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1 Introduction

In relativistic quantum field theory, the states of the quantum fields are defined on Cauchy

surfaces, which one usually takes to be spacelike hyperplanes. A Lorentz observer is char-

acterized by the family of hyperplanes containing events simultaneous to the observer at

the “same” time, which are parallel to the simultaneity hyperplane at a fixed given time,

x0 = 0, say. The dynamical evolution determines how the physical state changes as one

moves from one spacelike hyperplane to the next. This is the “instant form” of the dynam-

ics in the language of [1]. The Poincaré transformations preserving the foliation slice by

slice are the kinematical transformations (spatial translations and spatial rotations), while

the other Poincaré generators are dynamical (and called the “Hamiltonians” in [1]).

In the presence of gravitation, foliations by spacelike hyperplanes are not available. In

the asymptotically flat case, however, this structure appears at infinity [2], a fact made

particularly clear in the Hamiltonian formulation of general relativity [3–5]. The Poincaré

group structure in Dirac’s “instant form” was exhibited in the pioneering paper [6], where
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precise boundary conditions at spatial infinity were given and shown to yield the Poincaré

algebra as asymptotic symmetry algebra.

The asymptotic structure at null infinity was studied in [7–12] and shown to be in-

variant under an infinite dimensional algebra now called the “BMS” algebra (for a recent

review, see [13, 14]). The enlargement of this algebra by “super-rotations” was more re-

cently performed in [15–24] where the Lorentz algebra is extended to the conformal algebra

in 2 dimensions while even bigger enlargements where also proposed in [25–28]. The re-

markable potential physical implications of the BMS algebra both for the infrared structure

of gravity [29–38] and for black hole physics [39–45] have attracted considerable interest in

the last years [46].

It is implicit in this exciting work that the BMS algebra is realized in the quantum

theory in terms of charges acting in the Hilbert space of states of the theory. These charges

should have an expression at spatial infinity in the ADM formulation of the evolution based

on foliations that become asymptotically parallel hyperplanes, corresponding to inertial

observers at infinity. However, the boundary conditions adopted in [6] at spatial infinity

to make the angular momentum finite also make all BMS charges identically vanishing.

Technically, as shown in [6], this is a consequence of the so-called parity conditions imposed

on the leading order of the metric and its conjugate momentum as one recedes to spatial

infinity. In order to resolve this tension between the asymptotic structure at spatial infinity

and the BMS algebra emerging at null infinity, one must adopt boundary conditions at

spatial infinity different from those of [6].

One cannot just drop the standard parity conditions, since the symplectic structure,

the angular momentum and the “boost charges” generically diverge logarithmically without

them [47]. One must therefore find alternative conditions that preserve finiteness and, at

the same time, leave room for a well-defined and non trivial action of the BMS algebra.

We propose in this paper new boundary conditions at spatial infinity that fulfill this

purpose. These boundary conditions (i) are invariant under the BMS algebra, (ii) make

the symplectic form finite, (iii) contain the Schwarzchild solution, the Kerr solution and

their Poincaré transforms, and (iv) make the Hamiltonian generators of the asymptotic

symmetries integrable, well-defined (finite) and generically non-zero.

The new consistent boundary conditions given here involve parity conditions of a dif-

ferent type than those of [6]. The existence of alternative parity conditions making the

symplectic structure finite was observed in the insightful work [48], but their full consis-

tency was not studied. The work [48] went indeed in a somewhat orthogonal direction since

it was concerned with relaxing the parity conditions altogether and dealing with the en-

suing divergences through holographic renormalisation. Nevertherless, the analysis of [48]

and the subsequent developments of [49] on the structure of its asymptotic symmetry, were

important for arriving at the new boundary conditions proposed in this paper.

Our work is organized as follows. In section 2, we recall some classic background

information on the ADM Hamiltonian treatment of asymptotically flat spacetimes with

the parity conditions of [6]. This is necessary to motivate and derive our results. We

formulate the asymptotic conditions both in asymptotically cartesian and asymptotically

spherical coordinates, as it turns out that the new boundary conditions are most conve-
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niently expressed in asymptotically spherical coordinates. Next, in section 3, we give the

explicit form of the new boundary conditions and verify that they consistently contain the

Schwarzschild solution, the Kerr solution, and their Poincaré transforms. We also work

out the form of the asymptotic symmetries. In section 4, we prove that the Hamiltonian

generators of the asymptotic symmetries are integrable and finite. We also point out that

the charges associated with supertranslations need not vanish. Section 5 is devoted to

showing that the Hamiltonian generators of the asymptotic symmetries close according

to the BMS algebra. Finally, section 6 summarizes our results and comments on various

possible directions for extending them. Three technical appendices complete our paper.

We focus here on vacuum gravity. Furthermore, our analysis is carried out in the

Hamiltonian formalism of [3–5] throughout. The boundary conditions are expressed on the

canonical variables “(q, p)” at any given time. The action to be used in the path integral is∫
(pq̇−H)dt where q(t) and p(t) fulfill at all t’s the boundary conditions given in this paper

but are not assumed to obey the equations of motion. There are also Lagrange multipliers

in the action, which must define asymptotic symmetries, i.e., define transformations that

preserve the boundary conditions.

2 Background

2.1 Fall-off at spatial infinity — RT parity conditions

Our starting point are the standard Hamiltonian boundary conditions for asymptotically

flat spacetimes, given on spatial slices that asymptote hyperplanes equipped with asymp-

totically cartesian coordinates xi = (x, y, z) at spatial infinity (r →∞ with r2 = xixi). On

any such hypersurface, the spatial metric gij and its conjugate momentum πij behave as

gij = δij +
1

r
hij +

1

r2
h
(2)
ij + o(r−2), (2.1)

πij =
1

r2
πij +

1

r3
π(2)ij + o(r−3) . (2.2)

Indices are lowered and raised with the background flat metric δij and its inverse. The

coefficients in both expansions are functions on the unit sphere. We adopt the general

convention that barred quantities, such as hij or πij are functions on the unit sphere and

so are O(1). The boundary conditions include the Schwarzschild and Kerr metrics.

Under a deformation of the constant time hypersurface parametrized by (ξ⊥ ≡ ξ, ξi),

the canonical variables transform as [3, 5]

δgij = 2ξg−
1
2

(
πij −

1

2
gijπ

)
+ Lξgij , (2.3)

δπij = −ξg
1
2

(
Rij − 1

2
gijR

)
+

1

2
ξg−

1
2

(
πmnπ

mn − 1

2
π2
)

− 2ξg−
1
2

(
πimπm

j − 1

2
πijπ

)
+ g

1
2

(
ξ|ij − gijξ|m|m

)
+ Lξπij , (2.4)

– 3 –



J
H
E
P
0
3
(
2
0
1
8
)
1
4
7

where Lξgij and Lξπij are respectively the Lie derivatives of gij and πij along the vector

field ξi,

Lξgij = ξi|j + ξj|i , (2.5)

Lξπij =
(
πijξm

)
|m − ξ

i
|mπ

mj − ξj |mπim . (2.6)

These boundary conditions are invariant under hypersurface deformations (ξ⊥ ≡ ξ, ξi)
that behave asymptotically as [6]

ξ = bix
i + a(n) +O

(
r−1
)
, (2.7)

ξi = bijx
j + ai(n) +O

(
r−1
)
, (2.8)

where bi and bij = −bji are arbitrary constants while a(n) and ai(n) are arbitrary functions

on the unit sphere (ni = xi

r ). The constants bi parametrize the Lorentz boosts (the

corresponding term −bix0 in ξi can be absorbed in ai at any given time), whereas the

antisymmetric constants bij = −bji parametrize the spatial rotations. The zero modes a0
and ai0 of a and ai are standard translations. General functions a and ai describe “angle-

dependent” translations. The boundary conditions (2.1) and (2.2) are therefore invariant

under an asymptotic algebra that has the Poincaré algebra as a subalgebra. We note that

with (2.1) and (2.2), the constraints have the following fall-off,

H = O(r−3), Hi = O(r−3) (2.9)

(in asymptotically Cartesian coordinates).

In addition to containing the Schwarzschild and Kerr solutions and being invariant

under (at least) the Poincaré transformations, consistent boundary conditions should fulfill

two addition requirements:

• The surface integrals yielding the charges associated with the asymptotic symmetries

should be finite and “integrable”. By “integrable”, one means that the variation of

the surface charge, which is a one-form in field space obtained from the bulk generator

through integration by parts [6], is exact.

• The kinetic term “pq̇”, i.e.,
∫
d3xπij ġij , should be finite, i.e., the symplectic structure

should be well-defined.

The general boundary conditions (2.1) and (2.2) fail on both accounts. For that reason,

they must be strengthened, but in way that does not eliminate the Schwarzschild or Kerr

solutions and keeps the Poincaré transformations among the asymptotic symmetries.

The parity conditions given in [6] fulfill all the consistency requirements. These parity

conditions are extra conditions on the leading terms in the expansion (2.1) and (2.2),

which are requested to fulfill definite parity properties under the antipodal map xk → −xk.
Explicitly:

hij(−nk) = hij(n
k), πij(−nk) = −πij(nk) . (2.10)

These parity conditions are obeyed by the Schwarzchild and Kerr solutions. They are

invariant under the transformations (2.7) and (2.8) provided a − a0 and ai − ai0 are odd

– 4 –



J
H
E
P
0
3
(
2
0
1
8
)
1
4
7

functions of ni, and thus are in particular invariant under the Poincaré algebra. They play

a central role in the mathematical work [50–52].

The parity conditions of [6] make the kinetic term finite since the coefficient of the

leading logarithmic singularity in∫
d3xπij ḣij =

∫
dr

r

∫
sin θdθdϕπij ḣij + · · · (2.11)

actually vanishes. Indeed, the term πij ḣij is an odd function on the sphere, so that its

integral over the sphere is zero. The remaining terms in (2.11), denoted by dots, are

finite since their integrands decrease strictly faster than r−1. The parity conditions also

render the Poincaré charges finite and integrable [6]. However, the charges associated with

the remaining angle-dependent translations are then found to be identically zero (except

the spacetime momentum associated with the zero modes), so that the actual asymptotic

symmetry algebra, obtained by taking the quotient of all the asymptotic symmetries by the

pure gauge ones — i.e., the ones with zero charges [53] —, is the finite-dimensional Poincaré

algebra. There is no room for the full BMS algebra with the parity conditions of [6].

2.2 Spherical coordinates

Boundary conditions. It turns out that an alternative strenghtening of the bound-

ary conditions exists, which is also consistent, but which admits the full BMS algebra as

asymptotic symmetry algebra. These boundary conditions are based on different parity

conditions and do not eliminate solutions with non-vanishing BMS charges.

To describe this alternative strenghtening of the boundary conditions, it is convenient

to use spherical coordinates (r, xA) where xA are coordinates on the sphere. In these

coordinates, the asymptotic conditions (2.1) and (2.2) read

grr = 1 +
1

r
hrr +

1

r2
h(2)rr + o(r−2), (2.12)

grA =
1

r
h
(2)
rA + o(r−1), (2.13)

gAB = r2γAB + rhAB + h
(2)
AB + o(1), (2.14)

πrr = πrr +
1

r
π(2)rr + o(r−1), (2.15)

πrA =
1

r
πrA +

1

r2
π(2)rA + o(r−2), (2.16)

πAB =
1

r2
πAB +

1

r3
π(2)AB + o(r−3), (2.17)

where γAB is the unit metric on the sphere. There can in fact be O(1)-terms hrA in the

metric coefficients grA in (2.13), but we have assumed them to vanish. The leading terms

in grA can indeed always be set to zero by a change of coordinates of the form

r′ = r + o(r0), x′
A

= xA +
1

r
X̃A(xB) + o(r−1). (2.18)

The Schwarzchild and Kerr solutions fulfill the condition (2.13), which is preserved under

Poincaré transformations (see below). It is only under this condition that we shall develop
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the formalism. Difficulties with integrability of the charges arise when the O(1)-terms hrA
in the metric coefficient grA do not vanish, but we have not investigated them here since

these terms do not appear to carry physical information, at least for the known solutions.

A similar stronger-than-expected fall-off of the mixed radial-angular components of the

metric was imposed for asymptotically anti-de Sitter spacetimes in [54], or in the hyperbolic

description of [48].

It is convenient for later purposes to trade the variable grr for λ ≡ 1√
grr

, the asymptotic

expansion of which is

λ = 1 +
1

r
λ+

1

r2
λ(2) + o(r−2), (2.19)

with

λ =
1

2
hrr. (2.20)

Similarly, we introduce

k
A
B =

1

2
h
A
B + λδAB , k = k

AB
γAB . (2.21)

The functions kAB on the sphere have the following geometrical meaning. Let KAB be the

extrinsic curvature of the 2-spheres r = constant. If one expands KA
B asymptotically, one

gets (see appendix A)

KA
B = −1

r
δAB +

1

r2
k
A
B +

1

r3
k(2)

A

B + o(r−3), (2.22)

i.e., k
A
B is the coefficient of the leading perturbation to KA

B from its background value −1
r δ
A
B.

Asymptotic symmetries. In polar coordinates, the transformations that preserve the

above boundary conditions have the following behaviour at infinity:

ξ = rb+ f +O(r−1), ξr = W +O(r−1), ξA = Y A +
1

r
IA +O(r−2), (2.23)

DADBb+ γABb = 0, LY γAB = 0, (2.24)

where IA is given in terms of b and W as

IA =
2b√
γ
πrA +D

A
W. (2.25)

Here, b, f,W, Y A and IA are functions and vector fields defined on the sphere, and DA is

the covariant derivative associated with the unit metric γAB on the sphere.

A few comments are in order:

• The function b describes the Lorentz boosts. Explicitly, in terms of the cartesian

parameters bi, one has

b = b1 sin θ cosϕ+ b2 sin θ sinϕ+ b3 cos θ, (2.26)

which is the general solution of DADBb+ γABb = 0.
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• The vectors Y A describe the spatial rotations and are the standard Killing vectors

on the sphere,

Y =m1

(
−sinϕ

∂

∂θ
− cosθ

sinθ
cosϕ

∂

∂ϕ

)
+m2

(
cosϕ

∂

∂θ
− cosθ

sinθ
sinϕ

∂

∂ϕ

)
+m3 ∂

∂ϕ
. (2.27)

• f contains the time translation through its zero mode f0 (f ≡ a in the above para-

metrization); the other modes define transformations outside the Poincaré algebra.

• W contains the spatial translations. In an expansion in terms of spherical harmonics

Y `
m, the translations are the spin-1 part, WP =

∑1
m=−1 P

mY 1
m(xA). One has

∂

∂x
= sin θ cosϕ

∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− 1

r

sinϕ

sin θ

∂

∂ϕ
, (2.28)

∂

∂y
= sin θ sinϕ

∂

∂r
+

1

r
cos θ sinϕ

∂

∂θ
+

1

r

cosϕ

sin θ

∂

∂ϕ
, (2.29)

∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
(2.30)

and one easily sees that the corresponding vectors IAP on the unit sphere fulfill

IAP = D
A
WP . Furthermore, D

A
IBP +D

B
IAP + 2WPγ

AB = 0.

• The equation IA = 2b√
γ
πrA + D

A
W follows from the preservation of the condition

hrA = 0 on the leading order of grA. As we have seen, it is fulfilled by the spatial

translation Killing vectors of the flat metric, which has indeed grA = 0 (to all orders).

Standard parity conditions. In polar coordinates, the parity conditions of [6] read, in

terms of coordinates on the unit sphere for which the antipodal map is xA → −xA,

hrr ∼ πrA ∼ hAB = even, πrr ∼ πAB = odd. (R-T) (2.31)

This implies

λ ∼ kAB = even. (R-T) (2.32)

In terms of the traditional coordinates (θ, ϕ) for which the antipodal map is θ → π − θ,
ϕ→ ϕ+ π, this is equivalent to

hrr ∼ πrθ ∼ πθϕ ∼ hθθ ∼ hϕϕ = even, (R-T) (2.33)

πrr ∼ πrϕ ∼ πθθ ∼ πϕϕ ∼ hθϕ = odd. (R-T) (2.34)

The leading divergence in the kinetic term reads∫
dr

r

∫
dθdϕ

(
πrrḣrr + πABḣAB

)
(2.35)

and vanishes with the R-T parity conditions. The surfaces charges are also finite [6]. The

transformations that preserve the R-T boundary conditions are

f − f0 = odd, W −WP = even. (R-T) (2.36)

It is because the arbitrary functions occuring in f and W (f−f0 and W−WP , respectively)

have parity opposite to that of the translations that they have identically vanishing surface

charges and that there is no room for the BMS symmetry with the parity conditions of [6].
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3 New boundary conditions

3.1 Explicit form

As we have annouced, there is a different way to achieve finiteness of both the kinetic

term and of the surface charges, without making the BMS charges identically zero. This

alternative way involves as a key ingredient the imposition of different parity conditions,

preserved under surface deformations for which f and f0 have same (even) parity, as well

as W and WP , which are both odd. These alternative boundary conditions are of mixed

type, in the sense that spherical and radial projections of the metric have different parities.

To formulate the new conditions in a simple way, we make the change of variables

adapted to the description of the extrinsic geometry of the spheres r = constant. That is,

we make the change of variables hrr, hAB → λ, kAB, extended to the conjugate momenta

so as to preserve the kinetic term,∫
dθdϕ

(
πrrḣrr + πABḣAB

)
=

∫
dθdϕ

(
pλ̇+ πAB(k) k̇AB

)
. (3.1)

One finds

λ =
1

2
hrr, kAB =

1

2
hAB + λγAB, (3.2)

p = 2
(
πrr − πAA

)
, πAB(k) = 2πAB . (3.3)

The set of parity conditions on the boundary values proposed in this paper are

λ ∼ πAB = even, p ∼ kAB ∼ πrA = odd, (3.4)

or in terms of (θ, ϕ)-components

λ ∼ πrϕ ∼ πθθ ∼ πϕϕ ∼ kθϕ = even, (3.5)

p ∼ πrθ ∼ πθϕ ∼ kθθ ∼ kϕϕ = odd. (3.6)

Because the variables (λ, p) and (kAB, 2π
AB) in each conjugate pair have opposite parities,

the coefficient (3.1) of the divergent piece in the kinetic term vanishes. The parity of πrA

does not matter in this argument since hrA = 0.

The Schwarschild solution obeys the new parity conditions provided one redefines the

radial coordinate r, r → r′ = r(1− m
r ), which has the effect of making kAB = 0 (and thus

odd). The Kerr solution also obeys these parity conditions after the same radial coordinate

transformation is made, because the term πrϕ related to the rotations is subleading: its

O(r−1) piece πrϕ vanishes and obeys thus trivially both the R-T parity condition (even)

or the new ones (odd). The Taub-NUT solution [55], however, has a non-vanishing πrϕ

which may be taken to be even and to obey therefore the R-T parity conditions [56]. It

is excluded by the new boundary conditions. This does not mean that one cannot handle

the Taub-NUT solution, but rather that it corresponds to a different sector that has to be

treated separately. With the new boundary conditions, the Taub-NUT solution cannot be

regarded as a standard asymptotically flat solution as in [56] — something in any case in

line with the fact that it has a different topology.
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3.2 Constraints

The new parity conditions do insure finiteness of the symplectic form but do not insure by

themselves cancelation of the divergent pieces in the boost charges and angular momentum,

contrary to the parity conditions of [6]. Therefore, they must be supplemented by further

asymptotic restrictions in order to achieve finiteness of the charges. These extra conditions

are extremely mild.

With the boundary conditions (2.12)–(2.17), the constraints have the fall-off (2.9), or,

in spherical coordinates, H = O(r−1), Hr = O(r−1), HA = O(1). The strengthening of

the boundary conditions is simply that the leading divergences in the constraints should

be absent, i.e., one must impose

H = o(r−1) , Hr = o(r−1) , HA = o(1) . (3.7)

Because the constraints transform among themselves under surface deformations, these

extra conditions are consistent. Furthermore, they are very mild as announced, since they

of course hold on-shell and hence do not remove any solution.

To recapitulate, the complete set of new boundary conditions proposed in this paper

is (2.12)–(2.17) with (3.4) and (3.7).

3.3 Preservation under surface deformations

The new boundary conditions are invariant under the surface deformations (2.23), (2.24)

and (2.25) provided the functions f and W on the sphere fulfill the following conditions:

• The function f has the form

f = −3bλ− 1

2
bh+ T ≡ −bλ− bk + T , (3.8)

where T is an arbitrary even function on the sphere,

T = even. (3.9)

• The function W is an arbitrary odd function on the sphere,

W = odd. (3.10)

The transformations that preserve the boundary conditions contain therefore the Poincaré

transformations. There are in addition arbitrary angle-dependent translations, but now

these have the same parity as the ordinary translations. We shall show in section 4 below

that the corresponding charges are all integrable and finite.

The term −bλ− bk must be included in f to cancel terms with incorrect parity in the

variation of the canonical variables. For instance, δξπ
rA reads

δξπ
rA = LY πrA +

√
γ
(
DB(bk

BA
)− bDA

k −DA
(λb)−DA

f
)
. (3.11)

– 9 –
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The term −DA
(λb) is odd, rather than being even to conform with the parity of πrA, and

must therefore be cancelled by −DA
f . Together with the requirement of integrability of

the charges discussed below, this forces f to be given by (3.8).

Under a transformation generated by the gauge parameters (2.23) and (2.24) with

f = T − bk − bλ and IA given by (2.25), the components of the metric have the following

behaviour

δξkAB = LY kAB +DADBW +WγAB

+
b√
γ

(πAB − γABπ) +
1√
γ
DA(bπrCγCB) +

1√
γ
DB(bπrCγCA), (3.12)

δξλ =
b

4
√
γ
p+ Y C∂Cλ, (3.13)

where π = πABγAB. For the momenta, one has

δξp = LY p+
√
γ
(

4bDCD
C
λ+ 4D

C
b∂Cλ+ 12bλ

)
, (3.14)

δξπ
rA = LY πrA +

√
γ
(
DB(bk

BA
) +D

A
bk −DA

T
)
, (3.15)

δξπ
AB = LY πAB +

√
γ
(
D
A
D
B
T − γABDCD

C
T
)

+ 3b
√
γ
(
k
AB − γABk

)
+
√
γb
(
γABDCD

C
k +DCD

C
k
AB −DCD

A
k
CB −DCD

B
k
CA
)

+
√
γ
(
−DA

bD
B
k −DB

bD
A
k + γABDCbD

C
k + 2γABD

D
k
C
D∂Cb

−DA
k
BC
∂Cb−D

B
k
AC
∂Cb+D

C
k
AB
∂Cb

)
. (3.16)

In order to obtain the transformation law of p, we used the identity

D
A
D
B
kAB −DAD

A
k = 0, (3.17)

coming from the extra condition H = o(r−1) (see appendices A and B).

One can verify from these formulas that the parity conditions are all preserved by the

surface deformations. Note that for the boosted Schwarzschild metric in the coordinates

for which kAB = 0, the only component of the momentum that acquires a non vanishing

value is p, which is correctly odd and equal in this case to πrr.

4 Asymptotic charges

We now show that the canonical generators of the asymptotic symmetries are well-defined

with the new parity conditions. We follow the method of [6] and do not impose hrA = 0

to begin with. This will be done later, at the point where it is needed. We set λA ≡ grA.

Our aim is to show that the bulk piece of the generators, given by the smeared con-

straints
∫
d3x

(
ξH+ ξiHi

)
, can be supplemented by appropriate surface terms that make

the sum “differentiable” when ξ and ξi are given by (2.23), (2.24), (2.25) and (3.8), where

T and W are arbitrary field-independent even and odd functions, respectively. The boost

and rotation parameters b and Y A are also taken to be field independent.
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Taking a general variation of the smeared constraints, we obtain:

δ

∫
d3x

(
ξH+ ξiHi

)
=

∫
d3x

(
δξπ

ijδgij − δξgijδπij
)

+ lim
r→∞

Kξ[δgij , δπij ], (4.1)

where the boundary term is given by

Kξ[δgij , δπij ] =

∮
d2x

{
− 2ξiδπri + ξrπijδgij − 2

√
γξδK

−√γγBCδγCA
(
ξKA

B +
1

λ
(∂rξ − λD∂Dξ)δAB

)}
. (4.2)

In order to write this term, we used a radial 2+1 split of the 3d metric gij (see appendix A

for more details, including conventions).

Collecting all divergent and finite terms, we get

Kξ[δgij , δπij ] = r

∮
d2x

{
− 2Y AγABδπ

rB − 2
√
γbδk

}
+

∮
d2x
{
− 2Y Aδ(hABπ

rB + γABπ
(2)rB + λAπ

rr)− 2IAγABδπ
rB

− 2Wδπrr −
√
γ(bhδk + 2fδk + 2bδk(2))

+
√
γ(f + λb+ λ

D
∂Db)δh−

√
γb k

AB
δhAB

}
+ o(r0). (4.3)

If non-zero, the first term is divergent. This is what motivated the introduction of the

parity conditions (2.10) in [6], which makes the potentially divergent term identically zero.

Here, a different mechanism is at play. That is, the fact that the constraints hold

asymptotically in the sense of (3.7) is sufficient to remove the divergence (independently

in fact of any parity condition). In that sense, the parity condition of [6] “kills twice” the

divergence. Indeed, the leading terms of the constraints take the form

HA =−2γAB(πrB+DCπ
BC)+o(1), H=−2

r

√
γ
(
DADBk

AB−DAD
A
k
)

+o(r−1) (4.4)

(see appendix B for more information). Since both these terms are equal to zero by (3.7),

we can rewrite the divergent contribution as

Kξ[δgij , δπij ] = r

∮
d2x
{

2Y AγABDCδπ
BC

− 2
√
γ bδ(k −DADBk

AB
+DAD

A
k)
}

+O(1). (4.5)

If we then integrate by parts and use the properties of the Lorentz parameters given

in (2.24), we see that this divergence cancels.
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Using the fact that both Y A and b are field independent, we can partially integrate

the finite part of the boundary term:

Kξ[δgij , δπij ] = δ

∮
d2x

{
− 2Y A(hABπ

rB + γABπ
(2)rB + λAπ

rr)

− 2
√
γbk(2) −

√
γ

1

4
b(h

2
+ h

AB
hAB)

}
+

∮
d2x

{
− 2IAγABδπ

rB − 2Wδπrr −
√
γ(2f + hb)δ(2λ+DAλ

A
)

+
√
γ(λ

C
∂Cb γ

AB − bDA
λ
B

)δhAB

}
+ o(r0). (4.6)

To integrate the terms written in the last line, we now use the conditions λA = 0 and (3.8).

Without restriction on these parameters, the one-form in field space Kξ is not exact.1 We

then get

Kξ[δgij , δπij ] = −δBξ[gij , πij ], (4.7)

where

Bξ[gij , πij ] =

∮
d2x

{
Y A
(

4kABπ
rB − 4λγABπ

rB + 2γABπ
(2)rB

)
+W

(
2πrr − 2DAπ

rA
)

+ T 4
√
γ λ+ b

√
γ
(

2k(2) + k
2

+ k
A
Bk

B
A − 6λk

)
+ b

2√
γ
γABπ

rAπrB
}
. (4.8)

Using the parity conditions (3.4), this boundary term can be simplified to

Bξ[gij , πij ] =

∮
d2x
{
T 4
√
γ λ+W p+ Y A 2γAB

(
π(2)rB − 2λπrB

)
+ b 2

√
γ
(
k(2) − 3λk

)}
.

(4.9)

It is interesting to note that integrability alone of the term
√
γ(2f + hb)δ(2λ) leaves some

freedom in the choice of f , since any function of λ could be added to f without destroying

integrability. On the other hand, the preservation under surface deformations of the parity

conditions controls, as we have seen, the λ-dependence and removes the ambiguity. It

is very satisfying to see that both the integrability conditions and the parity conditions

combine to fix the form of the charges.

We can summarize the above results in the following theorem:

Theorem 4.1 The transformations associated with the asymptotic symmetries

ξ = b
(
r − λ− k

)
+ T +O(r−1), ξA = Y A +

1

r

(
D
A
W +

2b√
γ
πrA

)
+O(r−2), (4.10)

ξr = W +O(r−1), DADBb+ γABb = 0, LY γAB = 0, (4.11)

T = even function, W = odd function, (4.12)

where b, Y A, T and W are field independent, are canonical transformations generated by

Gξ[gij , π
ij ] =

∫
d3x

(
ξH+ ξiHi

)
+ Bξ[gij , πij ], (4.13)

where the boundary term Bξ is given in equation (4.9).

This shows that the asymptotic symmetries have well-defined (differentiable) generators.

1A different viewpoint on integrability has been recently developed in [57].
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We close this section with four comments.

• As we pointed out, finiteness of the charges holds even without any parity condition

and is a consequence of the asymptotic implementation of the constraints. However,

if one drops the parity conditions, there is some ambiguity in the λ-dependence of

the boost generators (in addition to the singularity of the symplectic structure).

• Time and spatial translations, respectively given by T=1 and WP =
∑1

m=−1P
mY1m(xA),

have associated charges

M[gij , π
ij ] = 4

∮
d2x
√
γ λ, P[gij , π

ij ] =
1∑

m=−1
Pm

∮
d2xY1mp, (4.14)

where M is the mass while P the linear momentum. These expressions agree with

the ADM ones, as they should.

• The situation is more subtle for the Lorentz transformations parametrized by b and

Y A. Their charges will in general contain non-linear terms in the dynamical fields:

BY [gij , π
ij ] =

∮
d2xY A 2γAB

(
π(2)rB − 2λπrB

)
, (4.15)

Bb[gij , πij ] =

∮
d2x b 2

√
γ
(
k(2) − 3λk

)
. (4.16)

When one uses the R-T parity conditions given in equation (2.10) in the general

expression (4.8), all non-linear terms disappear and we recover the results of [6].

But with the new parity conditions, some of the non-linear terms are generically

non-vanishing. This non-linearity is similar to what was encountered for anti-de

Sitter gravity coupled to a scalar field, either in the holographic renormalization

approach [58, 59], or through canonical methods [60–62].

• The charges associated with supertranslations are

Bξ[gij , πij ] =

∮
d2x
{
T 4
√
γ λ+Wp

}
(4.17)

and do not vanish in general since they are given by the integrals of non trivial even

functions.

5 The BMS algebra

In order to compute the algebra of the asymptotic symmetries, we have to take into account

the fact that they have an explicit phase-space dependence. The resulting bracket between

two asymptotic transformations ξ1(Y1, b1, T1,W1) and ξ2(Y2, b2, T2,W2) is then given by

[ξ1, ξ2]M = [ξ1, ξ2]SD + δg,π2 ξ1 − δg,π1 ξ2 + ΘA(ξ1, ξ2)HA + Θ(ξ1, ξ2)H, (5.1)

where [, ]SD is the usual surface deformation bracket while the variations δg,π only hit the

explicit dependence on the gravitational fields. The extra terms proportional to the con-

straints contain the contribution to the Poisson bracket produced when the Euler-Lagrange

– 13 –



J
H
E
P
0
3
(
2
0
1
8
)
1
4
7

derivatives only hit the gauge parameters. In this case, they can be ignored safely. One way

to see this is that the improper part of the gauge parameters explicitly depends only on one

element from each canonical pair namely grr, π
rA and gAB. This implies that non-zero Θ

or ΘA will always involve the proper part of at least one of the two gauge parameters. As

the bracket of a proper gauge transformation with any allowed transformation is a proper

gauge transformation, these contributions are always sub-leading.

Using results for the variations of the asymptotic fields given in section 3, the compu-

tation of the algebra of asymptotic transformations is straightforward:

ξ̂(Ŷ , b̂, T̂ , Ŵ ) =
[
ξ1(Y1, b1, T1,W1), ξ2(Y2, b2, T2,W2)

]
M
, (5.2)

where

Ŷ A = Y B
1 ∂BY

A
2 + γABb1∂Bb2 − (1↔ 2), (5.3)

b̂ = Y B
1 ∂Bb2 − (1↔ 2), (5.4)

T̂ = Y A
1 ∂AT2 − 3b1W2 − ∂Ab1D

A
W2 − b1DAD

A
W2 − (1↔ 2), (5.5)

Ŵ = Y A
1 ∂AW2 − b1T2 − (1↔ 2). (5.6)

When the functions T and W are restricted to be respectively an even and an odd function

on the sphere, the bracket obtained here describes the BMS algebra using an unfamiliar

basis. The proof can be found in appendix C. The main idea is to relate the algebra ob-

tained here with the asymptotic analysis performed in [49] in the context of the hyperbolic

treatment of spatial infinity developed in [70–72]. The result is a linear isomorphism be-

tween the set of pairs of functions (T,W ) with even and odd parity and the set of functions

T of no definite parity such that T transforms as a usual BMS supertranslation under the

action of Lorentz algebra:

δY,bT = Y A∂AT −D
A
b∂AT − bT . (5.7)

Developing the various functions in spherical harmonics, one can write the first few terms

of the change of basis:

W =
∑
k

2k+1∑
m=−2k−1

W2k+1,m Y2k+1,m, T =
∑
k

2k∑
m=−2k

T2k,m Y2k,m, (5.8)

T = T0,0Y0,0 +

1∑
m=−1

W1,mY1,m +
1

4

2∑
m=−2

T2,mY2,m + . . . (5.9)

where the dots denotes terms containing spherical harmonics with l > 2.

General theorems guarantee that the generators associated to asymptotic symmetries

close in the Poisson bracket according to the same algebra, possibly modified by central

charges [63]. One can check that in the present case, however, the algebra does not acquire

a central extension: {
Gξ1 [gij , π

ij ], Gξ2 [gij , π
ij ]
}

= G
ξ̂
[gij , π

ij ]. (5.10)

The easiest way to check this is to express the Poisson bracket as a variation

{Gξ1 , Gξ2} = δξ2Gξ1 and evaluate the result on the background Minkowski space.
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6 Conclusions

In this paper, we have proposed new boundary conditions for asymptotically flat space-

times at spatial infinity. These new boundary are given by (2.12)–(2.17), with the parity

conditions (3.4) on the leading order of the asymptotic fields and the requested constraint

fall-off (3.7).

These boundary conditions fulfill all the standard consistency requirements: they con-

tain the Schwarzschild and Kerr solutions as well as their Poincaré transforms; the symplec-

tic structure is well-defined; the generators of the asymptotic symmetries, which contain

asymptotic Poincaré transformations, are all finite. We have also constructed explicitly the

conserved charges of the asymptotic symmetries and showed that they close according to

the BMS algebra, which is consequently the asymptotic symmetry algebra.

We have therefore achieved the goal outlined in the introduction, of associating stan-

dard canonical generators at spatial infinity to the BMS symmetry transformations first

revealed at null infinity. These generators do not identically vanish and hence have a non

trivial action in the physical phase space.

The new boundary conditions reduce the number of arbitrary functions of the angles

a(n) and ai(n) appearing in (2.7) and (2.8) — namely 4 — to a single function of the angles,

in agreement with the BMS symmetry. Crucial in this reduction are the conditions h̄rA = 0,

which are imposed in our approach in order to guarantee integrability of the charges.

Another crucial ingredient are the parity conditions (3.4), which are different from

those proposed earlier in [6]. We have seen that the BMS super-translations are encoded

in the odd part of W and the even part of T . Both of these parts are incompatible with

the parity conditions of [6] and hence absent in that approach, except for the few spherical

harmonics describing Poincaré translations. [The even part of W and the odd part of T are

compatible with the boundary conditions of [6] but have zero charges because their parity

is opposite to that of the Poincaré translations. Hence they are pure gauge.]

By contrast, our new parity conditions allow arbitrary odd W ’s and even T ’s and a

non trivial action of the BMS group at spatial infinity. Furthermore, the BMS group at

spatial infinity is the same as the BMS group encountered at null infinity, as shown in [49]

using the methods developed in [64–66] (see also appendix C).

Our work can be extended in various directions.

• The superrotations [16–20, 22] are not included among the asymptotic symmetries

described here. It would be of interest to examine if and how they can be covered.

• The new parity conditions do not include the Taub-NUT solution. To cover it, one

presumably needs to consider it as defining a distinct “sector” and study perturba-

tions around it (“asymptotically Taub-NUT spacetimes”). It would be useful to carry

out the study explicitly. This would need a more detailed analysis of the electric and

magnetic components of the Weyl tensor at infinity.

• Our paper focused on vacuum gravity. Matter fields, and most notably, the electro-

magnetic field, should be included. Concerning the latter, a first step has been done
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in [67] where the authors have realized at spatial infinity, using a hyperbolic slicing,

a description of the enlarged asymptotic symmetry of electromagnetism introduced

in [68, 69].

• Finally, it would be of interest to investigate possible relaxations of the boundary

conditions beyond parity conditions [48]. We have seen that the asymptotic im-

plementation of the constraints, without parity conditions, is sufficient to ensure

finiteness of the charges but not of the canonical kinetic term
∫
dt pq̇. The authors

of [48] use the framework of holographic renormalisation to remove the divergences

that appear in the symplectic structure but end up with a puzzle that they lucidly

describe in their conclusions: instead of a single phase space, they get a collection

of phase spaces where some BMS transformations are not allowed to act. How this

would translate in the ADM approach is worth pursuing.

In a related context, a different set of boundary conditions at spatial infinity having

a BMS algebra as symmetry has been presented in [73]. However, this representation

of the BMS algebra does not contain spatial translations nor Lorentz boosts and,

as such, is not the usual BMS algebra considered at null infinity. Their analysis is

nevertheless very interesting and it may hint at possible generalisations of the results

presented in this work.

It is hoped to return to these questions in the future.
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A Radial decomposition of the spatial metric and the spatial curvature

Let us assume that we have spatial coordinates given by xi = (r, xA) where xA are coordi-

nates on the 2-sphere. We introduce:

γAB ≡ gAB, λA ≡ grA, λ ≡ 1√
grr

. (A.1)

The metric and its inverse take the form:

gij =

(
λ2 + λCλ

C λB
λA γAB

)
, gij =

(
1
λ2

−λB

λ2

−λA

λ2
γAB + λAλB

λ2

)
, (A.2)

where we used γAB and its inverse γAB to raise and lower the angular indices A,B, . . .
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Introducing the extrinsic curvature of the 2-spheres KAB, we can write all the Christof-

fel symbols:

KAB =
1

2λ
(−∂rgAB +DAλB +DBλA) , (A.3)

ΓrAB =
1

λ
KAB , (A.4)

ΓABC = γΓABC −
λA

λ
KBC , (A.5)

ΓrrA =
1

λ

(
∂Aλ+KABλ

B
)
, (A.6)

Γrrr =
1

λ
∂rλ+

λA

λ

(
∂Aλ+KABλ

B
)
, (A.7)

ΓArB = −λ
A

λ

(
∂Bλ+KBCλ

C
)

+DBλ
A − λKA

B , (A.8)

ΓArr = −λ
(
γAB +

λAλB

λ2

)(
∂Bλ+KBCλ

C
)
− λC

(
DAλC − λKA

C

)
− λA

λ
∂rλ+ γAB∂rλB , (A.9)

where DA is the covariant derivative associated to γAB.

The Ricci tensor is given by:

(3)RAB =
1

λ
∂rKAB + 2KACK

C
B −KKAB −

1

λ
DADBλ

+ γRAB −
1

λ
LλKAB, (A.10)

(3)RrA = λ
(
∂AK −DBK

B
A

)
+ (3)RABλ

B, (A.11)

(3)Rrr = λ(∂rK − λA∂AK)− λ2KA
BK

B
A − λDAD

Aλ

− (3)RABλ
AλB + 2 (3)RrBλ

B, (A.12)

while the Ricci scalar takes the form

(3)R =
2

λ
(∂rK − λA∂AK) + γR−KA

BK
B
A −K2 − 2

λ
DAD

Aλ. (A.13)

The asymptotic conditions considered in section 2 imply

λ = 1 +
1

r
λ+

1

r2
λ(2) + o(r−2), λA =

1

r2
λ
A

+
1

r3
λ(2)A + o(r−3), (A.14)

KA
B = −1

r
δAB +

1

r2
k
A
B +

1

r3
k(2)

A

B + o(r−3), (A.15)

where

λ =
1

2
hrr, λ

A
= h

A
r = hrBγ

BA, k
A
B =

1

2
h
A
B + λδAB +

1

2
D
A
λB +

1

2
DBλ

A
. (A.16)

The indices on the barred quantities are lowered and raised with γAB and its inverse γAB.
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B More details on the divergences of Lorentz generators

In this appendix two things are done.

• First, we give the first two leading orders in the asymptotic expansion of the con-

straints.

• Second, we clarify the appearance (and non-appearance) of logarithmic terms in

the asymptotic expansion of the fields. Some explicit examples of solutions to the

gravitational constraints equations with logarithmically divergent Lorentz charges

have been constructed [51]. We make the link with this analysis.

As before, we assume λ
A

= 0.

Expending the momentum constraint HA to second order, we get

HA = −2

(
∂rπ

r
A + ∂Bπ

B
A − γΓCBAπ

B
C −

1

λ
∂Aλπ

r
r

)
+ o(r−1) (B.1)

= −2γAB(πrB +DCπ
BC)

− 2

r

[
γABDCπ

(2)BC − ∂Aλπrr +DB(hACπ
BC)− 1

2
πBCDAhCB

]
+ o(r−1), (B.2)

which, in particular, implies

γABDC(π(2)BC − 2λπBC) = ∂Aλ(πrr − πBB)− 2DB(kACπ
BC) + πBCDAkCB. (B.3)

If we contract the second line with Killing vectors of the sphere Y A and integrate, we

obtain three integrability conditions:∮
d2x
(

(πrr − πBB)Y A∂Aλ+ πBCLY kBC
)

= 0. (B.4)

These conditions are necessary and sufficient to guaranty the existence of π(2)AB such

that (B.3) is valid. They are the hamiltonian equivalent of the integrability conditions

necessary for the existence of solutions at second order in the hyperbolic description as

described in [48, 72] (see also [47]).

These conditions are consequences of the asymptotic conditions we imposed on our

fields. Looking at (B.1), we see that if the integrability conditions are not satisfied, they

produce a logarithmic term in πrA. In other words, if we assume,

πrA = r−1πrA + log rr−2π(l)rA + r−2π(2)rA + o(r−2), (B.5)

then equation (B.3) becomes

γABπ
(l)rB = −γABDC(π(2)BC − 2λπBC)

+ ∂Aλ(πrr − πBB)− 2DB(kACπ
BC) + πBCDAkCB. (B.6)

In this case, there is no integrability condition as the logarithmic term will absorb the cor-

responding contribution. This logarithmic term will then appear in the angular momentum

charges as a divergent term.
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The solution described in [51] has the following asymptotic behaviour:

πrr =
√
γ
(
β(xA)−BmY1,m(xA)

)
, πrA = −

√
γ D

A
(
BmY1,m(xA)

)
, (B.7)

πAB =
√
γγABBmY1,m(xA), λ =

1

2
A+

1

4
α(xA), kAB = AγAB, (B.8)

where A,Bm are constants (m = −1, 0, 1) and Y1,m are l = 1 spherical harmonics. In this

case, the integrability condition is∮
d2Ω

(
β − 3BmY1,m)

)
Y A∂Aα = 0. (B.9)

The solution given in corollary 3.4 of [51] corresponds to a specific choice of β and α for

which this condition is not fulfilled. In that case, the logarithmic term in the expansion

of πrA has to be non-zero which will introduce a logarithmic divergence in the angular

momentum charges. One can show that this divergence will be exactly given by the value

of the integrability condition that reproduces the results of [51].

A similar analysis has to be done for the hamiltonian constraint H. After some algebra,

we get

H = −
(

1 + 3
λ

r

)
2

r3
√
γ
(
DADBk

AB −DAD
A
k
)

+
1

r2

{
−
√
γ
[
DADB(h(2)AB + 2λ(2)γAB + 4λkAB)

−DAD
A

(h(2) + 4λ(2) + 4λk)− (h(2) + 4λ(2) + 4λk)
]

−
√
γ
[
3k

A
Bk

B
A + 4k

AB
DCD

C
kAB + 4k

AB
DADBk − 4k

AB
(DCDA +DADC)k

C
A

+ 3DAkBCD
A
k
BC −DAkD

A
k − 2DAkBCD

B
k
AC

+ 4DBk
B
A(D

A
k −DCk

CA
)− k2 + 12λ

2
+ 6λDCD

C
λ+ 4DAλD

A
λ
]

+
1√
γ

[
2πrAπrA + πABπAB +

1

2
(πrr − πAA)2 − (πAA)2

]}
+ o(r−2) . (B.10)

The sub-leading contribution takes the form

√
γ
(
DADBα

AB −DAD
A
α− α

)
= J , (B.11)

where αAB is linear in the second-order perturbations of the fields, and J quadratic in their

first-order perturbations. Integrating this equation with a “boost” parameter b such that

DADBb+ γABb = 0, we get the three integrability conditions:∮
d2x bJ = 0 , (B.12)

on the first-order perturbation. As before, one can show that if J satisfies these identi-

ties, then there exists a h(2) such that the constraint is valid. If they do not hold, then

logarithmic terms will appear in the expansion of gij .
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The same analysis on the radial constraint Hr does not give any new integrability

conditions. It takes the form

Hr = −2

r

(
∂Aπ

Ar − πAA
)
− 2

r2

(
− π(2)rr − π(2)AA

− λ(πrr − πAA)− kABπAB + ∂A(π(2)Ar + 2λπAr)
)

+O(r−3), (B.13)

which imposes

πAA = ∂Aπ
Ar ⇒ DADBπ

AB + πAA = 0, (B.14)

and fixes π(2)rr − π(2)AA in terms of the other asymptotic fields.

The six integrability conditions (B.9), (B.12) for the existence of the subleading terms

without the need to introduce logarithms are easily verified to be fulfilled by

• spacetimes satisfying the R-T parity conditions [6]:

λ ∼ πrA ∼ kAB ∼ even , πrr ∼ πAB = odd, (B.15)

• spacetimes satisfying the new parity conditions:

λ ∼ πAB ∼ even , (πrr − πAA) ∼ kAB ∼ πrA = odd. (B.16)

The parity conditions guarantee therefore the consistency of the perturbative expansion

adopted here.

C BMS algebra in the “instant form” and in the hyperbolic form of the

dynamics

We relate in this appendix the results of section 5 to the recent work on the asymptotic

symmetry algebra carried out in [49] in the context of the hyperbolic treatment of spatial

infinity [70–72], with a Hamiltonian that generates boosts asymptotically. The results

of [49] apply to the analysis of [48], which adopts different boundary conditions than

the ones taken here (logarithmic terms, no parity condition) and regularizes the resulting

infinities in the framework of holographic renormalization. Nevertheless, there is an overlap

in the corresponding symmetries.

As described in [49], the algebra of the asymptotic symmetries is the semi-direct sum

of the Killing vectors of the unit hyperboloid with a set of super-translations. If we use

the following metric on the hyperboloid

h0abdx
adxb = − 1

(1− s2)2
ds2 +

1

(1− s2)
γABdx

AdxB, (C.1)

then the Lorentz algebra is generated by

Ys = −(1− s2)b, YA = Y A − sDA
b, (C.2)

and the abelian algebra of super-translations is parametrized by functions ω on the hyper-

boloid satisfying

(DaDa + 3)ω = −(1− s2)2∂2sω + (1− s2)DAD
A
ω + 3ω = 0, (C.3)
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where Da is the covariant derivative associated to the metric h0ab. As shown in [49], in the

limit s → ±1, the two branches of solutions to the super-translation equation (C.3) have

a different behaviour. The one corresponding to odd functions ω̂ =
√

1− s2 ω under the

combined action of a time reversal and antipodal map tends to finite functions on the sphere

and describes the usual BMS super-translations. The algebra of asymptotic symmetries

parametrized by (C.2) and (C.3) with odd ω̂’s is then the usual BMS asymptotic symmetry

algebra at null infinity.

More explicitly, the BMS supertranslation parameter T (xA) can be obtained through

the following construction. An odd function ω = (1 − s2)−
1
2 ω̂ solution to equation (C.3)

has a spherical harmonics expansion given by

ω̂ =
∑
lm

ωl,mΨl(s)Yl,m(xA), Ψl =
1

2
(1− s2)2∂2sQl. (C.4)

The functions Ql(s) are Legendre functions of the second kind and can be written in terms

of Legendre polynomials Pl(s) as

Ql(s) = Pl(s)
1

2
log

(
1 + s

1− s

)
+ Q̃l(s), (C.5)

where Q̃l(s) are polynomials. The action of the Lorentz algebra on ω̂ is given by

δY,bω̂ = Y A∂Aω̂ − sbω̂ − sD
A
b∂Aω̂ − (1− s2)b∂sω̂. (C.6)

Defining the BMS supertranslation parameter T (xA) = lims→1 ω̂, we can evaluate the

above identity at s = 1 using the asymptotic behaviour ψl(s) = 1 +O(1− s) to obtain

δY,bT = Y A∂AT − bT −D
A
b∂aT . (C.7)

This is the usual action of a Lorentz transformation on BMS supertranslations.

The difference between the description of the BMS algebra given in (5.3)–(5.6) and

the description given in equation (C.7) is in the choice of representative functions used

to parametrize the super-translations ω. In order to recover the ADM description of the

supertranslation, we have to define W and T as initial conditions at s = 0:

ω|s=0 = ω̂|s=0 = W (xA), ∂sω|s=0 = ∂sω̂|s=0 = T (xA). (C.8)

We see that the hyperboloid function ω̂ is odd if and only if W and T are respectively an

odd and an even function on the sphere. From the action of Lorentz algebra on ω̂ given in

equation (C.6), we can derive the corresponding action on W and T :

δY,bT = Y A∂AT −D
A
b∂AW − bDAD

A
W − 3bW, (C.9)

δY,bW = Y A∂AW − bT. (C.10)

The change of basis from the pair of functions (W,T ) to the BMS supertranslation

parameter T is obtained by solving equation (C.3) with the initial condition (C.8) and

then defining

T = lim
s→1

(√
1− s2 ω

)
. (C.11)
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Expending all quantities in spherical harmonics and using the general solution written

in (C.4), we can write this change of basis explicitly

T =
∑
lm

ωl,mYl,m(xA), (C.12)

W =
∑
k

2k+1∑
m=−2k−1

W2k+1,m Y2k+1,m, T =
∑
k

2k∑
m=−2k

T2k,m Y2k,m, (C.13)

ω2k+1,m ψ2k+1|s=0 = W2k+1,m, ω2k,m ∂sψ2k|s=0 = T2k,m. (C.14)

The first few ψl functions can be easily computed

ψ0 = s, ψ1 = 1, ψ2 =
3

4
(1− s2)2 log

(
1 + s

1− s

)
+

5

2
s(1− s2), (C.15)

and we can use them to write the first few component of the change of basis:

ω0,0 = T0,0, ω1,m = W1,m, ω2,m =
1

4
T2,m. (C.16)

Open Access. This article is distributed under the terms of the Creative Commons
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