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The highly polymorphic human leukocyte antigen (HLA) locus encodes cell surface
proteins that are critical for immunity. HLA-A expression levels vary in an allele-dependent
manner, diversifying allele-specific effects beyond peptide-binding preference. Analysis
of 9763 HIV-infected individuals from 21 cohorts shows that higher HLA-A levels confer
poorer control of HIV. Elevated HLA-A expression provides enhanced levels of an
HLA-A–derived signal peptide that specifically binds and determines expression levels of
HLA-E, the ligand for the inhibitory NKG2A natural killer (NK) cell receptor. HLA-B
haplotypes that favor NKG2A-mediated NK cell licensing (i.e., education) exacerbate the
deleterious effect of high HLA-A on HIV control, consistent with NKG2A-mediated
inhibition impairing NK cell clearance of HIV-infected targets. Therapeutic blockade of
HLA-E:NKG2A interaction may yield benefit in HIV disease.

D
iversitywithin regions of human leukocyte
antigen (HLA) class Imolecules that deter-
minepeptide-binding specificity has amajor
impact on human disease pathogenesis.
Variation in expression levels across alleles

of certain HLA genes has also been shown to as-
sociate with disease outcome (1–6), emphasizing
the importance of HLA polymorphism that de-
termines characteristics other thanpeptide spec-
ificity alone. Elevated expression levels of HLA-C
associates with reduced HIV viral load (VL) (1),
resulting, in part, from a greater frequency of cy-
totoxic T lymphocyte (CTL) responses toHLA-C–
restricted peptides with increasing HLA-C. Like
HLA-C, HLA-A alleles vary in expression levels
in an allotype-specific manner (7), but these two
class I loci have many distinguishing character-
istics. ComparedwithHLA-C,HLA-A is expressed
at a 13- to 18-fold higher level on the cell sur-
face (8) and is about twofoldmore polymorphic.
Mechanismsof transcriptional regulation for these

two loci are also distinct under healthy conditions
(7, 9, 10). These and other differences may affect
how these two loci affect human disease.
We verified that the pattern of allele-specific

variation in HLA-A expression levels was not
modified by HIV infection by comparing HLA-A
expression in 243 HIV-uninfected and 162 HIV-
infected ethnicity-matched individuals (fig. S1).
BeingHIV infecteddidnot associatewith a change
in the overall level of HLA-AmRNA expression
(Effectunadjusted = 0.00, SE = 0.07, P =1), nor did
HIV status modify expression estimates for any
single HLA-A allele (interaction P-values were
0.226 to 0.987 for each of the alleles tested). There-
fore, in HIV infection, the gradient in HLA-A ex-
pression level attributable to each allele is similar
to that in healthy individuals.
To test whether HLA-A expression levels are

associated with HIV control, we examined a
pooled data set of 2298 HIV-infected (clade C)
individuals recruited at 11 sites in sub-Saharan

Africa, in which the estimated effect of each HLA
allele on HIV VL measured cross-sectionally has
been reported (11). The HLA-A expression level
of each allele, estimated for black African indi-
viduals, was positively correlated with the esti-
mate of effect of that allele on HIV VL (correlation
coefficient R = 0.54, P = 0.007, Fig. 1A and Table 1).
Next, we sought to validate the discovery of a

deleterious effect of elevated HLA-A expression
level in independent cohorts with prospective
follow-up and of broader demographic back-
ground. We included 62,843 VL measurements
obtained longitudinally over a total of 32,804
person years of antiretroviral therapy–free obser-
vation time (median 2.86 years per individual)
in 5818 individuals enrolled in one of six studies
in the USA or one study in Switzerland (see on-
line methods). We modeled HLA-A expression as
z-scores (equivalent to one standard deviation
change in expression level), using mRNA levels
measured in 436 white and black healthy donors
(table S1). Consistent with the discovery analysis
among sub-Saharan Africans, elevated HLA-A
expression levels were significantly associated
with higher HIV viremia, even after accounting
for the individual allelic effects ofHLA-A, -B, and
-C. For every one z-score increase in HLA-A ex-
pression level, the VL increase over time was
0.06 log10 copies/ml higher (P = 4.4 × 10−19;
Table 1). Grouping individuals by estimatedHLA-
A expression level demonstrates the effect of in-
creasingHLA-A expression on unadjusted HIV VL
(Fig. 1B).
The association between HLA-A expression

level and HIV viremia was independently signif-
icant in each ethnicity stratum (Pwhites = 6.1 ×
10−6; PAfricans/African-Americans = 1.1 × 10−18; and
PHispanic/other = 2.3 × 10−10), notwithstanding
distinctHLA-A allelic frequencies in each ethnic
group. Among 2019 donors enrolled during acute,
early HIV infection with known dates of sero-
conversion, elevated HLA-A expression was sim-
ilarly associated with higher VL (P = 2.5 × 10−9),
confirming that this finding is unlikely to be con-
founded by frailty bias.HLA-A expression level was
associated with a spectrum of alternative HIV
outcomes, including elevatedmean VL (P = 9.3 ×
10−12) and odds of being an HIV noncontroller
(HIV VL >10,000 copies/ml) relative to being a
controller (HIV VL <2000 copies/ml) (P = 9.2 ×
10−11). Furthermore, among 2100 individuals for
whom longitudinal CD4+ T cell count measures
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wereavailable, higherHLA-Aexpressionwasstrong-
ly, and substantially, associated with reduced
CD4+ T cell counts (Table 1). The effects ofHLA-A
expression levels on VL and CD4 count were stable
over time (Fig. 1, B and C), consistent with a tem-
porally sustained mechanism. Finally, we ex-
amined apartially nonoverlapping (39.1%of donors
were not included in the VL analyses) collec-
tion of five natural-history cohorts, including 1159
antiretroviral-naïve individuals followed prospec-
tively after HIV infection. Even in this limited
sample, elevated HLA-A expression was associ-
ated with accelerated progression to AIDS1987
(P = 0.04) and progression to CD4+ T cell count
of <200 cells/ml (P = 0.02), again after adjusting
for all individual HLA alleles.
HLA-A expression levels vary across alleles in

a continuousmanner, indicatingmultiple polymor-
phic regulatory sites that together determine the
expression level of any given allele. As no single
variant controlsHLA-A expression levels, genome-
wide association studies (GWAS) are not expected
to detect such effects. Using formalHLA-A typing
results, we inferred expression level for 3057 white,
Hispanic, and black individuals included in the
International HIV Controllers GWAS (12) (40%
of whom were not included in any of the analy-
ses described above).HLA-A expression was sig-
nificantly associatedwithHIV elite controller or
noncontroller status even after adjusting for
population structure (P = 2.7 × 10−5). This ob-
servation emphasizes a limitation of GWAS when
the combined effects of multiple genetic variants
determine a phenotype.

Next, we sought to determine the likely mech-
anism(s) for the finding that elevated HLA-A
expression associates with impairedHIV control.
HLA-E serves as a ligand for the strongly inhi-
bitory receptor CD94/NKG2A expressed on both
natural killer (NK) cells and T cells. Expression of
HLA-E is dependent on stable binding of a signal
peptide derived from the leader sequence ofHLA-
A, -B and -C molecules (residues –22 to −14 rel-
ative to the mature protein) (13, 14). Methionine
at position 2 of the signal peptide (residue −21)
stabilizes and promotes HLA-E expression, and
all HLA-A and -C allotypes are fixed for methi-
onine, whereasHLA-B contains a polymorphism
that encodes either methionine (−21M) or thre-
onine (−21T) at this position (15, 16).UnlikeHLA-A,
there is minimal variance in HLA-B transcrip-
tional levels across alleles and individuals (17), so
HLA-E expression is expected to vary not as a
consequence of differences inHLA-B expression
levels, but rather as a result of HLA-B –21M/T
variation. Accordingly, HLA-B −21M enhances
HLA-E expression level in a copy-dependent
manner (15). We tested whether HLA-A expres-
sion levelsmay similarly be associatedwithHLA-
E expression levels. Among 58 healthy donors,
higher predicted HLA-A expression levels, and
therefore higher HLA-A–derived signal peptide,
was significantly correlated with higher HLA-E
expression levels on the cell surface, indepen-
dently of the reported effects of HLA-B –21 (Fig.
2A and table S2).
HLA-E has two common allelic variants denoted

E*01:01 and E*01:03, reportedly varying in peptide

affinities, peptide repertoires, and surface expres-
sion levels (18). AlthoughHLA-E*01:03 associates
with higher surface expression in univariate analy-
ses, this association was not significant after ad-
justing for HLA-B –21 and HLA-A genotypes
(table S2). As HLA-E*01:03 and HLA-B –21M
alleles are in significant linkage disequilibrium
(D′ = 0.52), the increased peptide supply attri-
butable to HLA-B –21M and HLA-A expression
level likely account for higher expression of HLA-
E*01:03, rather than the variant distinguishing HLA-
E*01:03 from – E*01:01. Accordingly, HLA-E
variants did not show independent association
with HIV outcomes (table S3). Similarly, addition
of HLA-E genotype to a model fitting HLA-A ex-
pression and HLA-B –21M (and their interaction)
was inferior to a model excludingHLA-E genotype
in explaining HIV viremia.
The responsiveness of NK cells varies accord-

ing to the presence of inhibitory-receptor/HLA
pairs because of a process termed NK cell edu-
cation or licensing (19). Accordingly, quantitative
variation inHLA expressionmay influence target
cell recognition through both ligand density
variation and licensing modulation. The HLA-B
–21M/T variant distinguishes between two sets
ofHLA haplotypes that have differential effects
on NK cell education, where −21Mmarks hap-
lotypes that bias toward NKG2A-mediated edu-
cation and −21T marks alternative haplotypes
that bias towardKIR (killer cell immunoglobulin-
like receptor)–mediatededucation (15). The reported
linkage disequilibrium betweenHLA-B –21M and
HLA-B Bw6/HLA-C group1 alleles that interact
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Fig. 1. Elevated HLA-A expression levels are associated with increased
HIV viremia and reduced CD4+ Tcell counts. (A) Data represent 2298
HIV-infected individuals from South Africa, Botswana, and Zambia,
enrolled at 11 sites with cross-sectionally measured VLs. Each dot
represents the average estimated expression level for a specific HLA-A
allele by that allele’s reported effect on cross-sectional VL (11). A linear
regression line is shown in blue with 95% confidence interval in gray. The

size of each point is scaled by the number of contributing alleles; however,
the correlation estimate is not weighted. (B) HIV viremia among 5818 HIV-
infected adults and (C) CD4+ Tcell counts among 2100 HIV-infected adults
followed prospectively and grouped according to one-unit z-score change
in HLA-A expression. VLs are plotted against time following seroconversion
or date of enrollment (censored at ~5 years). In (B) and (C), lines are best
fit (LOWESS lines) to unadjusted VL or CD4 counts.
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poorly with KIR is evident in our cohort (fig. S2).
Using a ligand-independent activation assay de-
signed tomeasureNKcell licensing,NKG2A+/KIR–

NKcells fromHLA-B–21MM+ donorsweremore
responsive than NKG2A–/KIR+ NK cells from the
same donors (Pwilcoxon = 1.5 × 10−6), and notably,
the strength of licensing among NKG2A+/KIR–

NK cells correlated withHLA-A expression level
(R = 0.69, P = 0.03; Fig. 2B). Conversely, KIR+/
NKG2A–NK cells were more strongly licensed in
HLA-B –21TT donors (P= 1.1 × 10−5), and this was
not correlatedwithHLA-A expression. Thus,HLA
haplotypes characterized by both HLA-B –21M
and high HLA-A genotypes, which provide high-
est levels of HLA-E epitope, strongly bias toward
NKG2A-mediated education.
We next tested whether variation in HLA-A

expression alters NK cell responses toward HIV-

infected target cells, and whether this varies ac-
cording to HLA-B –21 genotype. IncreasingHLA-
A expression was significantly correlated with
greater inhibition of NK cell degranulation ex-
clusively among HLA-B –21MM donors, when
target cells were HIV infected and the autologous
effector NK cells necessarily expressed NKG2A
(R = −0.77, P = 0.016, Fig. 2C). These data ex-
tend previous observations (20).
We reasoned that the genetic epidemiological

effect of HLA-A expression level on impairing
HIV control may vary according to HLA-B –21
genotype. We examined the two extremes in
variation of NK cell education demarcated by
HLA-B –21 MM versus TT, although education
varies across a continuum (21). Haplotypes tagged
by HLA-B –21M exacerbate the deleterious effect
ofHLA-A expression on HIV viremia (interaction

P = 5.3 × 10−9), regardless of ethnicity (Fig. 3). The
effect ofHLA-A expression level onHIV viremia is
of greater magnitude in individuals with two
HLA-Bmethionine-encoding alleles [VLeffect-MM =
0.22, 95% confidence interval (CI) 0.17–0.26 log10
copies/ml per one z-score, P = 1.5 × 10−21] than
in donors with two threonine-encoding HLA-B
alleles (VLeffect-TT = 0.06, 95% CI 0.04–0.08 log10
copies/ml per one z-score, P = 1.8 × 10−9). The
independent effect of HLA-B –21M varied across
Caucasians and Africans/African Americans
(fig. S4), perhaps owing to substantial differences
inHLAhaplotypes inAfricans. InanHLA-B–21M/M
individual, decrease in HLA-A expression by two
z-scores (0.44log10 copies/ml lower VL) is com-
parable inmagnitude to the effect of the presence
ofHLA-B*57 (0.41 log10 copies/ml lower VL in the
same data set).
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Table 1. HLA-A expression level is associated with impaired HIV control and is robust to multiple outcome definitions, and subset analyses across
9763 independent individuals of varying geographic and ethnic background. Effect estimates denote the effect of one z-score (i.e. one standard

deviation) increase in HLA-A expression on the outcome denoted.

Study Outcome measure Modeling approach n Effect estimate

per HLA-A z-score

increase

95% CI P-value

Cross-sectional discovery studies
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Pooled analysis of 2298 individuals

from 11 African sites (11). Black

individuals only.

Viral load (log10
copies/ml)

Spearman correlation

of VL effect and

expression level for

23 HLA-A alleles

2298 volunteers Spearman R = 0.54 NA‡ 0.007

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Prospective validation studies with longitudinal follow-up
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Pooled analysis of 5818 individuals

from six U.S. cohorts (ACTG,

ALIVE, MACS, MHRP, Ragon,

SCOPE) and one Swiss cohort

(SWISS). Pooled data from

3442 white, 1497 black,

233 Hispanic, 60 Asian,

14 other, and 572 of mixed

or other ancestry.

Longitudinal viral

load (VL)

Mixed effects-linear*

.. .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

All individuals 62,843 VL in 5,818

volunteers

0.06 log10
copies/ml

0.05:0.08 4.4 × 10–19

.. .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Known date of

seroconversion

21,817 VL in 2,019

volunteers

0.06 log10
copies/ml

0.04:0.08 2.5 × 10–9

.. .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Mean viral load (mVL) Mixed effects-linear* 5,818 mVL in

5,818 volunteers

0.14 log10 copies/ml 0.10:0.18 9.3 × 10–12

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Controller/non-controller Mixed effects-binomial* 2011 controller/

2997 noncontroller

OR§ = 1.30 1.20:1.42 9.2 × 10–11

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

CD4+ Tcell count (cells/ml) Mixed effects-linear* 56,415 CD4

counts in 2,100

volunteers

–37.8 cells/ml –41.3:34.2 5.9 × 10–94

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Prospective natural history validation studies
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Pooled analysis of 1159 individuals

from five U.S. sites (ALIVE,

MACS, MHCS, SFCCC and

DCGCS). Pooled data from

white, black, Hispanic or

other ethnicities.

Time to AIDS

(CDC 1987)

Mixed effects-Cox* 1159 at-risk individuals,

433 events

HR|| = 1.25 1.01:1.55 0.04

.. .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Time to CD4 <200 cells/ml Mixed effects-Cox* 1159 at-risk individuals,

537 events

HR = 1.24 1.03:1.49 0.02

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Reanalysis of broad HIV case-control genome-wide association study
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Pooled analysis of 3057 white,

Hispanic, and black ethnicities.

Controller/

non-controller

Logistic-regression† 737 controller/

2300 noncontroller

OR = 1.29 1.14:1.45 2.7 × 10−5

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

*HLA-A, -B, and -C alleles, and timing of viral load measurements (for prospective studies) were taken into account by being coded as random effects. †For GWAS
analysis, population structure was adjusted for using the top five principal components. ‡NA, not applicable. §OR, odds ratio. ||HR, hazard ratio.
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Taken together, these data support amodel of
increasedHLA-A expression having a deleterious
effect on HIV control through enhanced HLA-E
expression that results in increased NKG2A-
mediated NK (and/or T cell) inhibition, and im-
paired elimination of HIV-infected target cells.
HIV is capable of avoiding both T cell and NK

cell recognition of infected host cells. HIV Nef-
mediated reduction of HLA-A and -B (22) surface
expression and Vpu-mediated reduction of HLA-C
(23) likely serve to reduce antigen presentation
and T cell killing of infected targets. These viral
mechanisms occur posttranslationally (22, 23)
and should not affect the contribution of HLA
class I signal peptides to enhancing HLA-E ex-
pression. This in turn may serve to allow conti-

nued evasion of NK cell responses through
enhanced NKG2A inhibition among those indi-
viduals with HLA haplotypes that provide ample
signal peptide to bind HLA-E. HIV encodes a pep-
tide (AISPRTLNA, AA9) that may further exploit
the inhibitory effects of HLA-E, but discrepancies
regarding the effects of this peptide on HLA-E
expression, NKG2A binding, and NK cell killing
have been reported (24, 25). NKG2A-expressing
CD8 T cells are involved in antiviral responses (26),
but the functional assays that we used are not
appropriate for evaluating CD8+ T cell responses,
and thus, we cannot rule out a role for CD8 T
cells in the genetic data presented herein. Al-
though NKG2C, an activating receptor that also
binds HLA-E (27), may play some role in the path-

way that we delineate, signaling through NKG2A
dominates and overrides NKG2C signaling (28).
These data show that expression level var-

iation participates in the complex patterns of
HLA associations in HIV disease, a pattern re-
cognized for class I in other species (29). Block-
ade of HLA-E:NKG2A–mediated inhibition in vivo
is a therapeutic strategy being explored through
clinical trials of an antibody against NKG2A
(monalizumab) for treatment of rheumatoid
arthritis (NCT02331875), cancer (NCT 02557516,
NCT02643550, NCT02459301, NCT02671435), and
stem-cell transplantation (NCT02921685), be-
cause a role for HLA-E–mediated immunosuppres-
sion is recognized in these disorders (30, 31). Our
data suggest that antagonizing HLA-E/NKG2A
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Fig. 2. HLA-A expression and HLA-B –21M
regulate HLA-E expression, resulting in
biased licensing of NKG2A-expressing NK
cells that are impaired in their killing of
HIV-infected target cells. (A) HLA-E expression
according to HLA-A expression and HLA-B –21M
in 58 HIV-uninfected donors. Each dot represents
HLA-E expression levels (expressed as median
signal intensity on a linear scale), as determined by
CyTOF (15), and imputed HLA-A expression
(z-score) (Rpearson = 0.43; 95% CI 0.20–0.62; P =
5 × 10−4). (B) NKG2A+ NK cell licensing varies by
HLA-A expression and HLA-B –21M. Peripheral
blood mononuclear cells (PBMCs) from 10 HLA-B
–21M/M and 10 HLA-B –21T/T donors were
coincubated with Raji cells pretreated with mouse
antibody (2.5 mg/ml) against human CD20 for
6 hours to probe NK cell licensing and education.
Each point represents the proportion of IFN-g+ NK
cells from each individual that are NKG2A+/KIR–

(triangles) or KIR+/NKG2A– (circles) as a function
of HLA-A expression. Dotted and solid lines
show best fit lines for NKG2A+ and KIR+ subsets,
respectively. The association between NK cell
responsiveness and HLA-A expression for NKG2A+

NK cells in HLA-B –21M/M donors was Rpearson =
0.69 (95% CI 0.10–0.92), P = 0.03; all other
correlations were not significant. (C) PBMCs from
9 HLA-B –21M/M and 9 HLA-B –21T/T donors
were cocultured for 6 hours with autologous T cell
blasts that were left uninfected or were infected
with HIV [vesicular stomatitis virus G glycoprotein
(VSV-G) pseudotyped NL4-3] and stained for
CD107A, a marker of NK cell degranulation (see
fig. S3 for gating strategy). HLA-A expression was
formally measured in these T cell blasts by
quantitative polymerase chain reaction and is
expressed relative to b2M expression levels. Plots
show individual proportions of NK cells expressing
CD107a among NKG2A+KIR– and NKG2A–KIR–

subsets. A best fit line is shown for significantly
correlated observations. Red and black lines and
dots denote TT and MM donors, respectively.
The association between NKG2A+KIR– NK cell
response to HIV-infected target cells, and HLA-A
expression in HLA-B –21M/M donors was Rpearson =
–0.77 (95% CI –0.21 to –0.95), P = 0.02; all
other correlations were not significant.
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interactions, perhaps in combination with other
therapies, may provide benefit in HIV disease.
This might be an attractive approach in HIV
cure strategies. Genetic validation of NKG2A
as a therapeutic target in additional diseases by
testing for effects of HLA-A and HLA-B –21 geno-
types may rationalize the use of anti-NKG2A
therapy in other disorders.
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Fig. 3. The effect of HLA-A expression on
HIV VL is modified by HLA-B alleles encoding
methionine at position –21 in the signal
peptide.The magnitude of effect (slope) of
HLA-A expression on HIV viral load is stronger
among individuals with HLA-B –21 MM (VL from
428 individuals, black line, VLeffect-MM = 0.22 log10
copies/ml, P = 1.5 × 10−21 adjusted for HLA-A,
-B, and -C) compared with HLA-B TT (VL from
3071 individuals, red line, VLeffect-TT = 0.06 log10
copies/ml, P = 1.8 × 10−9 adjusted for HLA-A,
-B, and -C). Interaction P = 5.3 × 10−9. Gray
shading represents 95% CI of the linear estimate.
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