsÞ or the inverse of common poles between GðsÞ and GrðsÞ.
Considering multiple-input multiple-output (MIMO) systems, the matrix L is of
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importance, since tangential directions are stored in its columns. Conversely, every
solution of a Sylvester equation consisting of an observable matrix pair ðS; LÞ spans a
Krylov subspace with expansion points given by the eigenvalues of S.

The following Section 4.3 uses Theorems 4.1 and 4.2 to show a novel connection
between moment matching and the time domain MOR framework based on orthogonal
polynomials.

4.3. Equivalence of SYLTDMOR2 and Moment Matching

In this section, we apply Theorems 4.1 and 4.2 to the derived Sylvester equations (11)
and (12) from Section 3. In the moment matching MOR method, it is assumed, that the
initial state vector is x0 ¼ xðt0Þ ¼ O n;1. Since this condition is also required for
SYLTDMOR2, we only need to set the initial state vector to zero for the remaining
time domain MOR approaches to compare these methods. Recall, that the approxima-
tion of the initial state was only needed to derive a square linear system of equations.
For a consistent initial state, it is thus redundant and the matrix H in the linear system
(9) is actually singular. Another restriction, we make in this paper, is to set (without loss
of generality) the time interval to t ¼ ½0; 1�. Note that for the general case t1 2 ½t0; tf �,
this can always be

obtained by the simple transformation t1 7! t1 � t0
tf � t0

for constant time increments.

To obtain the structure of the Sylvester equations (14) or (15) from Theorems 4.1
and 4.2, it is necessary to invert the ~E (SYLTDMOR1) and Ê (SYLTDMOR2) matrices
containing information about the orthogonal polynomials. Due to the structure of these
matrices, it is only possible to invert them in the following cases:

Matrix ~E is regular for:

● Hermite: r odd (otherwise gr�1ðt0Þ ¼ 0 and thus we obtain a zero row)
● Laguerre: all r
● Legendre, Chebychev of first and second kind: r odd (otherwise a zero row is
obtained due to linear combination)

Matrix Ê is

● Hermite: always singular
● Laguerre: always regular
● Legendre, Chebychev of first and second kind: regular for r even (otherwise a zero
row is obtained due to linear combination)

Explicit representations of the inverse matrices for the different polynomials listed
above can be found in [14]. The inverse matrices of the Jacobi polynomials cannot be
obtained as easy as for the above mentioned polynomials caused by the structure and
the influence of parameters a and b. Therefore we assume to choose a and b, such that ~E

and Ê are invertible. In the following, the Jacobi polynomials are only used to proof the
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assumptions of Theorems 4.1 and 4.2 since the Legendre and Chebychev polynomials
are special cases of these polynomials (see, e.g. [5, Chapter 22]).

Assuming either of the aforementioned cases and exploiting the zero initial state, we
rewrite the Sylvester equation (11) as

AV ~Eþ EV ~A ¼ Ax0 Bw1 . . . Bwr�1½ �

, AV � EV S ¼ BL;

where S ¼ �~A~E�1 and L ¼ z0 w1 . . . wr�1½ �~E�1 and z0 ¼ 0, because Ax0 ¼ O n;1

due to the initial state.
Equivalently, we can rewrite the Sylvester equation (12):

AV̂ Êþ EV̂ ¼ Bw1 . . . Bwr½ �

, AV̂ � EV̂ Ŝ ¼ BL̂; (16)

where Ŝ ¼ �Ê�1 and L̂ ¼ w1 . . .wr½ �Ê�1.
Since the eigenvalues of S and Ŝ are the expansion points only in case of observa-

bility, we now have to check the observability of the matrix pairs ðS; LÞ and ðŜ; L̂Þ.
While S and Ŝ only depend on the choice of the orthogonal polynomial, L and L̂
additionally depend on the expected input uðtÞ, since w1; . . . ;wr are weights of the
approximated input (8).

Remark 4.3 In practice, the input often needs to be realized piecewise constant.
Therefore we assume, that uðtÞ ¼ 1. Note that any other constant value for uðtÞ only
scales the solution and thus changes the basis but not the subspace spanned by V . As a
consequence, the ROM stays the same.

Under this condition, we compare the numerical ranks of the associated observa-
bility matrices for certain orthogonal polynomials. Here, the tolerance of MATLAB®s
rank function was set to 10�20 to ensure a good rank estimation.1 The differences
between the reduced orders r and the numerical rank of the observability matrix are
depicted in Figure 1. For the matrix pair ðS; LÞ, we only consider an odd order r, for

ðŜ; L̂Þ, only an even order r due to the invertibility conditions for the matrices ~E and Ê.

There are two exceptions: Since the ~E and Ê matrices are always invertible in case of

Laguerre polynomials, their numerical rank is plotted for all r. Even though the Ê
matrix using the Hermite polynomials is not invertible at all, we use here matrix pair
ð~S; ~LÞ from equation (17) and thus observability matrix (18) instead to obtain its
numerical rank.

In both subfigures it is easy to see that the Legendre and both types of Chebychev
polynomials always lead to a full numerical rank. In case of these polynomials, the rank
is only plotted with one mark, because the result is always the same. The Laguerre
polynomials show the same behaviour in both figures for all r. In contrast, the Hermite
polynomials in SYLTDMOR2 only have a full numerical rank if the reduced order r is
small enough, i.e. r � 14. For SYLTDMOR1, their numerical rank is full only if r � 27.

Note, that Figure 1 only presents numerical ranks. We now, considering only our
proposed new variant SYLTDMOR2, prove the full rank of the observability matrices
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for the Jacobi, Laguerre, Legendre and Chebychev polynomials of first and second kind
rigorously. We will also show that for the Hermite polynomials, theoretically, the rank
of Obð~S; ~LÞ is always full as opposed to the numerical rank.

To overcome the difficulties with the singularity of Ê for some kinds of orthogonal
polynomials, we will rewrite Sylvester equation (12) as

AV̂Êþ EV̂ ¼ B w1 . . . wr½ � , EV̂ � AV̂ ~S ¼ B~L; (17)

where ~S ¼ �Ê and ~L ¼ w1 . . . wr½ �, i.e. with the roles of E and A swapped.
Let s1; . . . ; sr 2 C nΛ E�1Að Þ be distinct expansion points, then

span ðA� s1EÞ�1B; . . . ; ðA� srEÞ�1B
� �

¼ span � 1
s1

E� 1
s1
A


 ��1

B; . . . ;� 1
sr

E� 1
sr
A


 ��1

B

( )

¼ span E� 1
s1
A


 ��1

B; . . . ; E� 1
sr
A


 ��1

B

( )
:

Thus, the solution of the Sylvester equation (17) is a basis of a Krylov subspace with
expansion points 1

si
for i ¼ 1; . . . ; r.

4.3.1. Hermite Polynomials
Since for these polynomials the Ê matrix is singular for all r, we choose Sylvester
equation (17) to prove the equivalence to moment matching. As mentioned above, we
assume the input to be chosen piecewise constant and thus ~L ¼ 1 0 . . . 0½ �.
Further,

~S ¼ � 1
2

0 1
2

. .
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.
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.

1
r
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2
66664

3
77775:
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Figure 1. Difference between reduced order and numerical rank of the observability matrices.
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Due to this special structure, the ðr � rÞ observability matrix is a diagonal matrix
with non-zero entries

diagðObð~S; ~LÞÞ ¼ 1 � 1
2
� 1
2

1
22

� 1
2 � 3 . . . � 1

2

� �r�1 Qr�1

i¼1
ðiþ 1Þ


 ��1
" #

(18)

and thus ð~S; ~LÞ is observable. Converting this problem back to Sylvester equation (16),

the expansion points are generalized eigenvalues of ð�Ê; IrÞ and thus inverse eigenva-
lues of ð�Ir; ÊÞ, where Ê ¼ �~S. Since Ê is a strict upper triangular matrix, all eigenva-

lues of ð�Ir; ÊÞ are zero and thus all expansion points are 1 (see, e.g. [15] ([16, Section
1.6 4]).

4.3.2. Laguerre Polynomials
Since the Ê matrix for these polynomials is always invertible, we choose Sylvester
equation (12). The explicit inverse to

Ê ¼

�1 1
. .
. . .

.

. .
.

1
�1

2
6664

3
7775

is given by the upper triangular matrix

Ê�1 ¼ �
1 � � � 1

. .
. ..

.

1

2
4

3
5:

Since Ŝ ¼ �Ê�1 by definition and due to the choice of piecewise constant inputs, we
have

L̂ ¼ 1 0 . . . 0½ �Ê�1 ¼ � 1 . . . 1½ � ¼ �Ŝð1; :Þ:
Thus the entries of the observability matrix become

ObðŜ; L̂Þ ¼

L̂

L̂Ŝ

..

.

L̂Ŝ
r�1

2
6666664

3
7777775 ¼ �

Ŝð1; :Þ
Ŝð1; :ÞŜ

..

.

Ŝð1; :ÞŜr�1

2
6666664

3
7777775 ¼ �

Ŝð1; :Þ
Ŝ
2ð1; :Þ
..
.

Ŝ
rð1; :Þ

2
6666664

3
7777775:

Observing that the first rows in the powers of Ŝ can be written in terms of binomial
coefficients and using the sum formula

Xn
k¼0

k
l


 �
¼ nþ 1

l þ 1


 �
;

for integers k; l; n 	 0 (see, e.g. [17, Chapter 1]), and the properties
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n
0


 �
¼ n

n


 �
¼ 1;

n
1


 �
¼ n

n� 1


 �
¼ n;

n
k


 �
¼ n� 1

k� 1


 �
þ n� 1

k


 �
;

for integers n; k 	 1, we obtain a structured observability matrix

ObðŜ; L̂Þ ¼ �

0

0

 !
1

0

 !
2

0

 !
� � �

r � 1

0

 !

1

0

 !
2

1

 !
3

2

 !
� � �

r

r � 1

 !

2

0

 !
3

1

 !
4

2

 !
� � �

r þ 1

r � 1

 !

..

. ..
. ..

. . .
. ..

.

r � 1

0

 !
r

1

 !
r þ 1

2

 !
� � �

2r � 2

r � 1

 !

2
6666666666666666666664

3
7777777777777777777775

¼ �

1 1 1 � � � 1
1 2 3 � � � r

1 3 6 � � � rðr þ 1Þ
2

..

. ..
. ..

. . .
. ..

.

1 r
rðr þ 1Þ

2
� � � 2r � 2

r � 1


 �

2
666666664

3
777777775
;

that is known as the Pascal matrix. It can be shown (see, e.g. [18]) that the LU
decomposition of this matrix leads to its triangular factors being triangular Pascal
matrices, and thus the determinant is always 1. Consequently, ObðŜ; L̂Þ always has
full rank and we have established the equivalence to moment matching choosing the

expansion points as eigenvalues of Ŝ, i.e. s0 ¼ 1.

4.3.3. Jacobi Polynomials (Including Legendre and Chebychev Polynomials)
In this case we choose Sylvester equation (17) to avoid problems with a singular Ê. As
for the Hermite polynomials we consider ~L ¼ 1 0 . . . 0½ �:

For this class of orthogonal polynomials, the ~S matrix has the same structure and
only differs in its entries αi; βi and γi for i ¼ 1; . . . ; r :

~S ¼

β1 α1
γ2 β2 α2

. .
. . .

. . .
.

γr�1 βr�1 αr�1

γr βr

2
666664

3
777775:

We now prove the full rank of the observability matrix by induction.
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Base clause: If we compute the observability matrix for certain small r with the
above mentioned ~L and ~S, we can clearly see a structure, namely:

These matrices are lower triangular and obviously have full rank, because αi�0 by
definition.

Induction hypothesis: Now, assume that the observability matrix of size r � r has a
lower triangular structure

Obð~S; ~LÞ ¼

1
α1

..

. . .
. . .

.

� � � � Qr�1

i¼1
αi

2
66664

3
77775

and full rank with � representing the non-zero entries.
Induction step: To prove the lower triangular structure and the full rank of the
observability matrix of size ðr þ 1Þ � ðr þ 1Þ, we only need to have a closer look
at the r þ 1 st row and column because the r � r block is unchanged. Since the first row
is the first unit vector by definition and ~S is a tridiagonal matrix, the first r entries of the
last columns are equal to zero. The last row is computed by multiplying the r th row
with ~S. Due to the tridiagonal structure the first r entries are non-zero if αi; βi and γi are
non-zero for i ¼ 1; . . . ; r. The r þ 1 st entry is obtained by multiplying

� � � � � Qr�1

i¼1
αi 0

� �
�

0
..
.

0
αr
βrþ1

2
666664

3
777775 ¼

Yr
i¼1

αi:

Thus, the observability matrix is a lower triangular matrix whose diagonal entries are
non-zero since αi�0"i, which proves its full rank and completes the induction.

The proof for Legendre and Chebychev polynomials is omitted since these poly-
nomials are special cases of the Jacobi polynomials (see, e.g. [5, Chapter 22]).

For SYLTDMOR2 presented in Section 3.2, we can apply Theorem 4.1 directly for
the Hermite and Laguerre polynomials for SYLTDMOR2, since all generalized eigen-
values of ð�Ir; ÊÞ are 1 and 1 respectively, and obtain an equivalence. Regarding the

r Obð~S;~LÞ rank

1 1½ � 1

2 1 0
β1 α1

� �
2

3 1 0 0
β1 α1 0

β21 þ α1γ2 α1 β1 þ β2ð Þ α1α2

2
4

3
5 3
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Legendre, Chebychev polynomials of first and second kind, the Jacobi polynomials in
both approaches and the Laguerre polynomials for the original approach proposed in
[1], we first have to prove the distinct eigenvalues before applying Theorem 4.2. Since
this is hard to verify, we show in Figure 2 in the left subfigure the minimal distance
between the generalized eigenvalues of ð�~A; ~EÞ with matrices arising in Sylvester
equation (11) in SYLTDMOR1 and in the right subfigure for the matrix pencil
ð�Ir; ÊÞ, where Ê occurs in Sylvester equation (12) in the SYLTDMOR2 algorithm,
for a reduced order r ¼ 1; . . . ; 1000. A reduced order r > 1000 is not desirable, since
reducing the original system and simulating the ROM is done with dense matrices of
dimension r and thus the computational costs become Oðr2Þ or even Oðr3Þ, when using
an implicit solving scheme, which is way to too expensive. Since, in the right subfigure,
the minimal distance between the eigenvalues up to a reduced order of r ¼ 1000 is
clearly larger than zero, even in finite precision, we conclude that one can apply
Theorem 4.2 for the practically relevant r. Considering the Jacobi polynomials, we
assume that a; b > � 1 are chosen such that all eigenvalues are distinct.

Summarizing these findings, we have proven the equivalence to a Krylov subspace
MOR method for SYLTDMOR2 presented in Section 3.2.
Theorem 4.4 (Equivalence between SYLTDMOR2 and moment matching) Consider (1)
with piecewise constant input.

If we choose
● Hermite polynomials,
● Laguerre polynomials,
● Legendre polynomials,
● Chebychev polynomials of first kind,
● Chebychev polynomials of second kind,
● Jacobi polynomials, choosing a and b such that all eigenvalues of ð�Ir; ÊÞ are
distinct,

then SYLTDMOR2 presented in Section 3.2 is equivalent to the moment matching
method, where the expansion points are chosen to be the eigenvalues of the matrix pencil

ð�Ir; ÊÞ arising in Sylvester equation (12) and depend on the choice of the orthogonal
polynomials and the reduced order.
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Figure 2. Minimal distance of generalized eigenvalues ð�~A; ~EÞ and ð�Ir; ÊÞ.
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Nevertheless, we have also shown the observability numerically in the left subfigure
of Figure 1 for the Laguerre, Legendre and Chebychev polynomials of first and second
kind. In the left subfigure of Figure 2 we can also see, that the minimal distance between
the generalized eigenvalues of ð�~A; ~EÞ is clearly larger than zero in case of Legendre
and Chebychev polynomials of first and second kind. Hence, for these polynomials the
eigenvalues are distinct. In case of the Laguerre polynomials, the minimal distance
seems to decrease, but for a reduced order of r ¼ 1000 the minimal distance is
approximately 10�3. It is thus too large for a computational error from round off
accumulation. Hence, also the generalized eigenvalues for the Laguerre polynomials are
distinct for all relevant reduced orders r. Thus, we conjecture the equivalence to
moment matching for the TDMOR approach of Jiang and Chen [1] and thus
SYLTDMOR1:

Conjecture 4.5 (Equivalence between SYLTDMOR1 and moment matching)
Consider (1) with piecewise constant input and zero initial state.

If we choose
● Laguerre polynomials,
● Legendre polynomials, odd reduced order,
● Chebychev polynomials of first kind, odd reduced order,
● Chebychev polynomials of second kind, odd reduced order,

then SYLTDMOR1 presented in Section 3.1 is equivalent to the moment matching
method, where the expansion points are chosen to be the eigenvalues of the matrix pencil
ð�~A; ~EÞ arising in Sylvester equation (11) and depend on the choice of the orthogonal
polynomials and the reduced order.

Remark 4.6. The equivalence between the Laguerre based time domain MOR and
moment matching has been proven rigorously by Eid in [12].

4.4. Advantages of Moment Matching over SYLTDMOR(1/2) in Practice

Comparing the polynomial based time domain MOR with moment matching, one
should keep in mind, that the expansion points can be freely chosen using moment
matching. Since we use an IRKA based algorithm to determine the rational Krylov
subspace, these expansion points will be optimized fitting to the original LTI system.
Computing the reduced system with the time domain framework of Jiang and Chen
presented in Section 2 or SYLTDMOR2 in Section 3.2, the expansion points are fixed by
the choice of the family of polynomials. Exemplary, these expansion points or equiva-
lently the generalized eigenvalues of matrix pairs ð�~A; ~EÞ (SYLTDMOR1) and ð�Ir; ÊÞ
(SYLTDMOR2), are shown in Figure 3 for a reduced order r ¼ 40.

Thus, a variation of the expansion points arising from the time domain approach can
be achieved by in- or decreasing the reduced order r or rather using another family of
orthogonal polynomials, on the one hand. On the other hand, orthogonal polynomials
of higher degree s 2 Z up to degree sþ r � 1 could be used or r arbitrarily chosen
orthogonal polynomials. To the best of our knowledge, this has not been tried in the
open literature so far.
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Considering the choice of expansion points, the time domain MOR framework based
on orthogonal polynomials, thus only seems to be a restriction of moment matching to
a rather limited set of possible combinations. Thus, in practice IRKA has to be expected
to provide more accurate ROMs in almost all cases. Further, IRKA has to be at least as
good as the discussed time domain MOR approaches.

5. Numerical Examples

To illustrate the effectiveness of the time domain MOR techniques based on orthogonal
polynomials, but also to confirm our conjecture about the restriction of this method
compared to moment matching, we will present results for three well-known test
examples.

The basic setup for the first two examples is the same, namely:

● initial state x0 ¼ O n;1 2 R
n;

● time interval t 2 ½0; 1�, i.e. t0 ¼ 0,
● time step τ ¼ 0:001,

● input uðtÞ ¼
0 ; t 2 ½0; 0:1Þ
1
2 sin πð10t � 3

2Þ
� �� � þ 1

2 ; t 2 ½0:1; 0:2Þ:
1 ; t 2 ½0:2; 1�

8<
:

The test system is always the following:

● CPU: 2x Intel® Xeon® X5650
○ 6 Cores per CPU,
○ clock rate: 2:67 GHz,
○ 12 MB Cache per CPU,

● memory: 48 GB DDR3 with ECC.
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Figure 3. Generalized eigenvalues of ð�~A;~EÞ and ð�Ir; ÊÞ for r ¼ 40.
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All examples are computed using MATLAB® R2012b.
In this paper, we illustrate the 2-norm averaged relative error over time, i.e.

yðtÞ � yrðtÞ
yðtÞ

����
����
2;½0;1�

¼
ð1
0

yðtÞ � yrðtÞ
yðtÞ


 �2

dt

 !1
2

�
X1

τ

i¼1

yðiτÞ � yrðiτÞ
yðiτÞ


 �2
0
@

1
A

1
2

;

where yðtÞ and yrðtÞ are computed using the implicit Euler method (see, e.g. [19,
Chapter 2]). Note, that the 1-norm averaged error over time looks comparable and
is thus not illustrated. We also show the total time, that was spent to reduce the original
LTI system and to solve the reduced LTI system compared to the time, that was spent
on solving the original LTI system. In these figures, we compare SYLTDMOR1 and
SYLTDMOR2 to the two most important and well accepted methods for stable LTI
systems, IRKA (one- and two-sided) and balanced truncation. For the one-sided IRKA
approach, the projection matrix V is computed from the output Krylov subspace, i.e. in

case of one expansion point s0 V is the basis of Kr ðA� s0EÞ�TET ; ðA� s0EÞ�TCT
� �

. In

case of multiple expansion points s1; . . . ; sr V is a basis ofSr
i¼1

Kri ðA� siEÞ�TET ; ðA� siEÞ�TCT
� �

. This is implemented according to the theory

in Section 4 and does not present a restriction to moment matching since upon
convergence of IRKA, the expansion points are (locally) optimally placed for the system
with respect to H2 approximation. In the figures, we use the following notations for
Chebychev polynomials of first (Chebychev1) and second kind (Chebychev2), the one-
sided IRKA resp. moment matching (oIRKA/oMM), the two-sided IRKA resp. moment
matching (IRKA/tMM) and balanced truncation (BT). Note, that we computed 50
cycles to average the results.

5.1. Triple Peak Example

Our first example is the triple peak, sometimes also called FOM, example (see, e.g. [20]),
where the dynamical system (1) of order n ¼ 1006 is given by E ¼ In;A 2 R

1 006�1006 a
block diagonal matrix of the form

A ¼

A1

A2

A3

A4

2
66664

3
77775; A1 ¼ �1 100

�100 �1

� �
;

A2 ¼ �1 200
�200 �1

� �
; A3 ¼ �1 400

�400 �1

� �
;
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A4 ¼ diagf�1;�2; . . . ;�1000g;

and the input and output matrices are

BT ¼ C ¼ ½10; . . . ; 10|fflfflfflfflfflffl{zfflfflfflfflfflffl}
6

; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
1 000

� 2 R
1�1 006:

That means xðtÞ 2 R
1 006 and uðtÞ; yðtÞ 2 R .

In Figure 4, the 2-norm averaged relative error over time is illustrated for the reformu-
lated time-domain approach SYLTDMOR1, presented in Section 3.1, and its variation
SYLTDMOR2, presented in Section 3.2, for Hermite, Laguerre, Legendre and Chebychev
polynomials of first and second kind, each compared to the one- and two-sided IRKA and
balanced truncation. In both subfigures, we can easily see, that the frequency domainMOR
approaches approximate the original system, for a reduced order r 	 11, much better than
the time domain approaches. Only the Legendre and the two Chebychev polynomial
families in SYLTDMOR2 show a considerable decay of the relative error ending up with
a relative error of 10�10 for a reduced order r ¼ 40. The same orthogonal polynomials in
SYLTDMOR1 have only a slight decay of the relative error ending up at around 10�5 for a
reduced order r ¼ 40. Compared to this, balanced truncation and both IRKA approaches
show a nicer decay ending with a relative error of 10�12 for r 	 28 and are thus at least 2
orders lower compared to the Legendre and both Chebychev polynomials for both repre-
sented time domain approaches. Regarding the Laguerre polynomials, the relative error
does not seem to change for an increasing reduced order r and stagnates around 10�1. This
phenomenon can be explained, if we look at their differential recurrence coefficients stated
in Table 1. These coefficients are constant and do not depend on the reduced order r such

that matrix Ŝ is always a triangular matrix with only 1 on the diagonal as seen in Section
4.3.2. Thus the only expansion point of these polynomials for SYLTDMOR2, given by the

multiple eigenvalue of Ŝ, is 1 with multiplicity r. That means in the sense of moment
matching, that moments up to order r are matched. But on the other hand all other
important frequencies are ignored leading to a bad approximation. Considering
SYLTDMOR1 it might be possible that this effect is also caused by the clustering of the
eigenvalues. A special case are the Hermite polynomials, since they are only illustrated until
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Figure 4. Relative errors (triple peak example of Section 5.1).
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r ¼ 24. The reason for this is the extreme condition number, i.e. numerical singularity, of

the matrices H and Ĥ, which makes it impossible to solve the linear system of equations.
To get an impression how the condition numbers grow by increasing the reduced

order, the 2-norm condition numbers κ2ð:Þ using Hermite polynomials are shown for
the triple peak example presented in Section 5.1 and the example of the following

Section 5.2 for the matrices A;H and Ĥ in Figure 5. Since in MATLAB® a matrix is
numerically not invertible for κ2ð:Þ > 1016, this bound is added in the subfigures of
Figure 5. Nevertheless, we can easily see in Figure 4 that the Hermite polynomials have
a large relative error of around 10�1 in SYLTDMOR1 and about 100 in SYLTDMOR2 at
r ¼ 24, such that the original system is not approximated well.

The total time, that is spent on reducing the original system and solving the reduced
system, is illustrated in Figure 6 and is compared to the time, that is needed to solve the
original ð1006� 1006Þ system. This figure is divided into three subfigures containing
the reduction and solution times for determining V by solving the huge ðnr � nrÞ linear
system of equations (9) with MATLAB®’s backslash operator and Sylvester equations
(11) and (12) with the method from [21]. In all three subfigures of Figure 6 it is easy to
see, that all solution methods are faster than solving the original system. Comparing the
time with the backslash operator and solving a Sylvester equation, irrespective whether
SYLTDMOR1 or SYLTDMOR2 is chosen, the Sylvester solver is, for r ¼ 40, up to two
times faster than solving with MATLAB’s® backslash. For a reduced order of r 	 34,
there is an increase of the total time for both IRKA variants. The reason for this can be
found in Figure 4, since the relative error of these methods is close to machine precision
and thus an improvement of the relative error is not possible.

Basically, this example demonstrates that the time domain MOR framework [1]
reduces the LTI system fast. Further, these time domain MOR approach might be
even faster by inserting the eigenvalues of matrix pencils ð�~A; ~EÞ or ð�Ir; ÊÞ directly as
expansion points in the moment matching method ending up with the same projection
matrix according to Theorem 4.4 and Conjecture 4.5. This Could be implemented by
precomputing the generalized eigenvalues and saving them in a data base, such that
they are quickly available. Here, the Jacobi polynomials are excluded, since they require
a further analysis of the choice of parameters a and b. Nevertheless, this example also
demonstrates that the time domain MOR approaches are less accurate compared to
IRKA or balanced truncation.
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5.2. Triple Chain Example

The second example is the triple chain example from [23], i.e. three mass-spring-
damper chains of length 200 are fixed by one coupling mass. Since this example,
which is parametrized as in [22], results in a second order systems
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Figure 6. Total time (triple peak example of Section 5.1).
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M€xðtÞ þ D _xðtÞ þ KxðtÞ ¼ BuðtÞ;
yðtÞ ¼ CxðtÞ; (19)

we transform it into the first order system

K 0
0 M

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

E

_xðtÞ
€xðtÞ
� �
|fflfflffl{zfflfflffl}

_zðtÞ

¼ 0 K
�K �D

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A

xðtÞ
_xðtÞ

� �
|fflfflffl{zfflfflffl}

zðtÞ

þ 0
B
� �
|ffl{zffl}

B

uðtÞ;

yðtÞ ¼ C 0½ �|fflfflffl{zfflfflffl}
C

xðtÞ
_xðtÞ

� �
|fflfflffl{zfflfflffl}

zðtÞ

:

Here, the matrices of the second-order system (19) are given by a diagonal matrix M 2
R

601�601 containing the masses, the damper matrix D 2 R
601�601 and the stiffness

matrix K 2 R
601�601. The input and output matrices are again transposes of each

other given by BT ¼ C ¼ ½1 . . . 1� 2 R
1�601. Hence, E;A 2 R

1 202�1 202;BT ;C 2
R

1�1 202; zðtÞ 2 R
1 202 and uðtÞ; yðtÞ 2 R .

Figure 7 illustrates the 2 -norm averaged relative error over time for the time domain
MOR approaches compared to the frequency domain MOR methods as mentioned in
the previous example. Again, the relative error using Laguerre polynomials shows only
minor changes and is for a reduced order r ¼ 40 at around 10�1 using SYLTDMOR1 or
SYLTDMOR2. Similar to the Laguerre polynomials, the Hermite polynomials do not
approximate the original system well since the relative error is, especially in case of
SYLTDMOR2, too large, namely 29 for a reduced order r ¼ 24. In case of
SYLTDMOR1, the relative error decreases to around 10�2, but since the H matrix is
numerically singular, it is not possible to determine further projection matrices. In both
subfigures, the 2-norm averaged relative error over time decreases, if Legendre or
Chebychev polynomials of first or second kind are used. This relative error is around
10�3 for SYLTDMOR1 and 10�4 for SYLTDMOR2, for a reduced order r ¼ 40.
Comparing both time domain approaches to the one-sided IRKA algorithm, we can
clearly see that the relative error using moment matching is always at least as small as in
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Figure 7. Relative errors (triple chain example of Section 5.2).
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case of the time domain MOR, but mostly even smaller. Looking at the two-sided IRKA
algorithm and the balanced truncation method, we see, that these methods are even
more successful since they have a steeper decrease of the relative error ending up with a
relative error of order 10�8, which is 4 orders of magnitude lower than for the one-
sided method.

We now take look at the total time, i.e. the time needed to reduce the original system
and to simulate the reduced system. In the upper subfigure of Figure 8, illustrating the
total time for the backslash solver, we can easily see that, if we use the time domain
approach with Hermite and Laguerre polynomials, we are faster than solving the
original system. Unfortunately, these polynomials do not approximate the original
system well. Using the Legendre or one of the Chebychev families, this approach is
faster than simulating the original system until r ¼ 21. Hence, considering a larger
reduced order is not effective any more. If we use one of the Sylvester solvers instead,
we can achieve a high speed-up, e.g. choosing a reduced order r ¼ 40, we can reduce
the system and simulate the reduced system up to 19 times faster than simulating the
original system. This also holds for the Hermite and Laguerre polynomials. The former
ones are only considered up to a reduced order r ¼ 24. Regarding both IRKA imple-
mentations and balanced truncation, it is clearly visible that these MOR techniques
consume more time than the time domain approaches using Sylvester equations.
Nevertheless, these methods are still faster than simulating the original triple chain
example.

5.3. Butterfly Gyroscope Example

A more practice oriented and larger example is given by the butterfly gyroscope
example from the Oberwolfach benchmark collection for model order reduction (see,
[24]) described in [25], which represents a vibrating micro-mechanical gyroscope. The
device consists of a three-layer silicon wafer stack. Its middle layer contains the sensor
element, which consists of two wing pairs that are connected to a common frame – the
reason the gyro is called butterfly. This example is given as second-order system (19)
and transformed into a first order realization

�KT 0
0 M

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

E

_xðtÞ
€xðtÞ
� �
|fflfflffl{zfflfflffl}

_zðtÞ

¼ 0 �KT

�K �D

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

A

xðtÞ
_xðtÞ

� �
|fflfflffl{zfflfflffl}

zðtÞ

þ 0
B
� �
|ffl{zffl}

B

uðtÞ

yðtÞ ¼ C 0½ �|fflfflffl{zfflfflffl}
C

xðtÞ
_xðtÞ

� �
|fflfflffl{zfflfflffl}

zðtÞ

:

Here, matrices M;D;K 2 R
17361�17361 of the second-order system are symmetric

matrices, the input is the vector B 2 R
17361 and output matrix is given as

C 2 R
12�17361. In order to obtain a SISO system, we only consider the first row of C.

Hence the matrices and vectors of the first order system are of dimension E;A 2
R

34722�34722;BT ;C 2 R
1�34722; zðtÞ 2 R

34722 and uðtÞ; yðtÞ 2 R .
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Accounting for the output trajectory, we changed the computational setup for this
example to

● time interval t 2 ½0; 0:005�,
● time step τ ¼ 5 � 10�6, and
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Figure 8. Total time (triple chain example of Section 5.2).
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● input uðtÞ the corresponding sine-smoothed step from 0 to 1 in the interval
½0:0005; 0:001�.

However, this can easily be transformed to a time interval t 2 ½0; 1� using the transfor-

mation t1 ¼ t1
0:005 with time step τ ¼ 0:001 as in the previous examples. The initial

state x0 and the input uðtÞ are chosen as in the previous examples. Furthermore, we
computed only one cycle instead of 50 to limit the computation time, since external
effects are expected to be far less influential in this case.

In Figure 9, the 2-norm averaged relative error over time is illustrated. These
subfigures differ from the ones from the previous examples. Here, each subfigure
consists of two plots, where the upper plot is logarithmically scaled from 103 to 10300

and the lower plot is logarithmically scaled from 10�6 to 103. The reasons for this
unusual scaling are large differences of the relative errors of the time domain MOR
approach using orthogonal polynomials compared to the remaining MOR methods as
IRKA and balanced truncation. While the maximum relative error of the remaining
methods is around 103, the minimum relative error of the orthogonal polynomials is in
the same area and increases even up to an order of 10294. Furthermore, it is even
possible that this method produces unsuitable, i.e. non stable ROMs. Then, the relative
error is given by NaN and omitted in the plot. Compared to this, the relative error for
the balanced truncation method and both IRKA approaches nicely decreases. Looking
at reduced order r ¼ 40, balanced truncation and the two-sided IRKA method end up

103

10100

10200

10300
SYLTDMOR1

Hermite Laguerre Legendre Chebychev1
Chebychev2 oIRKA/oMM IRKA/tMM BT

5 10 15 20 25 30 35 4010−6

10−3

100

103

reduced order r

y
−

y
r

y
2,

[0
,1

]

103

10100

10200

10300
SYLTDMOR2

5 10 15 20 25 30 35 4010−6

10−3

100

103

reduced order r

y
−

y
r

y
2,

[0
,1

]

Figure 9. Relative errors (butterfly gyroscope example of Section 5.3).
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with a relative error of around 10�5 and the one-sided IRKA approach with a relative
error of around 10�2. Thus Figure 9, illustrates impressively that the orthogonal
polynomial based time domain MOR framework fails completely for this example.

Figure 10 illustrates the total time that is needed to reduce and simulate the reduced
system. Just like in the previous examples, SYLTDMOR1 and SYLTDMOR2 are clearly
faster than using one of the IRKA approaches or the balanced truncation method. Still,
the increased computation time is a price worth paying, since the latter methods
produce suitable and reliable ROMs in all test cases. Note, that we cannot report the
total time using MATLAB®’s backslash operator, since the computations became too
memory consuming even for our well equipped test system.

If we now take the relative errors illustrated in Figure 9 into account, IRKA and
balanced truncation are clearly more desirable than the time domain MOR techniques,
because all of them approximate the original model behavior far better.

5.4. Observations

The numerical examples, reported above, give us an impression of the effectiveness of
the time domain framework of Jiang and Chen and its variation SYLTDMOR2
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Figure 10. Total time (butterfly gyroscope example of Section 5.3).
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compared to other frequency domain MOR techniques. Regarding the relative errors,
the one- and two-sided IRKA algorithm and balanced truncation always have a stronger
decrease and thus (almost) always smaller relative errors. The fact, that these methods
consume more time than the time domain approaches is negligible, since these methods
(nearly) always performed faster than solving the original system.

Note, that we also tried to implement the iterative splitting method proposed in [1],
but our implementation never converged for the above mentioned examples. Thus, we
are not able to compare them with our proposed solving techniques. Since solving with
MATLAB®s backslash operator is time-consuming, we also tried to solve (9) using the
preconditioned Generalized Minimum Residual (GMRES) method. But since the matrix
H in (9) is ill-conditioned, we were not able to find a good preconditioner, such that (9)
can be solved fast.

The aim of model reduction in our context is to find a reduced system approximating the
original system well, such that the time, that is spent on reducing and solving the reduced
system, is less than simulating the original system. SYLTDMOR1 and its variation
SYLTDMOR2 clearly consume less time than solving the original system, but the relative
error either decreases very slowly as in the first two examples and thus the reduced order
needs to be comparably large, or the computed ROM is not suitable at all. This behaviour
can be easily explained when looking at the trajectories of all examples illustrated in
Figure 11. The trajectories of the triple peak and the triple chain example can easily be
expressed by using low-order polynomials. In contrast to this, the trajectory of the butterfly
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482 M. HUND AND J. SAAK



gyroscope example is oscillating rather fast and thus it requires higher order polynomials to
approximate the solution properly, which are not presented in the bases generating low-order
models following the Jiang/Chen framework.

6. Concluding Remarks

In this paper, we picked up the time domain MOR framework based on the idea of
Jiang and Chen in [1] and transformed the resulting huge linear system of equations
into a Sylvester equation, that can be solved very efficiently. A slight variation of the
formulation leads to another even nicer Sylvester equation considering a fixed initial
state and leading to easier structure in the small coefficient matrices. Using the duality
theorem, we show a connection of the time domain MOR methods to moment
matching, but we also illustrate that the expansion points created by the time domain
approaches cannot adapt to the system and thus the time domain approaches in this
paper cannot keep up with proper moment matching, which is only one iteration step
of IRKA.

Note

1. Machine precision, i.e. a tolerance of � 10�16, turned out to give unreliable rank decisions
in the numerical experiments.
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