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ABSTRACT

We derive a Bayesian criterion for assessing whether signals observed in two separate data sets origi-
nate from a common source. The Bayes factor for a common vs. unrelated origin of signals includes an
overlap integral of the posterior distributions over the common source parameters. Focusing on multi-
messenger gravitational-wave astronomy, we apply the method to the spatial and temporal association
of independent gravitational-wave and electromagnetic (or neutrino) observations. As an example, we
consider the coincidence between the recently discovered gravitational-wave signal GW170817 from a
binary neutron star merger and the gamma-ray burst GRB 170817A: we find that the common source
model is enormously favored over a model describing them as unrelated signals.

1. INTRODUCTION

On August 17th 2017, the observation by LIGO-Virgo
of GW170817, a binary neutron star coalescence (BNS)
(Abbott et al. 2017b,a), and by Fermi and INTEGRAL
of GRB 170817A, a short gamma-ray burst (GRB)
(Goldstein et al. 2017; Savchenko et al. 2017), began
an unprecedented multimessenger observing campaign
(Abbott et al. 2017c). Detections and non-detections
across the electromagnetic (EM) spectrum and by neu-
trino observatories have already produced new insights
and will continue to do so for some time yet.

Many of these insights critically depend on the signif-
icance of the association between the independent ob-
servations. Often, such significance is established by
estimating a p-value, the probability of such an event
or a more extreme event occurring under the null hy-
pothesis that the observations originate from unrelated
distinct sources. Specific applications include, e.g. Ab-
bott et al. (2017a); Coulter et al. (2017); Soares-Santos
et al. (2017) for GW170817 and its counterparts, Baret
et al. (2012); Aartsen et al. (2014); Keivani et al. (2015)
for offline triggered search methods, and Urban (2016)
for online rapid identification. A small p-value demon-
strates the data is inconsistent with the null hypothesis.
The p-value cannot, though, be interpreted as the prob-
ability of the null hypothesis itself (Gelman et al. 2013).
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On the other hand, a large p-value does not necessarily
imply that the null hypothesis has to be accepted, only
that it cannot be rejected (Gregory 2005).

We introduce a different, generic model comparison
method to determine whether two events in separate
data sets are produced by a common source or by unre-
lated phenomena. This Bayesian measure of significance
asks fundamentally different questions compared to the
Frequentist p-value approach: it quantifies a degree of
belief or confidence when comparing two hypotheses,
given a particular non-repeatable observation, while the
p-value determines the consistency of the null hypothe-
sis with the data and the error rate of determining sig-
nificance (which is important for initial identification).
(See Finn (1998) for a related discussion in the context
of detection itself). The method is a direct comparison
of the probabilities of alternative models and does not
require empirical estimates of a background distribution
for the interpretation of its result (although this may
be necessary if the assumptions about the background
are not trusted). Moreover, the framework requires ex-
plicit statements of the necessary assumptions; in par-
ticular, prior distributions on the relevant parameters
and conditions for which significance can be factorized
for different common model parameters (discussed later
in Sec. 2.3). This approach is distinct from that of Kel-
ley et al. (2013) in which the EM data is used as prior
information to understand improvements in sensitivity
for triggered searches.

In Sec. 2 we introduce the method in a general con-
text; Eq. (16) is our primary result and describes how
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to calculate the Bayes factor for a common-source ori-
gin of two signals seen in separate data streams. In
Sec. 3 we focus on the application of the method to
multimessenger astronomy, considering a calculation of
spatial and temporal significance. As an example, we
apply it to the gravitational-wave and gamma-ray events
GW170817 and GRB 170817A, showing that it strongly
supports the hypothesis that they originate from a com-
mon source.

2. GENERIC DERIVATION

2.1. Model comparisons

Given two detections a and b in different data sets
Da and Db, we would like to assess the hypothesis that
they originate from a common source. In general, the
two detections will be described by different physical sig-
nal models HS

a and HS
b , respectively. Each signal model

will imply a likelihood, a set of parameters and an as-
sociated prior for those parameters. To assess whether
they originate from a common source, the models must
share a common set of parameters θ ∈ Θ.

We’ll use notation where H(θ) ≡ [H and θ] denotes a
hypothesisH with a particular choice for the parameters
θ, while H by itself denotes a hypothesis with unknown
parameters, i.e. “for any choice of parameters θ”. We
can formally write this as H ≡ [H(θ) for any θ].

Then, we define the common-source hypothesis:

HC ≡
{[
HS
a(θ) and HS

b (θ)
]

for any θ
}
. (1)

We also define HN
a/b as the noise hypotheses (by which

we mean any non-signal) for each data set. Then we can
define any alternative hypothesis for which the observed
detections in a and b are unrelated:

HXY ≡
{[
HXa (θa) for any θa

]
and

[
HYb (θb) for any θb

]}
,

(2)

where X, Y ∈ {N,S}. We write this in a general form,
but note that the noise hypothesis will not have any
common model parameters. In total, there are four pos-
sible realizations of HXY , which we consider in detail
below. However, HSS is of particular interest in this
work, being two unrelated signals from distinct sources.

These hypotheses imply priors on θ which in general
differ from those implied by HS

a/b individually: if a com-

mon source can only be detected in some subset of θ,
then HC can only have prior support restricted to this
subset. If this is not true, we identify the special case

P (θ|HC) = P (θ|HS
a) = P (θ|HS

b ) . (3)

The probability of the common-source hypothesis is
given by

P (HC|Da, Db) =
P (Da, Db|HC)P (HC)

P (Da, Db)
. (4)

In this work, we will calculate the odds between HC and
different choices of HXY

OC/XY (Da, Db) ≡
P (HC|Da, Db)

P (HXY |Da, Db)

= BC/XY (Da, Db)
P (HC)

P (HXY )
,

(5)

where

BC/XY (Da, Db) ≡
P (Da, Db|HC)

P (Da, Db|HXY )
(6)

is the Bayes factor and P (HC)/P (HXY ) is the prior
odds. In Sec. 2.2 we discuss the calculation of the Bayes
factor in general. The prior odds will depend on the
context, but in Sec. 3.1.3 we calculate the prior odds
modeling HC and HSS as realizations of a Poisson point
process.

2.2. Derivation of the Bayes factor

If both data sets contain a signal from the same
event, then they are not independent: P (Da, Db|HC) 6=
P (Da|HC)P (Db|HC). Instead we must compute

P (Da, Db|HC) =

ˆ
Θ

P (Da, Db, θ|HC) dθ

=

ˆ
ΘS

P (Da, Db|θ,HC)P (θ|HC) dθ ,

(7)

where the domain of the integral in the second line is
restricted to the prior support of HC, namely

ΘS ≡ {θ ∈ Θ where P (θ|HC) > 0} . (8)

The need for this restriction arises because assuming
that (θ = θ′) and HC are both true would be a contra-
diction if P (θ′|HC) = 0, and so P (D|θ′,HC) would be
undefined. Rearranging the likelihood in the integrand

P (Da, Db|θ,HC)

= P (Da|Db, θ,HC)P (Db|θ,HC)

= P (Da|θ,HC)P (Db|θ,HC)

=
P (Da|HC)P (θ|Da,HC)

P (θ|HC)

P (Db|HC)P (θ|Db,HC)

P (θ|HC)
,

(9)

where in the second step we have used that the like-
lihoods conditional on θ can be separated for the two
data sets, provided that θ is the set of all model param-
eters common between the two likelihoods. In the last
step, we again used that P (θ|HC) > 0 within the inte-
gration interval. A subtle point is that P (θ|Da/b,HC)
is the posterior distribution for the common model pa-
rameters (given either Da/b) marginalized over all other

model parameters and using the prior implied by HC.
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Substituting Eq. (9) into Eq. (7)

P (Da, Db|HC) = P (Da|HC)P (Db|HC)Iθ(Da, Db) ,
(10)

where the posterior overlap integral

Iθ(Da, Db) ≡
ˆ

ΘS

P (θ|Da,HC)P (θ|Db,HC)

P (θ|HC)
dθ (11)

quantifies the agreement between the posterior distribu-
tions of θ derived independently. In this integral, the
prior has the effect of setting a scale against which the
degree of overlap can be compared.

Eq. (10)-(11) demonstrate how probabilities from sep-
arate data sets combine when each provides independent
inferences about a common model parameter.

Returning to the Bayes factor, by our definition of the
alternative hypothesis

P (Da, Db|HXY ) = P (Da|HXa )P (Db|HYb ) . (12)

So from Eq. (6),

BC/XY (Da, Db) =
P (Da|HC)P (Db|HC)

P (Da|HXa )P (Db|HYb )
Iθ(Da, Db) .

(13)

We now specify three particular cases of interest for
the alternative hypothesis. First, consider HNN: both a
and b are caused by noise. Then Eq. (13) specializes to

BC/NN(Da, Db) = BC/N(Da)BC/N(Db)Iθ(Da, Db) .

(14)

where BC/N, in analogy with Eq. (6), is the common-
source against noise Bayes factor. In the special case of
Eq. (3), it can be shown that BC/N(Da/b) = BS/N(Da/b),
i.e. the independent signal against noise Bayes factor for
each data stream.

This agrees with our intuition: if both signals are
strong compared to the background noise and there is a
good overlap of their common model parameters (quan-
tified by the integral), we believe they originate from
a common event. This is a powerful result as one can
compute the joint Bayes factor from the common-source
against noise Bayes factor for each detection individu-
ally, and the posterior overlap integral of θ. Eq. (14) has
analogous applications to the Fisher combined probabil-
ity test used in Aartsen et al. (2014).

Second, consider HSN: a was due to a signal, but b
was due to noise. For this case, Eq. (13) gives

BC/SN = BC/N(Db)Iθ(Da, Db) . (15)

For us to believe that detection b is a real signal and
originates from the same source as a, we require that the
product of the Bayes factor for common-source against
noise in b and the posterior overlap be large. The case

BC/NS is analogous and the same special cases apply as
mentioned previously.

Finally, consider HSS, the distinct-source hypothesis:
both a and b are of the same nature as in the common-
source hypothesis HC, but they are physically distinct
(i.e. they belong to unrelated sources with different pa-
rameters θa 6= θb). Then,

BC/SS(Da, Db) ≡
P (Da|HC)P (Db|HC)

P (Da|HS
a)P (Db|HS

b )
Iθ(Da, Db) .

(16)

This equation and the posterior overlap integral of
Eq. (11) are the main results of this paper. This pro-
vides a simple and intuitive way to assess whether two
detections originate from the same event, based on the
posterior overlap of their common model parameters.

In the special case of Eq. (3), the prefactor to the
posterior overlap integral is unity, such that

BC/SS(Da, Db) = Iθ(Da, Db) . (17)

On the other hand, when Eq. (3) does not apply, the
prefactor plays an important role in quantifying how the
restricted prior implied by HC affects the Bayes factor.

A similar result to Eq. (17) was obtained indepen-
dently by Haris et al. (2017) in the context of strongly
lensed gravitational wave signals from binary black hole
mergers.

2.3. Factorization of the posterior overlap integral

When calculating Iθ, it is often convenient to fac-
torize the posterior overlap integral, e.g. Iθ = IφIψ
where φ ( θ and ψ = θ \ φ. This factorization can
only be performed, however, if P (φ|ψ,DA/B ,HS) =

P (φ|DA/B ,HS). There are situations in which this is
the case, for example if the joint posterior distribution
is an uncorrelated multivariate normal distribution. But
generally, this will not be the case and the posterior over
the full common parameter space must be used. There
are however cases where, under certain assumptions, the
integral can be approximately factorized. We will ex-
plore one such setting in the next Section.

3. APPLICATION TO MULTIMESSENGER
TRANSIENT ASTRONOMY

We now focus on the application of the above formal-
ism to multimessenger transient astronomy. To guide
our intuition, we consider a transient gravitational wave
(GW) candidate and a detection made by an EM in-
strument, although, we could just as well consider any
pair of EM, GW or neutrino detectors. Assuming that
detections are made in both the GW and EM detectors
and are independently significant, we aim to calculate
OC/SS(DGW, DEM), the odds quantifying the probabil-
ity of the common-source hypothesis to a distinct-source
hypothesis.
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The Bayes factor should be calculated from all com-
mon source parameters; typically, this will involve pa-
rameters such as a characteristic time of the event,
source direction, luminosity distance, and source orien-
tation (Troja et al. 2017; Margutti et al. 2017). Ideally,
the posterior overlap integral should be computed over
the complete joint distribution of parameters since it
will not generally factorize (see Sec. 2.3).

However, to illustrate the utility of the method, we
will calculate the result considering only the spatial and
temporal common parameters (specifically, the source
direction Ω and coalescence time of the BNS system tc)
and make assumptions under which the posterior over-
lap integral may be factorized. We also consider both
observatories to be all-sky, neglecting non-isotropic and
non-stationary sensitivity. The Bayes factor can then be
calculated from Eq. (17) since the special case of Eq. (3)
applies.

3.1. Example

To calculate the Bayes factor, Eq. (17), we first write
down the posterior overlap integral over the conditional
joint distribution of the spatial and temporal parameters

IΩ,tc(DGW, DEM)

=

¨
P (Ω, tc|DGW,HS

GW)P (Ω, tc|DEM,HS
EM)

P (Ω, tc|HS)
dΩdtc

=

¨
P (Ω|tc, DGW,HS

GW)P (Ω|tc, DEM,HS
EM)

P (Ω, tc|HS)

× P (tc|DGW,HS
GW)P (tc|DEM,HS

EM) dΩdtc .

(18)

We will now show that this can be factorized into a spa-
tial and temporal overlap under the following assump-
tions. First, that the prior itself factors, P (Ω, tc|HS) =
P (Ω|HS)P (tc|HS). Second, that tc inferred from the
GW data is exactly determined, i.e.

P (tc|DGW,HS
GW) = δ(tc − t̂c), (19)

where the “hat” indicates the observed value. Then,
Eq. (18) can be factorized as IΩ,tc = ItcIΩ, where

Itc =
P (tc = t̂c|DEM,HS

EM)

P (tc = t̂c|HS)
(20)

and

IΩ =

ˆ
P (Ω|t̂c, DGW,HS

GW)P (Ω|t̂c, DEM,HS
EM)

P (Ω|HS)
dΩ .

(21)

This factorization is exact under the two assump-
tions made. However, the coalescence time is typically
known with a nonzero uncertainty. For this case, tak-
ing t̂c to be a point estimate (the mean for example),

the factorization is approximate, but applicable pro-
vided that over the uncertainty in tc, P (tc|DEM,HS

EM),
P (Ω|tc, DGW,HS

GW), and P (Ω|tc, DEM,HS
EM) do not

vary substantially. In Sec. 3.1.1 and Sec. 3.1.2, we will
provide approximations for Eq. (20) and (21) under
some reasonable assumptions and illustrate some of the
subtleties in their calculation.

We note that a similar result to Eq. (21) was previ-
ously derived in Urban (2016); in particular, Eq. (3.6) of
that work is equivalent to Eq. (21) assuming an isotropic
prior. Then the resulting joint likelihood ratio is defined
using the alternative hypothesis that went into Eq. (15).

3.1.1. Temporal overlap

To evaluate Eq. (20), the temporal overlap, we first
need to consider how to compute P (tc|DEM,HS

EM), the
coalescence time given the EM observations. Typically,
EM observations do not directly infer tc, but some other
well defined time tEM, e.g. the time of peak luminos-
ity. We therefore need to specify a model that relates
these two times. One simple model is that both sig-
nals travel at the speed of light, but there is a delay
∆t = tEM − tc between the coalescence time and the
EM emission which will depend on the physics (see, e.g.
Finn et al. (1999); Abadie et al. (2012) for GRB delay
time predictions), but also on how tEM is defined. To
fold these predictions into the analysis, we must spec-
ify P (∆t|HS), a prior distribution on the delay-time (at
the Earth), given the model. Assuming ∆t and tEM are
independent, the posterior can be transformed as

P (tc|DEM,HS
EM) =

ˆ
ptEM

(tc + ∆t)P (∆t)d∆t , (22)

where ptEM
(tEM) ≡ P (tEM|DEM,HS

EM) denotes the pos-
terior distribution of tEM.

Having defined how to relate the time inferred by the
EM data to the coalescence time with a suitable model,
we now calculate Eq. (20) under some simple assump-
tions. Eq. (19) was the first of these assumptions and
was already applied in factorizing the full posterior over-
lap integral. In addition, let

P (tEM|DEM,HS
EM) ≡ ptEM

(tEM) = δ(tEM − t̂EM) .
(23)

Next we need a prior for the delay in the GW-EM ar-
rival time, which could be due to differences in emission
time or propagation speed of GW and EM radiation.
For simplicity we take a uniform distribution,

P (∆t) = U∆tmax

∆tmin (∆t) . (24)

That is, the EM emission can arrive any time between
a minimum and maximum value compared to the GW-
inferred coalescence time; outside of that interval, we are
certain the two events are not related. Inserting these
definitions into Eq. (22), we obtain

P (tc|DEM,HS
EM) = U∆tmax

∆tmin (t̂EM − tc) , (25)
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from which the numerator of Eq. (20) can be calculated.
The prior on the coalescence time, given HS and a

co-observing time of duration T , is P (tc|HS) = UT
0 (tc),

where tc is chosen to be zero at the start of the co-
observing time. The period T should cover the entire
range of tc for which the tc posteriors (in this example,
Eq. (19) and (25)) have nonzero support from the data,
but is otherwise an arbitrary normalization of the time
prior. Then, Eq. (20) gives

Itc =

 T
[∆t] if (t̂c − t̂EM) ∈ [∆tmin,∆tmax]

0 otherwise
, (26)

where [∆t] ≡ ∆tmax − ∆tmin. The dependence on T
would suggest that we can arbitrarily change the signif-
icance through the Bayes factor by adjusting T . How-
ever, as will be shown in Sec. 3.1.3, this factor cancels
with the prior odds P (HC)/P (HSS), which depends on
both T and the rate of events, such that the odds them-
selves are T -independent. We also will see that in a
particular class of cases the temporal odds can be well
approximated by this Bayes factor, setting T to the av-
erage interval between signals detectable in EM, (i.e. the
inverse of the rate of such signals).

3.1.2. Spatial overlap

We now discuss calculating Eq. (21), the spatial pos-
terior overlap integral. The EM counterparts to GW
events are expected to originate from the same source
direction and hence IΩ can be directly computed from
Eq. (21).

To illustrate the subtleties of IΩ and provide some
intuition, in Fig. 1, we show four examples varying the
size of the uncertainty region and angular separation of
the means of the EM and GW sky localizations. For all
examples, a uniform all-sky prior is used. In Fig. 1(a),
the means of both posteriors are aligned, but the uncer-
tainty on both is large with respect to the all-sky prior;
therefore, IΩ is greater than one, but not large enough
to be of note. For Fig. 1(b), IΩ strongly indicates the
two detections are from the same event: the means are
aligned and the uncertainties are small with respect to
the all-sky prior. In Fig. 1(c) and (d), the means of the
distributions are not aligned. While in (c) this results
in modest evidence in favor of a common event, the sep-
aration is sufficiently wide in (d) to strongly disfavor a
common source.

To help guide our intuition, we can also calculate IΩ
for the simplified case where the posterior distributions
on the sky are uniform distributions, i.e. constant inside
the sets ΠGW and ΠEM and zero outside. Labeling ∆(Π)
the area of set Π in square radians, we obtain

IΩ(DGW, DEM) = 4π
∆(ΠGW ∩ΠEM)

∆(ΠGW)∆(ΠEM)
. (27)

The 4π prefactor comes from the all-sky prior and acts
as a metric to compare the size of the overlap. For ex-
ample, if ΠGW is entirely contained within ΠEM, then
IΩ(DGW, DEM) = 4π/∆(ΠEM): the Bayes factor is de-
termined entirely by the fraction of the sky covered by
the uncertainty on the EM detections (or vice versa if
the EM posterior is contained within the GW posterior).

Figure 1. Examples of the spatial overlap IΩ. A blue (red)

density map shows the probability per pixel for the GW

(EM) detection. IΩ is calculated by numerical integration

over these pixels with an all-sky uniform prior. The poste-

riors are computed over an array of pixels, each with equal

area, using the HEALPix projection (Gorski et al. 2005).
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3.1.3. The spatial and temporal odds

To calculate the odds in this example via Eq. (5), we
require the prior odds. We consider a Poisson point
process which produces events detectable via either (or
both) their GW or EM emission with a total rate R
per unit time, acting during the co-observing time T .
Further, we let R = RGW + REM + RGW,EM: the total
rate is the sum of the rates of events detectable only in
GW, events detectable only in EM, and events jointly
detectable in both. Then HC refers to a signal seen by
both detectors, and HSS to signals detected in one or
other, but not both. Choosing T such that RT � 1,
and defining Poisson(1;λ) to be the probability of one
event given an expected number of signals λ, we obtain

P (HC)

P (HSS)
=

Poisson(1;RGW,EMT )

Poisson(1;RGWT )Poisson(1;REMT )

≈ RGW,EM

RGWREMT
.

(28)

This prior odds clearly depends on the co-observing time
T . Combining this with the spatial and temporal Bayes
factor (Eq. (21) and (26)) then gives

OC/SS(Da, Db) =
RGW,EM

RGWREM

1

[∆t]
IΩ , (29)

which is not dependent on the co-observing time. One
special case is when RGW ' RGW,EM � REM, i.e. if
signals detectable in EM only are much more frequent
than in GW, but we otherwise have little information on
the rates of GW detections with or without EM counter-
parts. This may typically occur if our estimates of RGW

and RGW,EM are based on O(1) detection. The odds
are then proportional to 1/(REM[∆t]), which reproduces
the temporal Bayes factor Eq. (26) setting T = 1/REM,
i.e. the waiting time between EM detections (where the
great majority have no GW counterpart).

As can be expected intuitively, the association be-
comes less significant if the ∆t prior is broader or the
prior background rate of signals is higher, but increases
with the prior expected rate of joint detections.

3.2. Application to GW170817 and GRB 170817A

We now apply the example calculated in Sec. 3.1 to
GW170817 and GRB 170817A, the result of which can
be compared with Abbott et al. (2017a). We note that,
the calculation presented here could be improved by us-
ing the full joint distribution without making assump-
tions that allow the result to be factorized, and including
other pertinent model parameters such as the luminos-
ity distance (for Fermi -GBM, this may be as simple as
estimating the range of conceivable values).

The sky localization for the BNS inspiral and short
GRB can be seen in Fig. 1 of Abbott et al. (2017a).
Using the published localization FITS files (Singer 2017;
Goldstein et al. 2017) and a uniform prior distribution

on the whole sky, Eq. (21) yields IΩ = 32.4. The spa-
tial overlap alone provides moderate support for the
common-event model, the main limitation being the un-
certainty on the localization of GRB 170817A.

If we did not have the actual FITS files, we could still
use the published 90% confidence intervals for the sky lo-
calization of GW170817 and GRB 170817A and take the
localization posterior distributions to be uniform within
those intervals. The intervals cover respectively 28 deg2

(Abbott et al. 2017c) and 1100 deg2 (Goldstein et al.
2017) and the GW170817 interval is entirely contained
within GRB 170817A. A straightforward application of
Eq. (27) then yields an approximate spatial Bayes factor
of IΩ = 37.5, which is close to the exact value. Since
we do have the full posteriors, however, we can repeat
this calculation with different confidence levels. We find
that IΩ can be biased by a factor of a few in both di-
rections, depending on what confidence level is used; the
90% interval just happens to produce a particularly close
number.

In calculating the odds from Eq. (29), there are large
uncertainties on the three rates. However, the rate of
short GRB detections by Fermi -GBM is well known
and must satisfy RFermi ≈ REM + RGW,EM. One could
model the uncertainties to produce beaming and vol-
ume corrected estimates for these rates (see e.g. Fong
et al. (2015); Siellez et al. (2016)). However, for a sim-
ple estimate we assume that RGW,EM and RGW are of
similar magnitude, and take REM to be approximately
RFermi = 0.124 per-day (Abbott et al. 2017a). Then
using [∆tmin,∆tmax] = [−1, 5] s (as used in the Abadie
et al. (2012) search) in Eq. (29), the odds, including
the spatial overlap, are OC/SS(DGW, DEM) & 106: the
odds provide decisive evidence that the two detections
originate from the same event.

These numbers are consistent with the p-values esti-
mated in (Abbott et al. 2017a): the time overlap domi-
nates, the spatial part is small but supports the hypoth-
esis, and the overall factor is highly significant (the total
p-value was found to be 5×10−8 (Abbott et al. 2017a)).

3.3. Comparison with p-values

There are parallels that can be drawn between the
odds calculated in Sec. 3.1 and the p-value approach
of (Abbott et al. 2017a); namely, the spatial overlap
Eq. (21) with the S statistic and the form of the tempo-
ral overlap (i.e. inversely proportional to the background
rate).

However, the two methods are not equivalent and the
numerical values themselves cannot be directly com-
pared, as they answer different questions. The odds is
exactly our relative degrees of belief for the common- vs.
distinct-source hypotheses, given the assumptions made
in the calculation; the p-value tests whether the data is
consistent or not with the null (distinct-source) hypoth-
esis, and is typically interpreted as the rate at which
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a rule for deciding the significance of a joint detection
leads to false positives (Finn et al. 1999).

Finally, a more practical difference is that while
Eq. (21) can be directly interpreted as a Bayes factor for
the spatial overlap, interpreting the S statistic requires
numerical calculation of the background by randomly
rotating a set of observed short GRB sky localizations.

4. CONCLUSIONS

We introduce a Bayesian model comparison approach
to estimating our confidence that two multimessenger
observations are due to a common source as opposed to
an accidental coincidence of distinct sources. The pri-
mary result of this work is Eq. (16), which generically al-
lows the calculation of the Bayes factor (and, hence, the
odds) from the joint posterior distributions of common
model parameters inferred independently from two data
sets. This approach forces us to recognize the conditions
under which the contributions to the Bayes factor can
be factorized.

We provide an example where the spatial and tem-
poral overlap calculation can be approximately factor-
ized for two independent observations with isotropic
observatories and apply the result to GW170817 and
GRB 170817A. We find decisive evidence in favor of their
association, consistent with Abbott et al. (2017a).
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