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Abstract

Multiple treatment strategies are available for empiric antibiotic therapy in hospitals, but nei-

ther clinical studies nor theoretical investigations have yielded a clear picture when which

strategy is optimal and why. Extending earlier work of others and us, we present a mathe-

matical model capturing treatment strategies using two drugs, i.e the multi-drug therapies

referred to as cycling, mixing, and combination therapy, as well as monotherapy with either

drug. We randomly sample a large parameter space to determine the conditions determin-

ing success or failure of these strategies. We find that combination therapy tends to outper-

form the other treatment strategies. By using linear discriminant analysis and particle swarm

optimization, we find that the most important parameters determining success or failure of

combination therapy relative to the other treatment strategies are the de novo rate of emer-

gence of double resistance in patients infected with sensitive bacteria and the fitness costs

associated with double resistance. The rate at which double resistance is imported into the

hospital via patients admitted from the outside community has little influence, as all treat-

ment strategies are affected equally. The parameter sets for which combination therapy

fails tend to fall into areas with low biological plausibility as they are characterised by very

high rates of de novo emergence of resistance to both drugs compared to a single drug, and

the cost of double resistance is considerably smaller than the sum of the costs of single

resistance.

Author summary

For life-threatening infections, antibiotics need to be administered as soon as possible.

Because it takes time to acquire data about the disease causing bacteria, the immediate

treatment is often empiric. In particular, there are three treatment strategies discussed in

the field of empiric treatment: cycling, mixing, and combination therapy. Despite a num-

ber of clinical and theoretical studies, it still remains unclear which treatment strategy best

prevents the emergence of resistance and why. To address this controversy, we present a
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mathematical model capturing both mono- and multi-drug therapies. We sample and

analyze a large parameter space to assess the effect of parameters on treatment success,

and determine which treatment strategy is the best under which circumstances. Using

methods such as linear discriminant analysis and particle swarm optimisation, we find

that combination therapy outperforms the other strategies by a large margin for most of

the biologically relevant parameter space. We also show that the rate of de novo emergence

of double resistance and the costs of resistance mutations are the most important parame-

ters determining whether combination therapy succeeds over the others.

Introduction

Antibiotic resistance has become a global concern due to the increased emergence and spread

of resistant bacteria [1–3]. Infections caused by resistant bacteria lead to higher mortality rates,

higher treatment costs, and longer hospital stays [4, 5]. The main selection pressure that drives

the emergence and spread of resistance is antibiotic use [6, 7]. Since it is not possible to aban-

don antibiotic usage completely, it is necessary to understand the dynamics of emergence and

spread of resistance under drug pressure. Considering the decreasing rate at which new antibi-

otics are developed, it is critically important to use the available drugs in ways that delay the

emergence and spread of resistance.

For life-threatening infections, antibiotics need to be administered as soon as possible to

lower the mortality rate [8]. Clinical evidence shows that instant initiation of treatment is as

important as chosing the appropriate treatment [9]. Since it takes time to acquire adequate

data about the disease causing bacteria, immediate treatment is often empiric. Although cur-

rent technology allows for faster and more accurate data collection, there are still large gaps in

knowledge about the frequency of antimicrobial resistance worldwide [10]. Therefore empiri-

cal treatment still remains crucial, especially for resource-constrained facilities.

Multiple strategies are discussed in the field for such empiric treatment with the aim of

reducing mortality and the risk of resistance within an open community, such as a hospital

ward. In particular three strategies are discussed in more detail in the literature: (i) cycling, i.e.

rotating between alternative antibiotics over a certain period; (ii) mixing, i.e. random assign-

ment of different antibiotics to patients; (iii) combination therapy, i.e. combining multiple

antibiotics to treat patients. Despite the large number of clinical studies, there is still a consid-

erable debate regarding the potential benefits of these treatment strategies. Combination ther-

apy is typically compared to monotherapy in the empiric management of infection [11]. While

in vitro and animal studies show benefits of combination over mono drug therapy, clinical

data are conflicting and less clear [12]. Some clinical studies suggest that combination therapy

decreases the mortality rate compared to monotherapy [13–16], whereas others only conclude

that it is non-inferior but provides no advantage [17–21]. A number of studies investigate the

benefits of cycling [22–29], and some of them compare cycling to mixing [25, 26]. Some stud-

ies report benefits [22–24], whereas others find no benefits or even risks [27–29]. The studies

are difficult to compare because of methodological differences, differences in pathogens, and

differences in clinical endpoints. Moreover, a review of clinical trials of cycling comes to the

conclusion that many studies have methodological shortcomings such that it remains unclear

whether cycling has any benefit [30].

While clinical trials are ultimately indispensable, mathematical models can help to gain a

better understanding of the epidemiological dynamics under the various treatment strategies

[31]. Analysis and simulation of mathematical models have been widely used to quantify the
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population-wide effects of different treatment strategies, and many studies address the use of

multiple drugs to manage antibiotic resistance [32–41]. However, these studies differ in many

aspects, impeding the emergence of a conclusive picture. They differ in the assumptions they

make about the processes relevant to the emergence and spread of resistance, they differ in the

criteria by which they assess the performance of the treatment strategies, and most of them do

not consider all multi-drug treatment strategies for comparison. Moreover, they usually only

explore a limited parameter range, which in return limits the potential outcomes. Although

according to our reading of the literature, many mathematical models show advantages for

combination therapy, it is diffucult to understand which strategy is optimal under which cir-

cumstances, and why.

Here, we set up a model that contains the most essential processes of existing models and

probe the performance of all three multi-drug therapies: cycling (CYC), mixing (MIX), and

combination therapy (COMBO). We include mono-drug therapy as a reference, since there is

no a priori reason to assume multi-drug therapies will perform better considering all conse-

quences of treating a patient, such as selecting for double resistance. The model assumes that

resistant cases in the hospital are either due to the admission of patients carrying resistant

strains, the spread of resistance in the hospital, or the de novo emergence of resistance in

treated patients. The de novo emergence of single and double resistance is modeled by two

independent rates. The model can be considered as a combination of the models proposed by

Bonhoeffer et al. 1997 [32] and Bergstrom et al. 2004 [33].

We systematically explore the parameter space to determine which treatment strategy per-

forms the best under which circumstances. Using Linear Discriminant Analysis (LDA), we

identify the key parameters for the success of each treatment strategy. We furthermore identify

the parameter regions where COMBO is either the best or the worst strategy. We find that

COMBO wins by a large margin in most of the realistic parameter space, but there are also

parameter regions where it fails considerably.

Methods

Mathematical model

Our mathematical model describes the transmission and spread of antibiotic resistance in an

open system such as a hospital ward, in which patients are treated with two different antibiot-

ics, denoted as drug 1 and drug 2. The model is a combination of two models described in [32]

and [33], and depicted in Fig 1. Following a well established tradition in the field of antibiotic

resistance modeling in hospitals [32, 33, 37], we do not explicitly represent the populations of

bacteria within patients (no explicit within-host dynamics). Instead at each time point each

patient belongs to one of 5 compartments, and our model consists in a set of differential equa-

tions describing how patients move from one compartment to another. The compartments X,

S, R1, R2, and R3 represent the patients that are uninfected, infected with a sensitive strain,

infected with a strain resistant to drug 1, infected with a strain resistant to drug 2, and infected

with a strain resistant to both drugs, respectively.

In general, there are four processes that are taken into account to describe the flow of indi-

viduals between different compartments: infection, superinfection, de novo emergence of resis-

tance, and clearance. Additionally, there are the process of influx and efflux of patients into

and from all compartments, which means that patients can enter and leave the hospital ward

independently of their current status. Patients are assumed to leave (and enter) the hospital

with a constant rate of μ. Fractions of patients entering the hospital in the states S, R1, R2, R3,

and X are denoted bym0,m1,m2,m3, and (1 −m0 −m1 −m2 −m3), respectively.
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Uninfected patients get infected with a rate proportional to the transmission rate of infec-

tion β and the frequency of the infecting compartment, modulated by the fitness cost of resis-

tance of the corresponding infectious strain. For the sake of simplicity, we assume that the

patients that belong to the X compartment are not infectious, and the patients that only belong

to S, R1, R2, and R3 compartments transmit the pathogen. Fitness costs of resistance to drug 1,

drug 2, and both drugs are denoted by c1, c2, and c3, respectively. We do not explicitly model

within-host dynamics, and the fitness cost of a resistance allele is modeled as a reduction of the

infectivity of the resistant strain. Mathematically speaking, the term (1 − cn) is a multiplicative

factor reducing the ability of the resistant Rn strain to propagate to other patients. Having a dif-

ferent parameter c3 for the cost of double resistance instead of additively or multiplicatively

combining the costs c1 and c2 allows to represent epistatic interactions.

The acquisition of resistance during treatment occurs via de novo emergence or superinfec-

tion. In this context, gaining single resistance means either susceptible strains becoming resis-

tant to one of the drugs, or single resistant strains becoming double resistant. Gaining double

resistance refers to susceptible strains becoming double resistant. De novo emergence is

assumed to occur only under drug pressure, with rates ν and q for single and double resistance,

respectively. The rates ν and q thus include both the mutation and selection processes. In this

model, superinfection is defined as infection of an already infected patient with another strain,

and depends on the relative rate of superinfection σ. We assume that a patient is infected by

only one strain at a given time and do not consider the co-existence of multiple strains, which

implies that superinfection results in the replacement of the former strain by the latter. Super-

infection is assumed to occur under treatment, because the fitness difference of resistant and

sensitive strains will be larger under drug pressure and superinfection will not play as impor-

tant a role in the absence as in the presence of treatment. Moreover, since superinfection by a

sensitive strain will be very unlikely under drug pressure, it is assumed that there is no flow to

S compartment from R1, R2, and R3 compartments. Likewise, superinfection of R3 by R1 or R2

Fig 1. Schematic diagram of the dynamical model given by Eqs 1–5. The variables X, S, R1, R2, and R3

represent uninfected patients, and patients infected with a sensitive strain, a strain resistant to drug 1, a strain

resistant to drug 2, and a strain resistant to both drugs, respectively.

https://doi.org/10.1371/journal.pcbi.1005745.g001
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is assumed to be absent. Reversal of resistance is considered negligible; otherwise, superinfec-

tion by the sensitive strain would be possible in the absence of treatment.

Clearance includes both spontaneous recovery due to the patient’s immune system and due

to treatment. Spontaneous recovery occurs a rate γ, and recovery due to appropriate treatment

occurs at a rate of τ. Having a single recovery rate due to treatment stems from an underlying

assumption about drug action: we assume that any treatment that works leads to recovery with

the same rate independent of the treatment type, meaning that combining two drugs does not

lead to faster clearance. This is a conservative assumption giving no direct treatment benefit to

combination therapy, as in clinical trials it has often been found that monotherapy is noninfer-

ior (see Introduction).

The fractions of infected patients receiving drug 1, drug 2, or both drugs according to the

current treatment protocol are denoted by f1, f2, and f3, respectively, and the total fraction of

infected patients receiving drugs is ftot = f1 + f2 + f3. Manipulating f1, f2, and f3 determines the

current treatment strategy, which may be monotherapy with drug 1 (MONO-1) or drug 2

(MONO-2), mixing (MIX), cycling (CYC), or combination therapy (COMBO). Following

Bergstrom et al. 2004, we also consider “erroneous” treatment reflecting that not all patients

may receive treatment according to the chosen treatment strategy. This erroneous rate of treat-

ment is given by a1, a2, and a3, describing the rate of erroneous treatment with drug 1, drug 2,

or both in combination. For simplicity, we assume that a1 = a2 = a3 = a.

The schematic given in Fig 1 can be translated into a system of ordinary differential equa-

tions, where each arrow, i.e., each process, is associated with a rate. This system is given by Eqs

(1)–(5), including the rates of processes as model parameters, and describes the rate of change

of compartments over time. Model parameters are given in Table 1 with their corresponding

description, unit, and process.

dS=dt ¼ m0m � mS � nðf1 þ a1ÞS � nðf2 þ a2ÞS � qðf3 þ a3ÞS � ðtþ gÞSþ bSX � ðf1 þ a1Þsbð1 � c1ÞR1S

� ðf2 þ a2Þsbð1 � c2ÞR2S � ðf1 þ f2 þ f3 þ a1 þ a2 þ a3Þsbð1 � c3ÞR3S;
ð1Þ

Table 1. Model parameters with their corresponding description, unit, and process.

Parameter Description Unit Process

m0, m1, m2, m3 Influx fractions

(Admission of patients to the hospital ward in the states of S, R1, R2, and R3)

− Influx / Efflux

μ Turnover rate

(Loss of patients due to discharge or death, compensated by admission of new patients)

day−1

β Transmission rate day−1 Infection / Superinfection

c1, c2, c3 Fitness costs of resistance to drug 1, drug 2, and both drugs −
σ Relative rate of superinfection −
ν Rate of de novo emergence of single resistance due to drug treatment day−1 Mutation & Selection

q Rate of de novo emergence of double resistance due to drug treatment day−1

γ Spontaneous recovery rate day−1 Clearance

τ Rate of recovery due to appropriate treatment day−1

ftot Fraction of infected patients receiving drugs according to the current treatment protocol

(ftot = 1 − a1 − a2 − a3)

−

f1, f2, f3 Fraction of infected patients receiving drug 1, 2, or both −
a1, a2, a3 Fraction of infected patients receiving drug 1, 2, or both, erroneously −

https://doi.org/10.1371/journal.pcbi.1005745.t001
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dR1=dt ¼ m1m � mR1 þ nðf1 þ a1ÞS � nðf2 þ f3 þ a2 þ a3ÞR1 � ðtðf2 þ f3 þ a2 þ a3Þ þ gÞR1 þ bð1 � c1ÞR1X

þðf1 þ a1Þsbð1 � c1ÞR1Sþ ðf1 þ a1Þsbð1 � c1ÞR1R2 � ðf2 þ a2Þsbð1 � c2ÞR1R2

� ðf2 þ a2 þ f3 þ a3Þsbð1 � c3ÞR1R3;

ð2Þ

dR2=dt ¼ m2m � mR2 þ nðf2 þ a2ÞS � nðf1 þ f3 þ a1 þ a3ÞR2 � ðtðf1 þ f3 þ a1 þ a3Þ þ gÞR2 þ bð1 � c2ÞR2X

þðf2 þ a2Þsbð1 � c2ÞR2S � ðf1 þ a1Þsbð1 � c1ÞR1R2 þ ðf2 þ a2Þsbð1 � c2ÞR1R2

� ðf1 þ a1 þ f3 þ a3Þsbð1 � c3ÞR2R3;

ð3Þ

dR3=dt ¼ m3m � mR3 þ qðf3 þ a3ÞSþ nðf2 þ f3 þ a2 þ a3ÞR1 þ nðf1 þ f3 þ a1 þ a3ÞR2 � gR3 þ bð1 � c3ÞR3X

þsbð1 � c3ÞR3Sþ ðf2 þ a2 þ f3 þ a3Þsbð1 � c3ÞR1R3 þ ðf1 þ a1 þ f3 þ a3Þsbð1 � c3ÞR2R3;
ð4Þ

dX=dt ¼ ð1 � m0 � m1 � m2 � m3Þm � mX þ ðtþ gÞSþ ðtðf2 þ f3 þ a2 þ a3Þ þ gÞR1

þðtðf1 þ f3 þ a1 þ a3Þ þ gÞR2 þ gR3 � bSX � bð1 � c1ÞR1X � bð1 � c2ÞR2X � bð1 � c3ÞR3X:
ð5Þ

The different treatment strategies are simulated by manipulating the parameters f1, f2, and

f3. MIX implies the random assignment of drugs 1 and 2 to the half of the treated patients, i.e.,

f1 = f2 = ftot/2, and f3 = 0. CYC implies that at any given time the same drug type is used in the

whole population, but switches between both drugs with a certain cycling period, which is kept

constant (30 days) for all simulations. This can be simulated by switching between f1 = ftot and

f2 = ftot with a constant frequency. In order to avoid any bias, the initial drug type is chosen

randomly. MONO-1 and MONO-2 assign the same drug type for the whole population, and

are simulated by either setting f1 = ftot or f2 = ftot for the entire duration of treatment. COMBO

assigns both drugs at the same time for the whole population, i.e., f3 = ftot and f1 = f2 = 0.

Since the Eqs (1)–(5) cannot be solved analytically, we simulate the system numerically.

Simulations are carried out as follows. For a given parameter set F, the system (given by Eqs

(1)–(5)) is numerically approximated via the Fourth Order Runge-Kutta Method (RK−4) [42]

with a step size of 0.01 days, in the absence of treatment. We let the system to reach its steady

state before the application of any treatment, and the steady state values are then used as the

initial conditions of the hospital ward. These initial conditions are in equilibrium with the

community since we take the pre-existence of resistance prior to treatment into account

through non-zero influx rates of resistance (m1,m2, andm3). After the system has reached its

steady state, treatment starts, and we define the time onset of therapy as time 0. Simulations

then continue in parallel for each of the five different treatment strategies, MIX, CYC,

COMBO, MONO-1, and MONO-2, for the whole course of simulation duration. Afterwards,

an efficacy score MðOjFÞ conditioned on the parameter set F is calculated for each treatment

type, defined as

MðOjFÞ ¼
Z T

0

½XðujFÞ � Xð0jFÞ� du; ð6Þ

where O denotes the type of treatment, and T denotes the time point where the simulation

ends. We choose T = 360 days for all simulations throughout this article. A finite time frame is

chosen in order to see the effects of all the parameters, including those whose action is only vis-

ible before a new steady state is established.
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The efficacy score quantifies the effect of a given treatment strategy on the sum of all

infected patient classes compared to their number in the absence of treatment. Treatment

strategies are compared based on their efficacy scores, and the strategy with the highest score

is considered as the winning strategy for a given parameter set. An example graph of the time

behaviour of the number of infected patients is given in Fig 2, where the efficacy score is illus-

trated with the dashed area.

Classification and the optimization problem

We use two different approaches to explore the parameter space. Both approaches aim at iden-

tifying the regions where one strategy outperforms over the others. The first is based on ran-

dom sampling (RS) of the parameter space. In order to separate parameter regions favoring

one strategy over the others, Linear Discriminant Analysis (LDA) is applied on the parameter

sets. The second approach directly searches for parameter regions where combination therapy

performs significantly better or worse than the other treatment strategies. Due to the high

dimensionality of the system, we employ the Particle Swarm Optimization (PSO) method to

this optimization problem. For comparison, the identified regions are also projected on the

same LDA space. Both approaches will be discussed in detail in the following sections.

Random sampling (RS). RS involves the random sampling of a large number of parame-

ter sets from the parameter space. Notice that, although the model has 21 parameters, there are

only 15 free parameters due to the dependence of the parameters on each other and on the

treatment strategy. As a result, each sampled parameter set is a vector of length 15, such that F

= {m0,m1,m2,m3, μ, β, c1, c2, c3, σ, ν, q, γ, τ, a}.

Fig 2. Illustration of the efficacy score. The score is calculated by integrating over the difference in the number of infecteds in the absence and

presence of treatment, and the area representing the efficacy score is marked by the dashed lines.

https://doi.org/10.1371/journal.pcbi.1005745.g002
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All parameters are sampled within predefined parameter boundaries using either a logarith-

mic or a linear sampling scheme. Very broad parameter boundaries are chosen such that they

are representative of the values used in the mathematical literature, and given in Table 2 with

their corresponding sampling scheme.

Linear discriminant analysis (LDA). LDA is a supervised method for dimensionality

reduction for classification problems [43]. Intuitively, LDA performs a rotation of the high

dimensional cloud of points representing the parameter sets in a manner such that when pro-

jected to a space of lower dimensionality, the classes are maximally separated. Projection onto

the first two such dimensions thus maximally separates the parameter sets that belong to dif-

ferent classes of treatment strategies in a 2-D space.

Here, each treatment strategy is considered as a different class for the LDA method. Param-

eter sets are normalized and labeled according to which strategy performs best. Afterwards,

the projection matrix w is calculated such that upon projection, the centroids of different clas-

ses are maximally separated, and points in every class have the smallest scattering possible.

Here we project the parameter sets onto the 2-D space spanned by the first two axes of LDA.

The Cartesian coordinates [x, y] of each projected parameter set F� are calculated as

x

y

" #

|ffl{zffl}
F�

2� 1

¼

w1;1 w1;2 � � � w1;15

w2;1 w2;2 � � � w2;15

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W2�15

�

m0

m1

..

.

a

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

|fflfflffl{zfflfflffl}
F15�1

:
ð7Þ

Eq (7) can also be interpreted as [x y]> being the linear sum of the parameter vectors

{[w1,1 w2,1]>, [w1,2 w2,2]>, . . ., [w1,15 w2,15]>} weighted by the parameters {m0,m1, . . ., a}. As a

result, every parameter set can be projected on a 2-D space as the weighted sum of the parame-

ter vectors. The magnitude and the direction of a parameter vector indicates how far and in

which direction a point will move relative to its original position if that particular parameter

changes by a certain amount. This means that the significance of each parameter in class

Table 2. Model parameters given with their sampling range and sampling schemes.

Parameter Range Sampling

m0 [0.07, 0.9] logarithmic

m1 [10−3, 10−1] logarithmic

m2 [10−3, 10−1] logarithmic

m3 [10−6, 10−1] logarithmic

μ [3 × 10−3, 5 × 10−1] logarithmic

β [0.2, 1] linear

c1, c2, c3 [0, 0.2] linear

σ [0, 0.5] linear

ν [10−10, 10−1] logarithmic

q [10−10, 10−1] logarithmic

γ [0, 0.2] linear

τ [0.1, 1] linear

a [0, 0.2] linear

https://doi.org/10.1371/journal.pcbi.1005745.t002
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separation depends on both the position and the magnitude of its corresponding vector. A vec-

tor with a large magnitude located purely on the x-axis is significant for separating the classes

horizontally, whereas it is insignificant for the class separation on the vertical axis.

LDA performs optimally when the parameters are independent and normally distributed,

and assumes that a linear combination of parameters separates the classes. Although we sample

the model parameters independently, they are not normally distributed, and there is a nonlin-

ear relationship between the frequency of the compartments and the model parameters. How-

ever, it is known that LDA frequently performs well even when the assumptions of

independence and normality are violated [44]. Therefore, LDA might not be the optimal

method for our problem, but it still gives a good idea about which parameter regions favor

which strategies, and which parameters matter the most for class separation.

Particle swarm optimization (PSO). PSO is a population-based optimization method

inspired by the collective behaviour of animal populations [45]. It shares many similarities

with evolutionary computation techniques such as genetic algorithms [46]. The optimization

process starts with an initial “population” of solutions called particles located randomly on the

solution space. Each solution is assigned a fitness value, which the optimization algorithm tries

to maximize. All particles search for the optimal solution by communicating and sharing their

local solutions and fitness values at each iteration. Every particle adjusts its velocity on the

solution space depending on the best solution in their own history (Pbest), and also the best

solution obtained so far by any particle in the population (Gbest). Gbest is updated if the best

solution among all particles at the current iteration is better than the best solution from the

previous iterations. Given enough iterations, all particles are expected to converge to the same

solution on the solution space. Pseudocode of this algorithm is given below, where
 denotes

element-by-element vector multiplication. Variables z1 and z2 are the tuning parameters of the

algorithm, that determine the strength of attraction of the particles to Pbest and Gbest. Random-

ness, which is required for good solution space exploration, is introduced via the random vec-

tors r1 and r2. Each of the elements in r1 and r2 is sampled uniformly between 0 and 1 [47].

Note that the stochasticity introduced by r1 and r2 may also induce stochasticity in the results,

which means different realizations of the algorithm may lead to different optimal solutions.

Algorithm 1 Particle swarm optimization (PSO) algorithm
1: for each particlep do
2: Initializeparticle
3: end for
4: for numberof iterationsdo
5: for each particlep do
6: Computethe fitnessvalue
7: If the fitnessvalueis betterthan the best fitnessvaluein history,
set currentsolutionas the new Pbest.
8: end for

Choosethe particlewith the best fitnessvalueof all the particlesas
the globalbest particle(Gbest)
9: for each particlep do
10: Calculateparticlevelocityaccordingto v  v + z1
 r1
 (Pbest − p) +
z2
 r2
 (Gbest − p)
11: Updateparticlepositionaccordingequationp  p + v
12: end for
13: end for

In the context of our problem, each particle is a parameter set, and the fitness value is calcu-

lated based on the efficacy score of all strategies. In order to identify the parameter regions

where combination therapy significantly fails, we define the fitness value for a given particle p
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as

J worstðpÞ ¼ minfMðmixingjpÞ;MðcyclingjpÞ;Mðmono drug 1jpÞ;Mðmono drug 2jpÞg
� MðcombinationjpÞ: ð8Þ

By maximizing this difference, the algorithm finds parameter sets where combination therapy

fails by a maximal margin. Note that it does not matter which strategy is the best.

Similarly, parameter regions where combination therapy wins by a maximal margin over

the other strategies can be found by defining the fitness value as

J bestðpÞ ¼MðcombinationjpÞ
� maxfMðmixingjpÞ;MðcyclingjpÞ;Mðmono drug 1jpÞ;Mðmono drug 2jpÞg:ð9Þ

Results

In our analysis, we first examine the results of the random sampling (RS) algorithm. 500,000

parameter sets are sampled randomly according to the parameter boundaries and sampling

schemes given in Table 2. For each parameter set, efficacy scores are calculated for the five

treatment strategies, and the winning strategy for that particular parameter set is determined.

Fig 3 shows the probability that a given strategy is the winning strategy based on all RS results.

For random sampling of the entire parameter space, COMBO wins in 57% of the cases, which

is substantially higher compared to the other strategies. In the parameter region where it is

beneficial to treat a patient with more than one drug, COMBO tends to outperform CYC and

MIX by being the best strategy 70% of the time. Note, however, that the overall chance of

Fig 3. Chance of being the best strategy according to the random sampling results. 500,000 randomly sampled parameter sets are used. For

each parameter set, efficacy scores are calculated for the five treatment strategies, and the winning strategy for that particular parameter set is

determined. Based on these results, the probability of being the best strategy for each treatment is calculated.

https://doi.org/10.1371/journal.pcbi.1005745.g003
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being the best strategy depends both on the choice of the parameter ranges and the sampling

scheme. More statistical information on the distribution of efficacy scores and correlation

between them is provided in S1 Table and S1 Fig.

It is the natural starting point to assume that the hospital ward is at equilibrium with the

community before the application of any treatment. As mentioned in the Methods section,

treatment-free steady state values for the fraction of different patient groups are used as the ini-

tial conditions when simulating the treatment strategies. Histograms of the resulting initial

conditions are provided in the supplementary material (S5 Fig). However, to see wether using

the equilibrium values as the initial conditions has an impact on the relative performances of

the treatment strategies, we also ran simulations starting from randomly drawn initial condi-

tions. A similar analysis for the chance of being the best strategy for randomly drawn initial

conditions is provided in the supplementary material (S6 Fig), showing that for random initial

conditions COMBO is even more often the best strategy.

To determine the parameter regions where particular strategies tend to win, the winning

strategy for each particular parameter set is used as its class for linear discriminant analysis

(LDA). These results are projected on a 2-D space using the projection matrix w = [LD1 LD2],

and 2-D density plots of the projected samples are calculated for each class. These density plots

are given in Fig 4, where the parameter vectors are amplified by by a factor of 3 in order to

make them better visible. Counterclockwise angles and the relative magnitudes of the parame-

ter vectors are also included.

As discussed in the Methods section, whether a parameter is significant for class separation

or not depends both on the magnitude and the angle of its corresponding vector. For instance,

Fig 4. LDA of random sampling results. LDA classifying parameter sets according to the strategy with the highest efficacy score. Shaded areas

represent the density of the parameter sets colored according to which strategy wins. Each treatment strategy is represented by a different color, and the

opacity of each color is proportional to the number of parameter sets that fall into that corresponding region. 500,000 randomly sampled parameter sets

are used. LD1 and LD2 are the two principal axes of the LDA. The parameter vectors are given with their relative magnitudes and counterclockwise

angles. Parameter vectors are amplified by a factor of 3 in order to make them better visible. The most important parameters in terms of class separation

are q (rate of de novo emergence of double resistance), c1, c2, and c3 (fitness costs of resistance to drug 1, drug 2, and both drugs).

https://doi.org/10.1371/journal.pcbi.1005745.g004
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as seen in Fig 4, q and c3 have the biggest influence on the separation of COMBO versus MIX

and CYC, since the vectors of both parameters lie almost parallel to the horizontal axis.

Although both c1 and c2 have similar magnitudes, the fact that they are aligned on the vertical

rather than the horizontal axis indicates that they are more important for the separation of

MONO-1 versus MONO-2. Overall, Fig 4 shows that q and c3 are the most important parame-

ters separating the multi-drug therapies, whereas c1 and c2 are the most important parameters

separating the mono-drug therapies. LDA of random sampling results only for multi-drug

therapies is also provided in the supplementary material (S7 Fig).

We will investigate the role of these parameters in more detail below. But before doing so,

we first follow up another question, namely by which margin a strategy wins or loses compared

to the second best and second worst, respectively. These comparisons show how right or

wrong one can be by picking the best or the worst strategy over the next alternative. The results

are shown in Fig 5, where a random subsample of size 2000 of the RS results are used. Disks

are colored according to the winning strategy, and both the disk size and the transparency are

proportional to the efficacy score difference between the best (worst) and the second best

(worst) strategy. Fig 5A shows that the disks where COMBO wins (on the right hand side) are

much bigger than the disks where other therapies win (on the left hand side), meaning that

when combination therapy is the winning strategy, it wins by a large margin, whereas the

other strategies when best are only negligibly better than the second best. In contrast, Fig 5B

shows that no matter which therapy is the worst, the margin by which they fail compared to

the second worst strategy is similar for all strategies. This implies that in certain parameter

regions, COMBO can fail by a substantial margin. Whether this parameter region is biologi-

cally relevant or not is discussed further below. Marginal benefit comparisons between

COMBO and MIX, COMBO and CYC, and MIX and CYC are provided in S2 Fig. In conclu-

sion, the LDA results presented in Figs 4 and 5 show that the important parameters for deter-

mining the winning strategy are q, c1, c2, and c3.

Fig 5. Marginal benefit comparisons for random sampling results. Results for the marginal benefit comparisons where 2000 samples are used. Disks

are colored according to the winning strategy, and both the disk size and the transparency are proportional to the efficacy score difference between the

best (worst) and the second best (second worst) strategy. Transparency values are normalized for each panel separately. Three examples of disks are

provided with the values they represent on the right legend of each panel. LD1 and LD2 are the two principal axes of the LDA, and the most important

parameters in terms of class separation are q (Rate of de novo emergence of double resistance), c1, c2, and c3 (Fitness costs of resistance to drug 1, drug

2, and both drugs). (A) Comparison of the best vs. the second best strategy. Disks are colored according to the best strategy. (B) Comparison of the worst

vs. the second worst strategy. Disks are colored according to the worst strategy.

https://doi.org/10.1371/journal.pcbi.1005745.g005
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To assess the role of de novo emergence of resistance on the efficacy of COMBO relative to

other strategies, we show the influence of q (rate of de novo emergence of double resistance)

relative to the influence of ν (rate of de novo emergence of single resistance), and the fraction

of parameter sets for which combination therapy is the best or the worst strategy for a given q/

ν value. As can be seen in Fig 6A, COMBO is often the best and rarely the worst strategy as

long as q� ν. It fails increasingly as q/ν gets larger. Its performance begins to be poor when q/

ν is of order 0.1 or higher. In other words, only when the rate of de novo emergence of double

resistance (in response to combination of both drugs) is one tenth of that of the rate of de novo
emergence of single resistance (in response to treatment with single drug), does COMBO typi-

cally fail in our simulations. While we can not generally exclude the possibility that in some

cases q is in a similar order of magnitude as ν, we do not expect this to be a common scenario

[32].

The fitness costs of resistance mutations play a key role in the spread and maintenance of

resistance in pathogen populations [48], as confirmed by the magnitude of their effect revealed

by the LDA (Fig 4). We thus perform a similar analysis showing how the non-additivity of

resistance costs affects the success of combination therapy. Fig 6B shows the fraction of param-

eter sets for which combination therapy is the best or the worst strategy as a function c3 − (c1 +

c2), i.e., the excess cost of double resistance compared to the sum of the costs of single resis-

tance. As can be seen in Fig 6B, as the excess cost of double resistance becomes larger, i.e., as

the fitness cost c3 further exceeds the additive sum of c1 and c2, chances for combination ther-

apy to be the best strategy increase as well. If there is no excess cost, i.e., c3 = c1 + c2, COMBO

outperforms all other strategies for 62% of the parameter sets. Only when c3 is much less than

the sum of c1 and c2, does COMBO fail most of the time. Further analysis on how q, ν, c1, c2,

and c3 change given other treatment strategies win is provided in the supplementary material

(S8 Fig).

Although random sampling is an efficient way to analyse a large parameter space, it is in

general inadequate in detecting any minima or maxima in a complex, non-linear parameter

space. To find the parameter sets where combination therapy is the best or the worst strategy,

we employ Particle Swarm Optimization (PSO). More precisely, we utilize two different

Fig 6. Analysis of the important parameters. Analysis of the role of de novo emergence of resistance for RS results. (A) Semi logarithmic plot of fraction

of combination therapy being the best or the worst within all strategies vs. q/ν, (q: rate of de novo emergence of double resistance, ν: rate of de novo

emergence of single resistance) for 500,000 RS results. (B) Plot of fraction of combination therapy being the best or the worst within all strategies

vs. c3 − (c1 + c2) (c1,c2,c3: fitness costs of resistance to drug 1, drug 2, and both drugs), for 500,000 RS results.

https://doi.org/10.1371/journal.pcbi.1005745.g006
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optimization targets to identify two different parameter regions: (i) that for which the efficacy

score difference between combination therapy and the second best strategy is maximal (where

combination therapy is the best strategy); and (ii) that for which the efficacy score difference

between the second worst strategy and combination therapy is maximal (where combination

therapy is the worst strategy). These parameter sets are projected onto the LDA space defined

by the RS results. The results are shown in Fig 7A. Due to the noisy solution space, different

realizations of the PSO algorithm converge to different local extrema, resulting in multiple

solutions for both cases. As can be seen from the figure, the points where combination therapy

is the worst strategy tend to cluster at the left hand side of the LDA space, in the direction of

increasing q, and in the opposite direction of the c3 vector. Similarly, points where combina-

tion therapy is the best strategy tend to cluster at the right hand side of the LDA space, showing

opposite characteristics in terms of q and c3 values. To have a better understanding of the char-

acteristics of these clusters, we investigate the distributions of the most important parameters

q, c1, c2, and c3 within each cluster. These distributions are shown in Fig 7B. For both clusters,

we observe that the parameters tend to converge to their boundaries given in Table 2, in accor-

dance with what can be predicted from the LDA.

For all simulations used throughout our analysis, simulation duration (T) is set to 360 days.

However, the time required for all populations to converge to an equilibrium (or oscillate with

a certain magnitude in case of CYC) depends on the parameter set that is randomly drawn.

Although in most of our simulations populations converge within the course of 360 days, there

are also cases where we observe a very slow increase in the number of resistant patients. This

raises the question whether the performance of the treatment strategies would alter if the simu-

lation duration is lengthened. Testing this, we find that the relative efficacies of the treatment

Fig 7. PSO results. PSO results, where 1000 realizations of the PSO algorithm are used for each optimization target. (A) PSO results projected on the

same LDA space as the RS results. (B) Histograms of the most important parameters for each optimization target.

https://doi.org/10.1371/journal.pcbi.1005745.g007
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strategies stay very similar over a broad range of simulation durations. We observe a slight

decrease for COMBO (from * 59% for 6 months to * 53% for 120 months) and MIX

(from * 24% for 6 months to * 22% for 120 months), and observe a slight increase for

MONO-1 and MONO-2 (from * 8% for 6 months to * 11% for 120 months), whereas we

observe almost no change for CYC. Therefore we conclude that the simulation duration does

not have a significant effect on the choice of optimal treatment strategy.

Two recent theoretical studies have shown that mixing or cycling strategies can be consider-

ably improved if information on the prevalence of resistance is taken into account [34, 41].

While we believe that empiric treatment in the absence of such information remains a clinical

reality, one may argue that we are comparing COMBO here with strategies that are known to

have considerable potential to be improved when information regarding resistance is taken

into account. Following these studies [34, 41] we implemented a further strategy, referred to as

REACT, which switches the drug depending on the resistance prevalence in the hospital ward,

i.e., assigns drug 1 when R2 > R1, and vice versa. Similarly, 500,000 parameter sets are sampled

randomly according to the parameter boundaries and sampling schemes given in Table 2. For

each parameter set, efficacy scores are calculated for the six treatment strategies, including

REACT, and the winning strategy for that particular parameter set is determined. S4 Fig shows

the probability that a given strategy is the winning strategy based on all simulation results. As

seen from the figure, only the relative efficacy of MIX is highly affected by the introduction of

REACT, whereas relative efficacy of COMBO stays almost the same. In agreement with the

earlier results [34, 41], our results confirm that an adaptive strategy which takes resistance

prevalence into account does perform better than MIX and CYC. On the other hand, COMBO

is still the optimal strategy when REACT is introduced. This implies that the strategies under

consideration (MIX, CYC, MONO-1, and MONO-2) does not give COMBO an unfair advan-

tage in terms of relative efficacy.

Discussion

When all strategies including monotherapy are compared, COMBO is the best strategy in 57%

of the simulations performed with randomly drawn parameter sets (Fig 3). In the parameter

region where it is beneficial to treat a patient with more than one drug, COMBO outperforms

CYC and MIX and is the best strategy 70% of the time. Furthermore, by comparing the best

with the second best strategy, we find that when COMBO is the best, it tends to outperform

the second best strategy by a much larger margin than when another strategy is the best

(Fig 5A). However, there are also parameter regions where COMBO is the worst strategy,

and in these regions COMBO tends to be considerably worse than the second worst strategy

(Fig 5B). We also find that MIX tends to outperform CYC (S2 Fig). We assumed a fixed cycling

period of 30 days. The cycling period influences the performance of CYC. For very low cycling

periods, CYC behaves like mono-drug therapy, and for very high cycling periods, it converges

to MIX [33].

The LDA of simulations with randomly drawn parameters reveals that the rate of de novo
emergence of double resistance (q) and the costs of resistance mutations (c1, c2, c3) are the

most important parameters determining which strategy wins (Fig 4). Parameter regions where

COMBO fails are characterised by very high values of q/ν or very low excess cost of double

resistance (c3 − (c1 + c2)� 0), which both seem biologically less plausible. In particular, the

rate of de novo emergence of double resistance, q, in response to combination therapy has to

be at least one tenth of the rate of de novo emergence of single resistance, ν (Fig 6A). Similarly,

the excess cost of double resistance has to be very small, meaning that the sum of the fitness

costs of single resistant strains has to be much higher than the fitness cost of the double
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resistant strain (Fig 6B). Although c3 can be decreased to some extent via compensatory muta-

tions [49], the excess cost of double resistance (c3 − (c1 + c2)) must be very small (* −0.4) for

COMBO to fail.

Our analysis thus suggests that overall COMBO tends to outperform all other strategies in

the parameter regions that are considered to be biologically more realistic. Biologically less

plausible parameter combinations appear in the analysis since we sample parameter values

independently from each other. In reality, we expect many parameters to be coupled. For

example, both the recovery rate due to appropriate drug treatment and the rate of de novo
emergence depend on the drug dose and are hence linked. Moreover, the rate of de novo emer-

gence of single and double resistance may in many cases be coupled. While this is a limitation

of our approach, it permits us to observe the hypothetical conditions for different outcomes.

LDA has certain caveats. For example, it fails if the discriminatory information is not repre-

sented by the mean but the variance of the data. Furthermore, if the distributions are signifi-

cantly non-Gaussian, projections may not preserve the complex structure in the data needed

for classification. However, it is known that LDA frequently performs well even when the

assumptions of independence and normality are violated [44]. For our problem, although the

assumptions of LDA are not fully satisfied, it is evident from Fig 4 that there is a clear separa-

tion of classes.

Since the random sampling of the parameter space could have missed areas where combi-

nation therapy fails or succeeds maximally, we used PSO as an optimization strategy to actively

search for these particular parameter combinations. The parameter combinations identified by

PSO, where COMBO performs best, align well with those found by random sampling (Figs 4

and 7B). Moreover, the regions where COMBO fails or succeeds are at the horizontally oppos-

ing ends of the LDA projection. This implies that the random sampling results do not appear

to miss relevant parameter regions where COMBO fails or succeeds. Moreover, it highlights

that the most relevant parameters separating failure and success are indeed the rate of de novo
emergence of double resistance (q) and the cost of double resistance (c3). Investigating the

PSO results in more detail we see that the important parameters revealed by LDA (q, c1, c2, and

c3) tend to take their boundary values for COMBO to fail or succeed maximally (Fig 7A). The

negative effect of high values of q on the relative performance of COMBO was also emphasized

previously [32], but was not analysed quantitatively. Although LDA of the random sampling

results aligns well with these outcomes, random sampling alone is not necessarily sufficient to

determine what parameter values maximize or minimize the success of COMBO. Overall, the

congruence of the LDA and the PSO results suggests that the effect of these key parameters are

more linear than might have been expected.

Interestingly, we find that the rate of de novo emergence of double resistance, q, has a strong

influence, but the fraction of newly admitted patients carrying double resistance,m3, has a

weak influence on the relative performance of COMBO. The reason for this differential effect

is that the process of de novo emergence of double resistance only occurs when both drugs are

used in combination, whereas the process of admission of double resistance affects all treat-

ment strategies. In other words for largem3, all strategies fail, whereas for large q, only

COMBO fails. By allowing de novo emergence of double resistance only for COMBO, we bias

the model in disfavor of COMBO. In reality, also treatment with a single drug is expected to

select for the de novo emergence of double resistance.

In order to compare mono- with multi-drug treatment strategies it is necessary to make

assumptions about treatment efficacy, drug interactions, side-effects and cross-resistance. In

our model we assume, that a strain resistant to drug 1 is equally susceptible to treatment with

drug 2 as to treatment with the combination of drug 1 and 2. This is reasonable if we assume

(i) that COMBO combines both drugs at the same concentrations as they are used individually
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and (ii) that there are no drug interactions. We also assume, that there is no benefit of adding a

second drug in terms of increasing clearance of the infection. This assumption is conservative

by disfavoring COMBO. Finally we assume that the side-effects of all treatment strategies are

negligible. While the specific assumptions made are open for discussion, we believe that they

are reasonable for a meaningful comparison of mono- versus multi-drug treatment strategies.

By combining earlier models of Bonhoeffer et al. (1997) [32] and Bergstrom et al. (2004)

[33] our model incorporates a broad range of relevant biological aspects and processes such as

de novo emergence of resistance within the focal population, influx of resistance from outside,

single and double resistance, mono- and multi-drug treatment, superinfection and more. Nev-

ertheless, there are further relevant processes that should be considered in future work. For

example, on the within-host level, pharmacokinetic and pharmacodynamic effects of the drugs

could lead to periods of monotherapy, which are not taken into account in our model. Simi-

larly, penetration profiles of the drugs are not included in the model. Imperfect penetration

could increase the chance of treatment failure by creating regions where only one drug from a

combination reaches a therapeutic concentration, which results effectively in spatial mono-

therapy [50]. Also, our model does not consider within-host dynamics of pathogen replication

in any greater detail beyond the rates of strain replacement by de novo emergence of superin-

fection. Finally, the model makes simplifying assumptions regarding switching of drugs in

treated patients. In more realistic models that specify the rules governing the behaviour of

individuals, a patient would remain on the same drug regimen over the entire course of the

infection (Uecker and Bonhoeffer, submitted).

Since the eventual goal of treatment is to save as many patient lives as possible, our optimal-

ity criterion is based on reducing the overall prevalence of disease. This is a sensible criterion

not only with regard to the clinical goals of treatment, but also because it inherently trades off

the benefit of using antibiotics with the cost of generating resistance [51]. Optimality criteria

that are based solely on the rate of emergence or prevalence of resistance are often used in the

literature, but suffer from the fact that the trivial solution—not treating any patient—achieves

a maximal score. Our optimality criterion is easily implemented in the context of modeling

studies, but the number of infected individuals may be harder to track in a clinical trial. How-

ever, we argue that to compare different treatment strategies in a clinical setting, it will also be

necessary to use measures that reflect both the positive effects of treatment (e.g. reduced dis-

ease prevalence) as well as the negative ones (e.g. increased emergence of resistance).

The analysis of our model over a wide parameter range suggests that with regard to emer-

gence and spread of resistance combination therapy tends to outperform other treatment strat-

egies. Why, then, is the clinical evidence in support of combination therapy not clearer? This

may have multiple reasons. First, while our analysis suggests that combination therapy tends

to outperform the other strategies, is does not do this for all of the parameter space. We cannot

exclude that the relevant parameter space is different from the one studied here, but we have

argued above that the parameter region where combination therapy tends to fail seems not to

be the biologically most plausible one.

Second, there may be important biological factors missing in our model, which could fun-

damentally alter the outcome. One such factor may be the acquisition of resistance genes via

horizontal gene transfer. A full consideration of horizontal gene transfer would require the

inclusion of explicit equations for plasmids as well as the commensal bacterial population. The

probability of acquiring double compared to single resistance via horizontal gene transfer is

likely not the product of the individual probabilities of single resistance as would be expected

for resistance acquired through spontaneous chromosomal mutations. This is in part the rea-

son why we chose to have independent rates of de novo resistance of single and double resis-

tance in our model. However, there may be yet other factors that could be relevant, and
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identifying biological factors that would fundamentally change the picture regarding optimal

treatment strategies would represent an important contribution to the field.

Finally, the discrepancy between the model favoring combination therapy and clinical prac-

tice by enlarge favoring monotherapies, may also be due to the lack of appropriate data. Most

clinical studies comparing combination therapy to monotherapy use mortality as clinical end-

point and show either some advantage or non-inferiority [13–21] (see also Introduction).

However, the effect of these therapies on the emergence of resistance is by nature a much

more long term outcome, considerably harder to assess, and the evidence both for or against

combination therapy thus comparably weak. Mathematical models are thus an important tool

to address this knowledge gap and suggest that combination therapy deserves serious consider-

ation as a strategy to delay the emergence of resistance.
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Supporting information

S1 Table. Statistics on efficacy scores for multi-drug therapies. Probability of being the

worst and the best strategy is provided with the minimum, maximum, and mean efficacy score

for each multi-drug therapy. For the chosen parameter range COMBO has a lower average

score than MIX or CYC. Moreover, it has not only the highest probability to be the best strat-

egy, but also the highest probability to be the worst strategy. Note, however, that COMBO

tends to outperform the other strategies in regions that are considered to be more realistic and

tends to lose in regions that are considered less realistic (see S1 Fig; see also the Discussion sec-

tion in the main text and Fig 5).

(EPS)

S1 Fig. Correlation of efficacy scores. Correlation of efficacy scores for different pairs of strat-

egies, where all (500,000) random sampling results are used. The correlation coefficient is

given in the upper left corner of each panel. Points below and above x = y line are colored dif-

ferently, and the number of points of each color is given in the lower right legend. Correlation

of efficacy scores: (A) Best against worst strategy, (B) CYC against MIX, (C) CYC against

COMBO, (D) MIX against COMBO. The high correlation between efficacy scores implies that

choice of parameters has a much stronger influence on determining scores than the chosen

treatment strategy. Example simulations for small and large differences between the efficacy

scores of the treatment strategies are found in S3 Fig.

(EPS)

S2 Fig. Marginal benefit comparisons for different pairs of multi-drug strategies. Disks are

colored according to the better strategy, and both the disk size and the transparency are pro-

portional to the efficacy score difference between the strategies in comparison. LD1 and LD2

are the two principal axes of the LDA. 2000 random samples are used for each panel. (A) Com-

parison between CYC and COMBO. (B) Comparison between CYC and MIX. (C) Compari-

son between MIX and COMBO.

(EPS)

S3 Fig. Time behaviour of the patient populations for a given parameter set, under MIX,

CYC, COMBO, MONO-1 and MONO-2. Applied therapy and its efficacy score is given in

the title of each subfigure. (A) The parameter set is chosen such that there is a negligible differ-

ence between the efficacy scores of strategies, aiming to demonstrate a case where there is no

clear winning or losing strategy. (B) The parameter set is chosen such that there is a substantial
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difference between the efficacy scores of strategies, aiming to demonstrate a case where there is

a clear winning strategy.

(EPS)

S4 Fig. Chance of being the best strategy, where additionally reactive cycling (REACT) is

implemented. 500,000 randomly sampled parameter sets are used. For each parameter set,

efficacy scores are calculated for the six treatment strategies, and the winning strategy for that

particular parameter set is determined. Based on these results, the probability of being the best

strategy for each treatment is calculated.

(EPS)

S5 Fig. Histograms of the fraction of different patient groups at the treatment-free steady

state. Histogram of the fraction of different patient groups at the treatment-free steady state

given (A) MIX, (B) CYC, (C) COMBO, (D) MONO-1, and (E) MONO-2 wins. (F) Uncondi-

tional histogram of the fraction of different patient groups at the treatment-free steady state.

(EPS)

S6 Fig. Chance of being the best strategy according to the random sampling results for ran-

domly drawn initial conditions. 500,000 randomly sampled parameter sets are used, and the

initial conditions for the fraction different patient groups (S(0), R1(0), R2(0), R3(0), and X(0))

are randomly drawn from Uð0; 1Þ under the constraint S(0) + R1(0) + R2(0) + R3(0) + X(0) = 1.

For each parameter set, efficacy scores are calculated for the five treatment strategies, and the

winning strategy for that particular parameter set is determined. Based on these results, the

probability of being the best strategy for each treatment is calculated.

(EPS)

S7 Fig. LDA of random sampling results for multi-drug therapies. LDA classifying parame-

ter sets according to the strategy with the highest efficacy score, when efficacy scores are calcu-

lated only for MIX, CYC, and COMBO. Shaded areas represent the density of the parameter

sets colored according to which strategy wins. Each treatment strategy is represented by a dif-

ferent color, and the opacity of each color is proportional to the number of parameter sets that

fall into that corresponding region. 500,000 randomly sampled parameter sets are used. LD1

and LD2 are the two principal axes of the LDA. The parameter vectors are given with their rel-

ative magnitudes and counterclockwise angles. Parameter vectors are amplified by a factor of 3

in order to make them better visible.

(EPS)

S8 Fig. Histograms of the important parameters given a treatment strategy wins. 500,000

randomly sampled parameter sets are used, and histograms for the important parameters q, ν,
c1, c2, and c3 are calculated given a certain treatment strategy wins. The lines in each panel are

colored according to the winning strategy. For each parameter, 10 equally spaced values

between its corresponding boundaries are used for binning. Histograms are shown as lines for

better visibility. Histogram of (A) log(q), (B) log(ν), (C) c1, (D) c2, and (E) c3, given a certain

treatment strategy wins.

(EPS)
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