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S1. The State Transition Matrix Φ

In contrast to the one-dimensional or the time-independent case,
the state transition matrix for a time-dependent multidimen-
sional system can in general not be computed analytically. It has
nevertheless some useful properties, some of which we collect
here. They can be found in refs. 24 and 25.

The state transition matrix of the system described by Eq. 3 is
the solution of the matrix equation

d

dt
Φ(t , t0) = B(t) Φ(t , t0), t > t0,

Φ(t0, t0) = I,
[S1.1]

and is given by the Peano–Baker series

Φ(t , t0) = I +

t∫
t0

B(τ1) dτ1

+

t∫
t0

B(τ1)

τ1∫
t0

B(τ2) dτ2 dτ1 + · · · .

[S1.2]

Here, I∈Rd×d is the identity matrix.
If B(t) = b(t) is a scalar, then the Peano–Baker series can be

summed to

Φ(t , t0) = exp

 t∫
t0

b(τ) dτ

. [S1.3]

If B(t) = B is a real constant d × d matrix, then

Φ(t , t0) = I +
1

1!
(t − t0)1 B1 +

1

2!
(t − t0)2 B2 + · · ·

= e(t−t0) B, [S1.4]

where for a d × d matrix Q the expression eQ denotes the
matrix exponential. In many cases this matrix exponential can
be computed explicitly. If further B is compartmental and
invertible, then (e(t−t0) B)t≥t0

is a semigroup of contractions,
meaning that∥∥e(t−t0) B u

∥∥ ≤ e−λ (t−t0) ‖u‖, t ≥ t0, u ∈ Rd . [S1.5]

Here, λ > 0 is such that −λ is the largest real part of the eigen-
values of B, and the norm ‖ v ‖ of a vector v∈Rd is given by

‖v‖=
d∑

i=1

|vi |. [S1.6]

More information on matrix exponentials and semigroups can be
found in ref. 26.

If B(t) = b(t) M is a scalar multiplied with a constant matrix,
then

Φ(t , t0) = exp

 t∫
t0

b(τ) dτ M

. [S1.7]

If B(t) is compartmental for all t ≥ t0, then its logarithmic norm
µ(B(t)) is nonpositive. Consequently,

sup
‖u‖=1

‖Φ(t , t0) u‖≤ exp

 t∫
t0

µ(B(τ)) dτ

 ≤ 1. [S1.8]

S2. The McKendrick–von Foerster Equation
Eq. 8 can be interpreted as a multidimensional McKendrick–von
Foerster equation, because for the i th compartment(

∂

∂a
+

∂

∂t

)
pi(a, t) = γi(t) pi(a, t), [S2.1]

where γi(t) =
∑

j 6=i Bij (t) + Bii(t) is the combination of the
incoming and outgoing rates of mass with age a at time t .

We prove now that our density function satisfies the
McKendrick–von Foerster Eq. 8. To that end, we compute the
total differential of the density function along the characteristics
a(t) = a0 + t by

d

dt
p(a, t) =

∂

∂a
p(a, t)

d

dt
a(t) +

∂

∂t
p(a, t)

d

dt
t

=

(
∂

∂a
+

∂

∂t

)
p(a, t),

[S2.2]

where a0 ≥ 0 is some initial age. We continue in two steps. In the
first step, we show that Eq. 8 holds on S1 := {(a, t) : t ≥ t0, a ≥
t − t0} with initial condition 10. In the second step, we show that
Eq. 8 holds on S2 := {(a, t) : a ≥ 0, t ≥ t0, a < t − t0} with
boundary condition 9.

A. Step 1. On S1 we have p(a, t) = g(a, t). Consequently, we
prove the initial condition 10 by

p(a, t0) = Φ(t0, t0) p0(a − (t0 − t0)) = p0(a). [S2.3]

Furthermore,

p(a, t) = Φ(t , t0) p0 (a0) , [S2.4]

where a0 = a − (t − t0) does not change with time on the char-
acteristics. Consequently,(

∂

∂a
+

∂

∂t

)
p(a, t) =

d

dt
p(a, t)

=
d

dt
Φ(t , t0) p0 (a0)

= B(t) Φ(t , t0) p0 (a0)
= B(t) p(a, t),

[S2.5]

which proves Eq. 8 on S1.

B. Step 2. On S2 we have p(a, t) = h(a, t) and a0 = 0. Conse-
quently, we prove the boundary condition 9 by

p(0, t) = Φ(t , t − 0) u(t − 0) = u(t). [S2.6]

Furthermore,

p(a, t) = Φ(t , s) u(s), [S2.7]

where s = t−a does not change with time on the characteristics.
Consequently,(

∂

∂a
+

∂

∂t

)
p(a, t) =

d

dt
p(a, t)

=
d

dt
Φ(t , s) u(s)

= B(t) Φ(t , s) u(s)

= B(t) p(a, t),

[S2.8]

which proves Eq. 8 on S2.
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S3. The Semiexplicit Formula for Compartment Age
Moments
We assume that the initial age density p0 admits finite moments
up to order n and denote them by ā0,k , k = 1, 2, . . . ,n . Addition-
ally, we define

y(t) := Φ(t , t0) x0, t ≥ t0, [S3.1]

and

z(t) :=

t∫
t0

Φ(t , τ) u(τ) dτ, t ≥ t0. [S3.2]

Consequently, x = y + z, where y describes the evolution of the
initial mass and z describes the evolution of mass that comes later
into the system. We use the shorthand ān for ān(t) := āx(t),n

and note that we can compute the nth moment of the age den-
sity of x by the corresponding moments of the age densities of y
and z by

ān
i =

yi ā
y,n
i + zi ā

z,n
i

xi
, i = 1, 2, . . . , d , [S3.3]

or, in vector notation,

ān(t) = X(t)−1 [Y(t) āy,n(t) + Z(t) āz,n(t)] . [S3.4]

We see from Eq. 15 that

Y(t) āy,n(t) =

∞∫
0

an g(a, t) da, [S3.5]

which can be transformed by

g(a, t) = 1[t−t0,∞)(a) Φ(t , t0) p0(a − (t − t0)) [S3.6]

and a change of variables from a to τ := a − (t − t0) into

Y(t) āy,n(t) = Φ(t , t0)

∞∫
0

[τ + (t − t0)]n p0(τ) dτ. [S3.7]

An application of the binomial theorem and Eq. 15 leads to

Y(t) āy,n(t) =

n∑
k=0

(
n

k

)
(t − t0)n−k Φ(t , t0) X0 ā0,k . [S3.8]

Furthermore, again by Eq. 15,

Z(t) āz,n(t) =

∞∫
0

an h(a, t) da =

t−t0∫
0

an h(a, t) da. [S3.9]

We plug the sum of Eqs. S3.8 and S3.9 into Eq. S3.4 to establish
Eq. 16.

S4. The Compartment Age Moment System
We assume that the initial age density p0 admits finite moments
up to order n and denote them by ā0,k , k = 1, 2, . . . ,n . Fur-
thermore, we assume y and z as in Eqs. S3.1 and S3.2,
respectively.

Our goal is to derive a system of ODEs for the moments up to
order n for the age distributions of x. To this end, we try to repre-
sent the time derivative of the k th moment by known quantities.
For that purpose, we need some auxiliary results.

A. Auxiliary Results.

Lemma S4.1. For k = 1, 2, . . . ,n , and t > t0,

d

dt

∞∫
0

ak gi(a, t) da =

d∑
j=1

Bij (t) yj (t) ā
y,k
j (t)

+ k yi(t) ā
y,k−1
i (t).

[S4.1]

Proof: For simplicity of notation, we do not consider the com-
ponent i , but the entire vector. We start with

d

dt

∞∫
0

ak g(a, t) da [S4.2]

and use

g(a, t) = 1[t−t0,∞) Φ(t , t0) p0(a − (t − t0)) [S4.3]

to obtain

d

dt
Φ(t , t0)

∞∫
t−t0

ak p0(a − (t − t0)) da, [S4.4]

which by the product rule turns into

B(t) Φ(t , t0)

∞∫
t−t0

ak p0(a − (t − t0)) da

+ Φ(t , t0)
d

dt

∞∫
t−t0

ak p0(a − (t − t0)) da.

[S4.5]

We transform the first term back. In addition, a change of vari-
ables in the second term from a to τ := a − (t − t0) brings

B(t)

∞∫
0

ak g(a, t) da + Φ(t , t0)
d

dt

∞∫
0

(τ + (t − t0))k p0(τ) dτ.

[S4.6]

We use Eq. 15 in the first term and in the second term we bring
the derivative under the integral by means of the dominated con-
vergence theorem to get

B(t) Y(t) āy,k (t) + Φ(t , t0)

∞∫
0

k (τ + (t − t0))k−1 p0(τ) dτ.

[S4.7]

We undo the change of variables in the second term and trans-
form it back to obtain

B(t) Y(t) āy,k (t) + k

∞∫
t−t0

ak−1 g(a, t) da, [S4.8]

which equals

B(t) Y(t) āy,k (t) + k Y(t) āy,k−1. [S4.9]

Computing the i th component, we get

d∑
j=1

Bij (t) yj (t) ā
y,k
j + k yi(t) ā

y,k−1
i (t) [S4.10]

and we are finished with the proof.

Lemma S4.2. For k = 1, 2, . . . ,n , and t > t0,

d

dt

∫ ∞
0

ak hi(a, t) da =
d∑

j=1

Bij (t) zj (t) ā
z,k
i (t)

+ k zi(t) ā
z,k−1
i (t).

[S4.11]

Proof: Again, for simplicity of notation, we do not consider the
component i , but the entire vector. From

h(a, t) = 1[0,t−t0)(a) Φ(t , t − a) u(t − a), [S4.12]
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we get

∞∫
0

ak h(a, t) da = lim
ε↘0

t−t0−ε∫
0

ak h(a, t) da. [S4.13]

We can interchange the limit and the derivative to see

d

dt

∞∫
0

ak h(a, t) da = lim
ε↘0

d

dt

t−t0−ε∫
0

ak h(a, t) da. [S4.14]

By an application of the Leibniz rule to the right-hand side we
obtain

lim
ε↘0

t−t0−ε∫
0

ak ∂

∂t
h(a, t) da + (t − t0 − ε)k h(t − t0 − ε, t).

[S4.15]

In S2. The McKendrick–von Foerster Equation, B. Step 2 we
derived that for a ∈ [0, t − t0 − ε],

∂

∂t
h(a, t) = B(t) h(a, t)− ∂

∂a
h(a, t), [S4.16]

which we plug into the first term of Eq. S4.15 and turn it into

lim
ε↘0

t−t0−ε∫
0

ak

[
B(t) h(a, t)− ∂

∂a
h(a, t)

]
da, [S4.17]

which equals by Eq. 15

B(t) Z(t) āz,k − lim
ε↘0

t−t0−ε∫
0

ak ∂

∂a
h(a, t) da. [S4.18]

We integrate by parts and use again Eq. 15 to get

B(t) Z(t) āz,k − lim
ε↘0

(t − t0 − ε)k h(t − t0 − ε, t)

+ k Z(t) āz,k−1.
[S4.19]

Together with Eq. S4.15, we have

d

dt

∞∫
0

ak h(a, t) da = B(t) Z(t) āz,k + k Z(t) āz,k−1, [S4.20]

which completes the proof by considering the i th component.

Lemma S4.3. For k = 1, 2, . . . ,n , and t > t0,

d

dt

(
xi(t) ā

k
i (t)

)
=

d∑
j=1

Bij (t) xj (t) ā
k
j (t)

+ k xi(t) ā
k−1
i (t).

[S4.21]

Proof: From Eq. 15 and p(a, t) = g(a, t) + h(a, t), we know

d

dt

[
xi(t) ā

k
i (t)

]
=

d

dt

∞∫
0

ak pi(a, t) da

=
d

dt

∞∫
0

ak gi(a, t) da +
d

dt

∞∫
0

ak hi(a, t) da.

[S4.22]

Consequently, we can apply Lemmas S4.1 and S4.2 and use

xi ā i
k = yi ā

y,k
i + zi ā

z,k
i [S4.23]

from Eq. S3.3 to obtain

d

dt

(
xi ā

k
i

)
=

d∑
j=1

Bij yj ā
y,k
j + k yi ā

y,k−1
i

+

d∑
j=1

Bij zj ā
z,k
j + k zi ā

z,k−1
i

=

d∑
j=1

Bij

(
yj ā

y,k
j + zj ā

z,k
j

)
+ k

(
yj ā

y,k−1
i + zj ā

z,k−1
i

)
=

d∑
j=1

Bij xj ā
k
j + k āk−1

i .

[S4.24]

B. Proof of the Compartment Age Moment System. Let k ∈
{1, 2, . . . ,n}. We compute the time derivative of āk

i at t >
t0 by

d

dt
āk
i (t) =

d

dt

[
xi(t) ā

k
i (t)

xi(t)

]
. [S4.25]

We apply the quotient rule and Lemma S4.3 to get

d

dt
āk
i =

1

x2
i

[(
d∑

j=1

Bij xj ā
k
j + k xi ā

k−1
i

)
xi

− xi ā
k
i

d

dt
xi

]

= k āk−1
i +

1

xi

[
d∑

j=1

Bij xj ā
k
j

− āk
i

(
d∑

j=1

Bij xj + ui

)]
= k āk−1

i

+
1

xi

[
d∑

j=1

Bij xj
(
āk
j − āk

i

)
− āk

i ui

]
.

[S4.26]

Now, we can bring all components i = 1, 2, . . . , d into one vector
and the proof is complete.

S5. The Age Quantiles
We want to show that the compartment age quantiles solve the
initial value problem given by Eq. 21. The time evolution of
the k th n quantile ξi(t) of the age of compartment i can be
described by taking the time derivative in both sides of Eq. 20,
which gives

d

dt

ξi (t)∫
0

pi(a, t) da = q [B(t) x(t)]i + q ui(t). [S5.1]

Using the Leibniz rule, we can rewrite the left-hand side to

ξi (t)∫
0

∂

∂t
pi(a, t) da + pi(ξi(t), t)

d

dt
ξi(t). [S5.2]
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Outside the null set {a ≥ 0 : a = t − t0} the McKendrick–von
Foerster Eq. 8 holds. Consequently,

ξi (t)∫
0

∂

∂t
pi(a, t) da

=

ξi (t)∫
0

(
[B(t) p(a, t)]i −

∂

∂a
pi(a, t)

)
da,

[S5.3]

which turns by integration by parts and pi(0, t) = ui(t) into

[B(t) P(ξi(t), t)]i − pi(ξi(t), t) + ui(t). [S5.4]

We plug it into Eq. S5.2 and the result into Eq. S5.1 to prove Eq.
21. The initial value ξ0i is just the k th n quantile of the initial age
of the content of compartment i . The proof for the system age
quantile ξ follows analogously from ‖P(ξ(t), t)‖= q ‖ x(t) ‖.

S6. The Relations to Earlier Results and Possible
Applications
A. Linear Time-Independent Systems. Our results generalize ear-
lier results on explicit formulas for ages and transit times of lin-
ear time-independent compartmental systems in steady state. To
arrive at this conclusion, we consider such a system given by

d

dt
x(t) = B x(t) + u, t > t0,

x(t0) = x0,

[S6.1]

where B is an invertible compartmental matrix. Recall that in
time-independent systems both B and u are independent of time.
The state transition matrix Φ(t , s) = e(t−s) B is then given by the
matrix exponential. Therefore, for a ≥ 0 and t ≥ t0,

p(a, t) = e(t−t0) B p0(a − (t − t0)) + ea B u. [S6.2]

Since limt→∞ et B = 0 if B is compartmental and invertible,
limt→∞ p(a, t) = ea B u. This vector contains the compartment
age densities of system S6.1 after it has run for an infinite time.
Hence, they belong to the steady state x∗ = −B−1 u of the sys-
tem. If we divide each component of the steady-state age density
vector by the steady-state content of the corresponding compart-
ment, we obtain the normalized age density vector from ref. 12;
namely

fa(a) = (X∗)
−1

ea B u, a ≥ 0, [S6.3]

where X∗= diag(x∗1 , x
∗
2 , . . . , x

∗
d ). This means that along with the

compartment contents also the age distributions converge to
their steady state as t →∞.

If we start the system with the steady-state age structure by
choosing p0(a) = ea B u, then

x0 =

∞∫
0

ea B u da = −B−1 u = x∗. [S6.4]

For t ≥ t0 and a > t − t0 we have

p(a, t) = e(t−t0) B e [a−(t−t0)] B u = ea B u, [S6.5]

and for t ≥ t0 and a ≤ t − t0 we have also

p(a, t) = e [t−(t−a)] B u = ea B u. [S6.6]

Consequently, both the system’s content and its age structure
remain constant for all time if the system is in steady state.

Since the backward transit time is the age of a particle at the
moment when it leaves the system, in steady state and after nor-
malization, Eq. 24 coincides with the formula given in ref. 12.
The same formula holds also for the forward transit-time density
in steady state, since by Eq. 28 the forward transit time is only a
time-shifted backward transit time.

B. Different Approaches for Different Scenarios. Depending on
the structure of the system, there exist many different approaches
to obtain transit-time and age distributions, most of which are
special cases of our present results.
B.1. Linear time-independent systems. If the compartmental sys-
tem is linear and time independent, then the response function
approach is very useful to establish formulas for transit-time and
age densities. A first step in this direction was done by compu-
tations depending on a system response function, which was not
explicitly known (9). This system response function returns the
proportion h(τ) of the input that leaves the system when time
τ has passed by. The concept of response functions was also
the basis to obtain the desired densities numerically by long-
term simulations in two carbon-cycle models by computing the
system response to impulsive inputs (11). The resulting impulse
response function ψ depends in the first place on the fixed and
constant impulse. Thenψ(τ) is the vector of mass leaving the sys-
tem after time τ has elapsed, where each component of the vec-
tor belongs to a compartment. The impulse response approach
was later investigated theoretically to obtain transit-time and age
densities explicitly for a set of carbon-cycle models of very sim-
ple structure, using Laplace transforms (10). Eventually, both the
normalized transit-time and the normalized age density are sim-
ply probability density functions of a phase-type distribution, and
the impulse response function equals the normalized transit-time
density (12). If furthermore the corresponding compartmental
matrix B∈ Rd×d is invertible, which holds true for trap-free open
systems (6), then by Eq. S1.5 it is obvious that the age densities
decay exponentially. The exponential decay rate λ corresponds
to the e-folding time of the longest-lived mode of stratospheric
transport (27).

Consequently, our present work generalizes the response func-
tion approach by allowing for time-dependent parameters and
nonlinear dependencies.
B.2. Linear time-dependent systems. Response theory for linear
systems with time-dependent parameters has been present for
a long time (28). Our present work generalizes those results to a
multidimensional, possibly nonlinear setting. In addition, we pro-
vide semiexplicit formulas to compute the time-dependent sys-
tem response function.
B.3. Green’s Function. The Green’s function approach is very
common, for example, in atmospheric sciences. Regarding the
age of stratospheric air, the term “age spectrum” was coined for
the age density of a fixed box in the stratosphere (29). Then
the age spectrum was identified as a Green’s function which
governs the transport of particles from the tropical tropopause
to the stratosphere (30). The stratosphere is modeled as Rn ,
for n = 1, 2, 3. Mostly, the transport is considered to be sta-
tionary, which makes the Green’s function depend only on one
time variable. Consequently, the corresponding Green’s func-
tion G belongs to a partial differential equation and G(τ, x1, x2)
is the mass or concentration that moved from x1 to x2 in time
τ . The main differences between that approach and ours are
the different interpretations of space, since we consider the Rn

discretized into d compartments. After this discretization, the
Green’s function for linear time-independent systems is a matrix
exponential.

The age spectrum can also be considered as the transit-time
probability density function from a region Ω to a point in space
(31). This is in our context the age density and we point out
that we instead denote as transit time the time a particle needs
from its entry into the system until its exit. In ref. 31, the sim-
plification to stationary transport is not required, and conse-
quently the Green’s function depends on two time variables,
just like ours does. However, since we discretize the space into
compartments, our Green’s function Φ does not belong to a
partial differential equation anymore, but to a linear ODE on
Rd . As a result, our Green’s function is not scalar valued, but
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matrix valued. Such a Green’s function is better known as a state
transition matrix.
B.4. Nonlinear systems. A classical approach to treat nonlinear
systems is the linearization of the system in the neighborhood
of a fixed point (32). On the one hand, this approach has the
advantage that now the simpler linear steady-state theory can be
applied. On the other hand, the resulting outcomes are valid only
in the vicinity of this particular fixed point and thus possibly only
after an infinite amount of time has passed. Our approach, how-
ever, requires neither the existence of fixed points nor an infinite
history.
B.5. Mixed compartments. A different approach from ours is
needed when the well-mixed assumption of the compartments
is dropped. The fluxes could be age dependent, which is a very
common case in hydrology, where the focus mostly lies on the
annual water balance of catchments (33). Such catchments are
usually modeled as one compartment with one influx (precipi-
tation) and two age-dependent outfluxes (evaporation, runoff)
(13, 15, 34). Even though this case does not fit directly in our
framework, it is possible to approximate the one-compartment
system with age-dependent outflow by a multiple-compartment
well-mixed system. For time-independent systems, this approx-
imation is based on the fact that every nonnegative proba-
bility distribution can be approximated arbitrarily well by a
phase-type distribution (35). Doing a similar kind of approx-
imation for a time-dependent single-catchment model allows
the full application of the theory presented here. A recent
commentary emphasizes the restrictions of single-catchment
models and highlights the need for splitting the single catch-
ment into several compartments (ref. 33, p 396). Our results
deliver the demanded “theoretical framework that includes
both flow and the age distribution of these flowing and stored
waters.”

S7. The Detailed Model Description
The model consists of three compartments: atmosphere (A),
terrestrial biosphere (T ), and surface ocean (S ). The letter
D stands for the external compartment deep ocean with infi-
nite content. We denote by CA =CA(t), CT =CT (t), and
CS =CS (t) the respective carbon contents in petagrams of car-
bon at time t in years. Two external fluxes add carbon to
the system. The first one, uS , is constant and goes from the
deep ocean to the surface ocean, whereas the second one,
uA = uA(t), is time dependent and represents carbon added
to the atmosphere by the burning of fossil fuels. Carbon can
leave the system only if it moves from the surface ocean to
the deep ocean. A flux from compartment X to compart-
ment Y is denoted by FXY and the following fluxes exist
in the model, all given in Pg C y−1petagrams of carbon per
year:

FAT = 60 (CA/700)α, FAS = 100CA/700,

FTA = 60CT/3,000 + fTA, FSA = 100 (CS/1,000)β ,

FSD = 45CS/1,000, uS = 45.

[S7.1]

Here, fTA = fTA(t) represents an internal flux from the terres-
trial biosphere to the atmosphere caused by land use change
(deforestation). Its values and also the values of the external
inputs through fossil fuel emissions, uA(t), are taken as time
series data from the RCP/ECP8.5 scenario. The two parameters
α and β control the fluxes from the atmosphere to the terrestrial
biosphere and from the surface ocean to the atmosphere, respec-
tively. If both parameters are equal to 1 and fTA vanishes, then
the model is linear; otherwise it is nonlinear.
The model can now be described by the three ODEs, for t >
t0 = 1765,

d

dt
CA(t) = FTA(t) + FSA(t)− FAT (t)− FAS (t) + uA(t),

d

dt
CT (t) = FAT (t)− FTA(t),

d

dt
CS (t) = FAS (t)− FSA(t)− FSD(t) + uS (t).

[S7.2]

Note that the right-hand side of Eq. S7.2 depends through
Eq. S7.1 not only on t , but also on the state vector x(t) =

(CA(t),CT (t),CS (t))T . If we now define the state- and time-
dependent compartmental matrix B = B(x(t), t) to equal −C−1

A (FAT + FAS ) C−1
T FTA C−1

S FSA

C−1
A FAT −C−1

T FTA 0
C−1

A FAS 0 −C−1
S (FSA + FSD)


[S7.3]

and u(t) := (uA(t), 0, uS )T , then the model fits in the frame-
work of Eq. 1 describing the nonlinear time-dependent compart-
mental system

d

dt
x(t) = B(x(t), t) x(t) + u(t), t > t0,

x(t0) = x0.

[S7.4]

Since at time t0 = 1765 the system is supposed to be in
equilibrium,

x0 = (700, 3,000, 1,000)T . [S7.5]

S8. The Derivation of the Results from the Example
Application
First, we solve Eq. S7.4 numerically on the time interval
[1765, 2500] and obtain a solution trajectory x = x(t). With this
solution in hand, we can at all times t ∈ [1765, 2500] compute
the compartmental matrix B = B(x(t), t).

A. Equilibrium Age Densities. At time t0 = 1765 the system is
supposed to be in equilibrium and the land use flux fTA(t0) van-
ishes. We plug Eqs. S7.1 and S7.5 into Eq. S7.3 and get

B(x0, t0) =

 −160/700 60/3,000 100/1,000
60/700 −60/3,000 0
100/700 0 −145/1,000

 .

[S8.1]

If we set B0 := B(x0, t0) and u0 := u(t0) = (0, 0, 45)T , then
B0 x0 + u0 = 0. We further define X0 = diag(x0

1 , x
0
2 , x

0
3 ) and

apply the steady-state formula

p0(a) =
(
X0)−1

ea B0

u0, a ≥ 0, [S8.2]

from ref. 12 to obtain the vector-valued function p0 of age densi-
ties in equilibrium.

B. Atmospheric Age. Fig. 4 depicts the 2D surface correspond-
ing to p = p(a, t) in the time interval 1765–2500 and the age
interval 0–250 y. The scalar field p can be obtained by Eq. 5.
In Eq. S8.2 we have already computed the initial age density
p0, and the input vector u is given by the RCP/ECP8.5 scenario.
Consequently, we are missing only the state transition matrix Φ.
We compute Φ by numerically solving the matrix ODE S1.1 on
{(t2, t1) ∈ [1765, 2500] × [1765, 2500] : t2 ≥ t1} and can then
proceed to compute p on [0, 250]× [1765, 2500].

To obtain a time trajectory of the mean age and the second
moment of the atmospheric carbon, we follow Eq. 17 and solve
the nine-dimensional ODE system, for t0 = 1765,
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d

dt

 x
ā1

ā2

 (t) =

 B(x(t), t) x(t) + u(t)
γ1(t , x(t), 1, ā1(t))

γ2(t , x(t), ā1(t), ā2(t))

, t > t0,

(
x, ā1, ā2) (t0) =

(
x0, ā0,1, ā0,2

)
, [S8.3]

where, for k = 1, 2, γk = (γk
1 , γ

k
2 , γ

k
3 )

T
and for i = 1, 2, 3,

γk
i (t , x, āk−1, āk ) = k āk−1

i

+
1

xi

[
d∑

j=1

Bij xj
(
āk
j − āk

i

)
− āk

i ui

]
.

[S8.4]

The initial age moments ā0,1 and ā0,2 can be obtained using the
equilibrium formula

(−1)n n!
(
X0)−1 (

B0)−n
x0, n = 1, 2, [S8.5]

from ref. 12. Then m1 := ā1
1 (t) is the mean age of the atmo-

spheric carbon at time t and m2 := ā2
1 (t) is its second moment.

The SD can be computed as the square root of m2 − m2
1 from

standard probability theory.
The trajectory of the age median of atmospheric carbon can be

computed by solving Eq. 21 for q = 0.5 and i = 1. To that end,
the cumulative compartment age distribution P can be obtained
by Eq. 12 together with

P0(a) =
(
X0)−1 (

B0)−1
(
ea B0

− I
)

u(t0), a ≥ 0, [S8.6]

where I is the three-dimensional identity matrix. To obtain
Eq. S8.6, we need only to integrate Eq. S8.2. The initial age
median ξ01 of the atmospheric carbon at time t0 needs to be
approximated by a nonlinear optimization algorithm such that
P0

1 (ξ01) = 0.5 x0
1 .

C. Forward Transit Time of Fossil Fuel-Derived Carbon. To
compute the density of the forward transit time of fossil
fuel-derived carbon, we simply change the input vector to
u(t) = (uA(t), 0, 0)T and apply Eq. 27. By using the new input
vector, we consider the subsystem of only fossil fuel-derived car-
bon. We can treat this subsystem separately by means of the lin-
ear system that we derived by plugging the numerical solution
into the nonlinear system.

Quantiles q , such as the median (q = 0.5), for the forward tran-
sit time at arrival time ta need to be computed by nonlinear opti-
mization algorithms. To that end, PFTT(ξ, ta) = q ‖u(ta)‖ must
be solved for ξ, where

PFTT(a, ta) =‖u(ta)‖ − ‖Φ(ta + a, ta) u(ta)‖. [S8.7]

Then, ta + ξ is the time at which the share q of the total input
‖u(ta)‖ from time ta will have left the system.

Other Supporting Information Files

Dataset S1 (CSV)

Metzler et al. www.pnas.org/cgi/content/short/1705296115 6 of 6

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705296115/-/DCSupplemental
http://www.pnas.org/cgi/content/short/1705296115

