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1 Introduction

There exist 3 maximal supersymmetry algebras in 6 spacetime dimensions [1]: the (4, 0)

superalgebra, the (3, 1) superalgebra and the (2, 2) superalgebra — as well, of course, as the

chirality-reversed superalgebras (0, 4) and (1, 3). In (p, q), the number p (respectively q)

refers to the number of spinor charges transforming in the positive (respectively, negative)

chiral spinor representation of the Lorentz group in 6 dimensions (or rather its double cover
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Spin(5, 1) ≃ SL(2,H)). The three maximal superalgebras have 32 supersymmetries and all

reduce to the familiar N = 8 supersymmetry algebra in 4 spacetime dimensions.

The non-chiral (2, 2) superalgebra is the one that occurs in the dimensional reduction

of eleven-dimensional supergravity to six dimensions. The R-symmetry is in that case

usp(4)⊕usp(4) and the supersymmetry charges transform as Q 1

2

∼ (2, 1; 4, 1)⊕ (1, 2; 1, 4),

where the first two indices refer to the representation of the little algebra so(4) ≃ su(2)⊕
su(2) and the last two numbers refer to the representation of the R-symmetry. The graviton

supermultiplet is given in the bosonic sector by the representations (3, 3; 1, 1)⊕(1, 3; 5, 1)⊕
(3, 1; 1, 5)⊕(1, 1; 5, 5)⊕(2, 2; 4, 4) (one symmetric tensor, five non-chiral two-forms, twenty-

five scalars and sixteen vectors), making a total of 128 physical degrees of freedom.

The (4, 0) and (3, 1) superalgebras are less familiar. We concentrate here on the (4, 0)-

superalgebra. The (3, 1)-theory will be discussed in a separate publication [2].

The (4, 0) theory has been argued by Hull [3–6] to be the strong coupling limit of

theories having N = 8 supergravity as their low energy effective theory in five spacetime

dimensions. The R-symmetry algebra in the (4, 0)-case is usp(8). The bosonic field content

of the (4, 0) theory is given by

(5, 1; 1)⊕ (3, 1; 27)⊕ (1, 1; 42) (1.1)

i.e., a chiral tensor of mixed Young symmetry (“exotic graviton”), 27 chiral two-

forms and 42 scalars, making 128 physical degrees of freedom as in the (2, 2)-theory. The

fermionic field content is given by 8 fermionic chiral 2-forms (“exotic gravitini”) and 48

spin-1/2 fields,

(4, 1; 8)⊕ (2, 1; 48) (1.2)

which matches the number 128 of bosonic degrees of freedom. The fields fit into a unitary

supermultiplet of the six-dimensional superconformal group OSp(8∗|8) [3, 7]. The theory

is expected to have E6,6-symmetry (like maximal supergravity in 5 dimensions), the chiral

2-forms being in the 27 and the scalars parametrizing the coset E6,6/USp(8), which has

dimension 78− 36 = 42. It can be viewed as the square of the (2, 0) theory [8].

Now, the discussion of [3–5] was performed at the level of the equations of motion.

Although one may develop quantization methods that bypass the Lagrangian, the inves-

tigation of the quantum properties lies definitely on more familiar grounds when a self-

contained action principle does exist. The central result of our paper is to provide such a

local variational principle for the free (4, 0)-theory.

The construction of an action principle is somewhat intrincate because the theory

contains fields subject to self-duality conditions. A typical example of such fields is given

by chiral p-forms, the curvature of which is self-dual. While the equations of motion of these

fields are manifestly covariant, the action principle from which the equations derive [9] is

covariant, but not manifestly so.1 The Lagrangian is linear in the time derivatives of the

fields. The situation is reminiscent of the Hamiltonian action principle for a relativistic

theory, which is also covariant but not manifestly so.

1One can preserve manifest covariance of the action by introducing auxiliary variables that enter non

polynomially in the action (even in the free case) [10–12], but we shall not follow this approach here.
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The (4, 0)-theory contains chiral 2-forms and so its action principle will not be man-

ifestly covariant. But it contains also more exotic chiral tensor fields with mixed Young

symmetry, as well as fermionic chiral 2-forms. These fields add further difficulties. In order

to implement the chirality condition in the action principle, one must introduce “prepoten-

tials” for the chiral tensor fields, as it was done initially for formulating four-dimensional

linearized gravity in a manifestly duality-symmetric way [13].

The exotic graviton ( -tensor) was treated in [14], where an action principle lead-

ing to the chirality equation was explicitly given. To keep supersymmetry manifest, one

must also introduce prepotentials for the exotic gravitini. The prepotential for the exotic

graviton transforms into these prepotentials under supersymmetry, as found in [15, 16]

in the manifestly duality-invariant descriptions of the four-dimensional (32 , 2) and (2, 52)

supermultiplets.

A crucial feature of the prepotential formulation is the appearance of the Weyl gauge

symmetry: the prepotentials are invariant not only under standard higher-spin diffeomor-

phisms, but also under higher-spin Weyl transformations. Furthermore, the number of

spatial dimensions is always “critical” in the sense that the Weyl tensor, i.e., the trace-

less part of the curvature tensor, identically vanishes, so that one must use analogs of the

Cotton tensor to control the Weyl symmetry of the prepotentials [14, 17–19]. While the

presence of the higher-spin Weyl gauge symmetry is still somewhat intriguing, it provides

a very powerful tool to constrain the form of the action.

Our paper is organized as follows. In the next section (section 2), we consider the

description of the exotic gravitino in six spacetime dimensions. We show that the equa-

tions of motion can be rewritten as self-duality conditions completed by a constraint on the

fermionic field, which can be solved through the introduction of prepotentials. In section 3,

we give explicitly the action of the (4, 0)-theory. The action has manifest USp(8)-symmetry

but is not manifestly covariant. We then discuss explicitly supersymmetry in section 4. We

give the transformation rules and verify that the action is invariant. We also compute the

algebra of the supersymmetry transformations and obtain the super-Poincaré algebra. In

section 5, we provide the actions for the exotic supergravity theories with lower supersym-

metry ((1, 0), (2, 0) and (3, 0)). In section 6, we discuss the dimensional reduction to five

dimensions and show that the action of the (4, 0)-theory reduces to the action of linearized

maximal supergravity. Section 7 contains brief conclusions and comments. Three appen-

dices complete our paper: appendix A quickly recalls the central properties of Γ-matrices

in six spacetime dimensions, appendix B gives our USp(8) conventions, while appendix C

develops the conformal geometry of a spinorial two-form in five dimensions — the number

of spatial dimensions in six spacetime dimensions.

Spacetime is flat Minkowski spacetime R
1,5 throughout with a Lorentzian metric of

“mostly plus” signature.
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2 The exotic gravitino

2.1 Fermionic two-form

The action for a fermionic two-form Ψστ is given by a straightforward generalization of the

Rarita-Schwinger action,

S =

∫

d6x Ψ̄µνΓ
µνρστ∂ρΨστ (2.1)

(with Ψ̄µν ≡ iΨ†
µνΓ0), where we have taken the spacetime dimension to be six from the

outset although the action (2.1) makes sense in any number of spacetime dimensions. The

action is invariant under the gauge transformations

δΨµν = ∂µλν − ∂νλµ = 2∂[µλν]. (2.2)

The invariant field strength for this gauge transformation is

Hµνρ = ∂µΨνρ + ∂νΨρµ + ∂ρΨµν = 3∂[µΨνρ]. (2.3)

The equation of motion is the generalized Rarita-Schwinger equation

ΓµναβγHαβγ = 0. (2.4)

In six spacetime dimensions, one can impose a positive or negative chirality condition (Weyl

spinors) and we shall assume from now on that

Γ7Ψλµ = Ψλµ (2.5)

(our conventions on Γ-matrices in six spacetime dimensions are collected in appendix A).

This implies that

Γ7Hµνρ = Hµνρ (2.6)

and that the gauge parameter λν must also be taken to have positive chirality,

Γ7λν = λν . (2.7)

The equations of motion (2.4) can be split into space and time as follows,

ΓiabcHabc = 0, ΓijabcHabc + 3Γ0ΓijabH0ab = 0. (2.8)

The first equation is a constraint on Ψmn and its spatial gradients, and the second involves

the time derivatives of Ψmn and is dynamical. They are of first order. In fact, the action

itself is already in Hamiltonian form and can be decomposed as

S =

∫

dt d5x
(

ηijΨ̇ij −H+Ψ†
0iCi + Ci†Ψ0i

)

(2.9)

where the conjugate momentum, the Hamiltonian density and the constraint are

ηij = −iΨ†
klΓ

klij (2.10)

H = −Ψ̄ijΓ
ijklm∂kΨlm (2.11)

Ci = 2iΓijkl∂jΨkl. (2.12)

The momentum conjugate to Ψ0i identically vanishes, and Ψ0i only appears in the action

as a Lagrange multiplier for the constraint Ci = 0, which is of course just ΓiabcHabc = 0.

– 4 –
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2.2 Symplectic Majorana condition

The spinorial two-form Ψλµ is subject to the chirality condition (2.5) but to no reality

condition since the Majorana condition on a single chiral spinor cannot be imposed in

six spacetime dimensions. This means, in particular, that Ψλµ and Ψ†
λµ are independent

variables in the variational principle.

It is sometimes convenient to introduce a second chiral spinorial two-form Ψ2
λµ related

to the original spinorial two-form Ψ1
λµ ≡ Ψλµ through

Ψ∗
2λµ ≡

(

Ψ2
λµ

)∗
= ǫ21BΨ1

λµ = −BΨ1
λµ (2.13)

where the matrix B realizes the equivalence between (Γµ)∗ and Γµ (see appendix A), and

where ǫab (a, b = 1, 2) is the Levi-Civita symbol in the two-dimensional internal space of

the Ψa
λµ’s. It follows from (2.13) that

Ψ∗
aλµ ≡

(

Ψa
λµ

)∗
= ǫabBΨb

λµ (2.14)

and that the action (2.1) can be rewritten as

S =
1

2

∫

d6x Ψ̄aµνΓ
µνρστ∂ρΨ

a
στ , (2.15)

(with Ψ̄aµν ≡ i
(

Ψa
µν

)†
Γ0), exhibiting a manifest USp(2) symmetry under which the spino-

rial two-forms transform in the 2. The internal index is moved down when taking complex

conjugates because the 2∗ is equivalent to the representation contragredient to the 2 (see

appendix B).

The condition (2.14) is called the “symplectic Majorana” condition and trades Ψ∗
λµ for

Ψ2
λµ. The discussion of the prepotentials can be made either in the original single spinor

formulation or in the doubled manifestly USp(2) invariant formulation. For simplicity of

notations, we shall carry the construction in the single spinor formulation. This leads to

a single prepotential, which must be doubled by the “symplectic Majorana rules” in order

to get the prepotentials of the manifestly USp(2) invariant formulation.

The gauge freedom of the theory enables one to impose the light cone gauge where

the fields are transverse and obey the necessary γ-trace conditions. The physical helicities

transform in the (4, 1) of the little group algebra su(2) ⊕ su(2), motivating the name of

“exotic gravitino” for the field Ψλµ. By contrast, one has the (3, 2) for the “ordinary

gravitino” Ψλ. In both cases, the representation of the R-symmetry USp(2) is the 2.

2.3 Self-duality condition

The equations of motion for the chiral spinorial two-form are equivalent to the set formed

by the self-duality condition on its gauge-invariant curvature H and the constraint,

H = ⋆H, ΓiabcHabc = 0 . (2.16)

The goal of this subsection is to establish this fact.

– 5 –
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The self-duality condition is consistent because (⋆)2 = 1, just as for ordinary two-forms

in six spacetime dimensions. If the spinorial two-form were not chiral, the self-duality

condition would involve Γ7 and would read

H = Γ7 ⋆ H, (2.17)

involving both self-dual and anti-self-dual components, which are separated by diagonaliz-

ing Γ7.

In components, the self-duality condition reads

H0ij =
1

3!
εijabcH

abc ⇔ Habc =
1

2
εabcijH

ij
0 . (2.18)

The proof of the equivalence of (2.4) and (2.16) goes as follows.

• (2.4) ⇒ (2.16): contracting the dynamical equation with Γi, the constraint implies

also

ΓijkH0jk = 0, ΓjkH0jk = 0. (2.19)

(The second equation follows from the first by contracting with Γi.) Then, contracting

the standard identities on the Γ-matrices ΓiΓjab = Γijab + 3δi[jΓab] and ΓijΓab =

Γijab + 4δ[i[aΓb]j] − 2δ[i[aδb]j] with H0ab, we get

ΓijabH0ab = 2δa[iΓj]bH0ab, ΓijabH0ab = 4δa[iΓj]bH0ab + 2H ij
0 (2.20)

which together imply

ΓijabH0ab = −2H ij
0 . (2.21)

With this relation, the dynamical equation becomes

ΓijabcHabc − 6Γ0H ij
0 = 0. (2.22)

Now, using the identity Γijabc = −εijabcΓ0Γ7, multiplying by Γ0 and using the chiral-

ity condition, we derive

εijabcHabc − 6H ij
0 = 0, (2.23)

which is exactly the self-duality condition in components.

• (2.16) ⇒ (2.4): contracting the abc component of the self-duality equation with Γiabc

and using the constraint, we get

ΓiH0ij = 0, ΓijH0ij = 0. (2.24)

(The second one follows from the first upon contraction with Γj .) We now use the

identity ΓijaΓb = Γijab + 3Γ[ijδa]b, along with ΓijΓab = Γijab + 4δ[i[aΓb]j] − 2δ[i[aδb]j].

Contracting them with H0ab, we find again ΓijabH0ab = −2H ij
0 . Using this in the

self-duality equation, we obtain the dynamical equation of motion for Ψλµ (second of

equation (2.8)).

We thus conclude that the spinorial two-form in six dimensions possesses the remark-

able property that its field strength is self-dual, just as the field strengths of its - and

-bosonic partners of the (4, 0) theory. The self-duality condition does not provide a com-

plete description in the fermionic case, however, since it must be supplemented by the

condition ΓiabcHabc = 0.

– 6 –
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2.4 Prepotential

The Lagrangian formulations of the bosonic chiral two-form [9] and of the bosonic chiral

-tensor [14] have the following important properties: (i) they involve only spatial tensors,

and, in particular, the temporal components of the fields (which are pure gauge) are absent;

(ii) the variational equations of motion are not the self-duality conditions “on the nose”

but an equivalent differential version of them in which the temporal components have been

eliminated by taking the appropriate curls.2

A similar formulation for the chiral spinorial two-form exists and is in fact mandatory if

one wants to exhibit supersymmetry. It is obtained by solving the constraint ΓiabcHabc = 0

in terms of a “prepotential”, getting rid thereby of its Lagrange multiplier Ψ0i. Once this

is done, the only relevant equation that is left is the self-duality condition on the curvature,

or rather its differential version

εrsmij∂m

(

H0ij −
1

3!
εijabcH

abc

)

= 0 ⇔ εrsmij∂m (∂0Ψij)− 2 ∂mHmrs = 0 (2.25)

that does not contain Ψ0i.

As shown in appendix C, the general solution of the constraint ΓiabcHabc = 0 can be

written in terms of a chiral antisymmetric tensor-spinor χij (Γ7χij = χij , χij = −χji) as

Ψab = Sab[χ], (2.26)

where Sab[χ] is the Schouten tensor of χij , defined in subsection C.2 as

Sab[χ] = −
(

δ
[a
[i Γ

b]
j] +

1

6
ΓijΓ

ab

)

εijklm∂kχlm. (2.27)

We call χij the prepotential of Ψij . In other words, the chiral two-form is the Schouten

tensor of the prepotential, because of the “constraint property of the Schouten tensor”

established in C.2.

Furthermore, if Ψij is determined up to a gauge transformation δΨij = 2∂[iλj], then

χij is determined up to

δχij = ∂[iηj] + Γ[iρj], (2.28)

where λi = Γ0ρi. This is because the Einstein tensor of Ψij is equal to the Cotton tensor of

the prepotential, and follows then directly from the discussion in the appendix C, to which

we refer for the details. The first term in (2.28) is the standard gauge transformation

of a spinorial two-form, the second term is a generalized Weyl transformation. When

inserted into the Schouten tensor, the first term drops out, while the generalized Weyl

transformation induces precisely the gauge transformation of Ψij .

We now put formula (2.26) in the action (2.9). Since the constraint is automatically

satisfied, Ci = 0, the Lagrange multipliers Ψ0i disappear. The kinetic term becomes

− iΨ†
ijΓ

ijklΨ̇kl = −iS†
ij [χ]γ

ijklṠkl[χ] = −2iχ†
ijḊ

ij [χ] (2.29)

2If one integrates these equations, one gets the self-duality conditions, where the temporal components of

the fields re-appear as integration functions. A discussion of the subtleties that arise in the chiral two-form

case when the topology of the spatial sections is non-trivial may be found in [20].

– 7 –
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where Dij [χ] is the Cotton tensor of χ, defined as

Dij [χ] = εijklm∂kSlm[χ]. (2.30)

The Cotton tensor is invariant under the transformations (2.28). The Hamiltonian is

H = −Ψ̄ijΓ
ijklm∂kΨlm = iΨ†

ijε
ijklm∂kΨlm (2.31)

= iS†
ij [χ]D

ij [χ] = −iχ†
ijε

ijklm∂kDlm[χ]. (2.32)

The action is therefore

S[χ] = −2i

∫

dt d5xχ†
ij

(

Ḋij [χ]− 1

2
εijklm∂kDlm[χ]

)

. (2.33)

The equations of motion obtained by varying the prepotential are

Ḋij [χ]− 1

2
εijklm∂kDlm[χ] = 0 (2.34)

which is nothing but the self-duality condition in the form (2.25), as follows from defini-

tions (2.26) and (2.30).

3 The action of the (4, 0) theory

3.1 Explicit form

The action is a sum of five terms, one for each set of fields in the supermultiplet,

S = S + S
F

+ S
B

+ S 1

2

+ S0. (3.1)

We describe each of these contributions in turn.

• The exotic graviton

This is a real tensor field of mixed Young symmetry (2, 2) with self-dual field strength.

It is a singlet under USp(8). The action for such a chiral tensor was derived in [14].

The variables of the variational principle are the components of the prepotential, de-

noted by Zijkl. The prepotential is real, (Zijkl)
∗ = Zijkl. The gauge symmetries of the

prepotential are generalized diffeomorphisms and generalized Weyl transformations,

δZijkl = ξij[k,l] + ξkl[i,j] + δ[i[kλj]l]. (3.2)

The action reads

S =
1

2

∫

d6xZmnrs

(

Ḋmnrs − 1

2
εmnijk∂kD

rs
ij

)

. (3.3)

where Dijkl is the Cotton tensor of Zmnrs [14],

Dijkl =
1

3!
εijabc∂

aSbc
kl . (3.4)

– 8 –
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Here, Sij
kl = Gij

kl − 2δ
[i
[kG

j]
l] +

1
3δ

i
[kδ

j

l]G is the “Schouten tensor” of Zmnrs, where

Gij
kl = Rij

kl − 2δ
[i
[kR

j]
l] +

1
3δ

i
[kδ

j

l]R is its “Einstein tensor”. The tensor Rij
kl is the

“Ricci tensor”, i.e., the trace of the Riemann tensor Ri1i2i3j1j2j3 = ∂[i1Zi2i3][j1j2,j3],

where the comma denotes a derivative (we use a similar notation for higher-order

traces). The Cotton tensor Dijkl is a (2, 2)-tensor which is invariant under all

gauge symmetries (3.2), as well as identically transverse and traceless, ∂iD
ijrs =

0 = Dijrsδjs. Furthermore, a necessary and sufficient condition for Zijrs to be pure

gauge is that its Cotton tensor vanishes.

The Cotton tensor contains three derivatives of the prepotential and the action (3.3)

is therefore of fourth order in derivatives (but of first order in the time derivative).

• The exotic gravitini

These have been discussed in the previous section. As shown there, the exotic gravi-

tini are described by fermionic 2-form prepotentials χA
ij which are chiral,

Γ7χ
A
ij = +χA

ij . (3.5)

The R-symmetry is USp(8) and the exotic gravitini transform in the 8. So there are

8 gravitini, labelled by the USp(8) index A (A = 1, · · · , 8). The reality conditions

are given by the symplectic Majorana conditions,

χ∗
A ij = ΩABBχB

ij . (3.6)

These reality conditions are consistent as discussed in appendix B.

The gauge symmetries are

δχA
ij = 2∂[iη

A
j] + 2Γ[iρ

A
j]. (3.7)

and involve both a “generalized diffeomorphism” and a “generalized Weyl transfor-

mation”. The action reads

S
F

= −2i

∫

d6xχ†
A ij

(

ḊA ij − 1

2
εijklm∂kD

A
lm

)

(3.8)

where the DA ij ≡ Dij [χA] are the Cotton tensors. The action is of third order in

derivatives (but again of first order in the time derivative).

• The chiral 2-forms

The action for a chiral two-form has been given in [9]. The chiral two-forms are in

the 27 of USp(8). There are thus 27 of them, labelled by the antisymmetric pair

[AB] with the constraint

AAB
ij ΩAB = 0. (3.9)

The reality condition (AAB
ij )∗ = AAB

ij is not compatible with USp(8) covariance, as

discussed in appendix B. Instead, we impose

A∗
AB ij = ΩAA′ΩBB′AA′B′

ij . (3.10)

– 9 –
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The consistency condition (AAB
ij )∗∗ = AAB

ij is satisfied because there is an even num-

ber of Ω matrices in equation (3.10).

The gauge transformations are

δAAB
ij = 2∂[iξ

AB
j] (3.11)

and the action reads

S
B

= −1

2

∫

d6xA∗
AB ij

(

ḂAB ij − 1

2
εijklm∂kBAB

lm

)

(3.12)

where the magnetic fields BAB ij are given by

BAB ij =
1

2
εijklm∂kA

AB
lm . (3.13)

The action is of second order in derivatives (and of first order in the time derivative).

It is remarkable that the actions for the exotic graviton, exotic gravitini and chiral

2-forms have the similar structure “prepotential × time derivative of the Cotton

tensor” minus “prepotential × curl of the Cotton tensor”, if one recalls that the

chiral 2-form is its own prepotential so that the magnetic fields can be viewed as the

Cotton tensors. This is the structure characteristic of the descriptions where duality

is put in the foreground [19, 39].

• The spin-1/2 fields

These are Dirac fermions ψABC subject to the chirality condition

Γ7ψ
ABC = +ψABC , (3.14)

and transforming in the 48 of USp(8). They are labelled by a completely antisym-

metric triplet of indices [ABC] with the constraint

ψABCΩAB = 0. (3.15)

The reality conditions are

ψ∗
ABC = ΩAA′ΩBB′ΩCC′BψA′B′C′

. (3.16)

There are no gauge transformations and the action is just a sum of Dirac actions,

S 1

2

= −
∫

d6x ψ̄ABCΓ
µ∂µψ

ABC

=

∫

d6x iψ†
ABC

(

ψ̇ABC − Γ0Γi∂iψ
ABC

)

. (3.17)

It is of first order in derivatives.
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• The scalar fields

They transform in the 42 of USp(8) and are labelled by a completely antisymmetric

quadruplet of indices [ABCD] with the constraint

φABCDΩAB = 0. (3.18)

The reality conditions are

φ∗
ABCD = ΩAA′ΩBB′ΩCC′ΩDD′φA′B′C′D′

. (3.19)

The momenta πABCD satisfy the same conditions. There are no gauge transforma-

tions and the action in hamiltonian form reads

S0 =

∫

d6x

(

π∗
ABCDφ̇

ABCD − 1

2
π∗
ABCDπ

ABCD − 1

2
∂iφ

∗
ABCD∂

iφABCD

)

. (3.20)

3.2 Equations of motion

The equations of motion following from the action are easily found to be

Ḋmnrs =
1

2
εmnijk∂kD

rs
ij (3.21)

(exotic graviton),

ḊA ij =
1

2
εijklm∂kD

A
lm (3.22)

(exotic gravitini),

ḂAB ij =
1

2
εijklm∂kBAB

lm (3.23)

(chiral two-forms),

ψ̇ABC = Γ0Γi∂iψ
ABC (3.24)

(spin-12 field) and

φ̇ABCD = πABCD , π̇ABCD = ∂i∂
iφABCD (3.25)

(scalars).

The equations of motion of the exotic graviton, exotic gravitini and chiral 2-forms take

a similar form and equate the time derivative of their respective Cotton tensors to their

spatial curl.

4 Supersymmetry

Although not manifestly so, the action of the (4, 0)-theory is Poincaré invariant. This is

because each individual piece is Poincaré invariant. This was verified explicitly for the

exotic graviton in [14] and for the chiral bosonic two-form in [9]. The other fields (exotic

gravitini, spin-12 fields, scalar fields) have a Lorentz-invariant action and Poincaré invariance

is not an issue for them.

The action is also invariant under (4, 0) supersymmetry. We first give the supersym-

metry transformations and then check the algebra.
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4.1 Supersymmetry transformations

The supersymmetry variations only mix fields that have one more or one less USp(8) index,

i.e.

Zijkl ←→ χA
ij ←→ AAB

ij ←→ ψABC ←→ πABCD, φABCD. (4.1)

In terms of representations of the little algebra so(4) ≃ su(2) ⊕ su(2), this corresponds

to fields of neighbouring “spin”: (5, 1), (4, 1), (3, 1), (2, 1) and (1, 1). The canonical di-

mensions of the various objects (fields and supersymmetry parameter) appearing in the

supersymmetry variations are

Zijkl χA
ij AAB

ij ψABC πABCD φABCD ǫA ∂µ

1 3/2 2 5/2 3 2 −1/2 1

where ǫA are the supersymmetry parameters and where we have also listed for completeness

the canonical dimension of ∂µ. We take the supersymmetry parameters to be symplectic

Majorana-Weyl spinors of negative chirality,

Γ7ǫ
A = −ǫA, ǫ∗A = ΩABBǫB, (4.2)

and so Γ7Γ0ǫ
A = +Γ0ǫ

A.

The variations containing fields with one index more are easy to guess: the USp(8)

index on the supersymmetry parameter ǫA must be contracted, and not many possibilities

remain with the correct dimension, spatial index structure, USp(8) covariance, chirality,

and reality conditions. From those variations, we get the others by requiring the invariance

of the kinetic terms and projecting on the appropriate USp(8) representation. The end

result is

δǫZijkl = α1P(2,2)

(

ǭAΓijχ
A
kl

)

(4.3)

δǫχ
A
ij = − α1

4.3!3
∂rZ kl

ij εpqrklΓ
pqΓ0ǫA +

α2

2
AAB

ij ΩBCΓ
0ǫC (4.4)

δǫA
AB
ij = α2

(

4ǭCS
[A
ij Ω

B]C +
1

2
ΩAB ǭCS

C
ij

)

+ α3ǭCΓijψ
ABC (4.5)

δǫψ
ABC = −α3

2
ΓijΓ0

(

B[AB
ij ǫC] − 1

3
Ω[ABBC]D

ij ΩDEǫ
E

)

(4.6)

+ α4

(

πABCDΩDEΓ
0ǫE + ∂iφ

ABCDΩDEΓ
iǫE

)

δǫφ
ABCD = α4

(

2ǭEψ
[ABCΩD]E +

3

2
ǭEΩ

[ABψCD]E

)

(4.7)

δǫπ
ABCD = α4

(

2ǭEΓ
0Γi∂iψ

[ABCΩD]E +
3

2
ǭEΓ

0ΓiΩ[AB∂iψ
CD]E

)

, (4.8)

where P(2,2) is the projector on the (2, 2)-Young symmetry, which takes the explicit form

P(2,2)

(

ǭAΓijχ
A
kl

)

=
1

3

(

ǭAΓijχ
A
kl + ǭAΓklχ

A
ij − 2ǭAΓ[i[kχ

A
l]j]

)

(4.9)

in this case, and where SA
ij is the Souten tensor of χA

ij . Here, the matrix ΩAB (with indices

up) is defined through ΩABΩCB = δAC and is numerially equal to ΩAB (see appendix A).
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Having ǫA to be of negative chirality while the fields have positive chirality makes the

variations of the bosonic fields not identically zero and gives the correct chirality to those

of the fermionic fields.

These transformations leave not only the kinetic term invariant but one also verifies

that they leave the Hamiltonian invariant.

The real constants α1 to α4 are free at this stage since the action is invariant for any

values of them. They will be fixed in eq. (4.20) below (up to an overall factor) through

the requirement that the supersymmetry transformations close according to the standard

supersymmetry algebra.

For later purposes, it is convenient to compute the supersymmetry transformations of

the gauge-invariant tensors. These are

δǫDijkl[Z] =
α1

(3!)3
P(2,2)

(

ǭAεpqrijΓ
pq∂rDA

kl

)

(4.10)

δǫDij [χ
A] = −α1

4
Dijkl[Z]ΓklΓ0ǫA (4.11)

+
α2

3

(

εijklm∂kBAB lm + εijklm∂kΓl
pBABmp + 2ΓkΓ0∂

kBAB
ij

)

ΩBCΓ
0ǫC

δǫBAB
ij = α2

(

2ǭCD
[A
ij Ω

B]C +
1

4
ΩAB ǭCD

C
ij

)

+
α3

2
ǭCεijklmΓlm∂kψABC . (4.12)

These variations involve only the gauge invariant objects, as they should.

4.2 Supersymmetry algebra

As we mentioned above, the action of the (4, 0)-theory is Poincaré invariant [9, 14] although

not manifestly so. The Poincaré generators Pµ and Mµν close therefore according to the

Poincaré algebra.

In order to establish the (4, 0)-supersymmetry algebra, one needs to verify that the

anticommutator of two supersymmetries gives a space-time translation, as well as the other

commutation relations involving the supercharges. This is the question on which we focus

in this section.

Before proceding with the computation, we stress that in the standard Hamiltonian

formalism, the variation ǫ0P0F of a dynamical variable F under a time translation is given

by its Poisson bracket [F,H] with the Hamiltonian times the parameter ǫ0 of the time trans-

lation. It is a function of the phase space variables only and not of their time derivatives.

When one uses the equations of motion, ǫ0P0F becomes of course equal to ǫ0∂0F . The same

feature holds for the above “Hamiltonian-like” first-order action of the (4, 0)-theory. Simi-

larly, the supersymmetry transformations do not involve time derivatives of the variables.

For this reason, their algebra cannot contain time derivatives either. This is again a well

known feature of the Hamiltonian formalism, when transformations are written in terms

of phase space variables. It occurs in the Hamiltonian formulation of non-exotic supersym-

metric theories as well. To compare with the familiar form of the supersymmetry algebra

acting on the fields where time derivatives appear, one must use the equations of motion.

We first compute the anticommutator of two supersymmetry transformations. We

carry this task for the gauge-invariant curvatures, for which the computation is simpler. For
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non gauge-invariant fields, the commutator of supersymmetries may indeed give additional

gauge or Weyl transformations terms.

On the Cotton tensor of Z, we find

[δǫ1 , δǫ2 ]D
ij
kl[Z] =

α2
1

(3!)3
∂rD

ij
kl[Z]

(

ǭ2AΓ
rǫA1

)

− α2
1

(3!)3
P(2,2)∂rDklpnε

ijpqr ǭ2AΓ
n
qΓ

0ǫA1

+
α2
1

2(3!)3
P(2,2)ε

pqrij∂pDqrklǭ2AΓ
0ǫA1

− (1 ↔ 2) + (terms containing AAB
ij ). (4.13)

The first term is a spatial translation. The second term vanishes: it follows from the sym-

plectic Majorana reality conditions that ǭ2AΓ
n
qΓ

0ǫA1 is symmetric in 1, 2, see appendix A.

(The other terms are antisymmetric under the exchange of 1 and 2.) Using the equation of

motion for Z, the curl appearing in the third term becomes a time derivative. The extra

terms containing the bosonic two-forms AAB
ij can be shown to vanish. We therefore find

indeed a space-time translation,

[δǫ1 , δǫ2 ]D
ij
kl[Z] = vµ∂µD

ij
kl[Z], vµ = − 2α2

1

(3!)3
(ǭ1AΓ

µǫA2 ). (4.14)

We proceed in a similar fashion for the other fields. We collect here a few identities

useful for this computation:

1. For the commutator on fermionic fields, one needs the following Fierz rearrangement

identity, valid for two spinors ǫ1, ǫ2 of negative chirality and a spinor η of positive

chirality:

(ǭ1η)ǫ2 =
1

4

[

(ǭ1Γ
0ǫ2)Γ

0η − (ǭ1Γ
iǫ2)Γiη +

1

2
(ǭ1Γ0ijǫ2)Γ

0ijη

]

. (4.15)

It follows from the completeness relations of gamma matrices, and from the duality

relations between rank r and rank 6 − r antisymmetric products of gamma matri-

ces [38]. It is independent from any Majorana condition on the spinors and is therefore

also valid when ǫ1, ǫ2 and η carry free symplectic indices.

2. The Cotton tensor of χij satisfies the massless Dirac equation

Γ0Γk∂kDij = Ḋij . (4.16)

It is a consequence of its equation of motion (3.22) and of the Γ-tracelessness identity

ΓiDij = 0.

3. The scalar field satisfies

2φ[ABC|E|ΩD]NΩEM + 3Ω[ABφCD]NEΩEM + 2φ[ABC|N |δ
D]
M =

1

2
φABCDδNM . (4.17)
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This identity follows from

Ω[AA′

ΩBB′

ΩCC′

ΩDD′

δ
N ]
M = 0 (4.18)

by contracting with φPQRSΩPA′ΩQB′ΩRC′ΩSD′ . Equation (4.18) holds because the

indices go from 1 to 8 and the antisymmetrization is performed on nine indices.

After this is done, we find

[δǫ1 , δǫ2 ]Φ = −κ2(ǭ1AΓ
µǫA2 )∂µΦ (4.19)

on any (gauge-invariant) field Φ, provided the following relations hold between the con-

stants αi:
2α2

1

(3!)3
= α2

2 =
2α2

3

3
=

α2
4

2
≡ κ2. (4.20)

Writing the generetor of supersymmetry transformations as ǭAQ
A, we therefore get the

algebra

{QA
α , Q

B
β } = κ2ΩAB

(

PLΓ
µC−1

)

αβ
Pµ. (4.21)

The remaining relations involving the supercharge are easy to derive. First, one notes

that the supersymmetry transformations commute with ∂µ since they do not depend ex-

plicitly on the spacetime coordinates. So one has [QA
α , Pµ] = 0. Second, one observes

that the established Poincaré invariance of the action [9, 14] forces the supercharges to

transform in a definite representation of the Lorentz group. Knowing the transformation

properties of the supercharges under spatial rotations — which we do since SO(5) covariace

is manifest — determines the commutators [QA
α ,Mij ] of the supercharges with the spatial

rotation generators Mij . The ambiguity as to which representation of the Lorentz group

((2, 1) or (1, 2)) actually occurs is resolved by considering the manifestly Lorentz invariant

transformation rules of the scalars, which shows that the supercharges transform in the

(2, 1). Taking into account the USp(8) transformation properties of the supercharges, one

thus gets Q 1

2

∼ (2, 1; 8).

5 Exotic theories with lower supersymmetry

There exist other supersymmetric multiplets containing the exotic graviton, with lower

supersymmetry. These are listed in [21]. The corresponding actions are easy to write down

by appropriate truncations of the (4, 0)-theory.

5.1 The (1, 0)-theory

Consider the USp(2) subgroup of USp(8) acting in the internal (1, 2)-plane. Let a = 1, 2

and α = 3, 4, 5, 6, 7, 8, so that (A) = (a, α). We set A12
ij ≡ Aij = AijΩ

12. The conditions

χα
ij = 0, ψABC = 0, φABCD = 0, πABCD = 0 (5.1)

and

Aaα
ij = 0, Aαβ

ij = −1

3
ΩαβAij (5.2)
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are evidently USp(2)-invariant and fulfill the USp(8)-constraint (3.9) on the fields. These

conditions are furthermore invariant under the above supersymmetry transformations when

the supersymmetry parameters are taken as (ǫA) = (ǫa, ǫα = 0) with ǫa arbitrary, i.e., under

(1, 0)-supersymmetry.

The conditions (5.1) and (5.2) define the (1, 0)-theory, which contains thus one ex-

otic graviton, one bosonic chiral two-form and two exotic gravitini, which are respectively

singlets and doublet of USp(2), corresponding to

(5, 1; 1)⊕ (3, 1; 1)⊕ (4, 1; 2) . (5.3)

The fields are Zijkl, χ
a
ij and Aab

ij , where a, b take two values, a, b = 1, 2 and the two-form

A12
ij is not subject to the condition ΩabA

ab
ij = 0 (which would eliminate it). The reality

condition A∗
ab ij = Ωaa′Ωbb′A

a′b′

ij (with Ωaa′ = εaa′) implies that the singlet two-form A12
ij is

real. The action is

S = S + S
F

+ 2S
B

. (5.4)

5.2 The (2, 0) and (3, 0)-theories

The analysis proceeds in the same way for the (2, 0) and (3, 0)-theories.

One finds:

• For the (2, 0)-theory, with R-symmetry USp(4), one splits the USp(8)-indices as

(A) = (a, α), a = 1, 2, 3, 4, α = 5, 6, 7, 8. The truncation to the (2, 0)-theory is

obtained by imposing

χα
ij = 0, ψabα = 0, ψaαβ =

1

4
ΩαβψabcΩbc, ψαβγ = 0, (5.5)

Aaα
ij = 0, Aαβ

ij =
1

4
ΩαβAab

ijΩab, (5.6)

φabcα = 0, φabαβ =
1

2
ΩαβΩabφ, φaαβγ = 0, φαβγδ = εαβγδφ (5.7)

and

πabcα = 0, πabαβ =
1

2
ΩαβΩabπ, πaαβγ = 0, παβγδ = εαβγδπ. (5.8)

The independent fields are Zijkl, χ
a
ij , A

ab
ij , ψ

abc, φabcd = φεabcd and πabcd = πεabcd

and are not constrained by USp(4) conditions. Except for the chiral two-forms, which

transform in the 5⊕ 1, they are all in irreducible representations of USp(4).

The (2, 0)-theory contains therefore one exotic graviton, four exotic gravitini, six

bosonic chiral two-forms, four spin-12 fields and one scalar,

(5, 1; 1)⊕ (3, 1; 1)⊕ (3, 1; 5)⊕ (1, 1; 1)⊕ (4, 1; 4)⊕ (2, 1; 4) . (5.9)

The action is obtained by mere substitution of the truncation conditions into the

(4, 0)-action. It is invariant under the supersymmetry transformations that preserve

the truncation, i.e., the supersymmetry transformations with parameters taken as

(ǫA) = (ǫa, ǫα = 0) where ǫa is arbitrary. This is (2, 0)-supersymmetry.
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• For the (3, 0)-theory, with R-symmetry USp(6), one splits the USp(8)-indices as

(A) = (a, α), a = 1, 2, 3, 4, 5, 6, α = 7, 8. The truncation to the (3, 0)-theory is

obtained by imposing

χα
ij = 0, ψabα = 0, ψaαβ =

1

2
ΩαβψabcΩbc, ψαβγ = 0, (5.10)

Aaα
ij = 0, Aαβ

ij =
1

2
ΩαβAab

ijΩab, (5.11)

φabcα = 0, φabαβ =
1

2
ΩαβφabcdΩcd (5.12)

and

πabcα = 0, πabαβ =
1

2
ΩαβπabcdΩcd. (5.13)

The independent fields are Zijkl, χ
a
ij , A

ab
ij , ψ

abc, φabcd and πabcd and are constrained

by the sole USp(6) conditions

φabcdΩabΩcd = 0, πabcdΩabΩcd = 0 (5.14)

which are consequences of the USp(8) constraints. Except for the chiral two-forms,

which transform in the 14⊕ 1, and the spin-12 fields, which transform in the 14′ ⊕ 6,

they are all in irreducible representations of USp(6).3

The (3, 0)-theory with R-symmetry USp(6) contains therefore one exotic graviton,

six exotic gravitini, fifteen bosonic chiral two-forms, twenty spin-12 fields and fourteen

scalars,

(5, 1; 1)⊕ (3, 1; 1)⊕ (3, 1; 14)⊕ (1, 1; 14)⊕ (4, 1; 6)⊕ (2, 1; 6)⊕ (2, 1; 14′) . (5.15)

The action is obtained by mere substitution of the truncation conditions into the

(4, 0)-action. It is invariant under the supersymmetry transformations that preserve

the truncation, i.e., supersymmetry transformations with parameters (ǫA) = (ǫa, ǫα =

0) where ǫa is arbitrary. This is (3, 0)-supersymmetry.

6 Dimensional reduction

The dimensional reduction of the exotic (4, 0)-supergravity was already discussed in [3, 4]

at the level of the equations of motion.

The dimensional reduction to 5 spacetime dimensions of the action for a chiral tensor of

-type has been performed in [14], where it was shown that the prepotential of the chiral

tensor correctly yields the prepotential for a single spin-2 field, and that the dimensionally

reduced action of the chiral tensor becomes the (prepotential version of the) Pauli-Fierz

action [22].

Similarly, the dimensional reduction to 5 spacetime dimensions of the action for a chiral

bosonic two-form leads to the action for a single U(1) vector field described by the Maxwell

3The 14 and 14
′ of USp(6) are the antisymmetric symplectic traceless tensor representations of respective

ranks 2 and 3.
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action — or its dual description in terms of a single two-form, — while the dimensional

reduction of the scalar fields just yields an equal number of scalar fields.

The little algebra for a massless field in 5 dimensions is so(3), while it is so(4) ≃
so(3)⊕so(3) in 6 dimensions. For the chiral (anti-chiral) fields only the first (second) so(3)

factor acts non trivially; the other factor is represented trivially. The representation of the

little algebra in 5 dimensions inherited from 6 dimensions by dimensional reduction is just

the representation of the chiral so(3) non-trivially represented.

The same situation of course prevails for the fermions. The dimensional reduction of

the spin-12 fields presents no difficulty, so we focus here only on the remaining fields, the

exotic gravitini. We shall perform the discussion in terms of the spinorial two-form Ψλµ.

A complete discussion in terms of the prepotentials will be given elsewhere [23].

An explicit realization of the six-dimensional gamma matrices is given by the block

form

Γµ = σ1 ⊗ γµ =

(

0 γµ

γµ 0

)

(µ = 0, . . . , 4), (6.1)

Γ5 = σ2 ⊗ I =

(

0 −iI

iI 0

)

, (6.2)

each block being 4 × 4. The first five are given in terms of the five-dimensional gamma

matrices (in particular γ4 = iγ0γ1γ2γ3 is what is usually called γ5). In this representation,

the Γ7 matrix is diagonal,

Γ7 =

(

I 0

0 −I

)

. (6.3)

Therefore, a left-handed 2-form Ψµν = PLΨµν takes the simple form

Ψµν =

(

ψ̂µν

0

)

(6.4)

and its Dirac conjugate is Ψ̄µν =
(

0
¯̂
ψµν

)

. The six-dimensional field ψ̂µν (µ, ν = 0, . . . 5)

reduces to two fields ψµν = ψ̂µν and ψµ = ψ̂µ5 (µ, ν = 0, . . . 4) in five dimensions.

Using Γµ1...µ5 = −εµ1...µ5νΓνΓ7 and Γ7Ψµν = Ψµν , the Lagrangian for the spinorial

2-form in six dimensions can be rewritten as

L = −Ψ̄µνε
µνρστλΓλ∂ρΨστ . (6.5)

Using the above decomposition, it becomes

L = −iψ̄µνε
µνρστ∂ρψστ + 2ψ̄µνε

µνρστγρ∂σψτ + 2ψ̄µε
µνρστγν∂ρψστ . (6.6)

Now, one can eliminate the five-dimensional spinorial two-form ψµν using its own equation

of motion. Indeed, varying the action with respect to ψµν yields

εµνρστ∂ρ (iψστ + 2γσψτ ) = 0 (6.7)
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from which one derives

ψµν = 2iγ[µψν] + ∂[µΛν] (6.8)

for some Λν . Inserting this expression in the Lagrangian, one gets

L = −4iψ̄µε
µνρστγστ∂νψρ = −8ψ̄µγ

µνρ∂νψρ (6.9)

which is exactly the Rarita-Schwinger action for ψµ (after rescaling ψµ → ψµ/2
√
2).4

We can conclude that the dimensional reduction of the chiral spinorial two-form in six

dimensions gives correctly a single Rarita-Schwinger field in five dimensions.

If one imposes symplectic Majorana conditions in six dimensions, these simply go

through to five dimensions.

Collecting the individual pieces, one can now compare the action and supersymmetry

transformations of the theory obtained by dimensional reduction of the exotic (4, 0)-theory

with five-dimensional maximal (linearized) supergravity [24]. It is straightforward to check

that they coincide. Similarly, the exotic (1, 0), (2, 0) and (3, 0)-theories yield the (linearized)

versions of the N = 2, N = 4 and N = 6 theories in 5 dimensions with USp(N) R-

symmetry [25–28].

It is interesting to point out that if instead of the standard description of gravity

based on a symmetric tensor, one uses the description involving the dual graviton given by

a -tensor in five dimensions, and keeps the two-form ψµν instead of the Rarita-Schwinger

field ψµ, one gets the dual description of five-dimensional linearized supergravity alluded

to in [29]. [The prepotential formulation of linearized gravity enables one to easily trade

for and vice-versa [22].]

7 Conclusions

The (4, 0) exotic supergravity theory (and its (1, 0), (2, 0) and (3, 0) truncations), which

is intrinsically chiral, possesses an action principle which we have explicitly constructed in

the free case. This action principle has unconventional features. The basic variables of the

variational principle are “prepotentials” adapted to the self-duality properties of the fields.

Although Poincaré invariant, the action is not manifestly so. We have shown that it has

(4, 0) supersymmetry and verified the supersymmetry algebra.

The same tension between manifest Poincaré invariance and manifest duality symmetry

observed in all duality-symmetric formulations (without auxiliary fields) [9, 30–32] appears

again here. Perhaps this is a signal that duality symmetry might be more fundamental [33].

The lack of manifest Poincaré invariance makes the coupling to gravity more difficult

to handle and one must resort to other techniques for that purpose [9]. The fields do

not transform with the usual tensorial properties, as also discussed recently in [34] from a

different perspective in a similar context. How serious this is a drawback in the present

case is not clear, however, since exotic supergravities are supposed to contain gravity and

4Note that the sign of the Rarita-Schwinger action is “correct”, in the sense that the physical spin- 3
2

components and the spin- 1
2
field have the same sign for the kinetic term.
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for that reason do not need to be coupled to a metric tensor. Finding the appropriate

“exotic geometry” remains a challenge.

To become a true physical model, the (4, 0)-theory should in any case admit consistent

interactions. The introduction of interactions is notoriously complicated for a collection of

chiral two-forms and is expected to be even more so here since there are exotic chiral fields

of more intricate types. An intriguing feature of the prepotentials that enter the description

of these exotic fields is that they enjoy a generalized form of Weyl gauge symmetry, which

is controlled by appropriate Cotton tensors. Perhaps the non linear extensions of these

Cotton tensors (see [35] for nonlinear Cotton tensors in three dimensions) might play an

important role in the construction of consistent interactions.
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Belgique” through the ARC program.

A Spinors and gamma matrices in six spacetime dimensions

(For more information, see e.g. [36–38]).

Gamma matrices in six spacetime dimensions are denoted by a Greek capital Γ letter.

They satisfy

ΓµΓν + ΓνΓµ = 2ηµν (A.1)

where the metric has “mostly plus” signature, η = diag(− + + + ++). The spatial Γ-

matrices are hermitian while Γ0 is anti-hermitian, so that

(Γµ)† = Γ0ΓµΓ0 (A.2)

The matrix Γ7 is defined as the product of all Γ-matrices

Γ7 = Γ0Γ1Γ2Γ3Γ4Γ5. (A.3)

It anticommutes with the other Γ-matrices, {Γ7,Γ
µ} = 0, it is hermitian, Γ†

7 = Γ7, and it

squares to the identity, Γ2
7 = I. Therefore, the chiral projectors

PL =
1

2
(I + Γ7) , PR =

1

2
(I − Γ7) (A.4)

commute with the Lorentz generators. One can thus impose the chirality conditions ψ =

PLψ (⇔ Γ7ψ = ψ) or ψ = PRψ (⇔ Γ7ψ = −ψ) on the spinors, which are then called

(positive chirality or negative chirality) Weyl spinors.

The charge conjugation matrix C is defined by the property

− (Γµ)T = CΓµC−1 (A.5)
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It is symmetric and unitary. The matrices CΓµ1...µk are symmetric for k = 0, 3 (mod 4)

and antisymmetric for k = 1, 2 (mod 4).

Defining also

B = −iCΓ0 (A.6)

we have for the complex conjugate Γ-matrices

(Γµ)∗ = BΓµB−1. (A.7)

The matrix B is unitary. It is antisymmetric and fulfills

B∗B = −I . (A.8)

One has also

(Γ7)
∗ = BΓ7B−1. (A.9)

The complex conjugate spinor ψ∗ transforms in the same way as Bψ, or what is the

same, B−1ψ∗ transforms in the same way as ψ. Using (A.9), one furthermore sees that if

ψ is a Weyl spinor of definite (positive or negative) chirality, then B−1ψ∗ is a Weyl spinor

of same chirality. The positive (respectively, negative) helicity representation is equivalent

to its complex conjugate. It would be tempting to impose the reality condition ψ∗ = Bψ,
but this is not possible: the consistency condition ψ∗∗ = ψ would impose B∗B = I, but

this contradicts (A.8).

If we have several spinors ψA (A = 1, · · · , 2n), however, we can impose the condition

(

ψA
)∗ ≡ ψ∗

A = ΩABBψB (A.10)

where the antisymmetric matrix Ω is the 2n× 2n symplectic matrix

Ω =





















0 1 0 0

−1 0 0 0 · · ·
0 0 0 1

0 0 −1 0
...

. . .





















. (A.11)

[For why the internal index is lowered as one takes the complex conjugate, see appendix B.]

Because the real matrix Ω squares to −I, Ω2 = −I, the equation (A.10) consistently implies

ψA∗∗ = ψA. Spinors fulfilling (A.10) are called “symplectic Majorana spinors”. One

can furthermore assume that the ψA’s are of definite chirality. The Weyl and symplectic

Majorana conditions define together “symplectic Majorana-Weyl spinors” (of positive or

negative chirality). For later purposes, we define ΩAB (with indices up) through ΩABΩCB =

δAC . The matrix ΩAB is numerically equal to ΩAB.

The Dirac conjugate is defined as

ψ̄ = iψ†Γ0. (A.12)
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For symplectic Majorana spinors, it can be written as

ψ̄A = ΩAB

(

ψB
)T

C. (A.13)

If ψA and χA are two symplectic (anticommuting) Majorana spinors, then the product

ψ̄Aχ
A is a real Lorentz scalar, which is symmetric for the exchange of ψA with χA,

ψ̄Aχ
A = χ̄Aψ

A . (A.14)

More generally, the products ψ̄AΓ
µ1···µkχA are real Lorentz tensors, which are symmetric

under the exchange of ψA with χA for k = 0, 3 (mod 4) and antisymmetric for k = 1, 2

(mod 4). Moreover, if the spinors have definite chirality, some of these products vanish: if

χ and ψ have the same chirality, ψ̄AΓ
µ1···µkχA vanishes for even k, while if χ and ψ have

opposite chiralities, it vanishes for odd k.

When the symplectic indices are not contracted, the rule for flipping the spinors is the

following:

ψ̄AΓ
µ1···µkχB = ΩBCΩAD χ̄CΓ

µk···µ1ψD (A.15)

(notice the index reversal). This is useful for the computation of the supersymmetry

commutators in section 4.

B USp(8) and reality conditions

The group USp(8) is defined as the group of 8× 8 complex matrices that are both unitary

and symplectic,

USp(8) = U(8) ∩ Sp(8,C). (B.1)

Indices A,B . . . range from 1 to 8. Quantities with indices upstairs transform in the

fundamental,

vA → SA
BvB, S ∈ USp(8). (B.2)

Quantities with indices downstairs transform in the contragredient representation (i.e. with

the inverse transpose (S−1)T ),

wA → (S−1)BAwB, S ∈ USp(8). (B.3)

Therefore, the contraction wAv
A is USp(8) invariant. Because USp(8) matrices are uni-

tary, (S−1)T = S∗, the contragredient representation is actually the complex conjugate

representation w → S∗w. This motivates the notation

(vA)∗ ≡ v∗A (B.4)

for the complex conjugates. The matrices of USp(8) are also symplectic, STΩS = Ω (and

also SΩST = Ω). Together with unitarity, this implies the property

ΩS = S∗Ω. (B.5)

Therefore, the quantity

wA ≡ ΩABv
B (B.6)
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transforms indeed as its indices suggest, i.e. w → S∗w when v → Sv. Because both v∗A and

ΩABv
B transform as quantities with indices down, the contractions v∗Av

A and vAΩABv
B

are invariant.

Quantities with multiple indices transform in the corresponding tensor product of

representations.

C Conformal geometry for a spinorial 2-form in five spatial dimensions

The prepotential for a spinorial two-form in six spacetime dimensions is a spatial object,

“living” therefore in five spatial dimensions. It is an antisymmetric tensor-spinor χij , with

gauge symmetries

δχij = ∂[iηj] + Γ[iρj]. (C.1)

The goal of this section is to construct its “geometry”, i.e., the invariants that can be built

out of χij and its derivatives. We also derive the main properties of these invariants. We

shall develop the formalism without imposing the chirality condition Γ7χij = χij . It can

of course be imposed. In that case, Γ7 should be replaced in the formulas below by the

identity when acting on spinors.

In line with the terminology used in the general study of higher spin conformal ge-

ometry, for which the construction follows exactly the same pattern,5 we call the η trans-

formations “generalized diffeomorphisms” and the ρ transformations “generalized Weyl

transformations”. We shall also deliberately use the names “Einstein tensor”, “Schouten

tensor” and “Cotton tensor” for the relevant invariant tensors, since this is the appropriate

terminology in the higher spin case.

C.1 Einstein tensor

First, we construct tensors that are invariant under generalized diffeomorphisms. Of course,

it is just enough to take the exterior derivative of χij . By dualizing, one gets the “Einstein

tensor”

Gij [χ] = εijklm∂kχlm, Gij [χ] = G[ij][χ] (C.2)

(antisymmetric tensor as the field χij) which is not only invariant under the η transforma-

tions, but which is also divergenceless,

∂iG
ij [χ] = 0 (C.3)

(“contracted Bianchi identity”). We have furthermore the properties

• η triviality criterion:

Gij [χ] = 0 ⇔ χij = ∂[iηj] for some ηi. (C.4)

• Divergence:

∂iTij = 0 ⇔ Tij = Gij [χ] for some χij . (C.5)
5This pattern will be precisely detailed for general half-integer spins in three dimensions in [39]. The

pattern itself does not depend on the dimension - although the actual details do.
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These are just two applications of the Poincaré lemma, in form degrees 2 and 3. The first

property implies that the most general invariant under the η transformation is a function

of the Einstein tensor and its derivatives.

Under generalized Weyl transformations, we have

δGij = εijklmΓl∂kρm = −ΓijkmΓ7Γ0∂
kρm (C.6)

which gives for the traces

δ(ΓjGij) = 2ΓikmΓ7Γ0∂
kρm ⇒ δ(Γ[iΓ

kGj]k) = 2Γ[iΓj]kmΓ7Γ0∂
kρm (C.7)

δ(ΓijGij) = 6ΓkmΓ7Γ0∂
kρm ⇒ δ(ΓijΓ

klGkl) = 6ΓijΓkmΓ7Γ0∂
kρm. (C.8)

C.2 Schouten tensor

We define the Schouten tensor as

Sij = Gij + Γ[iΓ
kGj]k −

1

6
ΓijΓ

klGkl (C.9)

It is again an antisymmetric tensor, which transforms as

δSij =
(

−Γ km
ij + 2Γ[iΓ

km
j] − ΓijΓ

km
)

Γ7Γ0∂kρm (C.10)

under generalized Weyl transformations. Using the identites Γ[mΓ rs
n] = Γ rs

mn + 2δ
[r
[mΓ

s]
n]

and ΓmnΓ
rs = Γ rs

mn + 4δ
[r
[mΓ

s]
n] − 2δrsmn, it can be seen that the combination in brackets

reduces to 2δkmij , so that the Schouten simply transforms as

δSij = ∂[iνj], νj = 2Γ7Γ0ρj . (C.11)

It is this simple transformation law of the Schouten tensor that motivates its definition.

Using ΓiΓ
k = δki + Γ k

i , the Schouten tensor can be rewritten as

Sij = −
(

δ
[k
[i Γ

l]
j] +

1

6
ΓijΓ

kl

)

Gkl (C.12)

and then, using the identity δrsmn = 1
2

(

δ
[p
[mΓ

q]
n] + 1

6ΓmnΓ
pq
)

Γ rs
pq , we can write the Einstein

tensor in terms of the Schouten tensor as

Gij = −1

2
ΓijklS

kl. (C.13)

Therefore, the Schouten satisfies

Γijkl∂
jSkl = 0 (C.14)

as a consequence of ∂jGij = 0. We have also the following direct properties:

• Pure gauge property:

Sij [χ] = ∂[iνj] ⇔ χij = ∂[iηj] + Γ[iρj] for some ηi

(

ρi = −1

2
Γ0Γ7νi

)

. (C.15)
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• Constraint property:

Γijkl∂
jT kl = 0 ⇔ Tij = Sij [χ] for some χij . (C.16)

This is the property that underlies the introduction of the prepotential for the chiral

spinorial two-form Ψij .

Using the identities ΓmnΓ
rs = Γ rs

mn + 4δ
[r
[mΓ

s]
n] − 2δrsmn and Γijkl = −εijklmΓmΓ0Γ7, we

can also rewrite the Schouten tensor as

Sij =
1

3
Gij +

1

3
Γ k
[i Gj]k +

1

6
εijklmΓkΓ0Γ7G

lm. (C.17)

C.3 Cotton tensor

The Cotton tensor is defined by taking the curl of the Schouten tensor

Dij [χ] = Gij [S[χ]] = εijklm∂kSlm[χ]. (C.18)

It is invariant by construction under both generalized diffeomorphisms and Weyl trans-

formations (C.1). It is divergenceless, ∂iD
ij = 0, and also gamma-traceless (ΓiDij = 0)

because of Γijkl∂
jSkl = 0. Its key properties are:

• Pure gauge condition: the prepotential χij is pure gauge if and only if its Cotton

tensor vanishes,

Dij [χ] = 0 ⇔ χij = ∂[iηj] + Γ[iρj] for some ηi and ρi. (C.19)

This also means that any invariant under (C.1) is a function of the Cotton tensor

and its derivatives.

• Tracelessness and divergencelessness conditions: if a spinorial antisymmetric tensor

is both divergenceless and Γ-traceless, then it is equal to the Cotton tensor of some

antisymmetric spinorial prepotential,

∂iT
ij = 0, ΓiTij = 0 ⇔ Tij = Dij [χ] for some χij . (C.20)

Both results directly follow from the Poincaré lemma and the above definitions.

Using formula (C.17) for the Schouten tensor, we can express the Cotton tensor in

terms of the Einstein tensor as

Dij =
1

3

(

εijklm∂kGlm + εijklm∂kΓlpGm
p + 2∂kΓkΓ0Γ7Gij

)

. (C.21)

The second term can also be written as 1
3Γ

pqεpqkl[i∂
kGl

j] using the identity

εabcdiΓ
ij =

1

2

(

δjaεbcdkl − δjbεacdkl − δjcεabdkl − δjdεabckl

)

Γkl. (C.22)

Note also that the identities

Γa1...akiDij = −kΓ[a1...ak−1D
ak]

j (C.23)

Γa1...akijDij = −k(k − 1)Γ[a1...ak−2Dak−1ak] (C.24)

follow from the gamma-tracelessness of the Cotton tensor.

– 25 –



J
H
E
P
0
1
(
2
0
1
8
)
1
1
4

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References
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