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Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density pro-
files in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal
asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neo-
classical convection dominates over turbulent transport in the core. Accounting for asymmetries in
neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical
drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Control. Fusion P50, 095010 (2008)],
includes the impact of poloidal asymmetries on W transport. However, the computational cost
required to run NEO slows down significantly integrated modeling. A previous analytical formu-
lation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in
specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Control. Fusion 56, 124001
(2014)] is compared in this work to numerical results from NEO. Within the domain of validity
of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had
to be empirically adjusted. After adjustment , the modified formula can reproduce NEO results
outside of its definition domain, with some limitations : When main ions are in the banana regime,
the formula reproduces NEO results whatever the collisionality regime of impurities, provided the
poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement
requires impurities in the Pfirsch-Schlüter regime. Within the JETTO integrated transport code,
the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A.
Houlberg. K. C. Shaing. S. P. Hirshman. and M. C. Zarnstorff. Phys. Plasmas 4. 3230 (1997)]
predicts the same tungsten prfile as NEO in certain cases, while saving a factor of one thousand in
computer time, which can be useful in scoping studies. The parametric depedencies of the tempera-
ture screening reduction due to poloidal asymmetries would need to be better characterised for this
faster model to be extended to a more general applicability.
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I. INTRODUCTION

Tungsten (W) was chosen as a Plasma Facing Component because of its high melting point, its low erosion rate and
low hydrogen retention. But due to its large charge number 74, W ions are not fully stripped even in the hot tokamak
core, leading to a relatively high degree of line radiation. This means that accumulation of W in the plasma core
can be highly deleterious. Above a certain threshold, this leads to the loss of confinement and eventually disruptions.
To avoid central W accumulation, an accurate understanding of W transport is a key issue. W transport is both
turbulent and neoclassical. In the central region of JET core, W transport has been shown to be mostly neoclassical
[1–5], whereas in the outer part the turbulent transport dominates. Due to its large mass A=184, W is subject to a
strong centrifugal force when the plasma rotates. This causes poloidal asymmetry in W density. In presence of NBI
momentum input, those asymmetries are shown to increase neoclassical W transport by an order of magnitude in
JET [5, 6]. Ion Cyclotron Resonance Heating (IRCH) with anisotropic temperature distribution and Radio Frequency
heating also impact the poloidal distribution of W up to a factor of 2 [7, 8]. The neoclassical drift kinetic code
NEO[9, 10] includes comprehensive treatments of poloidal asymmetries. However the computational cost of running
NEO is of the same order of turbulent quasilinear codes such as QuaLiKiz [11] and TGLF [12] when embedded in
integrated modeling platforms such as JETTO [13].

The goal of this work is to study an alternative solution applying an analytical formula that describes the impact
of poloidal asymmetries on heavy impurity transport. Based on previous works such as[14–16] and especially [17],
Angioni and Helander proposed such a formula in [18]. This formula, combined with the neoclassical code NCLASS
[19] in which poloidal asymmetries are not included, offers a faster option in integrated modeling. The Angioni
Helander formula [18] derives the impurity neoclassical flux with a simplified collision model, valid for main ion
in banana regime at low Mach number, impurity in trace limit and in collisional Pfirsch-Schlüter regime. These
constraints are not simultaneously fulfilled for all radii in experimental plasmas. It is therefore essential to explore the
validity domain of the analytical formulation up to realistic ranges. JET-ILW like parameters from H-mode plasmas
are used as an illustration of such realistic conditions. This formula was tested out of its validity domain against NEO
for several parameter scans, in order to test its robustness and its limits. At first it was noted that within the validity
domain of the formula a factor had to be empirically adjusted. Then the modified formula was compared to NEO
outside of its validity range, and it is found to remain valid outside its definition domain. Indeed, considering main
ions in the banana regime, it well reproduces NEO results whatever the collisionality regime of impurities, provided
the poloidal asymmetry is not too large. Finally, the formula combined with NCLASS is used inside the transport
solver JETTO to simulate a discharge, and then the W density profiles predicted are compared the ones obtained
with an integrated simulation with NEO, while gaining about a factor 1100 of CPU time.

The analytical formula and its limits are introduced in Section II and are generalized. In section III the formula is
tested against NEO. Finally in section IV the formula is tested inside JETTO for two different JET-ILW like H-mode
pulses and compared with NEO.

II. NEOCLASSICAL FORMULA

This section focuses on the theoretical expression for the neoclassical impurity flux in presence of poloidal asym-
metries. The theoretical formula is introduced and the limits in which it is derived are discussed.

A. Neoclassical flux of heavy impurities with poloidally asymmetric density distribution

Neoclassical impurity theory has been generalized to consider the case of poloidally asymmetric heavy impurity
such as W [14, 16–18, 20–22]. The theory is valid whether the W localization is caused by centrifugal forces or RF

induced temperature anisotropy. The impurity labeled Z has to stay in the trace limit (α =
Z2

ZnZ

Z2
i ni
� 1). The impurity

also has to be in the Pfirsch-Schlüter regime (νZ∗ > 1) while the main ion, labeled i, is in the banana regime (νi∗ < 1).

The normalized collisionality ν∗is defined as ν∗ = νqR
vthε3/2

, with q safety factor, R flux-surface-center major radius,

ε = r/R with r minor radius and R flux-surface-center major radius, vth thermal velocity and ν collision frequency of
the considered species (for the main ion the dominant collisionality is νii). With a simplified collision operator valid
at large aspect ratio (ε � 1 ), the neoclassical impurity transport can be written as follows (equation (2) of [22],
recalled from [18]).
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R 〈ΓneoZ 〉
〈nZ〉

= q2DcZ

[(
1

Z

R

LnZ
− R

Lni
+

1

2

R

LTi

)
PmodelA − 0.33PmodelB fc

R

LTi

]
(1)

with

PmodelA =
1

2ε2

〈
B2
〉

〈nZ〉

[〈nZ
B2

〉
−
〈
B2

nZ

〉−1
]

(2)

PmodelB =
1

2ε2

〈
B2
〉

〈nZ〉

[
〈nZ〉
〈B2〉

−
〈
B2

nZ

〉−1
]

(3)

ΓneoZ is the neoclassical flux of the impurity charge number Z, B is the magnetic field. The gradient length is defined

as 1
LX

= −∇r〈X〉
〈X〉 .The label i stands for the main ion, Z for the impurity. With fc the fraction of circulating particles,

<.> means that the quantity is flux surface averaged, and Dc =
ρ2
i

τii
classical diffusion coefficient. ρ²i =

v2thi

〈Ω2
i 〉

is the

squared Larmor radius, τii = ν−1
ii = 3(2π)3/2 ε0²m

1/2
i T

3/2
i

nie4lnΛ is the main ion-main ion collision time, and the thermal

velocity is defined as vth,i =
√

2Ti/mi with Ti the temperature, ni the density and mi the mass of the ion. e is
the electron charge, ε0 is the vacuum permittivity, lnΛ is the Coulomb logarithm defined as lnΛ = lnλD/λL with

λL = e²/4πε0kTiand λD =
√
ε0kTi/nie² with k the Boltzmann constant.

The structure of equation (1) is very similar to the impurity transport flux without asymmetries derived in shown
in [23] and reproduced below in equation (4). When comparing equations (1) and (4) below, one can recognize the
diffusive term proportional to ∇nZ , the neoclassical pinch driven by ∇ni, both multiplied by the PmodelA factor.
Concerning the temperature screening driven by ∇Ti, two terms are contributing : the term without asymmetries
multiplied by PmodelA to which a new term is added, proportional to PmodelB . This new PmodelB term decreases the
impact of temperature screening. The PmodelA and PmodelB factors are both purely geometrical and one can notice
that without poloidal asymmetries of the impurity density nZ , i.e. 〈nZ〉 = nZ , PmodelA → 1 and PmodelB = 0 and one
recovers Pfirsch-Schlüter W flux from equation (4) of [23]. In the case of strong asymmetries, PmodelA and PmodelB
increase ; it means that the impurity transport will be more sensitive to the main ion density gradient, and the benefits
from temperature screening will be reduced.

B. Theoretical limits and implications

1. Symmetric neoclassical temperature screening and pinch coefficients

Equation (1) above from[22] (recalled from [18]) is derived with the main ion in the banana regime, and heavy

impurities in the Pfirsch-Schlüter regime. Heavy impurities must be present as a trace, i.e. α =
Z2

ZnZ

Z2
i ni
� 1. The

main ion are also assumed to remain subsonic, Mi =
√
mi/2TiωR < 1 , where ω is an angular frequency of toroidal

rotation. The impurity Mach number has no constraint, however one can notice that in present experiments with
NBI [5] tungsten Mach number can be high, MW = Mi

√
mW/mi ≥ 1 (see figure 2c).

In experimental plasmas, the main ions in banana and impurities in the trace limit Pfirsch-Schlüter conditions are
not always fulfilled (see figure 3 for example based on a JET-ILW pulse), whereas even in NBI JET cases the bulk
ion Mach number remains subsonic. This impacts the numerical value 1/2 in front of R

LTi
inside equation (1), which

is valid only in certain collisionality regimes according to [23]. Therefore this value has to be tested before starting
the comparison between the formula and NEO.

In Wenzel-Sigmar neoclassical formulation [23], neoclassical impurity flux without poloidal asymmetries, ΓPSZ with
impurity in Pfirsch-Schlüter, is described as follows :

RΓPSZ
nZ

= q2DcZ

[
K

(
1

Z

R

LnZ
− R

Lni

)
−H R

LTi

]
(4)

K = 1− 0.52α

0.59 + α+ 1.34g−2
(5)
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H = −0.5 +
0.29 + 0.68α

0.59 + α+ 1.34g−2
(6)

With α =
nZZ

2
Z

niZ2
i

and g = ν∗Dε
3/2, ν∗D = νDDqR

vth,Dε3/2

Two coefficients apply, H and K, respectively on the ion density gradients (main ion i and impurity Z) and the
main ion temperature gradient. These coefficients depend on the impurity concentration and charge, as well as on
the main ion collisionality. Equation (1), from [22] assumes that K=1 and H=-0.5, which is true for trace impurity
in Pfirsch-Schlüter regime and main ion in banana regime. Indeed, having the main ion in banana regime implies
that ν∗D < 1 so g term from equations (5) and (6) tends to 0, therefore g−2 >> 1. If the impurity concentration is
low enough to remain in the trace limit (ie α << 1) then the combination of the two assumptions (impurity trace
and main ion banana regime) lead K to tend to 1 and H to tend to -1/2. But as seen later on figure 3 for JET-like
profiles, Deuterium is typically in the banana regime while W is in plateau regime across most of the plasma, except
at the edge where it is in Pfirsch-Schlüter regime.

To check if it is adequate to keep K=1 and H=-0.5 in the formula, a scan of the main ion (assumed to be Deuterium)
collisionality was made with NEO. The Deuterium density is varied over a large range, in order to vary D collisionality.
Note that in order to reach Deuterium in deep Pfirch-Schlüter regime, unrealistic values of Deuterium densities are
used. The ratio nZ/nD=10−5 was kept fixed to maintain the impurity in the trace limit nZZ²

nD
= 1.2.10−2 with Z=34 the

charge of W. Therefore, the W collisionality is varied from plateau to Pfirsch-Schlüter regimes. JET-like parameters
are used based on pulse n°85308 time averaged over 10.35s-10.85s at mid-radius see appendix A for more details.
Figure 1 shows the ratio H/K versus Deuterium collisionality ν∗D, as it is not possible with NEO to extract H and
K from the diffusion coefficient Dc. Indeed the theoretical formulation of Dc is only valid for deep Pfirsch-Schlüter
regime, which makes it not reliable for a collisionality scan. On figure 1, NEO H/K is compared with Wenzel-Sigmar
formula (equations 5 and 6 above) and with NCLASS ([19]). NCLASS is a neoclassical code based on the fluid moment
approach with a simplified collision operator, and does not take into account poloidal asymmetries. NCLASS uses the
Hirschman-Sigmar collision operator , based on pitch angle scattering. NEO ([9, 21, 24]) solves the full drift kinetic
equation. It provides a first-principle calculation of the transport coefficients directly from the kinetic solution of the
distribution function. It uses the full linearized Fokker Planck collision operator, which is more accurate, especially
for multi-species collisions. NEO is also reliable in general geometry. Two NEO scans were made, one with adiabatic
electrons, and the other with kinetic electrons.

Figure 1: H/K versus D and W collisionalities. Wenzel-Sigmar formulation equations (5) and (6) (solid line squares)
NCLASS (diamonds) NEO kinetic electrons (dashed line and crosses) and NEO with adiabatic electrons (dot line
and circles). The arrow shows JET-like core values range, see figure 3 below. The parameters used for this scan are :
r/a=0.5, ε = 0.16, Z=34, Ti = Te=2.1 keV, q=1.18, R=2.98, α = 1.2.10−2, nD = 1019 → 3.1024. See Appendix A for
the complete NEO input parameters.

Figure 1 can be divided in three zones, separated by vertical dashed lines which correspond to change of collisional
regime. The left one indicates that W enters Pfirsch-Schlüter regime, and the right one that Deuterium enters
Pfirsch-Schlüter regime. Below ν∗D = 0.1 in zone n°1, Deuterium is in the banana regime and W is in plateau. When
0.1 < ν∗D < 15 in zone n°2, W is in Pfirsch-Schlüter regime and D is in banana/plateau regime. Above ν∗D > 15 in
zone n°3, both species are in Pfirsch-Schlüter regime. Core range values for the JET-ILW case studied and described
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in section 3 covers zones one and two, with W in plateau/Pfirsch-Schlüter, and D in banana/plateau (see figure 3).
One can start with the first zone : D banana and W plateau. When the W is in plateau Wenzel-Sigmar is not
applicable. In this zone, both NEO and NCLASS agree very well with each other. In the second zone, the H/K
value derived in Wenzel-Sigmar in [23] equals -1/2, NEO and NCLASS first converge towards -1/2. But as ν∗D enters
the third zone, NCLASS remains at -0.5 while H/K from [23] and both NEO curves move away from -0.5. It means
that when D and W go deep in plateau, NCLASS is no longer an adequate model. In the third zone both species
are in Pfirsch-Schlüter : in this configuration, according to [25] H/K derived in [23] tends to zero. NEO curve with
adiabatic electrons goes to zero, but the NCLASS curve remains at -0.5, and NEO with kinetic electrons goes up to
1. NCLASS behavior comes from the fact that it uses a collision operator which does not include energy scattering,
which makes it non-relevant with D in Pfirsch-Schlüter. NEO with kinetic electrons differs from the adiabatic electron
case due to the electron coupling. Indeed, at low impurity density, the electron collision frequency with the main
ions (i.e. νeD) can become non-neglibible compared with impurity collisional coupling with the main ions (i.e. νDW ).
This explains the difference betwen kinetic and adiabatic electron NEO runs. NEO with kinetic electrons is the most
physical result. For the range of D densities nD < 1021m−3 (ie nD < nGreenwald) NEO and NCLASS predictions of
H/K transport coefficients practically coincide. However, in the first zone, with Tungsten in the plateau regime, the
ratio H/K deviates from the H/K = -0.5. Therefore, one cannot use H/K=-1/2 in the experimentally relevant range
(zone 1 and 2), but NCLASS shows to be reliable enough. However the small gradient local models used here (NEO,
NCLASS) might not be applicable in the pedestal region.

Two conclusions can be made out of this study of H/K term over Deuterium collisionality. First, typical tokamak
collisionality ranges values cover a zone where |H/K| can be lower than 0.5. It means that keeping the numerical
value in equation (1) is not adequate to describe experimental plasmas. Secondly, NEO and NCLASS give the same
results within the experimental parameter range. Therefore the combination of NCLASS with PA and PB formula
(equations (1) (2) (3) and [19]) will be compared to NEO with poloidal asymmetries.

Therefore, we assume a generalisation of equation (1) as follows :

R 〈ΓneoZ 〉
〈nZ〉

= q²DcZ

[(
K

1

Z

R

LnZ
−K R

Lni
−H R

LTi

)
PmodelA −H0fCP

model
B

R

LTi

]
(7)

In the limit of main ion in banana regime and W in the trace limit and Pfirsch-Schlüter regime, K=1, H=-0.5 and
H0 = 0.33 and equation (1) is recovered. The numerical value 0.33 associated with PB term in equation (1) is also
valid only for W in Pfirsch-Schlüter. But as shown later in figure 3 W is mainly in plateau for the studied JET pulse.
Therefore the 0.33 value is generalized to an H0 numerical term that will be empirically adjusted based on NEO
results.

2. Extracting PAand PB terms from NEO outputs

In order to explore the validity of equation (7), one needs to extract the transport coefficients from NEO outputs,
and then deduce PA and PB terms calculated with NEO and compare them to their theoretical expressions (equations
(2) and (3)). For clarity, equation (7) is re-written : the idea is to gather the terms respectively in front of densities
and temperature gradients. The general version of the flux equation, written in equation (8) below is the starting
point. The impurity flux is expressed as the sum of a diffusion term and a convective part. The diffusion coefficient
is Dmodel

asym and the convection velocity coefficient is identified as V modelasym . The index asym stands for asymmetric,
i.e accounting for the effects of poloidal asymmetries. “model” means that the coefficients are based on analytical
derivation.

〈
Γmodelasym,Z

〉
=
Dmodel
asym nZ

R

(
R

LnZ
+
V modelasym R

Dmodel
asym

)
(8)

with the pinch velocity term defined as

V modelasym R = V modelN,asym

R

Lni
+ V modelT,asym

R

LTi
(9)

We define V modelN,asym and V modelT,asym as the convection velocities respectively proportional to R
Lni

and R
LTi

:

V modelN,asym = Dmodel
asym CmodelN,asym

1

Lni
(10)
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V modelT,asym = Dmodel
asym CmodelT,asym

1

LTi
(11)

By identification with equation (7) the coefficients Dmodel
asym , CmodelN,asymand CmodelT,asymcan be written as follows :

Dmodel
asym = q2DcKP

model
A = Dmodel

sym PmodelA (12)

CmodelN,asym = CmodelN,sym = −Z (13)

CmodelT,asym = −Z(
H

K
+
H0fCP

model
B

KPmodelA

) = CmodelT,sym −
ZH0fCP

model
B

KPmodelA

(14)

In equation (14) fc =
3〈B2〉

4

´ λc

0
λdλ

(
√

1−λB)
is the fraction of circulating particles with λ the pitch angle variable. In

this section, we use fc provided by NEO. To recover the transport coefficients in absence of poloidal asymmetries :
Dmodel
sym , CmodelN,symand CmodelT,symone just needs to set PA = 1 and PB = 0 in equations (12)-(14).

Next we compute the coefficients (10)-(12) from NEO results. The NEO inputs and outputs that are relevant in
our simulations are listed in table 1, the complete inputs at all radii are given in Appendix A. NEO inputs are defined
at the outboard midplane, noted as (.)0in table 1.

Inputs Outputs

( R
Lni

)0, ( R
LTi

)0, ( R
LnZ

)0, nW,0/ni,0 ΓNEO
asym,Z , ΓNEO

sym,Z , fc

Table I: NEO relevant inputs and outputs used for the simulations

NEO equilibrium coefficients come from the EFIT numerical equilibrium of JET-ILW pulse 85308 at 10.35s. To
extract the diffusion coefficient computed by NEO DNEO

asym , two NEO runs are needed : they are called runs 1 and

2. They share the same inputs, except for the impurity density gradient ( R
LnZ

)0. Sanity checks have been done to

ensure that W flux evolves linearly with densities and temperature gradients, therefore only two values of ( R
LnZ

)0 are

needed. To make NEO definition consistent with the gradient of the flux surface average density R
LnZ

used in equation

(1), the transformation ( R
LnZ

)0 = R
LnZ

〈nZ〉
nZ,0

is used. Indeed equation (1) uses the average gradient length as defined

in [22], therefore a correction factor 〈nZ〉
nZ,0

was added to the NEO gradient length defined at the outboard midplane, as

explained in [5]. 〈nZ〉is the W flux surface averaged density, and nZ,0 is the W density at the outboard midplane.Γ1 is

the output flux associated with the input R
LnZ

= 2, noted as ( R
LnZ

)1. Γ2 is associated with R
LnZ

= 5, noted as ( R
LnZ

)2.

DNEO
asym is then calculated as shown in equation (15) :

DNEO
asym =

R

〈nZ〉
Γ2 − Γ1

( R
LnZ

)2 − ( R
LnZ

)1

(15)

We assume that the description of equation (10) is correct, so that V NEON,asym = −ZDNEO
asym

1
Lni

.

To extract V NEOT,asym, an extra NEO run is needed, with a different main ion temperature gradient compared with

run 1. Γ1 is the output flux associated with the input ( R
LTi

)1 = 1, Γ3 is associated with ( R
LTi

)3 = 0. It gives equation

(16) :

V NEOT,asym =
R

〈nZ〉
Γ1 − Γ3

( R
LTi

)1 − ( R
LTi

)3

1

LTi
(16)

In total, to compute transport coefficients with poloidal asymmetriesDNEO
asymand V NEOT,asym, and coefficients without

poloidal asymmetries,DNEO
sym and V NEOT,sym, 6 NEO runs are needed.
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Since the PmodelA geometry coefficient is equivalent to :

PmodelA =
Dmodel
asym

Dmodel
sym

(17)

And assuming that equation (7) is an accurate description of NEO results, we define PNEOA as follows :

PNEOA =
DNEO
asym

DNEO
sym

(18)

Now we have extracted PNEOA from NEO coefficients, we need to do the same with PNEOB . However, isolating H0PB
alone from NEO transport coefficients is not possible using NEO coefficients (equations (15)-(16)). Therefore the term
QNEOB is defined in equation (20), for it is the simplest coefficient including H0PB that can be extracted. Assuming
that equation (7) is a good description of NEO results, QmodelB is defined, extracted using analytical coefficients as
shown in equation (19).

QmodelB = −H0fCP
model
B

H
=
V modelT,symP

model
A − V modelT,asym

V modelT,sym

(19)

QNEOB =
V NEOT,sym

DNEO
asym

DNEO
sym

− V NEOT,asym

V NEOT,sym

(20)

Now we compare the model built from the generalization equation (7) of the analytical formula with NEO.

III. POLOIDAL ASYMMETRIES IMPACT ON NEOCLASSICAL TRANSPORT : NEO VS FORMULA

In this section PNEOA and QNEOB are compared with PmodelA and QmodelB for a given case of JET-ILW plasma profiles.
Transport coefficients are then reconstructed with a combination of NCLASS runs and geometrical PmodelA and PmodelB
and compared with NEO extracted transport coefficients.

A. Selected JET pulse description and collisionality profiles

This section focuses on the first test of the robustness of the model. The comparison between NEO and analytical
PmodelA and QmodelB is based on JET-ILW parameters from the baseline H-mode shot 85308 (IP = 2.5MA and B=2.7T),
also presented in [6]. The heating power of this discharge is 19.1 MW of NBI. Be (nBe/nD = 2.9.10−2 ), and
Hydrogen (nH/nD = 9.5.10−2) are present in the NEO simulations. The W concentration is arbitrarily chosen so that
nW /nD = 10−5 and W remains a trace specie. Other dimensionless quantities are shown in table 2. Figure 2 shows
the main JET based input profiles, and figure 3 shows the collisionalities calculated with these inputs. Table 2 gives
the main quantities that are used for NEO runs at three radial locations, with r/a defined as the ratio of the mid-plane
averaged minor radius r, to the mid-plane minor radius r at the last closed flux surface a. Other NEO inputs are
listed in Appendix A. In this section, unless specified otherwise, NEO resolution is the follows : 21 theta poloidal
gridpoints, 19 extensions in pitch-angle Legendre polynomial, and 10 Laguerre polynomials. These resolutions were
checked to be sufficient at the extrema of our scans.

r/a R/LTD = R/LTe R/Lne ZW Zeff q nW /nD MD MW

0.1 2.4 1 44 1.39 0.9 10−5 0.19 1.82

0.4 5.2 1.4 38 1.37 1 10−5 0.18 1.78

0.8 10.4 2.8 26 1.29 2 10−5 0.17 1.66

Table II: JET data main inputs. Pulse 85308 time averaged over 10.35s-10.85s
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(a) Ion temperature profile (b) Electron density profile
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(c) Impurity (here Tungsten W, solid line) and Deu-
terium (dashed line) Mach number

(d) W distribution vs the poloidal angle θ from NEO
simulations for r/a=0.1 (blue,cross) 0.4 (dark, square)
0.7 (red, diamond)

Figure 2: Input profiles based on JET 85308 baseline H-mode shot (IP = 2.5MA and B=2.7T) for simulated timeslice
(averaged over t=10.35s-10.85s). Experimental data and error bars can be found in [6].

The Mach number is defined as M=
√

mω²R²

2T where m is the mass of the considered species, R is the major radius,

T the temperature and ω is the angular frequency. Mach number from figure 2c) is computed with NEO based on
experimental angular frequency and temperature.

Collisionality parameter is defined as ν∗ = qRν
vthε3/2

. For Deuterium, the dominant collision frequency is νDD =

4
√
π

3
nDe

4lnΛ

ε20m
1/2
D T

3/2
D

. For, W, the dominant collision frequency is νWD = 8
√
π

3
√

2

nDZ
2
W e4lnΛ

ε20mWm
−1/2
D T

3/2
D

. Both definitions are based

on equations (7)-(9) and (B.30) from [23].

Figure 2d) shows that poloidal asymmetries are stronger at the edge. This comes from the dependency on the
local value of R at a given poloidal angle Rlocal in the expression of the W density presented in [6] and re-written in
equation (21) in the case of isotropic temperature :

nZ(θ) = nZ0 exp(−eZφ(θ)

Ti
+
mZω

2(Rlocal(θ)
2 −R2

0)

2Ti
) (21)

With nZ0 the impurity density at the low field side, Rlocal is the local major radius and R0its value at the low field
side, ω is the angular frequency, θ is the poloidal angle, Z is the impurity charge, mZ the impurity mass, and Φ a
poloidally varying potential.
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(a) D collisionality (b) W collisionality

Figure 3: D and W collisionalities calculated from JET-like 85308 profiles from figure 2.

Figure 3a) illustrates the D collisionality and the limit banana-plateau regime. Deuterium remains deep in the
banana regime across the whole plasma. On figure 3b), the dashed line corresponds to the limit above which W
reaches the Pfirsch-Schlüter regime. One can see that W is in Pfirsch-Schlüter regime only at r/a>0.6. Therefore
r/a>0.6 is the only region where both species are in the regimes (W trace and Pfirsch-Schlüter, D banana) where
the Angioni and Helander formula from [18] strictly applies. In the next section we compare PmodelA and QmodelB with
NEO coefficients and we study the impact of the theoretical assumptions.

B. PA and QB terms

PA and QB terms were extracted as explained in the previous section. On figure 4, H corresponds to the Wenzel-
Sigmar formulation from equation (4). For the studied JET-ILW case, H stays very close to -0,5.
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(a) Asymmetry pinch enhancement (b) Temperature screening reduction

(c) Ratio of temperature screening coefficients

Figure 4: Comparison of NEO results and model results for JET data pulse n°85308

On figure 4a) one can see that globally PmodelA shows a good agreement with NEO, which is very encouraging
because, as seen in figure 3), not all the assumptions of the analytical derivation are well fulfilled in this pulse.
However, one can note that at r/a = 0.1 − 0.3, PmodelA underestimates PNEOA . This is likely due to having W in
plateau where the analytical formula does not strictly apply. Figure 4b) shows QNEOB compared with different QmodelB
combinations, each with a different H0 formulation. Figure 4c) shows the numerical value of H0/|H| extracted :
QNEOB is divided by fCP

model
B , assuming that equation (7) is an accurate description of NEO results. |H| corresponds

to Wenzel-Sigmar coefficient from equation (6). On figure 4b) one can see that QmodelB with H0 = 0.33 as initially
proposed by Angioni-Helander in [18] (dashed line and diamond) is well below QNEOB (circles and solid line). QmodelB
with H0 = 1 (crosses and dot line) seems to be a better approximation, but at low r/a the fit can be improved. The

best fit out of the three H0 formulations presented here seems to be the empirical choice of H0 =
√
νD∗/νD∗(0.5), with

ν ∗D (0.5) the value of D main ion collisionality at r/a=0,5 (solid line and squares). The collisionality dependence
allows to simultaneously reproduce the increase of H0/|H| in the center and towards the last closed flux surface, shown
on figure 4c). The normalisation of main ion collisionality at r/a=0,5 was chosen because of the excellent agreement
between QNEOB and QmodelB . Indeed, according to [17], the 0.33 value was calculated with a simplified collision operator
and remains valid only with W in Pfirsch-Schlüter regime and D in banana regime, for large temperature and density
gradients. One can see that H0 = 1 is a better fit to the numerical results than 0.33, but it mismatches at small
r/a and r/a>0.6. The H0 formulation depending on the collisionality gives a better match. However, a more physics
based formulation for H0 is required instead of an adjusted formulation depending on the normalization value.

To summarize, there is no radial range where both species are in the regimes (W trace and Pfirsch-Schlüter, D
banana) where the Angioni and Helander formula from [18] strictly applies. However analytical PmodelA and QmodelB
show a very good agreement with NEO coefficients, provided a collisionality dependence is introduced in H0. In
order to study the validity of the formula out of its limits, and try to quantify its reliability, in Appendix B we study
the impact of W Mach number on the analytical formula. The results show that for W Mach numbers >2 PmodelA
overestimates NEO results (up to 50%), impacting also QmodelB term. But for this JET-ILW case, as shown on figure
2c) W Mach number is low enough so that analytical coefficients can be used.
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C. Reconstruction of transport coefficients using NCLASS

To complete the test of the validity of the model, one can compare NEO coefficients from equations (15)-(16) with
a combination of NCLASS runs and geometrical PmodelA and PmodelB from equations (2) and (3). NCLASS inside
JETTO provides a factor 1100 speedup compared with NEO because it is a fluid-moment based model, solving a
lower dimensionality problem, while NEO solves exactly the drift kinetic equation. Moreover, NCLASS uses a simple
collision operator, which saves time compared to NEO especially with multi-species cases, like the JET-ILW pulse
used here.

For clarity, the three transport coefficients are presented as they would be used in a transport code : the diffusion
term, defined in equation (12); the main ion gradient pinch velocity term, defined in equation (10); and the temperature
screening term, defined in equation (11). But instead of using the analytical expressions from equations (10)-(12),
we use NCLASS poloidally symmetric transport coefficients DNCLASS

sym , V NCLASSN,sym and V NCLASST,sym , obtained by using

the same procedure shown in equations (15)-(16). Therefore we define, in equations (22)-(24), coefficients that

combine NCLASS poloidally symmetric coefficients and analytical PA and PB : DNCLASS,model
asym , V NCLASS,modelN,asym and

V NCLASS,modelT,asym .

DNCLASS,model
asym = DNCLASS

sym PmodelA (22)

V NCLASS,modelN,asym = ZDNCLASS
sym PmodelA

R

Lni
(23)

V NCLASS,modelT,asym = V NCLASST,sym

[
PmodelA +

H0fCP
model
B

H

]
(24)

For the comparison between NCLASS and NEO we also introduce transport coefficients which are a combination
of NEO poloidally symmetric coefficients associated with PmodelA and PmodelB , defined as follows :

DNEO,model
asym = DNEO

sym PmodelA (25)

V NEO,modelN,asym = ZDNEO
sym PmodelA

R

Lni
(26)

V NEO,modelT,asym = V NEOT,sym

[
PmodelA +

H0fCP
model
B

H

]
(27)
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(a) Diffusion term (b) D density driven pinch term

(c) Temperature screening term (d) V/D ratio VT,asym+VN,asym/Dasym

Figure 5: Reconstruction of W transport coefficients : comparison between NEO and NCLASS+correction factors

First of all, one can notice on figures 5 that NCLASS alone (dash-dot line and diamonds) underestimates all
transport coefficients by an order of magnitude for MW ∼ 2. On the contrary NCLASS combined with PmodelA and
PmodelB (squares and solid line) is very close to NEO (circles and dot line) coefficients while obtained 1100 times faster.
Indeed NEO runs take the same time, with or without asymmetry. NEO and PmodelA and PmodelB combined with NEO
(crosses) symmetric runs give also globaly similar results.

Regarding the diffusion term (figure 5a), DNCLASS
sym × PmodelA (squares and full line) is lower than both NEO-only

diffusion coefficient (circles and dotted line), and NEO symmetric combined with PmodelA (crosses). The difference
in collision operator between NEO and NCLASS explains the gap between DNCLASS

sym × PmodelA and NEO symmetric

combined with PmodelA . Finally the difference between NEO symmetric combined with PmodelA and NEO-only diffusion
coefficient comes from the difference between PmodelA and PNEOA on figure 4. We mostly want to see how DNCLASS

sym ×
PmodelA compares with NEO-only diffusion coefficient and although we recover the difference between PmodelA and
PNEOA on figure 4, both coefficients remain comparable.

The fit on the D density driven pinch term on figure 5)b) shows a similar trend : NCLASS combined with analytical
PmodelA and QmodelB is lower than NEO-only coefficient. One can notice that this term is one order of magnitude bigger
than the diffusion term in figure 5a), due to the W charge factor.

Concerning the temperature screening term on figure 5c) we use H0 =
√
νD∗/ν∗D(0.5) as it seems to be the best

adjustment for this case. On figure 5c), there is a sign change at low epsilon, coming from H0 and H compensating
each other. The agreement between NEO and NCLASS combined with analytical PmodelA and QmodelB is very good
except for the last point at r/a=0.8 where a factor 2 discrepancy is observed. However one can notice that the
temperature asymmetry screening term is two times weaker than the D density driven pinch contribution to the W
flux.

Figure 5d shows the ratio V/D, ie the ratio of the convection term (combining VT and VN ) to the diffusion term
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D. One can see that NCLASS alone (green dash-dot lines and diamond) overestimates the peaking by one order of
magnitude. The agreement between NEO alone (red circles), NEO combined with Pa/Pb model (black crosses) and
with NCLASS combined with Pa/Pb model (bleu squares) is excellent from the center until r/a=0.4. For r/a>0.4 the
combination of Pa/Pb model with NCLASS or NEO over-estimates the peaking by a maximum of 50% at r/a=0.8.
This difference comes mainly from the overestimation of the temperature screening term (see figure 5c).

The last step is to test the combination NCLASS + geometric PmodelA and QmodelB inside a JET transport solver,
JETTO [13]. The goal is to compare the resulting W 2D profile time evolution with PmodelA and QmodelB and full NEO
with poloidal asymmetries.

IV. APPLICATION IN JETTO

PmodelA and QmodelB equations are implemented in the JET integrated modeling platform JETTO [13]. JETTO is
coupled with NCLASS and NEO, but also with the impurity module SANCO [26], that calculates impurity profiles
and the amount of radiation produced. We compare on figure 6 the W profile calculated with NEO inside JETTO, and
the W profile calculated using NCLASS inside JETTO associated with geometric PmodelA and QmodelB . To calculate
analytically PmodelA and QmodelB , the fraction of passing particles is outputted from JETTO magnetic equilibrium. The
W distribution is calculated inside JETTO using equation (21) above. Therefore, all the pieces necessary to estimate
PmodelA and QmodelB are computed independently from NEO. The simulations starting at t=10.35s are performed over
0,5s so that all codes are converged, with one set of interpretive background profiles. Only neoclassical transport
profile is evolved. The input profiles used in JETTO are based on the JET pulse 85308 illustrated on figure 2. In
order to test the neoclassical W transport, the W turbulent transport is artificially reduced. NCLASS simulations
with PmodelA and QmodelB ran on average 1100 times faster compared with NEO simulations, as found when comparing
stand alone NEO vs NCLASS combined with PmodelA and QmodelB in section III.

Figure 6: W density profile depending on ρ : comparison between NEO and NCLASS +PmodelA / PmodelB inside
JETTO based on JET case 85308 (time averaged over t=10.35s-10.85s).

On figure 6, the predicted W density profiles by NEO and by NCLASS+PmodelA / QmodelB are compared. One can see
that for the whole r/a range NEO (full line and circles) and NCLASS+PmodelA / QmodelB with H0 depending on νD∗ (full
line) are very close. The agreement of NEO with and NCLASS+PmodelA / QmodelB with H0/|H| = 2 (dashed line) is also
very good within ρ=0.5, except in the very core where NCLASS+PmodelA / QmodelB with H0/|H| = 2 underestimates
the peaking. NCLASS (dashed and dotted line) does not capture the W core density peaking. For ρ larger than
0.5 up to the pedestal region, the curves split in two groups : NCLASS+PmodelA / QmodelB with H0 depending on
νD∗ stays in very good agreement with NEO. However in this region NCLASS alone and NCLASS+PmodelA / QmodelB
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Figure 7: Experimental timetraces of NBI, Te(ECE) of 82722 pulse

with H0/|H| = 2 both underestimate NEO results. In the pedestal region the study made in section II.b) does not
apply. NCLASS alone and NCLASS+PmodelA / QmodelB with H0/|H| = 1 both present an unrealistic peaking at the
boundary. NCLASS+PmodelA / QmodelB with H0 depending on νD∗ keeps its very good agreement with NEO. Therefore
a H0 increase with νD∗ increasing seems to be a key ingredient to predict the W profile. The underlying physics still
requires to be investigated.

To further test the robustness of PmodelA and QmodelB over time, another JET ILW H-mode pulse was chosen. The
hybrid pulse 82722 (BT = 2T IP=1.7 MA) shows W accumulation (see figure 8a) therefore it is important to see if
the formula reproduces successfully this pattern. The simulation runs for 1.6s, from 5.5s to 7.1s, which corresponds
to the shaded part on figure 7. In this time window only Neutral Beam Injection is at play. We also have several
sawteeth (seen on the central temperature figure 7) and Edge Localized Modes. The main plasma profiles evolution
(electron density and temperature, ion temperature and plasma rotation) is not evolved, instead we use fits based on
experimental data. Those profiles are updated every 0.1s. Only neoclassical transport is evolved using NEO or the
PmodelA / QmodelB formula combined with NCLASS. At the beginning of the simulation nW /nD = 5.10−5, is chosen to
match experimental radiation level, assumed to be caused by W only. Be is added to match experimental Zeff = 1.34.
For this JETTO simulation we only used the H0 depending on νD∗ formulation. The goal of the simulation is to
compare the ability of NEO and PmodelA /QmodelB to reproduce the W experimental behavior.

In order to quantify more precisely the quality of the simulations, the W density timetraces of the last 0.9 seconds
of JETTO simulation are shown at r/a=0.01 (on figure 8a) and r/a=0.5 (on figure 8b). One can see that at r/a=0.01
on figure 8a, very close to the plasma center, NCLASS combined with PmodelA / QmodelB simulation (blue dot dashed
line) overestimates NEO prediction (red full solid line) by a factor 5. JETTO with NEO simulation also overestimates
the experimental W content (dark dashed line) and misses the strong W density decreases due to sawtooth crashes.
However NEO captures the accumulation occuring from 6.8s to 7.1s. At mid-radius on figure 8b, NEO and NCLASS
combined with PmodelA / QmodelB simulations reach a much better agreement, with a maximum of 30% difference.
However both simulations overestimate the experimental W content up to a factor 3. Figure 8c) shows the W density
profile at t=7.1s after 1.6s of simulation. One can see that both NEO and NCLASS combined with PmodelA / QmodelB
simulations overestimates the W density from r/a=0.25 outward. NEO captures the central peaking quite well while
NCLASS combined with PmodelA / QmodelB overestimates it by a factor 4. One can notice that the estimated W density
remains flat from r/a=0.8 outwards, this is a boundary condition in the pedestal region.

2D W density maps at t=6.8s, therefore after 1.3s of simulation, are shown on figure 9. Figure 9a shows the
prediction of JETTO with NCLASS and PmodelA / QmodelB , figure 9b) shows the prediction of JETTO with NEO,
and figure 9c) shows the experimental W density estimated from SXR and UV. The poloidal asymmetries are clearly
visible on figure 9c), the W did not move towards the center yet. One can see that JETTO with NEO prediction is
very close to the experimental W distribution the W density absolute values are comparable (1015for the experimental
data versus 1.8.015for JETTO simulation). Some W moved already in the center. Indeed this can be caused by the
fact that the simulation start with a flat W profile, therefore there is some W in the center from the start. The
JETTO simulation with NCLASS and PmodelA / QmodelB predicts that all the W already moved toward the center,
over-predicting the W content by a factor 5, even though the poloidal asymmetry is still present (light shape on figure
9a).
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(a) W density over time at r/a=0.01

(b) W density over time at r/a=0.5

(c) W density profile at t=7.1s after 1.6s of simulation

Figure 8: W density at the Low Field Side over time at r/a=0.01 and r/a=0.5 and W density profile at the Low
Field Side at t=7.1s

To summarize, NCLASS associated with the equations PmodelA and QmodelB allows to reproduce poorly the W density
predicted by NEO in JETTO, while being 1100 times faster. It especially overestimates the core accumulation up
to a factor 5. The choice of the collisionality dependency of H0 formulation was proved to be crucial to reproduce
of NEO results. On a time evolving simulation, NCLASS and PmodelA / QmodelB predictions captures correctly the
poloidal asymmetries but overestimates the neoclassical transport in the center. In order to be able to use PmodelA /
QmodelB for integrated modeling, the H0 formulation must be revisited, either thanks to a better empirical regression
or thanks to a theory based model.

V. CONCLUSIONS

Due to its large mass and charge, Tungsten neoclassical transport can be significantly enhanced by poloidal asym-
metries [18]. Poloidal asymmetries are produced by the centrifugal force in presence of NBI [5, 14, 16, 17, 27] and/or
by RF heating [8, 28, 29]. In some JET cases, the enhancement can reach an order of magnitude (first established
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(a) Pa/Pb model + NCLASS (b) NEO (c) Estimation from SXR-UV
measurements

Figure 9: Comparison of 2D plots of W density at t=6.8s (after 1.3s of simulation) for 82722

in [16] and continued in [5, 6, 22]). It is therefore essential to take poloidal asymmetries into account in integrated
modeling. The effect of poloidal asymmetries are captured by the neoclassical code NEO. However, NEO leads to
significant computational expense in integrated modelling applications. The goal of this paper was to determine if it
was feasible to combine geometric analytical terms from [18]describing the effect of poloidal asymmetries on W flux,
with a simpler and faster neoclassical code, NCLASS [19], in order to produce results similar to the ones obtained
with NEO.

At first, the analytical formula by Angioni-Helander [18] was tested outside of its range of applicability. Indeed, W
can be in the plateau regime and not only in Pfirsch-Schlüter regime for realistic tokamak plasma parameters. The
analytical formula has been empirically adjusted to match better NEO by accounting for a collisionality dependence
in the reduction factor of the temperature screening due to poloidal asymetries. Towards the magnetic axis, W
collisionality in plateau leads to slightly under estimated convection enhancement factor, which sightly impacts the
reconstruction of the transport coefficients. As long as the D is in the banana regime, the analytic formula can be
applied even with W out of the Pfisch-Schlüter regime. For very strong poloidal asymmetries with main ions in the
banana regime, the geometric convection enhancement factor overestimates NEO results (up to 50%), impacting also
temperature screening term.

The neoclassical code, NCLASS has been combined with the analytical geometric formula and implemented in
JETTO. In one case based on JET baseline scenario parameters, this fast model can predict the same W density
profile as NEO while saving a factor of a thousand in computer time. In a second JET hybrid scenario case, the central
tungsten peaking was overestimated due to a sensitive balance between temperature screening and inward impurity
convection near the magnetic axis. The model in its present formulation therefore cannot be considered to have general
applicability, but could be used for scoping studies before running the full NEO model. The parametric dependencies
of the temperature screening reduction due to poloidal asymmetrics still remains to be better characterised and
explained by neoclassical theory; such an understanding would allow our fast neoclassical model for heavy impurity
transport to be extended to more general applicability. In order to gain CPU time while keeping the accuracy of
NEO, another possibility would be the use of Neural Networks regression as done for QuaLiKiz [30, 31].

For future devices such as ITER and DEMO, neoclassical transport is expected to be much less dominant than in
present devices thanks to reducedx angular momentum input. This would have beneficial effects on W behavior, as
presented in [32]. The results obtained in this paper show the potential of a faster model in integrated modelling
applications, saving significant computational time in W-transport simulations in the presence of poloidal asymmetries,
compared to full NEO calculations.

Appendix A: NEO inputs and outputs

EQUILIBRIUM MODEL=3 corresponds to the General Grad-Shrafranov equilibrium. COLLISION MODEL=4
corresponds to the use of the Full Linearized Fokker-Plancl operator. N ENERGY=10 corresponds to the number of
energy Laguerre polynomials. N RADIAL=1 corresponds to the number of radial positions. N XI=19 corresponds
to the number of Legendre polynomials. ROTATION MODEL=2 means that toroidal rotation effects are included.
N THETA=21 correspond to the number of theta gridpoints.

These simulations are run with 5 species, with N SPECIES=5 : Deuterium (n°1), electrons (n°2), hydrogen (n°3),
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r/a 0.1 0.2 0.3 0.4 0.5 0.6 0.8

Z 4 44 43 42 38 34 31 26

DLNNDR 0,30 0,46 0,43 0,44 0,53 0,62 0,90

DLNTDR 0,75 0,86 1,02 1,66 2,30 2,53 3,27

RMAJ OVER A 3,11 3,11 3,11 3,11 3,10 3,09 3,07

Q 0,90 0.93 0,98 1,10 1,17 1,33 2,02

SHEAR 2,1.10−2 8,2.10−2 0,19 0,35 0,58 0,92 2,17

OMEGA ROT 8,1.10−2 7,8.10−2 7,5.10−2 7,3.10−2 7,4.10−2 7,6.10−2 6,2.10−2

OMEGA ROT DERIV -6,4.10−2 -7,2.10−2 -6,7.10−2 -6,1.10−2 -6,8.10−2 -0,10 -0,22

RHO STAR 4,1.10−3 3,9.10−3 3,7.10−3 3,4.10−3 3,0.10−3 2,6.10−3 1,7.10−3

NU 1 9,2.10−4 1,0.10−3 1,2.10−3 1,5.10−3 2,1.10−3 3,1.10−3 7,2.10−3

Table III: Full list of NEO inputs

r/a 0.1 0.2 0.3 0.4 0.5 0.6 0.8

< nW > (m−3) 6, 15.1014 5, 31.1014 4, 67.1014 4, 09.1014 3, 46.1014 2, 91.1014 2, 57.1014

fc 0,74 0,64 0,56 0,50 0,45 0,41 0,33

ΓW (m−2s−1) −1, 47.1015 −1, 19.1015 −5, 69.1014 −1, 96.1014 −1, 39.1014 −2, 45.1014 −6, 03.1014

Table IV: Selection of NEO outputs

W (n°4), Berylium (n°5). Masses and temperatures are nomalized to the Deuterium mass. The Deuterium charge,
mass and density stay unchanged at all radii : MASS 1=1, Z 1=1 and DENS 1=0.79. The electrons charge, mass
and density stay unchanged at all radii : MASS 2=2,72.10−3, Z 2=-1, DENS 2=1. The hydrogen charge, mass
and density stay unchanged at all radii : MASS 3=0.5, Z 3=1, DENS 3=9,5.10−2. The W mass and density stay
unchanged at all radii : MASS 4=92, DENS 4=1.10−5. The Berylium charge, mass and density stay unchanged
at all radii : MASS 5=4.5, Z 5=4, DENS 5=2,9.10−2. All species have the same temperature (TEMP=1), the

same density gradient DLNNDR=−aδlnn/δrand DLNTDR=−aδlnT/δr. NU 1= νii
vnorm/a

with νii =
√

2πe4Z4
i ni

m
1/2
i T

3/2
i

lnΛ and

vnorm =
√
Ti/mi. SHEAR is defined as s = r

q
δq
δr . RMAJ OVER A is the ratio of the flux-surface-center major radius

to the normalizing length scale a. Q is the safety factor. OMEGA ROT is the angular toroidal frequency defined as
ω0

vnorm/a
. OMEGA ROT DERIV is the normalized toroidal rotation shear defined as dω0

dr
a2

vnorm
. RHO STAR is the

normalized Larmor radius :ρ∗ = c
√
mDTD

eB
1
a .

These specific NEO inputs were used in the scan shown on figures 3 in Section III.
In the board below are listed main NEO outputs relevant for this work :

Appendix B: Mach number dependence

Another assumption needs to be studied : the Mach number dependency. Note that Mach number for main ions,
Mi, for the case Ti = TW , is proportional to MW by definition, Mi = MW

√
mi/mW . In the MW scan we consider

values up to MW ∼ 3, observed in JET NBI pulses [5]. In this range the bulk ion Mach number remains small,
Mi < 0.3. Figures 10 illustrate such a scan where both W and the main ion (here Deuterium) Mach numbers are
simultaneously varied.

One can see that the agreement is very good until MZ ≈ 2 ; above, NEO does not increase as much as geometric
terms predict, both for PA and QB terms with both H0 formulations, showing a discrepancy up to 50%. Note that for
W Mach number down to zero, the values of the neoclassical theory in absence of poloidal asymmetries are recovered,
namely PA = 1 and QB = 0. The dependence in Mach number is quadratic, the impact of poloidal asymmetries
becomes significant from MZ ≈ 0.5. In figure 11, another scan of the W Mach number was made, but this time W is
placed in the Pfirsch-Schlüter regime. To do so, we increased both D and W densities, keeping the ratio nW /nD = 10−5

fixed so that W is still a trace impurity. In the configuration shown on figure 11, W is in Pfirsch-Schlüter and D is
still in banana regime.

On figure 11 the fits are almost perfect for PA untilMZ ≈ 2, with a maximum error of 7% compared with 20% on
figure 10a. This can be explained by the fact that, with W in Pfisch-Schlüter, NEO values are increased. On figure
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Figure 10: PA andQB terms depending on W Mach number. JET data shot n°85308, r/a=0.4 in table 1 except
nW /nD = 10−6. D in banana and W in plateau. For the last two points, NEO resolution increased to 41 theta

gridpoints and 39 extensions in Legendre polynomials.

(a) Asymmetry pinch enhancement (b) Temperature screening reduction

Figure 11: PA and QB terms depending on W Mach number. JET data shot n°85308, nW /nD = 10−6 r/a=0.4 in
table 1 except nD = 5.1020. D in banana and W forced in Pfirsch-Schlüter regime

11b for the QB part, one can see that forcing W into Pfirsch-Schlüter increased QNEOB up to a factor 3. This brings
QNEOB closer to QmodelB with H0 = 1 formulation. Indeed QmodelB with H0 = 1 values were not impacted by the change
in W collisionality from figure 10b to figure 11b. However, increasing the D content as well as the W content in order
to keep the ratio nW /nD = 10−5 did change the value of the H0 formulation depending on ν∗D , which shifted the
QmodelB accordingly. This reinforces the importance to find be better characterised H0 formulation.

For very strong poloidal asymmetries, W needs to be in Pfirsch-Schlüter regime for the formula to be applicable.
In this configuration the H0 formulation plays a crucial role in the estimation of QmodelB . Therefore, until a better
H0 formulation is established, the use of NEO is recommended.
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