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Many processes in nature are modeled using compartmental sys-
tems (reservoir/pool/box systems). Usually, they are expressed as
a set of first-order differential equations describing the transfer
of matter across a network of compartments. The concepts of
age of matter in compartments and the time required for par-
ticles to transit the system are important diagnostics of these
models with applications to a wide range of scientific questions.
Until now, explicit formulas for transit-time and age distributions
of nonlinear time-dependent compartmental systems were not
available. We compute densities for these types of systems under
the assumption of well-mixed compartments. Assuming that a
solution of the nonlinear system is available at least numerically,
we show how to construct a linear time-dependent system with
the same solution trajectory. We demonstrate how to exploit this
solution to compute transit-time and age distributions in depen-
dence on given start values and initial age distributions. Fur-
thermore, we derive equations for the time evolution of quan-
tiles and moments of the age distributions. Our results generalize
available density formulas for the linear time-independent case
and mean-age formulas for the linear time-dependent case. As
an example, we apply our formulas to a nonlinear and a linear
version of a simple global carbon cycle model driven by a time-
dependent input signal which represents fossil fuel additions. We
derive time-dependent age distributions for all compartments and
calculate the time it takes to remove fossil carbon in a business-
as-usual scenario.
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Compartmental systems are used in a large variety of scientific
fields such as systems biology, toxicology, ecology, hydrology,

and biogeochemistry (1–6). The dynamics of such systems can be
better understood if it is known how long particles need to travel
through the system (transit time), how old particles in a specific
compartment are (compartment age), and how old the particles
in the system are (system age) (7, 8).

A first attempt to compute age structures of compartmen-
tal systems was to establish density formulas in dependence on
a not explicitly known system response function (9). A sim-
ilar response function approach was further used to derive
explicit formulas for models with very simple structure (10)
and to obtain age densities by long-term numerical simulations
(11). Only recently, explicit density formulas have been derived
by a probabilistic approach (12). Most importantly, all these
approaches were concerned with linear time-independent mod-
els in steady state. This restriction is often very unrealistic since
most systems in nature are intrinsically nonlinear and influenced
by time-depending factors (e.g., a fluctuating external environ-
ment). For such systems out of steady state, formulas have been
developed for one-compartment hydrological systems, without
expanding the theory to networks of multiple interconnected
compartments (13–15). A first milestone in this direction was
the mean age system (16), a system of linear ordinary differ-
ential equations (linear ODEs) describing the time evolution of
mean compartment ages of linear systems with time-dependent
coefficients.

In this article, we derive formulas not only for means, but also
for entire densities of transit time, compartment ages, and system
age of time-dependent models. Moreover, our approach works
even for nonlinear models. We further extend the mean age sys-
tem to higher-order moments. This allows a simple computation
also of the variance and the SD. Additionally, we provide ODEs
to describe the time evolution of quantiles such as the median of
age distributions. This framework results in much faster compu-
tations of entire age distributions than what was possible before.
These results generalize many earlier results from different scien-
tific fields such as atmospheric sciences, ecology, and hydrology.
In S6. The Relations to Earlier Results and Possible Applications,
we explain in detail how our framework relates to these fields.

As an example application of our theoretical results, we apply
them to a simple global carbon cycle model and address the fol-
lowing questions: How old is atmospheric carbon? How long will
a significant fraction of a pulse of fossil fuel carbon, emitted to
the atmosphere today, remain in the system? We compare transit
times and ages of a nonlinear and a linear version of the model
and highlight significant differences in their age structure, which
were not possible to characterize by the mean ages alone.

1. Well-Mixed Compartmental Systems
Following ref. 6, a compartment of a well-mixed system is
an amount of kinetically homogeneous material. Kinetically
homogeneous means that any material entering the system is
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immediately mixed with the material of the compartment. A
well-mixed compartmental system is then a collection of d com-
partments and is usually described by a d -dimensional system of
first-order differential equations. We fix an initial time t0 ∈ R
and a finite time horizon T > t0 and consider the d -dimensional
initial value problem

d

dt
x(t) = B(x(t), t) x(t) + u(t), t > t0,

x(t0) = x0.

[1]

Here, x(t)∈ Rd is the vector of compartment contents at time t ,
B = (Bij )i,j=1,2,...,d is a matrix-valued function depending on the
current system content and time, u is a vector-valued function
depending on time, and x0∈ Rd is the initial system content at
time t0. Throughout this paper, we assume all involved functions
to be sufficiently smooth. In particular, Eq. 1 is supposed to admit
a unique solution on [t0,T ].

Eq. 1 describes how mass flows into the system through the
vector-valued input function u and is then cycled by the matrix-
valued function B until it eventually leaves the system. Conse-
quently, u and x0 are nonnegative and the system must obey the
law of mass conservation. This sets the additional restriction on
B to be a compartmental matrix for all x and t .

A quadratic matrix is called compartmental if all its diagonal
entries are nonpositive, all its off-diagonal entries are nonnega-
tive, and all its column sums are nonpositive (6).

A. Classification of Compartmental Systems. It is important to
note that, in a general compartmental system, B may depend on
the system state x(t) as well as on time t . This makes the system
in general nonlinear and time dependent. If B(x(t), t) = B(t),
i.e., B is independent of the system state, then the system is
called linear. If B(x(t), t) = B(x(t)) and u(t) = u, i.e., B and u
do not explicitly depend on time t , then the system is called time
independent.

B. Linear Interpretation of the Nonlinear Solution. Only in spe-
cial cases can we find an analytical solution to Eq. 1. Neverthe-
less, we assume to know the unique solution at least numeri-
cally and denote it by x. We define a time-dependent and matrix-
valued function B̃ by plugging the solution into B; i.e., B̃(t) :=
B(x(t), t). The linear time-dependent compartmental system

d

dt
y(t) = B̃(t) y(t) + u(t), t > t0,

y(t0) = x0,

[2]

has a unique solution y. Since x is the unique solution to sys-
tem 1 and both systems are equivalent, y = x. Below we consider
linear systems only, because we can always think of the solution
of the nonlinear system 1 as being the solution of the equiva-
lent linear system 2. This linear interpretation of x allows us to
derive semianalytical formulas for many properties of nonlinear
systems. The prefix “semi” reflects here the fact that all of the
theory works under the assumption that x is already known.

C. General Solution of the Linear System. We consider the linear
time-dependent compartmental system

d

dt
x(t) = B(t) x(t) + u(t), t > t0,

x(t0) = x0.

[3]

The unique solution x to this system on [0,T ] is given by

x(t) = Φ(t , t0) x0 +

t∫
t0

Φ(t , τ) u(τ) dτ, [4]

where Φ denotes the state transition matrix (S1. The State Tran-
sition Matrix Φ). This state transition matrix describes the trans-
port of particles through the system and is a generalized Green’s
function. Since the system is time dependent, Φ depends on two
time variables, and since Φ is matrix valued, it maps an input vec-
tor to an output vector. In particular, if v := Φ(t , τ) u, then v is
the vector that describes the time-t positions of the particles that
had positions according to u at time τ .

From Eq. 4 we see that the vector of compartment contents at
time t is given as the sum of two terms. The first term, Φ(t , t0) x0,
describes how much mass has remained from the initial con-
tents, whereas the second term,

∫ t

t0
Φ(t , τ) u(τ) dτ , describes

how much has remained until time t of inputs that came later
than t0. In particular, Φ(t , τ) u(τ) dτ describes the mass that
entered the system in the infinitesimal time interval dτ and is
still in the system at time t . Consequently, at time t the mass
Φ(t , τ) u(τ) dτ has age t − τ .

2. Age Distributions
A. Compartment Age Densities. We now assume that the initial
content x0 has a given age density p0 such that x0 =

∫∞
0

p0(a) da ,
where p0(a) da is the vector with nonnegative components of
mass with age infinitesimally close to a at time t0. The previ-
ous observation on the age of Φ(t , τ) u(τ) dτ motivates the con-
jecture that the age density of the compartment contents at age
a ≥ 0 and time t ≥ t0 is given by

p(a, t) = g(a, t) + h(a, t), [5]

where

g(a, t) = 1[t−t0,∞)(a) Φ(t , t0) p0(a − (t − t0)) [6]

is the age density of the mass that has been in the system from
the beginning, and

h(a, t) = 1[0,t−t0)(a) Φ(t , t − a) u(t − a) [7]

is the age density of the mass that has entered the system after
t0. The indicator function 1S (a) of a set S equals 1 if a ∈ S ;
otherwise it equals 0.

It turns out that p satisfies indeed a multidimensional version
of the well-known McKendrick–von Foerster equation (17, 18)
that describes the evolution of the age structure of system 1,
since (S2. The McKendrick–von Foerster Equation), for a > 0 and
t > t0, (

∂

∂a
+

∂

∂t

)
p(a, t) = B(t) p(a, t), [8]

with boundary condition

p(0, t) = u(t), t > t0, [9]

and initial condition

p(a, t0) = p0(a), a ≥ 0. [10]

B. System Age Density. The age density of the entire system is
just the sum of the compartment age densities, and we denote
it by

‖p(a, t)‖ :=

d∑
i=1

pi(a, t), a ≥ 0, t ≥ t0. [11]

We can interpret ‖ · ‖ as a norm here, since p(a, t) is a vector
with nonnegative entries pi(a, t) only.

C. Cumulative Compartment Age Distribution. We denote by
uppercase letters the cumulative age distributions correspond-
ing to age densities. This means for the initial age density p0 and

Metzler et al. PNAS | February 6, 2018 | vol. 115 | no. 6 | 1151

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705296115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705296115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705296115/-/DCSupplemental


ξ ≥ 0 that P0(ξ) =
∫ ξ

0
p0(a) da is the vector of initial compart-

ment contents with age a ≤ ξ. Then, by Eq. 5,

P(ξ, t) = G(ξ, t) + H(ξ, t), [12]

where

G(ξ, t) = Φ(t , t0) P0(ξ − (t − t0)), ξ ≥ t − t0, [13]

is the vector of compartment contents with age a ≤ ξ at time t
that have been in the system from the beginning, and

H(ξ, t) =

t∫
max{t−ξ,t0}

Φ(t , τ) u(τ) dτ = x(t)− Φ(t , t − ξ) x(t − ξ)

[14]

is the vector of compartment contents that came into the system
after t0 and have age a ≤ ξ at time t . The latter can also be
expressed as the compartment contents at time t minus all of the
mass that was already in the system at time t − ξ and survived
until time t .

D. Cumulative System Age Distribution. The mass in the system
with age a ≤ ξ at time t ≥ t0 is given by ‖P(ξ, t)‖.

3. Moments of Age Distributions
For any nonnegative integer k and any age density p of a non-
negative vector x∈Rd , we define

āx,k := X−1

∞∫
0

ak p(a) da [15]

to be the k th moment of the density p, where X =
diag(x1, x2, . . . , xd) is a diagonal matrix. Note that āx,0 = 1, the
vector comprising ones. For k = 1 we obtain the mean age vec-
tor. The unboundedness of the upper limit of the integral causes
issues in the numerical computation of an age moment directly
from Eq. 15.

A. Moments of Compartment Ages.
A.1. Semiexplicit formula for compartment age moments. To cir-
cumvent this problem, we can use the McKendrick–von Foerster
Eq. 8 to compute (S3. The Semiexplicit Formula for Compartment
Age Moments) the nth moment ān(t) := āx(t),n of the age distri-
bution of the compartmental system at time t by

ān(t) = X(t)−1

×

[
n∑

k=0

(
n

k

)
(t − t0)n−k Φ(t , t0) X0 ā0,k

+

t−t0∫
0

an Φ(t , t − a) u(t − a) da

]
.

[16]

Here, X(t) = diag(x1, x2, . . . , xd)(t) is the diagonal matrix con-
taining the compartment contents at time t , X0 = X(t0), and ā0,k

for k = 1, 2, . . . ,n denote the moments of the initial age distri-
bution. Note that the integral involved is now over the half-open
but finite interval [0, t − t0).
A.2. Compartment age moment system. Another way to compute
the age moments is to set up and solve an appropriate system of
first-order differential equations which we call the compartment
age moment system. This system is a straightforward d · (n + 1)-
dimensional generalization of the mean age system derived in
ref. 16. It is given by (S4. The Compartment Age Moment System)

d

dt


x
ā1

...
ān

 (t) =


B(t) x + u(t)
γ1(t , x, 1, ā1)

...
γn(t , x, ān−1, ān)

, t > t0,

(x, ā1, . . . , ān)(t0) = (x0, ā0,1, ā0,2, . . . , ā0,n),

[17]

where, for k = 1, 2, . . . ,n , γk =
(
γk

1 , γ
k
2 , . . . , γ

k
d

)T
and for i =

1, 2, . . . , d ,

γk
i (t , x, āk−1, āk ) = k āk−1

i

+
1

xi

[
d∑

j=1

Bij xj
(
āk
j − āk

i

)
− āk

i ui

]
.

[18]

Note that we occasionally omitted the time dependencies to sim-
plify notation and that vT denotes the transpose of the vector v.
Because of its particular structure, the compartment age moment
system 17 has the advantage of solving the compartments’ age
moments through time alongside the compartments’ contents.
This procedure is both fast and numerically robust.

B. System Age Moment. The nth moment of the system age at
time t ≥ t0 is defined by

Ān(t) :=
1

‖x(t)‖

∞∫
0

an ‖p(a, t)‖ da. [19]

A straightforward calculation shows Ān(t) = xT (t) ān (t)
‖x(t)‖ .

4. Age Quantiles
In addition to moments, quantiles of the age distributions are
important statistics. As a special case, the unique age 2 quantile
is the median of the age distribution. Let k and n be positive
integers such that k < n and define q := k/n .

A. Compartment Age Quantiles. For i ∈ {1, 2, . . . , d} the k th n
quantile of the age of compartment i at time t ≥ t0 is defined as
ξi(t) such that

Pi(ξi(t), t) = q xi(t). [20]

In general, the computation of the quantile relies on the compu-
tationally expensive inverse of the cumulative age distribution. It

fossil fuels deep ocean (D)

FTA FAT

FAS

FSA

uA uSFSD

A

T

S

Fig. 1. Simple global carbon cycle model with three compartments (solid
boxes within dashed square): atmosphere (A), terrestrial biosphere (T), and
surface ocean (S). The indicated carbon contents are the respective steady-
state values. External to the modeled system are fossil fuel sources and the
deep ocean (D). The model compartments and the external sources are con-
nected by linear (solid arrows) and possibly nonlinear (dashed arrows) fluxes
of carbon.
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Fig. 2. Preindustrial age densities of the three compartments: atmosphere
(blue), terrestrial biosphere (green), and surface ocean (purple). The red
curve shows the age density of the entire system.

is numerically much faster and easier to instead use the fact (S5.
The Age Quantiles) that ξi solves the initial value problem, for
t > t0,

d

dt
ξi(t) = 1 +

ui(t) (q − 1) + [B(t) (q x(t)− P(ξi , t))]i
pi(ξi , t)

,

ξi(t0) = ξ0
i , [21]

where ξ0
i is given such that P0

i (ξ0
i ) = q x0

i . Now, only the inverse
of the initial age distribution remains to be computed.

B. System Age Quantiles. Likewise, the k th n quantile ξ of the
system age solves the initial value problem, for t > t0,

d

dt
ξ(t) = 1 +

‖u(t)‖ (q − 1) +
d∑

i=1

[B(t) (q x(t)− P(ξ, t))]i

‖p(ξ, t)‖ ,

ξ(t0) = ξ0, [22]

where ξ0 is given such that ‖P0(ξ0)‖= q ‖x0‖.

5. Transit-Time Distributions
A. Backward Transit Time. Following ref. 16, we define the back-
ward transit time BTT(te) as the age of particles in the output
from the system at exit time te ≥ t0. The vector ρ(te) of outflow
rates (unit: time−1) from the system at time te is given by

ρj (te) = −
d∑

i=1

Bij (te), j = 1, 2, . . . , d . [23]

We can write the age density of the outflow at time te as

pBTT(a, te) = ρT (te) p(a, te), a ≥ 0, te ≥ t0. [24]

Owing to the well-mixed assumption, the outflow from compart-
ment i at time te is given by ri(te) := ρi(te) xi(te). Consequently,
r(te) denotes the vector of outflows from the system at time te .
By Eq. 15 we obtain for the nth moment of the backward transit
time at time te the expression

BTT
n
(te) =

1

‖r(te)‖

∞∫
0

an pBTT(a, te) da

=
1

‖r(te)‖ ρ
T (te)

∞∫
0

an p(a, te) da,

[25]

which, based on rT (te) = ρT (te) X(te) and Eq. 15, yields

BTT
n
(te) =

1

‖r(te)‖ rT (te) ān(te). [26]

Note that to guarantee the existence of the nth moment of
BTT(te), the nth moment of the initial age density must
exist, too.

B. Forward Transit Time. For a particle entering the system at its
arrival time ta > t0, we consider its forward transit time FTT(ta)
as the age a ≥ 0 that the particle will have when it exits the
system at time te = ta + a . The density

pFTT(a, ta) = ρT (ta + a) p(a, ta + a) [27]

describes the part from the input at time ta that leaves the system
at time ta +a . By the relation te = ta +a , we obtain immediately
a generalized version of Niemi’s theorem (19),

pFTT(a, ta) = pBTT(a, te), [28]

which shows the intrinsic connection between forward and back-
ward transit times.

If we want to compute the moments of FTT(ta), we must rely
on Eq. 15 and deal with an integral from zero to infinity. Unfor-
tunately, we cannot profit from the close link (Eq. 28) between
FTT and BTT, since the exit time te = ta + a depends on a .

6. Application to a Simple Global Carbon Cycle Model
We consider the simple global carbon cycle model introduced
in ref. 3 and depicted in Fig. 1. It consists of three compart-
ments: atmosphere (A), terrestrial biosphere (T ), and surface
ocean (S ). Furthermore, it depends on two parameters α and
β which control the fluxes from the atmosphere to the ter-
restrial biosphere and from the surface ocean to the atmo-
sphere, respectively. We consider two different parameter sets:
(i) (α, β) = (0.2, 10) and (ii) (α, β) = (1, 1). Parameter set i is
from the original publication (3) and describes a nonlinear sce-
nario. Parameter set ii makes the model become linear and
we use this scenario as a reference measure for the nonlinear
version (i). A detailed description and how the notation from
the original publication (3) can be transformed to fit Eq. 1 is
given in S7. The Detailed Model Description. In S8. The Deriva-
tion of the Results from the Example Application we explain in
detail how our derived formulas can be used to produce the
following results.

We consider the system in equilibrium in the year 1765 and
observe different age densities in the different compartments
(Fig. 2). After the year 1765, we perturb the system by an

Fig. 3. Anthropogenic perturbations of the global carbon cycle by fos-
sil fuel emissions (uA, red) and land use change (fTA, blue) according to
RCP/ECP8.5.
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Fig. 4. Time evolution of the atmospheric carbon’s age density. Left, the nonlinear version; Center, the linear version; Right, the difference between the
two (Left minus Center). Red curves show the median age and blue curves the mean age. The surface color is constant along the time–age diagonal; it
reflects the moment of entry into the system. At the very left edges of Left and Center panels (time = 1765 y) we can identify the equilibrium age density
of the atmospheric carbon (compare Fig. 2), whereas the front edges (age = 250 y) show how much mass is in the system with age equal to 250 y from the
year 1765 through the year 2500.

additional external input flux uA of carbon to the atmosphere
caused by fossil fuel combustion and an additional internal inde-
pendent flux fTA caused by land use change (Fig. 3). For the
interval 1765–2100, the data correspond to the Representative
Concentration Pathways Scenario 8.5 (RCP8.5) (20), whereas
the data for the interval 2100–2500 stem from the Extended
Concentration Pathways Scenario 8.5 (ECP8.5) (21). We assume
constant emissions after 2100, followed by a smooth transition to
stabilized atmospheric CO2 concentrations after the year 2250
achieved by linear adjustment of emissions after the year 2150
(21). The perturbations make the age densities change with time
such that they can be depicted by 2D surfaces in a 3D space
(Fig. 4).

To obtain useful information from these density functions,
we address two climate-relevant questions inspired by O’Neill
et al. (22):

How Old Is Atmospheric Carbon? The entire time evolutions of
the atmospheric carbon’s age density derived from the two ver-
sions of the model are depicted in Fig. 4 (Left, nonlinear; Center,
linear), and so we can answer the question of age of atmospheric
carbon for all years between 1765 and 2500. In the year 2017,
its mean age is 126.35 y (linear: 128.32 y) and the median age
is equal to 61.76 y (62.69 y). The SD equals 161.72 y (162.92 y),
indicating that the age distribution has a long tail, a feature which
cannot be derived from the mean only.

In these numbers we recognize only very little differences
between the nonlinear and the linear model. Nevertheless, we
can observe important differences in the entire evolution of the

Fig. 5. Forward transit-time densities of fossil fuel carbon entering the atmosphere in the years 1800 (red), 1990 (blue), 2015 (green), 2170 (purple), and
2300 (orange). Left shows the nonlinear version and Right shows the linear one. Orange curves end at the age of 200 y, because our simulation lasts only
until the year 2500. The medians (dashed vertical lines) in the nonlinear version increase until the year 2170 and then start decreasing; in the linear version
the distributions and medians remain constant.

age distributions depicted in Fig. 4, Left and Center. The differ-
ences are twofold. First, the pure amount of atmospheric car-
bon is much higher in the nonlinear model. Second, the age dis-
tributions of atmospheric carbon show also different shapes for
the two scenarios. This results in the nonflat surface shown in
Fig. 4, Right, depicting the difference between the densities of
atmospheric carbon in the nonlinear and the linear version of
the model.

How Long Will a Significant Fraction of a Pulse of Fossil Fuel Car-
bon, Emitted to the Atmosphere Today, Remain in the System?
We consider carbon entering directly into the atmosphere at spe-
cific times ta and want to know how long it will take to remove
it from the system. The forward transit time at time ta describes
how old mass entering the system at time ta will be at the time of
its exit. As indicated in Fig. 5, Left for the nonlinear model the
forward transit-time distribution of mass injected between 1800
and 2170 constantly shifts to older ages, while it shifts back to
younger ages after 2170. The medians of the forward transit time
of mass injected in the years 1800, 1990, 2015 (Paris Agreement),
2170, and 2300 are given by 79.85 y, 82.91 y, 86.12 y, 108.91 y,
and 102.61 y, respectively. As Fig. 5, Right shows, the situation
is very different in the linear scenario. Here, the forward transit-
time distribution does not depend at all on the injection time and
remains the same as in the steady state in the year 1765, because
the coefficients of B remain constant over time. Obviously,
taking into account nonlinear processes leads to a significant
increase in the lifetime of fossil fuel-derived carbon according to
this model.
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7. Summary and Conclusions
We obtained transit-time and age distributions for well-mixed
compartmental models. Our results are not restricted to linear
models or systems in steady state, but hold even for nonlinear
time-dependent models. This fundamental advance allows us to
drop the assumption that the system is in equilibrium, an assump-
tion which is unreasonable for most natural systems.

The derivation of the formulas for the age densities relies only
on the general solution formula for linear time-dependent sys-
tems (Eq. 4). In nonlinear systems, known solution trajectories
are interpreted linearly and then the systems can be treated as
if they were linear. This approach also allows us to consider age
densities of subsystems such as all mass that entered the system
through a specific compartment (S8. The Derivation of the Results
from the Example Application).

Additionally, we obtained ODEs to compute means, higher-
order moments, and quantiles (e.g., the median) of ages. This
leads, by very fast computations, to much more precise character-
izations of age distributions than were possible before by looking
only at the means.

The power of these results is shown in an application to a
simple global carbon cycle model. We demonstrate how much
transit-time and age distributions differ between a nonlinear and
a linear version of the model. First, nonlinearities lead to a
tremendously higher amount of carbon in the atmosphere. Sec-
ond, these two versions of a simple model already suggest that

the lifetime of fossil fuel-derived atmospheric carbon is substan-
tially increased by nonlinear processes (23). Sizable differences
in transit-time and age distributions of the two model versions
might be a criterion to select one version or the other.

We stress that the model used here is very simple and used
mainly to demonstrate the power and versatile applications of
our mathematical framework in a comprehensible manner. It is
important to emphasize that for any global carbon cycle model
represented as a well-mixed compartmental system, no matter
how many compartments it comprises, we could answer ques-
tions of high scientific and societal interest (e.g., the age of the
current atmospheric carbon and the future exit age of carbon that
now enters the system).

Our results are not restricted to carbon cycle models, of
course, but can be readily applied to all possible well-mixed com-
partmental systems. To that end, we provide a Python pack-
age which implements all theoretical results and makes them
usable by a few simple commands (https://github.com/MPIBGC-
TEE/CompartmentalSystems). This package also includes a
demonstration (Jupyter) notebook and an HTML file with code
to reproduce the figures and to show more characteristics of
the model.
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