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1 Introduction

Scattering amplitudes in field and string theories are usually significantly simpler than

traditional methods of computation suggest. A classic example concerns the tremendous

cancellations between bosonic and fermionic loop corrections in supersymmetric ampli-

tudes. One-loop amplitudes of maximally supersymmetric gauge theory and gravity have

been firstly determined from the point-particle limit of superstrings in 1982 [1], and the ease

of that computation exemplifies the general virtue of string amplitudes to study field the-

ories from a new perspective. Since then, a variety of formalisms have been developed for

string amplitudes, including the manifestly supersymmetric pure-spinor description [2–4]

of the superstring and the more recent ambitwistor strings [5–8] which directly compute

D-dimensional field-theory amplitudes.

The traditional approach to superstring amplitudes through the Ramond-Neveu-

Schwarz formalism (RNS) is based on worldsheet spinors which allow for different boundary

conditions or spin structures on Riemann surfaces of genus g ≥ 1 [9–11]. Spacetime super-

symmetry is hidden the RNS formalism since external fermions are described through spin

fields [12], and the supersymmetry cancellations within loop amplitudes originate from the

interplay of different spin structures.
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At one loop, the summation over spin structures is well understood for RNS ampli-

tudes with any number of external bosons [13–15]: the supersymmetry cancellations stem

from generalizations of the Riemann identities among Jacobi theta functions and neatly

connect [15] with the mathematics of iterated integrals on an elliptic curve [16, 17]. In this

work, we extend the simplification of spin sums to one-loop amplitudes with two exter-

nal fermions and any number of external bosons, and the general strategy is expected to

apply to any number of fermions. The relevant genus-one correlation functions involving

spin fields will be determined in a systematic manner, and the combinations of Jacobi

theta functions in their spin sums are explicitly shown to conspire to the doubly-periodic

functions of [15–17].

The pure-spinor formalism [2, 18], on the other hand, automatically leads to superfield

representations of scattering amplitudes which simultaneously address external bosons and

fermions. This framework significantly extended the computational reach for superstring

amplitudes, see [19] for the n-point amplitude at tree level and [20–25] for multiloop results.

However, the composite nature of the b-ghost [18] currently poses difficulties in the direct

evaluation of loop amplitudes with six and more external legs. Still, indirect methods

have been successfully applied to pinpoint the complete one-loop six-point result [26],

and further developments towards higher multiplicity (and ultimately loop order) are in

progress [27, 28].

In this context, one major motivation for this work is to advance the RNS methods

for cases where the pure-spinor tools for explicit evaluation of amplitudes are still being

developed. Our results will make two-fermion-n-boson amplitudes at one loop completely

accessible and allow for comparison with the respective superspace components of the pure-

spinor expressions [26, 29]. It has the two-fold potential to either assist in the refinement of

pure-spinor methods or to check the equivalence between the RNS and pure-spinor formal-

ism in more advanced contexts. Such explicit tests of equivalence would complement recent

work [3, 4] on common origins on the pure-spinor, Green-Schwarz and RNS formalisms.

We will compute the spin-summed worldsheet integrands for n-point open- and closed-

string one-loop amplitudes with two fermions and manifest all the supersymmetry cancella-

tions. While our results apply to generic points in the moduli space of the genus-one world-

sheet of torus, cylinder or Moebius-strip topology, their degeneration limits for a pinched A-

cycle can be exported to the ambitwistor setup: Cachazo-He-Yuan (CHY) formulae [30–32]

for loop amplitudes boil down to correlators on a nodal Riemann sphere [33–35], and the

τ → i∞ limit of the subsequent spin sums yields CHY formulae involving two fermions.

For external bosons, the analogous spin sums have been recently applied to convert super-

string correlators at genus one [36] into new representations of field-theory amplitudes which

obey the Bern-Carrasco-Johansson (BCJ) duality between color and kinematics [37, 38].

In other words, the spin sums of this work encode one-loop BCJ numerators for maxi-

mally supersymmetric field-theory amplitudes with two fermions and n bosons in D space-

time dimensions.1

1The dimensional reduction of the ten-dimensional Weyl fermions in the expressions of this work yields

both lower-dimensional chiralities in different representations of the R symmetry.
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This work is organized as follows: we start by reviewing aspects of the genus-one

amplitude prescription of the RNS superstring, known results on the contributing one-

loop correlators as well as a convenient system of elliptic functions in section 2. A novel

class of genus-one correlators involving excited spin fields — spin- 32 operators from the

fermionic vertices — is presented in section 3, the main result being the n-point function in

subsection 3.3. Section 4 is dedicated to summing the correlators of the earlier sections over

the spin structures of the worldsheet spinors. We identify universal theta-function building

blocks and describe their manipulations which allow for an algorithmic simplification of

spin-summed correlators, see subsection 4.4 and appendix F for a summary of the final

results. Various representations of higher-point correlators and detailed derivations of

certain theta-function identities can be found in several appendices.

2 Review

2.1 Massless vertex operators in the RNS formalism

In the RNS formulation of the open superstring, massless bosons and fermions with mo-

menta p enter the amplitude prescription through their vertex operators

U
(−1)
b (e, p, z) = eµ ψ

µ e−φ eipX(z) (2.1a)

U
(−1/2)
f (χ, p, z) = χa Sa e−φ/2 eipX(z) . (2.1b)

They are conformal primary fields of weight h = 1 on a worldsheet with complex coordinate

z. The on-shell degrees of freedom are encoded in transverse polarization vectors pµe
µ = 0

and Majorana-Weyl spinors χa subject to the gauge-equivalence eµ ∼= eµ+pµ as well as the

massless Dirac equation pµγ
µ
abχ

b = 0, respectively. Vector and spinor indices of SO(1, 9)

are taken from the Greek and Latin alphabet as µ, ν, λ, . . . = 0, 1, . . . , 9 and a, b, . . . =

1, 2, . . . , 16, respectively, and γµab = γµba denote the 16×16 Pauli matrices.2 Subscript indices

as in Sa refer to right-handed Weyl spinors while superscripts as in χa are used for left-

handed ones.

The matter sector of the RNS model is furnished by the worldsheet scalars Xµ and

worldsheet spinors ψµ in (2.1). The fermionic vertex additionally involves the spin field

Sa of weight h = 5
8 that interchanges periodic and antiperiodic boundary conditions of

ψµ [12]. Moreover, the superscripts of U
(q)
b,f refer to the superghost charge q of the bosonized

representative eqφ of the β-γ system [39, 40]. For open strings, the vertex-operator insertion

is integrated over worldsheet boundaries, and the Chan-Paton generators for the color

degrees of freedom are suppressed for ease of notation.

2Antisymmetrized products are normalized as γµ1µ2...µp ≡ 1
p!

∑
σ∈Sn sgn(σ)γµσ(1)γµσ(2) . . . γµσ(p) , e.g.

γµν = 1
2
(γµγν − γνγµ).
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Apart from the canonical superghost pictures in (2.1), gluon and gluino vertices exist

at higher superghost charge q = 0 and q = 1
2 , respectively,3

U
(0)
b (e, p, z) = eµ

[
(p · ψ)ψµ + i∂Xµ

]
eipX(z) (2.2a)

U
(+ 1

2)
f (χ, p, z) = χa

[
1√
2
i∂Xµγ

µ
abS

b + pµS
µ
a

]
e+φ/2 eipX(z) , (2.2b)

setting 2α′ = 1. The second term of the fermion vertex involves excited spin fields4 Sµa ,

conformal primaries of weight h = 13
8 in the spin-32 representation of SO(1, 9) which appear

at the subleading order of the OPE [44]

ψµ (z)Sa (0) ∼
γµabS

b (0)

z1/2
+ z1/2

[
Sµa (0) +

√
2

5
γµab∂S

b(0)

]
+O(z3/2) (2.3)

and satisfy the irreducibility constraint

Sµa γ
ab
µ = 0 . (2.4)

We are using the shorthand ∂ = ∂
∂z in (2.2), (2.3) and later equations of this work.

2.2 One-loop superstring amplitudes with two fermions

One-loop amplitudes of the open RNS superstring are computed from correlation functions

with vanishing overall superghost charge, that is why most of the massless states enter in

the superghost pictures of (2.2). For n external bosons and two external fermions, we have

A1-loop(1, 2, . . . , n, A,B) =

∫
M1;n+2

4∑
ν=1

(−1)ν+1 (2.5)

× 〈
n∏
j=1

U
(0)
b (ej , pj , zj)U

(−1/2)
f (χ, pA, zA)U

(+1/2)
f (χ̄, pB, zB)〉ν ,

where the moduli space M1;n+2 of the (n+2)-punctured genus-one surface has to be ad-

justed to the color-order5 of A1-loop(1, 2, . . . , n, A,B). The four spin structures indexed by

ν = 1, 2, 3, 4 refer to the four boundary conditions for the worldsheet spinors ψµ which may

be independently chosen as periodic or antiperiodic under translations around the A- and

B-cycle. The correlation function in (2.5) factorizes into contributions from the decoupled

3Another term ∼ be3φ/2 of U
(+ 1

2
)

f with a different ghost structure [41] is suppressed since it cannot

contribute to tree-level and one-loop amplitudes by ghost-charge conservation.
4In [42, 43], excited spin fields are combined with the descendant fields ∂Sa in the composite operators

Sµa ∝ ψµψνγνabSb.
5For single-trace amplitudes ∼ Tr{t1t2 . . . tk}, the insertion points of the vertex operators are in-

tegrated over a single worldsheet boundary with z1 < z2 < . . . < zk. Double-trace amplitudes

∼ Tr{t1t2 . . . tj}Tr{tj+1 . . . tk} stem from punctures on both boundaries of a cylinder worldsheet such that

their cyclic ordering reflects the trace structure [45].
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CFT sectors of the superghost fields eqφ, the {ψµ, Sa, Sµb } system as well as the bosons Xµ,

〈
n∏
j=1

U
(0)
b (ej ,pj ,zj)U

(−1/2)
f (χ,pA,zA)U

(+1/2)
f (χ̄,pB,zB)〉ν =χaχ̄b〈e−φ/2(zA)eφ/2(zB)〉ν

×
∑
12...n
=P∪Q

{
pBµ 〈

∏
l∈Q

pλleρlψ
λlψρl(zl)Sa(zA)Sµb (zB)〉ν〈

∏
j∈P

ej ·i∂X(zj)
∏

k=A,B,
1,2,...,n

eipkX(zk)〉 (2.6)

+
γµbc√

2
〈
∏
l∈Q

pλleρlψ
λlψρl(zl)Sa(zA)Sc(zB)〉ν〈i∂Xµ(zB)

∏
j∈P

ej ·i∂X(zj)
∏

k=A,B,
1,2,...,n

eipkX(zk)〉
}
,

and only the former two depend on the spin structure ν. The sum over 2n partitions

12 . . . n = P ∪Q combines the two terms of the bosonic vertex (2.2a). For ease of notation,

the dependence of the correlators and their building blocks on the modular parameter τ of

the genus-one surface is often suppressed in (2.6) and later equations.

In the RNS formalism, the two-fermion amplitudes (2.5) with n = 2 bosons has firstly

been computed in [46] (also see [47, 48] for work on n = 3). For higher numbers of bosons,

however, the challenges from the correlators in (2.6) and the sum over spin structures have

never been addressed so far.

The superghost pictures of the above vertex operators partially depart from the pre-

scription of [49, 50] on the distribution of superghost charges near a worldsheet degener-

ation. This can be balanced by relocating the superghost pictures which will generically

introduce boundary terms in moduli space (see appendix A of [26] for explicit examples

in the pure-spinor formalism). Such boundary terms are likely to vanish with the large

amount of supersymmetry in ten-dimensional flat spacetime, but they might play a role

in compactifications with reduced supersymmetry. It would be interesting to pinpoint the

onset of such boundary terms.

In the following subsections, we will briefly review the genus-one correlators of the

worldsheet bosons, the superghosts and the combination of Lorentz currents ψλψρ with

unexcited spin fields Sa(zA)Sb(zB). New results to be given in sections 3 and 4 include

the genus-one correlators involving excited spin fields as well as the spin sum over the

ν-dependent correlators of (2.6).

2.3 Structure of the correlators

The genus-one correlation functions relevant to the integrand (2.6) of one-loop amplitudes

can be expressed in terms of Jacobi theta functions θν(z, τ). According to the spin struc-

tures in (2.5), there is one odd instance at ν = 1

θ1(z, τ) = −i
∞∑

n=−∞
(−1)nq

1
2
(n+ 1

2
)2e2πi(n+

1
2
)z (2.7)

– 5 –
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and three even instances at ν = 2, 3, 4,

θ2(z, τ) =
∞∑

n=−∞
q

1
2
(n+ 1

2
)2e2πi(n+

1
2
)z

θ3(z, τ) =

∞∑
n=−∞

q
1
2
n2

e2πinz (2.8)

θ4(z, τ) =

∞∑
n=−∞

(−1)nq
1
2
n2

e2πinz ,

where the dependence on the second argument via q ≡ e2πiτ will often be suppressed in the

subsequent. Bosonic correlators of the free fields Xµ can be straightforwardly computed

from the two-point function on the torus

〈iXµ(z)iXλ(0)〉 = ηµλ
[

log

∣∣∣∣θ1(z)

θ′1(0)

∣∣∣∣2 − 2π

=(τ)
[=(z)]2

]
≡ ηµλG(z) (2.9)

via Wick-contractions, e.g.6

〈i∂Xµ(z1)

N∏
j=1

eipjX(zj)〉 =

N∑
l=2

pµl

(
∂ log θ1(z1l) + 2πi

=(z1l)

=(τ)

) N∏
i<j

epi·pjG(zij) (2.10)

with zij ≡ zi−zj and additional Wick contractions i∂Xµ(z)i∂Xλ(0) ∼ ηµλ∂2G(z) between

multiple insertions of ∂Xµ.

The CFT sectors which are sensitive to the spin structure involve the prime form

E(z, w) =
θ1(z − w)

θ′1(0)
, (2.11)

raised to some fractional powers. By design of the GSO projection, the powers of the

prime form always conspire to integers when combining the individual correlators of the

superghost system [52]

〈e−φ/2(zA)e+φ/2(zB)〉ν =
θ′1(0)E(zA, zB)1/4

θν(12(zB − zA))
(2.12)

and the {ψµ, Sa, Sµb } system, starting with the two-point function of the spin field [52]

〈Sa(zA)Sb(zB)〉ν =
δba θν(12(zB − zA))5

θ′1(0)5E(zA, zB)5/4
. (2.13)

We will often use the notation

〈〈ψµ(z1) . . . Sa(z2)〉〉ν = 〈e−φ/2(zA)e+φ/2(zB)〉ν〈ψµ(z1) . . . Sa(z2)〉ν (2.14)

6In order to obtain a double-copy representation of closed-string correlators, one can follow the pre-

scription of chiral factorization [51] and exclude the contributions from the joint zero modes of ∂Xµ and

∂̄Xµ from the Wick contractions. This simplifies the contractions in (2.10) to the meromorphic expression

∂Xµ(z1)eipjX(zj) → pµj ∂ log θ1(z1j)e
ipjX(zj).

– 6 –
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for the single-valued combinations relevant to (2.6), where the ellipsis refers to an arbitrary

combination of field insertions {ψµ, Sa, Sµb }.
In slight abuse of notation, the combined partition function ( θν(0)

θ′1(0)
)4 of ten worldsheet

bosons and fermions as well as the respective ghosts has been absorbed into the normaliza-

tion of the ν-dependent correlators in (2.12), (2.13) and (2.14). This is useful for a unified

treatment of the odd spin structure ν = 1 and the even ones ν = 2, 3, 4 such that their

contributions to the amplitude (2.5) can be efficiently combined. In particular, this choice

of normalization bypasses indeterminates of the form 0
0 from the formally vanishing θν(0)

in the partition function of the odd spin structure.

2.4 Multiparticle correlators involving spin fields

The spin-field correlators in the last line of (2.6) can be assembled from the results of [55]

for any number of ψλψρ insertions.

2.4.1 Lower-point example

In the notation of (2.14), the simplest generalization of the two-point function

〈〈Sa(zA)Sb(zB)〉〉ν =
δba θν(12(zB − zA))4

θ′1(0)4E(zA, zB)
(2.15)

is given by

〈〈ψλψρ(z1)Sa(zA)Sb(zB)〉〉ν =
γλρa

b θν(12zAB)2θν(12(zA1+zB1))
2

2 θ′1(0)4E1AE1B
, (2.16)

where we used the shorthands

zij ≡ zi − zj , Eij ≡ E(zi, zj) . (2.17)

In the subsequent cases with multiple insertions of ψλψρ, it is convenient to introduce

the notation

T νij ≡
EiAEjBθν(zij+

1
2zAB) + EjAEiBθν(zji+

1
2zAB)

EijEABθν(12zAB)
, tνi ≡

θν(12(zAi + zBi))

θν(12zAB)
(2.18)

for the coefficients of the tensor structures:

〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)Sa(zA)Sb(zB)〉〉ν =

EABθν(12zAB)4

4 θ′1(0)4E1AE1BE2AE2B
(2.19)

×
[
γµ1ν1µ2ν2a

b (tν1t
ν
2)2 + ην1[µ2ην2]µ1δba (T ν12)

2 + (ηµ2[ν1γµ1]ν2a
b − ην2[ν1γµ1]µ2ab)T ν12tν1tν2

]
The relative signs in the second line depend on the conventions for the Clifford algebra,

and we follow [53–55] with a minus sign on the right-hand side of the anticommutator

{γµ, γν} = −2ηµν .

Given that vector indices are antisymmetrized with the normalization convention

ην1[µ2ην2]µ1 = ην1µ2ην2µ1 − ην1ν2ηµ2µ1 , each tensor in the [. . .] bracket of (2.19) and the

– 7 –
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subsequent equation appears with a prefactor of ±1. We note that the building blocks

in (2.18) are related via tνi = T νBi.

The correlator with one more pair of ψµ is given by

〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)ψ

µ3ψν3(z3)Sa(zA)Sb(zB)〉〉ν =
E2
ABθν(12zAB)4

8 θ′1(0)4
∏3
i=1EiAEiB

(2.20)

×
[
γµ1ν1µ2ν2µ3ν3a

b (tν1t
ν
2t
ν
3)2 + (ην1[µ2ην2][µ3ην3]µ1 − ηµ1[µ2ην2][µ3ην3]ν1)δba T

ν
12T

ν
23T

ν
13

+
{

(ηµ2[ν1γµ1]ν2µ3ν3a
b − ην2[ν1γµ1]µ2µ3ν3ab)T ν12tν1tν2(tν3)2 + ην1[µ2ην2]µ1γµ3ν3a

b (T ν12t
ν
3)2

+ (ηµ3[ν2ηµ2][ν1γµ1]ν3a
b − ην3[ν2ηµ2][ν1γµ1]µ3ab)T ν12T ν23tν1tν3 + cyc(1, 2, 3)

}]
,

where the cyclic sum in the curly bracket does not extend to the totally symmetric terms

in the second line.

2.4.2 The n-point function

The above examples of spin-field correlators involving Sa(zA), Sb(zB) and n≤3 currents

ψµjψνj point to the generalization to n insertions of ψµjψνj (zj) (which can be derived from

the results of [55]). The structure of the results is captured by

〈〈
n∏
j=1

ψµjψνj (zj)Sa(zA)Sb(zB)〉〉ν =
En−1AB θν(12zAB)4

2nθ′1(0)4
∏n
j=1EjAEjB

∑
i

(`(i))
[µiνi]

a
bϕ(i)

ν (z) , (2.21)

where the sum over i gathers Lorentz tensors `(i) with the index structure of the left-

hand side along with spin-structure dependent functions of the n+2 punctures ϕ
(i)
ν (z) =

ϕ
(i)
ν (z1, z2, . . . , zn, zA, zB). The prefactors are ±1 once the `(i) in (2.21) are organized in

terms of a single form (γρ1ρ2...ρ2k)a
b and products of η·· with antisymmetrizations in µi ↔ νi,

cf. (2.20).

Most importantly, each Lorentz tensor `(i) in (2.21) can be translated into its accompa-

nying function ϕ
(i)
ν (z) through the following dictionary (where ⊃ is understood as “contains

a factor of”)

`(i) ⊃ (γ...µj ...)a
b or (γ...νj ...)a

b ⇒ ϕ(i)
ν (z) ⊃ tνj (2.22a)

`(i) ⊃ ηµjµk or ηνjνk or ηµjνk ⇒ ϕ(i)
ν (z) ⊃ T νjk , (2.22b)

see (2.18) for the definitions of tνj and T νjk. The summation range
∑

i in (2.21) involves

all Lorentz tensors that can be obtained from partitions of the antisymmetrized pairs of

indices [µ1ν1], [µ2ν2], . . . , [µnνn] into a form (γ...)a
b and products of η··.

For each Lorentz tensor `(i), the relative prefactor ±1 can be read off by starting with

the 2n-form γµ1ν1µ2ν2µ3ν3...µnνn and moving the pairs of indices entering the given η·· to

neighboring position. The rule is that the indices in ηµiµj , ηνiνj , ηµiνj with i < j must

be moved into the order γ...µiµj ..., γ...νiνj ..., γ...µiνj ... and not the converse one (such as

γ...µjµi...). Then, the number of transpositions among the µi and νi required to attain the

pairs of neighbors determines the sign of the Lorentz tensor `(i) according to the total

– 8 –



J
H
E
P
0
3
(
2
0
1
8
)
1
9
0

antisymmetry of the γ.... The leftover indices of the form must be left in their order after

transferring the neighboring pairs to the η··.

For instance, the negative sign of ην1µ2ην2ν3γµ1µ3a
b in (2.20) can be seen by rearranging

γµ1ν1µ2ν2µ3ν3 = −γµ1ν1µ2ν2ν3µ3 and then removing the neighboring pairs ν1µ2 → ην1µ2 and

ν2ν3 → ην2ν3 , leaving −γµ1ν1µ2ν2ν3µ3 → −γµ1µ3 .

2.5 Doubly-periodic functions & bosonic one-loop amplitudes

At fixed spin structure ν = 2, 3, 4, the combined correlators of {ψµ, Sa, Sµb , e
qφ} involve the

even Jacobi theta functions (2.8) and look very different from bosonic correlators of Xµ.

After the spin sum in the one-loop amplitude (2.5), however, the ν-dependent correlator

will collapse to a system of doubly-periodic functions that generalizes the singular function

in (2.10) from contractions of i∂Xµ,

f (1)(z) ≡ ∂ log θ1(z) + 2πi
=(z)

=(τ)
. (2.23)

A system of doubly-periodic functions {f (n)(z), n ∈ N0} which is suitable to capture the

results of spin sums over the above 〈〈. . .〉〉ν can be generated from a non-holomorphic

extension of the Kronecker-Eisenstein series [16, 56]

F (z, α) =
θ′1(0)θ1(z + α)

θ1(z)θ1(α)
, Ω(z, α) = e

2πiα
=(z)
=(τ)F (z, α) =

∞∑
n=0

αn−1f (n)(z) . (2.24)

The simplest expansion coefficients besides (2.23) read

f (0)(z) = 1 , f (2)(z) =
1

2

{(
∂ log θ1(z) + 2πi

=(z)

=(τ)

)2

+ ∂2 log θ1(z)− θ′′′1 (0)

3θ′1(0)

}
. (2.25)

The functions f (n) in (2.24) can be used to generate homotopy invariant iterated integrals

over an elliptic curve [16] and therefore enter the definition of elliptic multiple zeta val-

ues [17]. The latter have been identified as a convenient language for the α′-expansion of

one-loop open-string amplitudes [15], including double-trace contributions [57].

2.5.1 Spin sums on bosonic one-loop amplitudes

In order to exemplify the relevance of the doubly-periodic f (n) in (2.24) for spin sums, let

us review their instances in the N -gluon amplitudes. From the N vertex operators (2.2a),

we are led to products of the Szegö kernels

Pν(z) ≡ θ′1(0)θν(z)

θ1(z)θν(0)
(2.26)

which ultimately appear in the combinations

Gn (z1, z2, . . . , zn) ≡
4∑

ν=2

(−1)ν+1

(
θν(0)

θ′1(0)

)4

Pν(z1)Pν(z2) . . . Pν(zn) ,

n∑
j=1

zj = 0 (2.27)

– 9 –



J
H
E
P
0
3
(
2
0
1
8
)
1
9
0

with n ≤ N . All-multiplicity techniques for the simplification of (2.27) have been given

in [13], also see [14] for an alternative method. As pointed out in [15], the above f (n)

functions together with holomorphic Eisenstein series

Gk ≡
∑
m,n∈Z

(m,n) 6=(0,0)

1

(mτ + n)k
, k ≥ 2 (2.28)

allow to compactly represent the spin sums (2.27), starting with [13–15]

G0 = G2(z1, z2) = G3(z1, z2, z3) = 0 , G4(z1, z2, z3, z4) = 1 (2.29)

G5(z1, . . . , z5) =
5∑
j=1

f (1)(zj) , G6(z1, . . . , z6) =
6∑
j=1

f (2)(zj) +
6∑

1=i<j

f (1)(zi)f
(1)(zj) .

The patterns at higher multiplicity are conveniently captured by the elliptic functions

Vw(z1, z2, . . . , zn) ≡ αnΩ(z1, α)Ω(z2, α) . . .Ω(zn, α)
∣∣
αw
,

n∑
j=1

zj = 0 , (2.30)

starting with

V0(z1, z2, . . . , zn) = 1 , V1(z1, z2, . . . , zn) =

n∑
j=1

f (1)(zj) (2.31)

V2(z1, z2, . . . , zn) =

n∑
j=1

f (2)(zj) +

n∑
1=i<j

f (1)(zi)f
(1)(zj) . (2.32)

For instance the n ≤ 9-point results of [13] translate into [15]

Gn(z1, z2, . . . , zn) = Vn−4(z1, z2, . . . , zn) , 4 ≤ n ≤ 7

G8(z1, z2, . . . , z8) = V4(z1, z2, . . . , z8) + 3G4 (2.33)

G9(z1, z2, . . . , z9) = V5(z1, z2, . . . , z9) + 3G4V1(z1, z2, . . . , z9) ,

where further simplifications arise in the degeneration limit τ → i∞ [36].

Hence, the worldsheet integrand for the N -gluon amplitude comprising spin sums (2.27)

and correlators of Xµ can be entirely expressed in terms of f (n) functions in (2.24). This

motivates to express the two-fermion amplitudes in (2.5) which are related to external

bosons by supersymmetry in the same language, also see [26] for the six-point one-loop

amplitude in pure-spinor superspace involving f
(2)
ij & f

(1)
ij f

(1)
pq .

Note that the same techniques can be used for spin sums in bosonic one-loop N -point

amplitudes in orbifold compactifications with reduced supersymmetry [58] (see [59, 60] for

earlier work on the four-point function).

3 Correlators involving excited spin fields

On top of the spin-field correlators reviewed in section 2.4, the integrand (2.6) for two-

fermion amplitudes requires correlators of the form 〈〈
∏
j ψ

λjψρj (zj)Sa(zA)Sµb (zB)〉〉ν with

an excited spin field Sµb . Following the techniques of [42, 52, 55, 61], we will determine the

structure of these genus-one correlators using bosonization techniques for any number of

ψλψρ insertions.
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3.1 Bosonization

The interacting nature of spin fields as reflected in their OPE (2.3) with the worldsheet

spinors ψµ renders SO(1, 9)-covariant correlation functions inaccessible to free-field meth-

ods. In other words, correlators cannot be obtained from a naive sum over Wick con-

tractions as in (2.10), and the computation of higher-point instances becomes a nontrivial

problem, see [53, 55]. However, a free-field description in even spacetime dimensions D = 2n

can be found by representing the {ψµ, Sa, Sµb }-system via n free bosons. These redefinitions

are known as bosonization [42] and break the SO(1, 9) symmetry to an SU(5) subgroup.

Let H denote an SU(n) vector of free chiral bosons {Hj , j = 1, 2, . . . , n} subject to

normalization Hj(z)Hk(0) ∼ −δjk ln(z) + . . ., then its exponentials eip·H are conformal

primaries of weight 1
2p2 with OPEs7

eip·H(z) eiq·H(0) ∼ zp·q ei(p+q)·H(0) + . . . . (3.1)

The OPE among the worldsheet spinors, ψµ(z)ψν(0) ∼ ηµνz−1 + . . . can be reproduced

from the dictionary

ψ±j(z) ≡ 1√
2

(
ψ2j−2(z)± iψ2j−1(z)

)
≡ e±iH

j(z) , (3.2)

where j ∈ {1, 2, . . . , n}. One can notice that ψ±j form the Cartan-Weyl basis for the

fundamental representation of SO(1, 2n−1).

Spinor components of SO(1, 2n−1) can be labelled by their eigenvalues ±1
2 under

the n simultaneously diagonalized Lorentz generators 1
2γ

µν which are most conveniently

chosen as 1
2γ

2i−2,2i−1 with i = 1, 2, . . . , n in the SU(n) setting. This suggests to identify

spinor indices with n-component lattice vectors
(
±1

2 ,±
1
2 , . . . ,±

1
2

)
from the (anti-)spinor

conjugacy classes of SO(1, 2n−1). The chiral irreducibles can be disentangled by counting

the number of negative entries:

Sa=(± 1
2
,...,± 1

2) ↔ left-handed spinor ↔ a has an even number of ‘−’ signs (3.3)

Sa=(± 1
2
,...,± 1

2) ↔ right-handed spinor↔ a has an odd number of ‘−’ signs . (3.4)

Given this dictionary between spinor indices and lattice vectors, we can make the bosoniza-

tion of spin fields more precise: the Sa, S
a are represented as an exponential of bosons H

contracted into a vector a in the weight lattice of (the Lie algebra of) SO(1, 2n−1):

Sa(z), Sa(z) ≡ eia·H(z), a ∈
{

(a1, a2, . . . , an)
∣∣ aj = ±1

2
, j = 1, . . . , n

}
. (3.5)

Accordingly, vector indices µ are identified with lattice vectors (0, . . . , 0,±1, 0, . . . , 0) of

SO(1, 2n−1) from the vector conjugacy class with one nonzero entry ±1 such that (3.2)

can be written as ψµ = eiµ·H.

7To simplify the notation, we neglect Jordan-Wigner cocycle factors [62, 63] in our discussion. These are

additional algebraic objects accompanying the exponentials to ensure that e±iH
j

and e±iH
k 6=j

associated

with different bosons anticommute. It suffices to remember that they are implicitly present and that the

bosonized representation of ψµ still obeys fermi statistics.
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Bosonization of ψµ and Sa, S
a allows us to relate other conformal primaries to their

bosonized expressions, in particular the excited spin fields Sµa at the subleading order of

the OPE ψµ and Sa in (2.3):8

Sµa (z)
∣∣
µj+aj=± 3

2
= ei(a+µ)·H(z) = e±

i
2
H1±···± i

2
Hj−1± 3

2
iHj± i

2
Hj+1±···± i

2
Hn

(z) . (3.6)

Therefore, in the bosonization scheme, Sµa can be taken as independent primaries involv-

ing a factor of e±
3
2
iHj

which capture the gamma-traceless components of the composite

operators ∼ ψµψνγνabSb.
The Cartan-Weyl basis has the remarkable advantage that entries of gamma- and

charge conjugation matrices can be written as delta functions for the lattice vectors of

SO(1, 2n−1) associated with the vector- and the spinor indices. Up to a complex phase

(which can in principle be determined by keeping track of all the cocycles [62, 63]), one has

δba ∼ δ(a+ b) , ηµν ∼ δ(µ+ ν) , γµab ∼
√

2δ(µ+ a+ b) . (3.7)

The relations in (3.7) admit a derivation of the covariant OPE (2.3) in bosonized language,

see appendix A for details.

3.2 Loop level correlators from bosonization

Correlation functions involving free bosons are well known on surfaces of arbitrary

genus [61], and their genus-one instances are given by [52]

〈
N∏
j=1

eiqjH(zj)〉ν =
1

θ′1 (0)
δ

 N∑
j=1

qj

 θν

(
N∑
k=1

qkzk

)
N∏
l<m

E (zl, zm)qlqm . (3.8)

The Jacobi theta functions θν and the prime form E(zl, zm) are defined in (2.7), (2.8)

and (2.11), and we again normalize the correlator such as to absorb the partition function

of two worldsheet supermultiplets Xµ, ψµ. A general account on bosonization at nonzero

genus including the role of spin structures can be found in [64–66], also see [67] for bosoniza-

tion of odd-spin structure amplitudes.

For a given choice of the weight vectors µ, a, b, one-loop correlators of the fields

{ψµ, Sa, Sµb } can be straightforwardly reduced to products of the free-field correlator (3.8)

by virtue of their bosonization (3.2), (3.5) and (3.6). Once a sufficient number of such

“component” results is available, they can be combined into Lorentz covariant expressions.

The idea is to make an ansatz for the correlator with all admissible Lorentz tensors in-

volving products of ηµλ, δba, γ
µ
ab whose index structure is compatible with the {ψµ, Sa, Sµb }

insertions. Each linearly independent Lorentz tensor in the ansatz is accompanied by a

spin-structure dependent function of the insertion points zi and the modular parameter τ

which remains to be determined.

8Obviously, the n2n bosonized fields of the form (3.6) do no exhaust the (2n − 1)2n independent com-

ponents of the excited spin field Sµa in a spin-3/2 representation of SO(1, 9). Still, the n2n components

in (3.6) are sufficient to infer the Lorentz-covariant correlators in the next subsections.
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Then, for each component result computed via (3.8), one can use the delta-function

representations (3.7) of ηµν , δba and γµab to identify the tensor structures compatible with

the given choice of lattice vectors. Each choice yields an equation among the unknown

functions of zj and τ along with the Lorentz tensors in the ansatz. In [46, 54, 55], this

procedure is applied to construct higher-point correlation functions involving ψµ, Sa, some

of which are reviewed in section 2.4.

Given that the delta-function representation (3.7) of ηµν , δba and γµab is only fixed up

to complex phases, covariant OPEs such as (2.3) and

Sa(z)Sb(0) ∼ δba
z5/4

+
γµνa

b ψνψµ(0)

4 z1/4
+ . . . (3.9)

Sa(z)Sµb (0) ∼
γνab ψνψ

µ(0)√
2 z5/4

+ . . . (3.10)

ψµψν(z)ψλψρ(0) ∼ ηλ[νηµ]ρ

z2
+
ηλ[νψµ]ψρ(0)− ηρ[νψµ]ψλ(0)

z
+ . . . (3.11)

are required to determine the signs in correlators, where we remind of the antisymmetriza-

tion conventions ηλ[νηµ]ρ = ηλνηµρ − ηλµηνρ.

3.2.1 Three-point example

Since the two-point correlator 〈Sa(zA)Sµb (zB)〉ν of primary fields with different conformal

weights vanishes, the simplest example involving an excited spin field reads

〈ψλψρ(z1)Sa(zA)Sµb (zB)〉ν = (ηµρ γλab − ηµλ γ
ρ
ab) rν(z1, zA, zB) , (3.12)

with some function rν of z1, zA, zB and τ . The tensor on the right-hand side is uniquely

determined by the antisymmetry of ψλψρ = −ψρψλ and the irreducibility condition (2.4) of

the excited spin field Sµb which forbids a “gamma-trace” ∼ γµab as well as the corresponding

three-form γλρµab . By choosing the weight vectors to be

λ→ (−1, 0, 0, 0, 0) , ρ→ (0,+1, 0, 0, 0) , µ→ (+1, 0, 0, 0, 0)

a→ 1

2
(−,−,−,−,−) , b→ 1

2
(+,−,+,+,+) , (3.13)

one can assemble the function in rν in (3.12) via five copies of (3.8):

±
√

2 rν(z1, zA, zB) = 〈e−iH1(z1)e−
i
2
H1(zA)e

3i
2
H1(zB)〉ν 〈eiH

2(z1)e−
i
2
H2(zA)e−

i
2
H2(zB)〉ν

×
5∏
j=3

〈e−
i
2
Hj(zA)e

i
2
Hj(zB)〉ν (3.14)

=
θν(32zB − z1 −

1
2zA)θν(z1 − 1

2(zA + zB))θ3ν(12(zB − zA))

θ′1(0)5E(z1, zB)2E(zA, zB)5/4

The factor of
√

2 on the left-hand side stems from the normalization (3.7) of the gamma-

matrices in the Cartan-Weyl basis. By adjoining the correlator (2.12) of the superghosts,
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the above results combine to

〈〈ψλψρ(z1)Sa(zA)Sµb (zB)〉〉ν = ηµ[ρ γ
λ]
ab

θν(12(zA1+zB1))θν(z1B+1
2zAB)θ2ν(12zAB)

√
2 θ′1(0)4E2

1BEAB

≡
θ4ν(12zAB)

√
2 θ′1(0)4E1AE1BEAB

× ηµ[ρ γλ]ab t
ν
1 Tν1 , (3.15)

with shorthands zij = zi − zj and Eij = E(zi, zj), where the sign can be fixed via Jordan-

Wigner cocycles or the covariant OPE (3.10). In passing to the second line of (3.15), we

have introduced an additional building block

Tνj ≡
EjAθν(zjB + 1

2zAB)

EjBθν(12zAB)
(3.16)

which extends the definitions of T νij and tνi in (2.18) to account for the z-dependence from

an excited spin field.

3.2.2 Four-point example

As an example with several viable tensor structures, we consider

〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)Sa(zA)Sλb (zB)〉〉ν = γ

[µ1
ab η

ν1][µ2ην2]λR1
ν(z) (3.17)

+ γ
[µ2
ab η

ν2][µ1ην1]λR2
ν(z) + γ

µ1ν1[µ2
ab ην2]λR3

ν(z) + γ
µ2ν2[µ1
ab ην1]λR4

ν(z) ,

with Rjν(z) ≡ Rjν(z1, z2, zA, zB), where R1
ν ↔ R2

ν and R3
ν ↔ R4

ν are related to each other

by exchange of z1 and z2. In order to see that four tensor structures are sufficient to

express the correlator in question, one can verify that the tensor product of the Lorentz

representations of ψµ1ψν1 , ψµ2ψν2 , Sa, S
λ
b contains precisely four scalars.

Starting from λ→ (1, 0, 0, 0, 0), one can isolate R3
ν(z) through the choice

µ1 → (0, 0,−1, 0, 0) , ν1 → (0, 0, 0,−1, 0) , µ2 → (0, 1, 0, 0, 0) (3.18)

ν2 → (−1, 0, 0, 0, 0) , a→ 1

2
(−,−,+,+,−) , b→ 1

2
(+,−,+,+,+)

of lattice vectors, which specializes (3.17) to

± 2
√

2R3
ν(z) = 〈e−φ/2(zA)eφ/2(zB)〉ν

4∏
j=3

〈e−iHj(z1)e
i
2
Hj(zA)e

i
2
Hj(zB)〉ν

× 〈e−iH1(z2)e−
i
2
H1(zA)e

3i
2
H1(zB)〉ν〈eiH

2(z2)e−
i
2
H2(zA)e−

i
2
H2(zB)〉ν〈e−

i
2
H5(zA)e

i
2
H5(zB)〉ν

=
θν(12(zA1 + zB1))

2θν(12(zA2 + zB2))θν(z2B + 1
2zAB)

θ′1(0)4E1AE1BE2
2B

. (3.19)

The three powers of
√

2 stem from the product of three gamma-matrices in (3.17) along

with R3
ν .

Likewise, combinations of R1
ν and R3

ν can be addressed via λ→ (1, 0, 0, 0, 0) and

µ1 → (0, 0, 1, 0, 0) , ν1 → (0,∓1, 0, 0, 0) , µ2 → (0,±1, 0, 0, 0) (3.20)

ν2 → (−1, 0, 0, 0, 0) , a→ 1

2
(−,−,−,−,−) , b→ 1

2
(+,+,−,+,+) ,
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which specializes (3.17) to

〈e−φ/2(zA)eφ/2(zB)〉ν〈e−iH
1(z2)e−

i
2
H1(zA)e

3i
2
H1(zB)〉ν〈e∓iH

2(z1)e±iH
2(z2)e−

i
2
H2(zA)e

i
2
H2(zB)〉ν

×〈eiH3(z1)e−
i
2
H3(zA)e−

i
2
H3(zB)〉ν

5∏
j=4

〈e−
i
2
Hj(zA)e

i
2
Hj(zB)〉ν (3.21)

=
θν(12zAB)θν(z2B+ 1

2zAB)θν(12(zA1+zB1))

θ′1(0)4E12EABE1AE1BE2
2B

×
{
E1AE2Bθν(z12+

1
2
zAB) : ν1=(0,−1,0,0,0)

E1BE2Aθν(z21+
1
2
zAB) : ν1=(0,+1,0,0,0)

.

Both γ
[µ1
ab η

ν1][µ2ην2]λ and γ
µ1ν1[µ2
ab ην2]λ are non-zero for the lattice vectors in (3.20), but they

exhibit different symmetry properties under exchange of µ2 and ν1: since γ
[µ1
ab η

ν1][µ2ην2]λ is

symmetric under µ2 ↔ ν1, its coefficient must be the sum of the two expressions in (3.21)

related by exchange of µ2 and ν1. The difference of the two expressions in (3.21) in turn

reproduces the coefficient (3.19) of the tensor γ
µ1ν1[µ2
ab ην2]λ with manifest antisymmetry in

µ2 ↔ ν1, as can be verified through the Fay trisecant identity [68]

E12EABθν

(
1

2
(z1 + z2 − zA − zB) + z0

)
θν

(
1

2
(z1 + z2 − zA − zB)− z0

)
= E1AE2Bθν

(
1

2
z12+

1

2
zAB+z0

)
θν

(
1

2
z12+

1

2
zAB−z0

)
(3.22)

− E1BE2Aθν

(
1

2
z12−

1

2
zAB+z0

)
θν

(
1

2
z12−

1

2
zAB−z0

)
at z0 → 1

2z12. After assembling the above results and fixing the signs through covariant

OPEs, the correlator of interest is given by

〈〈ψµ1ψν1 (z1)ψ
µ2ψν2 (z2)Sa (zA)Sλb (zB)〉〉ν =

θν
(
1
2zAB

)4
2
√

2 θ′1 (0)4 E1AE1BE2AE2B

×
[
γ
µ1ν1[µ2
ab ην2]λ Tν2(tν1)2tν2 + γ

[µ1
ab η

ν1][µ2ην2]λ Tν2T ν12tν1 + (1↔ 2)
]
. (3.23)

The functions tνi , T
ν
jk and Tνl are defined in (2.18) and (3.16), respectively, and the notation

+(1 ↔ 2) instructs to add the image of the previous two terms under (z1, µ1, ν1) ↔
(z2, µ2, ν2).

3.2.3 Five-point example

The same strategy gives rise to five permutation-inequivalent functions of the punctures in

the correlator with three currents ψµiψνi ,

〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)ψ

µ3ψν3(z3)Sa(zA)Sλb (zB)〉〉ν =
EABθν(12zAB)4

4
√

2 θ′1(0)4
∏3
j=1EjAEjB

×
[{
γ
µ1ν1µ2ν2[µ3
ab ην3]λ Tν3 (tν1t

ν
2)2tν3 + (ην1[µ2ην2]µ1 − ηµ1[µ2ην2]ν1)γ

[µ3
ab η

ν3]λ Tν3 (T ν12)
2 tν3

+ (ηµ2[ν1γ
µ1]ν2[µ3
ab ην3]λ − ην2[ν1γµ1]µ2[µ3ab ην3]λ)Tν3 T ν12 tν1tν2tν3 + cyc(1, 2, 3)

}
+
{

(γµ1µ2ν2ab ην1[µ3ην3]λ − γν1µ2ν2ab ηµ1[µ3ην3]λ)Tν3 T ν13 tν1(tν2)2

+ γ
[ν2
ab η

µ2][µ1ην1][µ3ην3]λ Tν3 T ν12T ν13 tν2 + perm(1, 2, 3)
}]

, (3.24)
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which can be determined by suitable choices of the lattice vectors λ, µi, νi, a, b along the lines

of the previous examples. Note that the explicit correlators in (3.15), (3.23) and (3.24)

are sufficient to capture the contributions of the excited spin field to open-string inte-

grands (2.6) with two fermions and n ≤ 3 bosons.

3.3 n-point spin-field correlators with an excited spin field

Similar to the discussion in section 2.4, the above examples of correlators involving

Sa(zA)Sλb (zB) strongly suggest their generalization to n insertions of ψµjψνj : after stripping

off the overall prefactor of

〈〈
n∏
j=1

ψµjψνj (zj)Sa(zA)Sλb (zB)〉〉ν =

√
2En−2AB θν(12zAB)4

2n θ′1(0)4
∏n
j=1EjAEjB

∑
i

(L(i))
[µiνi],λ
ab Φ(i)

ν (z) , (3.25)

the remaining contributions are Lorentz tensors L(i) with the index structure of the left-

hand side and spin-structure dependent functions Φ
(i)
ν (z) of z1, z2, . . . , zn, zA, zB that obey

the following rules: first, the tensors L(i) are antisymmetric in all pairs µi ↔ νi and cannot

involve the vector index of the excited spin field Sλb on a gamma-matrix to account for

its irreducibility constraint. Second, L(i) is a sum of products of a single odd-rank form

γ
ρ1ρ2...ρ2k+1

ab accompanied by n−k factors of η··, and each summand has a prefactor ±1 given

the choice of normalization in (3.25).

Most importantly, each Lorentz tensor L(i) in (3.25) can be translated into its ac-

companying function Φ
(i)
ν (z) through the following dictionary (where ⊃ is understood as

“contains a factor of”),

L(i) ⊃ γ
...µj ...
ab or γ

...νj ...
ab ⇒ Φ(i)

ν (z) ⊃ tνj (3.26a)

L(i) ⊃ ηµjµk or ηνjνk or ηµjνk ⇒ Φ(i)
ν (z) ⊃ T νjk (3.26b)

L(i) ⊃ ηµjλ or ηνjλ ⇒ Φ(i)
ν (z) ⊃ Tνj , (3.26c)

see (2.18) and (3.16) for the building blocks tνj ,Tνj and T νjk. While the first two rules (3.26a)

and (3.26b) tie in with those for two unexcited spin fields, see (2.22a) and (2.22b), the

additional vector index of the excited spin field is addressed by (3.26c).

The summation range
∑

i in (3.25) involves all Lorentz tensors L(i) that can be ob-

tained from partitions of the antisymmetrized pairs of indices [µ1ν1], [µ2ν2], . . . , [µnνn] into

a form (γ...)ab, products of η·· and an additional η·λ associated with the excited spin field.

Similar to the rules of section 2.4.2 to determine the signs in the correlator with

unexcited spin fields, the idea is to start with a reference (2n+1)-form γµ1ν1µ2ν2...µnνnλ.

Pairs of indices which enter the given product of η·· must be moved to neighboring positions

γ...µiµj ..., γ...νiνj ..., γ...µiνj ... with i < j (and not i > j) or γ...µiλ..., γ...νiλ... (with λ on the right

of µi, νi) before transferring them to the metric tensors. For instance, the positive sign of

ηµ1µ2ην1ν2γν3ηµ3λ in (3.24) can be seen by rearranging γµ1ν1µ2ν2µ3ν3λ = (−1)2γµ1µ2ν1ν2ν3µ3λ

before transferring the pairs µ1µ2, ν1ν2, µ3λ to the η·· and converting γµ1µ2ν1ν2ν3µ3λ → γν3 .
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3.4 A standard form for spin sums

In view of the ultimate goal of this work to sum the above correlators (2.21) and (3.25)

over the spin structures ν = 1, 2, 3, 4, we identify a prototype spin sum from the dictionar-

ies (2.22) and (3.26). First, the prefactors of (2.21) and (3.25) along with the ν-dependent

minus sign in the amplitude prescription (2.5) suggest to introduce the shorthands

Zν(y) ≡ (−1)ν+1θν(y)4

θ′1(0)4
, y ≡ 1

2
zAB , (3.27)

where Zν(y) may be interpreted as a partition function of Xµ and ψµ with twisted boundary

conditions. All the ν-dependence in the building blocks tνj ,Tνj and T νjk for ϕ
(i)
ν (z) and

Φ
(i)
ν (z) in (2.22) and (3.26) occurs via products of ratios θν(x±y)

θν(y)
, with x representing some

zij with i, j ∈ {1, 2, . . . , n, A,B}. It is particularly convenient to gather such ratios of θν
functions via

Fν(x, y) ≡ θ′1(0)θν(x+ y)

θ1(x)θν(y)
=

θν(x+ y)

E(x)θν(y)
, (3.28)

which generalizes the Kronecker-Eisenstein series in (2.24) to even spin structures with

Fν=1(x, y) = F (x, y) and exhibits the following symmetry property,

Fν(−x,−y) = −Fν(x, y) . (3.29)

More precisely, the building blocks of the above spin-field correlators can be expressed in

terms of the function Fν(x, y) by means of

T νjk =
EjAEkBFν(zjk, y) + EjBEkAFν(zjk,−y)

EAB

tνj = EBiFν(zBi, y) , Tνj = EjAFν(zjB, y) . (3.30)

Then, the most general spin sum we will be concerned with in the next section can be

brought into the standard form

W

[
x1, x2, . . . , xM

xM+1, xM+2, . . . , xN

]
≡

4∑
ν=1

Zν(y)

M∏
i=1

Fν(xi, y)

N∏
j=M+1

Fν(xj ,−y)

M∑
i=1

xi +
N∑

j=M+1

xj = 0 , (3.31)

which generalizes the prototype spin sum (2.27) for bosonic one-loop amplitudes. The

first arguments xj , xk of the above Fν will always add up to zero after suitable application

of (3.29), and one can easily show that

W

[
x1, x2, . . . , xM
xM+1, . . . , xN

]
= (−1)NW

[
−xM+1, . . . ,−xN
−x1,−x2, . . . ,−xM

]
. (3.32)

In many cases, the complexity of the spin sum (3.31) governed by M and N can be reduced

by expressing products tνj t
ν
k with j 6= k through a single factor of Fν(zjB, y) instead of an

iteration of (3.30):

tνj t
ν
k =

EjAEkBFν(zjk, y)− EjBEkAFν(zjk,−y)

EAB
, j 6= k . (3.33)

Note that (3.33) is a consequence of the Fay trisecant identity (3.22).
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3.4.1 Examples with unexcited spin fields

Let us give the simplest examples of spin-field correlators rewritten in terms of the standard

spin sum (3.31) with building blocks (3.27) and (3.28): in presence of unexcited spin fields,

the correlators (2.15), (2.16) and (2.19) translate into

4∑
ν=1

(−1)ν+1〈〈Sa(zA)Sb(zB)〉〉ν =

4∑
ν=1

δbaZν(y)

EAB
=

δba
EAB

W

[
−
−

]
(3.34)

4∑
ν=1

(−1)ν+1〈〈ψλψρ(z1)Sa(zA)Sb(zB)〉〉ν =
4∑

ν=1

γλρa
bEB1

2E1A
Zν(y)Fν(zB1,y)Fν(z1B,−y)

=
γλρa

bEB1

2E1A
W

[
zB1

z1B

]
(3.35)

as well as
4∑

ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψµ2ψν2(z2)Sa(zA)Sb(zB)〉〉ν

= (γµ1ν1µ2ν2)a
bEABE1BE2B

4E1AE2A
W

[
zB1, zB2

z1B, z2B

]

− δ[ν1[µ2
γµ1]ν2]a

b

{
E2B

4E2A
W

[
zB1, z12
z2B

]
+

E1B

4E1A
W

[
zB1

z2B, z12

]}

− δν1[µ2δ
µ1
ν2]
δba

{
1

4EAB
W

[
z12, z21
−

]
+

1

4EAB
W

[
−

z12, z21

]

+
E1AE2B

4EABE1BE2A
W

[
z12
z21

]
+

E1BE2A

4EABE1AE2B
W

[
z21
z12

]}

=
1

2EAB
W

[
z12, z21
−

]{
(γµ1ν1µ2ν2)a

b − δν1[µ2δ
µ1
ν2]
δba

}
− E1AE2B

4E1BE2AEAB
W

[
z12
z21

]{
(γµ1ν1µ2ν2)a

b + δ
[ν1
[µ2
γµ1]ν2]a

b + δν1[µ2δ
µ1
ν2]
δba

}
− E1BE2A

4E1AE2BEAB
W

[
z21
z12

]{
(γµ1ν1µ2ν2)a

b − δ[ν1[µ2
γµ1]ν2]a

b + δν1[µ2δ
µ1
ν2]
δba

}
. (3.36)

The last expression follows from (3.32) and (3.33), and the generalization to three insertions

of ψµjψνj (zj) can be found in appendix B.1.

3.4.2 Examples with an excited spin field

In presence of excited spin fields, the expressions (3.15) and (3.23) for the simplest corre-

lators give rise to

4∑
ν=1

(−1)ν+1〈〈ψλψρ(z1)Sa(zA)Sµb (zB)〉〉ν = −
ηµ[ρ γ

λ]
ab√

2EAB

4∑
ν=1

Zν(y)Fν(z1B, y)Fν(zB1, y)

= −
ηµ[ρ γ

λ]
ab√

2EAB
W

[
z1B, zB1

−

]
(3.37)
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as well as

4∑
ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)Sa(zA)Sλb (zB)〉〉ν

= −γ[µ1ab η
ν1][µ2ην2]λ

{
1

2
√

2EAB
W

[
zB1, z2B, z12

−

]
+

E1BE2A

2
√

2EABE1AE2B

W

[
zB1, z2B
z12

]}

+ γ
µ1ν1[µ2
ab ην2]λ

E1B

2
√

2E1A

W

[
zB1, zB2, z2B

z1B

]
+ (z1, µ1, ν1)↔ (z2, µ2, ν2)

= − 1

2
√

2EAB
W

[
zB1, z2B, z12

−

]{
γ
[µ1
ab η

ν1][µ2ην2]λ + γ
µ1ν1[µ2
ab ην2]λ

}
− E1BE2A

2
√

2EABE1AE2B

W

[
zB1, z2B
z12

]{
γ
[µ1
ab η

ν1][µ2ην2]λ − γµ1ν1[µ2ab ην2]λ
}

+ (z1, µ1, ν1)↔ (z2, µ2, ν2) . (3.38)

The last expression again follows from (3.29) and (3.32), and the generalization to three

insertions of ψµjψνj (zj) can be found in appendix B.2.

From the discussion in the next section, one can find that most of the spin sums

in (3.34) to (3.38) vanish, except for the case with W

[
zB1, z2B, z12

−

]
. The latter leads

to the non-vanishing four-point amplitude among two bosons and two fermions which has

been first computed in [46].

4 Evaluating spin sums in two-fermion amplitudes

In this section, we present a method to evaluate the prototype spin sum (3.31) for two-

fermion amplitudes in terms of the doubly-periodic functions f (n) in (2.24). While the

simplest case in (3.34)

W

[
−
−

]
=

4∑
ν=1

Zν(y) =
4∑

ν=1

(−1)ν+1θν(y)4

θ′1(0)4
= 0 (4.1)

due to 〈〈Sa(zA)Sb(zB)〉〉ν can be dealt with via Riemann identities [69, 70],

4∑
ν=1

(−1)ν+1θν(z1)θν(z2)θν(z3)θν(z4) = θ1(z
′
1)θ1(z

′
2)θ1(z

′
3)θ1(z

′
4)

z′1 ≡
1

2
(z1 + z2 + z3 + z4), z′2 ≡

1

2
(z1 + z2 − z3 − z4) (4.2)

z′3 ≡
1

2
(z1 − z2 − z3 + z4), z′4 ≡

1

2
(z1 − z2 + z3 − z4) ,

additional factors of Fν(xj ,±y) in (3.28) require further techniques which will be developed

in this section for arbitrary multiplicities.
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In contrast to the worldsheet bosons Xµ, the {ψµ, Sa, Sµb }-system does not exhibit any

zero modes shared between the left- and right-movers and therefore yields meromorphic

correlation functions. At the same time, the interplay of different spin structures guar-

antees doubly-periodic expressions for the spin-summed correlators [52]. Accordingly, all

the explicit final expressions for the latter are invariant under collective interchange of

the doubly-periodic f (n) and their meromorphic truncations g(n) defined along the lines

of (2.24),

F (z, α) =
θ′1(0)θ1(z + α)

θ1(z)θ1(α)
≡
∞∑
n=0

αn−1g(n)(z) , (4.3)

e.g. g(0)(z) = 1 and g(1)(z) = ∂ log θ1(z). The freedom to collectively interchange f (n) ↔
g(n) is inherited from the elliptic functions Vw(z1, z2, . . . , zn) defined in (2.30) which capture

the spin-summed correlators of bosonic vertex operators and the subsequent results on their

fermionic counterparts. Since various intermediate steps only manifest meromorphicity and

obscure double periodicity, we will first derive expressions for fermionic spin sums in terms

of g(n) and leave the freedom to globally replace g(n) → f (n) for the last step.

4.1 General strategy

The evaluation of the prototype spin sum (3.31) can be organized into four steps:

4.1.1 Reducing the factors of Fν

As a first step, we start from the spin-structure dependent Fay identity

Fν(x1, y1)Fν(x2, y2) = F (x1, y1+y2)Fν(x2−x1, y2) + F (x2, y1+y2)Fν(x1−x2, y1) (4.4)

to successively convert factors of Fν(xi,±y) into Kronecker-Eisenstein series F (z, α) in (4.3)

and to thereby simplify the dependence on ν. This process requires the following corollary

of (4.4) with x1 6= −x2

F (0,k1)
ν (x1, y)F (0,k2)

ν (x2, y) (4.5)

=

k2∑
l=0

(−1)l(k1+l)!

(
k2
l

)[
g(k1+l+1)(x1)− (−1)k1+l+1g(k1+l+1)(x2)

]
F (0,k2−l)
ν (x1+x2, y)

−
k2∑
l=0

k1+l∑
m=0

(
k2
l

)
(−1)k1−m(k1+l)!

(m+1)!
g(k1+l−m)(x2)F

(0,m+k2−l+1)
ν (x1+x2, y)

for derivatives

F (k,l)(x, y) ≡ ∂k

∂xk
∂l

∂yl
F (x, y) , F (k,l)

ν (x, y) ≡ ∂k

∂xk
∂l

∂yl
Fν(x, y) . (4.6)

The right-hand side of (4.5) naturally introduces the functions g(n)(x) in (4.3), for instance

Fν(x1, y)Fν(x2, y) = (g(1)(x1)+g
(1)(x2))Fν(x1+x2, y) −F (0,1)

ν (x1+x2, y).

In this way, one can always arrive at a simplified form of a generic spin sum

W

[
x1, x2, . . . , xM
xM+1, . . . xN

]
=
∑

k1,k2≥0
Rk1,k2(g(n)pq )

4∑
ν=1

Zν(y)F (0,k1)
ν (x, y)F (0,k2)

ν (−x,−y) , (4.7)
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where x is a linear combination of zij , and Rk1,k2(g
(n)
pq ) denote polynomials in g(n) functions

due to the right-hand side of (4.5) at arguments zpq, p, q ∈ {1, 2, . . . , n, A,B}.
Given that the applicability of (4.5) is tied to x1 6= −x2, we will need a separate

corollary of (4.4)

F (0,k1)
ν (x, y)F (0,k2)

ν (−x, y) = (−1)k2(k1+k2)!∂g
(k1+k2+1)(x) (4.8)

−
k2∑
l=0

(−1)l
k1+l∑
m=0

(
k2
l

)
(k1+l)!

(m+1)!
g(k1+l−m)(x)F (0,m+k2−l+1)

ν (0, y)

for the degenerate case, where subsets of the first-row arguments x1, x2, . . . , xM of

W

[
x1, x2, . . . , xM
xM+1, . . . xN

]
(or subsets of the second-row entries xM+1, . . . xN ) add up to zero.

As we will see, one can largely infer such degenerate spin sums from appropriate limits of

the generic case, where the xj obey no constraint other than
∑M

i=1 xi +
∑N

j=M+1 xj = 0.

In such generic situations, the only need for (4.8) arises from cases with M = N , i.e. spin

sums of the form W

[
x1, x2, . . . , xM

−

]
. Then, the derivatives ∂g(k1+k2+1)(x) in the first line

of (4.8) without a ν-dependent factor of F
(0,k)
ν (0, y) do not contribute to the spin sums

because of (4.1).

The central identities (4.4), (4.5) and (4.8) are proven in appendix C.

4.1.2 Merging Fν at arguments y and −y

The second step is to combine the spin-structure dependent terms in (4.7) via

4∑
ν=1

Zν(y)F (0,k1)
ν (x, y)F (0,k2)

ν (−x,−y) (4.9)

=
4∑

ν=1

Zν(y)

[
k2∑
l=1

(−1)k2−l

(
k2
l

)
F (0,l)
ν (0,−y)F (0,k1+k2−l)(x, 2y)

−
k1∑
l=1

(−1)k2

(
k1
l

)
F (0,l)
ν (0, y)F (0,k1+k2−l)(x, 2y)

]
,

which is proven in appendix C.3 and only holds under the spin sum. In particular, special-

ization to k1 = k2 = 0 gives rise to
∑4

ν=1 Zν(y)Fν(x, y)Fν(−x,−y) = 0.

Application of (4.9) leads to the simpler expression

W

[
x1, x2, . . . , xM
xM+1, . . . xN

]
=
∑
j>0

R̃j(g(n)pq , ∂
mEpq)

4∑
ν=1

Zν(y)F (0,j)
ν (0, y) , (4.10)

with only a single factor of F
(0,j)
ν on the right-hand side, where R̃j(g(n)pq , ∂mEpq) are again

polynomials in g(n) functions but also involve rational functions of prime forms and their

derivatives. The appearance of prime forms can be seen from F (x, 2y) = E(x+zAB)
E(x)E(zAB) as well

as the factors of F (0,k1+k2−l)(x, 2y) on the right-hand side of (4.9). Note that the divergent
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case of F
(0,j)
ν (0, y) at j = 0 is absent since the sums over F

(0,l)
ν (0,±y) on the right-hand

side of (4.9) start at l = 1.

While degenerate spin sums W

[
x1, x2, . . . , xM

−

]
cannot be cast into the intermediate

form (4.7), the merging of ν-dependent factors via (4.5) and (4.8) also leads to expressions

of the form (4.10): the additional merging identity (4.8) special to degenerate spin sums

involves no spin-structure dependence other than F
(0,j)
ν (0, y) on its right-hand side.

4.1.3 Leftover spin sums

As detailed in appendix D, the leftover spin sums

Mj ≡
4∑

ν=1

Zν(y)F (0,j)
ν (0, y) (4.11)

in (4.10) with j ≥ 1 evaluate to a factor of EAB = E(2y) accompanied by combinations of

Weierstrass functions

℘(z) ≡ −∂2 log θ1(z) +
θ′′′1 (0)

3θ′1(0)
= (f (1)(z))2 − 2f (2)(z) (4.12)

and their derivatives such as

M1 = 0 , M2 = 4EAB , M3 = 0 , M4 = 48EAB℘(2y) (4.13)

M5 = 240EAB℘
′(2y) , M6 = 288EAB(2℘(2y)2 + 3℘′′(2y)) .

By (4.12), the Weierstrass functions can always be written in terms of Eisenstein series Gk

and f (1), f (2) at argument zAB = 2y. For Mj≥6, additional simplifications arise from the

differential equations of the Weierstrass function, e.g.

M6 = 2880EAB(2℘(2y)2 − 9G4) . (4.14)

The general systematics of Mj as well as additional explicit examples can be found in

appendix D. We emphasize that the prime form and the Weierstrass functions in the final

expressions for (4.11) were found to occur at argument 2y = zA − zB.

4.1.4 Cleaning up the prime forms

In the simplest cases, the rational dependence of R̃j in (4.10) on prime forms cancels the

factor of EAB from Mj and additional ratios of prime forms accompanying a given spin sum

W

[
. . .

. . .

]
. Whenever this is not manifestly the case, one can apply the following identities
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(see appendix E for the proof) to compensate the prime forms in R̃j ,

∂m+n−1

∂zm+n−1 det
j,k=1,...,n

[zF (xj − yk, z)]

∣∣∣∣
z=0

=(
m+ n− 1

n− 1

)
m∑
l=0

m!

l!
F (0,l)

( n−1∑
p=1

(xp − yp), xn − yn
)

(4.15)

×
n−1∏
q=2

F

( q−1∑
r=1

(xr − yr), xq − yq
)
g(m−l)(xn − yn)

∏n
j<k E(xj , xk)E(yk, yj)∏n

j 6=k E(xj , yk)
,

with x1, x2, . . . , xn ∈ C and y1, y2, . . . , yn ∈ C subject to xj 6= yk ∀ j, k = 1, 2, . . . , n, and

n ≥ 2. The determinant on the left-hand side refers to the n × n matrix defined by its

entries zF (xj − yk, z) =
∑∞

l=0 z
lg(l)(xj − yk). The simplest choice m = 0, n = 2 with

(x1, x2, y1, y2) = (zi, zA, zj , zB) specializes (4.15) to

g(1)(zij) + g(1)(zAB)− g(1)(ziB)− g(1)(zAj) =
EiAEjB
EiBEjA

F (zij , zAB) , (4.16)

which will be applied to a concrete spin sum in section 4.2.3.

4.1.5 Comments

One can also mix the steps 4.1.1 and 4.1.2 to reduce the factors of Fν by means of

F (0,k1)
ν (x1, y)F (0,k2)

ν (x2,−y) =

k2∑
l=0

(−1)k2−l

(
k2
l

)
F (0,l)
ν (x1+x2,−y)F (0,k1+k2−l)(x1, 2y)

−
k1∑
l=0

(−1)k2

(
k1
l

)
F (0,l)
ν (x1+x2, y)F (0,k1+k2−l)(−x2, 2y) (4.17)

with x1 + x2 6= 0 which can be proven along the same lines as (4.5). This can yield

alternative representations of the rational functions Rk1,k2 in (4.7) and different situations

for step 4.1.4.

4.2 Worked out examples

While the procedure of the previous section can be applied to evaluate spin sums of ar-

bitrary multiplicity, we shall now present its simplest applications arising in three- to

five-point amplitudes. In order to compactly track intermediate steps of the subsequent

calculations, we slightly generalize the notation in (3.31) to

W

 (k1)
x1 ,

(k2)
x2 , . . . ,

(kM )
xM

(kM+1)
xM+1 ,

(kM+2)
xM+2 , . . . ,

(kN )
xN

 =

4∑
ν=1

Zν(y)

M∏
i=1

F (0,ki)
ν (xi, y)

N∏
j=M+1

F
(0,kj)
ν (xj ,−y) . (4.18)

4.2.1 Three points

Given that the spin sum in the fermionic two-point amplitude vanishes by (4.1), the simplest

non-trivial examples of the procedure in section 4.1 arise from three-point amplitudes
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involving one boson and two fermions. The spin sums in the relevant correlators (3.35)

and (3.37) turn out to vanish: either by (4.9) at k1 = k2 = 0 or by the special case

Fν(x, y)Fν(−x, y) = ∂g(1)(x)− F (0,1)
ν (0, y) of (4.8),

W

[
x

−x

]
= 0 (4.19a)

W

[
x,−x
−

]
= −M1 = 0 . (4.19b)

4.2.2 Four points

The four-point amplitude with two fermions is built from the correlators (3.36) and (3.38),

where the former vanishes by (4.19). The first nonvanishing spin sums arise from the

correlator (3.38) involving the following inequivalent topologies

W

[
x1, x2,−x1 − x2

−

]
, W

[
x1, x2
−x1 − x2

]
. (4.20)

The specialization of (4.5) to (k1, k2) = (0, 0) with z + w 6= 0 yields

W

[
~x1, z, w

~x2

]
=
(
g(1)(z) + g(1)(w)

)
W

[
~x1, z + w

~x2

]
−W

[
~x1,

(1)
z + w

~x2

]
, (4.21)

where we use the notation of (4.18), and ~x1, ~x2 denote arbitrary (and possibly empty)

collections of additional entries. The instances of the second term relevant to (4.20) follow

from (4.9) and the (k1, k2) = (0, 1) instance of (4.8),

W

[
(1)
z

−z

]
= −F (z, 2y)M1(y) = 0 (4.22a)

W

[
(1)
z ,−z
−

]
= −1

2
M2(y) = −2EAB . (4.22b)

By applying these identities to (4.20), one finds

W

[
x1, x2,−x1 − x2

−

]
(4.21)

=
(
g(1)(x1) + g(1)(x2)

)
W

[
x1 + x2,−x1 − x2

−

]

−W

[
(1)

x1 + x2,−x1 − x2
−

]
(4.22b)&(4.19)

= 2EAB (4.23a)

W

[
x1, x2
−x1 − x2

]
(4.21)

=
(
g(1)(x1) + g(1)(x2)

)
W

[
x1 + x2
−x1 − x2

]

−W

[
(1)

x1 + x2
−x1 − x2

]
(4.22a)&(4.19)

= 0 . (4.23b)
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4.2.3 Five points

As will be shown in this section, the five-point correlator given in appendix B.2 yields

non-trivial dependence on the punctures ∼ g(1)ij after spin sums. We compute the following

spin sums

W

[
x1, x2, x3, x4

−

]
, W

[
x1, x2, x3

x4

]
, W

[
x1, x2
x3, x4

]
,

4∑
j=1

xj = 0 (4.24)

and later on infer W

[
x1, x2,−x2
−x1

]
, W

[
x1, x2
−x1,−x2

]
, W

[
x1,−x1
x2,−x2

]
as well as

W

[
x1,−x1, x2,−x2

−

]
as degenerate cases for some xi → −xj . As a starting point, we

generalize (4.21) by the following useful corollaries of (4.5) and (4.8) with z, w 6= 0,

W

[
~x1,

(1)
z , w

~x2

]
=
(
g(2)(z)− g(2)(w)

)
W

[
~x1, z + w

~x2

]
(4.25a)

+ g(1)(w)W

[
~x1,

(1)
z + w

~x2

]
− 1

2
W

[
~x1,

(2)
z + w

~x2

]

W

[
~x1, z,−z

~x2

]
= ∂g(1)(z)W

[
~x1
~x2

]
−W

~x1, (1)0

~x2

 , (4.25b)

where ~x1, ~x2 denote arbitrary (and possibly empty) collections of additional entries. More-

over, (4.8) and (4.9) along with M1 = M3 = 0 and M2 = 4EAB imply that

W

[
(1)
z ,

(1)
−z
−

]
=W

 (1)
z
(1)
−z

 = 0 (4.26a)

W

[
(2)
z

−z

]
= −4EABF (z, zAB) . (4.26b)

By repeatedly applying these identities to (4.24), one arrives at:

W

[
x1, x2, x3,−x1 − x2 − x3

−

]
(4.21)

=
(
g(1)(x1) + g(1)(x2)

)
W

[
x1 + x2, x3,−x1 − x2 − x3

−

]

−W

[
(1)

x1 + x2, x3,−x1 − x2 − x3
−

]

(4.21)&(4.23)
=

(
g(1)(x1) + g(1)(x2)

)
2EAB +W

[
(1)

x1 + x2,
(1)

−x1 − x2
−

]

−
(
g(1)(x3) + g(1)(−x1 − x2 − x3)

)
W

[
(1)

x1 + x2,−x1 − x2
−

]
(4.22b)&(4.26a)

= 2EAB

(
g(1)(x1) + g(1)(x2) + g(1)(x3) + g(1)(−x1 − x2 − x3)

)
(4.27a)
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W

[
x1, x2, x3

−x1 − x2 − x3

]
(4.21)

=
(
g(1)(x1) + g(1)(x2)

)
W

[
x1 + x2, x3
−x1 − x2 − x3

]
−W

[
(1)

x1 + x2, x3
−x1 − x2 − x3

]
(4.23)&(4.25a)

= −
(
g(2)(x1 + x2)− g(2)(x3)

)
W

[
x1 + x2 + x3
−x1 − x2 − x3

]

− g(1)(x3)W

[
(1)

x1 + x2 + x3
−x1 − x2 − x3

]
+

1

2
W

[
(2)

x1 + x2 + x3
−x1 − x2 − x3

]
(4.19a), (4.22a)&(4.26b)

= −2EABF (x1 + x2 + x3, zAB) (4.27b)

W

[
x1, x2

x3,−x1 − x2 − x3

]
(4.21)

=
(
g(1)(x1) + g(1)(x2)

)
W

[
x1 + x2

x3,−x1 − x2 − x3

]
−W

[
(1)

x1 + x2
x3,−x1 − x2 − x3

]

(4.21)&(4.23)
= −

(
g(1)(x3) + g(1)(−x1 − x2 − x3)

)
W

[
(1)

x1 + x2
−x1 − x2 − x3

]

+W

 (1)
x1 + x2

(1)
−x1 − x2 − x3

 (4.22a)&(4.26a)
= 0 (4.27c)

Note that (4.27a) exemplifies the freedom to collectively redefine g(n) → f (n) within spin

sums (3.31) since the non-meromorphic terms in f (1)(z) = g(1)(z) + 2πi=(z)=(τ) drop out from

W

[
x1, x2, x3, x4

−

]
= 2EAB

4∑
j=1

f (1)(xj) ,

4∑
j=1

xj = 0 . (4.28)

Moreover, the possibility to eliminate prime forms as discussed in section 4.1.4 applies

to (4.27b): by virtue of (4.16), one can simplify the following combination of prime forms

seen in the expression (B.4) for the correlator 〈〈
∏3
j=1 ψ

µjψνj (zj)Sa(zA)Sλb (zB)〉〉ν ,

EiBEjA
EABEiAEjB

W

[
zBi, zkB, zjk

zij

]
= −2

EiBEjA
EiAEjB

F (zji, zAB)

= −2
(
g(1)(zji) + g(1)(zAB)− g(1)(zjB)− g(1)(zAi)

)
(4.29)

= −2
(
f (1)(zji) + f (1)(ziA) + f (1)(zAB) + f (1)(zBj)

)
,

where we have exploited the cancellation of =(zi) in the last step.
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Finally, appropriate limits xi → −xj of (4.27) straightforwardly yield

W

[
x1, x2,−x2
−x1

]
= −2EABF (x1, zAB) (4.30)

W

[
x1, x2
−x1,−x2

]
=W

[
x1,−x1
x2,−x2

]
=W

[
x1,−x1, x2,−x2

−

]
= 0 ,

where the first line may be rewritten along the lines of (4.29).

Results for spin sums due to n ≥ 4 insertions of ψµψν(z) will be given in the following

subsections as well as appendix F.

4.3 Higher-multiplicity spin sums

As reviewed in section 2.5, the elliptic functions in (2.30),

Vw(i1, i2, . . . , in) ≡ Vw(zi1i2 , zi2i3 , . . . , zin−1in , zini1) , (4.31)

are a convenient language to compactly describe the spin sums over bosonic one-loop

correlators. They manifest doubly-periodicity and meromorphicity through the freedom

to globally interchange the functions g(n) and f (n) in their generating series. Accordingly,

we will now rewrite the results of the previous section and state various generalizations to

higher multiplicity in terms of (4.31).

4.3.1 Spin sum with all entries in the first line

For spin sums of the form W

[
z12, z23, . . . , zn1

−

]
, the results of (4.19b), (4.23a) and (4.27a)

are equivalent to

W

[
z12, z21
−

]
= 0

E−1ABW

[
z12, z23, z31
−

]
= 2 (4.32)

E−1ABW

[
z12, z23, z34, z41

−

]
= 2V1(1, 2, 3, 4) ,

and they generalize to

E−1ABW

[
z12,z23, . . . ,z51

−

]
= 2V2(1,2, . . . ,5)−2V2(A,B)

E−1ABW

[
z12,z23, . . . ,z61

−

]
= 2V3(1,2, . . . ,6)−2V2(A,B)V1(1,2, . . . ,6)+2∂zAV2(A,B)

E−1ABW

[
z12,z23, . . . ,z71

−

]
= 2V4(1,2, . . . ,7)−2V2(A,B)V2(1,2, . . . ,7)

+2∂zAV2(A,B)V1(1,2, . . . ,7)− 4

3
∂2zAV2(A,B)+4G4
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E−1ABW

[
z12,z23, . . . ,z81

−

]
= 2V5(1,2, . . . ,8)−2V2(A,B)V3(1,2, . . . ,8)

+2∂zAV2(A,B)V2(1,2, . . . ,8)− 4

3
∂2zAV2(A,B)V1(1,2, . . . ,8)

+
2

3
∂3zAV2(A,B)+4G4V1(1,2, . . . ,8) (4.33)

E−1ABW

[
z12,z23, . . . ,z91

−

]
= 2V6(1,2, . . . ,9)−2V2(A,B)V4(1,2, . . . ,9)

+2∂zAV2(A,B)V3(1,2, . . . ,9)− 4

3
∂2zAV2(A,B)V2(1,2, . . . ,9)

+
2

3
∂3zAV2(A,B)V1(1,2, . . . ,9)− 4

15
∂4zAV2(A,B)

+4G4V2(1,2, . . . ,9)−6G4V2(A,B)+18G6 ,

with admixtures of the holomorphic Eisenstein series Gk defined in (2.28).

4.3.2 Spin sum with entries in both lines

In more general situations with entries in both lines of the spin sum, the results of (4.23b),

(4.27b) and (4.27c) can be aligned into

W

[
z12, z23
z31

]
= 0

E1AE4B

E1BE4AEAB
W

[
z12, z23, z34

z41

]
= 2V1(1, B,A, 4) (4.34)

E1AE5B

E1BE5AEAB
W

[
z12, z23, z34, z45

z51

]
= −2V2(1, B,A, 5, 4, 3, 2) + 2V2(1, 5, 4, 3, 2)

+ 2V2(A,B) ,

as well as

W

[
z12, z23
z34, z41

]
= 0 (4.35)

E1AE4B

E1BE4AEAB
W

[
z12, z23, z34
z45, z51

]
= 2V2(5, 1, B,A, 4)− 2V2(A,B) .

Note that the expressions for W

[
z12, z23, . . . , zn1

−

]
in (4.32) and (4.33) exhibit stable pat-

terns in the coefficients of Vn−3(1, 2, . . . , n) and ∂kzAV2(A,B)Vn−k−5(1, 2, . . . , n),

E−1ABW

[
z12, z23, . . . , zn1

−

]
= 2Vn−3(1, 2, . . . , n)− 2V2(A,B)Vn−5(1, 2, . . . , n)

+ 2∂zAV2(A,B)Vn−6(1, 2, . . . , n) + . . . (4.36)

with higher derivatives of V2(A,B) and Eisenstein series in the ellipsis. It would be inter-

esting to investigate generalizations of (4.34) in view of similar systematics.
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4.4 Examples of spin-summed correlators

In this section, we assemble the expressions for various spin-summed correlators in fermionic

one-loop amplitudes.

4.4.1 Two unexcited spin fields

The vanishing of the spin sums in (3.34) to (3.36) immediately propagates to

4∑
ν=1

(−1)ν+1〈〈Sa(zA)Sb(zB)〉〉ν = 0

4∑
ν=1

(−1)ν+1〈〈ψµ1ν1(z1)Sa(zA)Sb(zB)〉〉ν = 0 (4.37)

4∑
ν=1

(−1)ν+1〈〈ψµ1ν1(z1)ψ
µ2ν2(z2)Sa(zA)Sb(zB)〉〉ν = 0 .

The first non-vanishing spin sums occur in the five-point correlator (B.1) such that

4∑
ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)ψ

µ3ψν3(z3)Sa(zA)Sb(zB)〉〉ν

= (γµ1ν1µ2ν2µ3ν3)a
b h

(0)
∅ + ην1µ2(γµ1ν2µ3ν3)a

b h
(0)
[12]

+ ηµ1ν2ην1µ2(γµ3ν3)a
b h

(0)
(12) + ην1µ2ην2µ3(γµ1ν3)a

b h
(0)
12,23

+ ην1µ2ην2µ3ηµ1ν3δba h
(0)
[123] + permutations (4.38)

with

h
(0)
∅ = h

(0)
12,23 = −h(0)(12) =

1

2
, h

(0)
[12] = h

(0)
[123] = 0 , (4.39)

or equivalently

4∑
ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)ψ

µ3ψν3(z3)Sa(zA)Sb(zB)〉〉ν

=
1

2

{
(γµ1ν1µ2ν2µ3ν3)a

b −
[
(ηµ1ν2ην1µ2 − ηµ1µ2ην1ν2)(γµ3ν3)a

b + cyc(1, 2, 3)
]

+
[
ηµ2[ν1(γµ1][ν3)a

bηµ3]ν2 − ην2[ν1(γµ1][ν3)a
bηµ3]µ2 + cyc(1, 2, 3)

]}
. (4.40)

The spin sums in the corresponding six-point correlator evaluate to

4
4∑

ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)ψ

µ3ψν3(z3)ψ
µ4ψν4(z4)Sa(zA)Sb(zB)〉〉ν

= (γµ1ν1µ2ν2µ3ν3µ4ν4)a
b h

(1)
∅ + ην1µ2(γµ1ν2µ3ν3µ4ν4)a

b h
(1)
[12]

+ ηµ1ν2ην1µ2(γµ3ν3µ4ν4)a
b h

(1)
(12) + ην1µ2ην2µ3(γµ1ν3µ4ν4)a

b h
(1)
12,23

+ ην1µ2ην3µ4(γµ1ν2µ3ν4)a
b h

(1)
[12],[34] + ηµ1ν2ην1µ2ην3µ4(γµ3ν4)a

b h
(1)
(12),[34]

+ ην1µ2ην2µ3ηµ1ν3(γµ4ν4)a
b h

(1)
[123] + ην1µ2ην2µ3ην3µ4(γµ1ν4)a

b h
(1)
12,23,34

+ ηµ1ν2ην1µ2ην3µ4ηµ3ν4δba h
(1)
(12),(34) + ην1µ2ην2µ3ην3µ4ηµ1ν4δba h

(1)
(1234)

+ permutations (4.41)
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with doubly-periodic functions h(1)... ≡ h(1)... (zj , zA, zB) given by

h
(1)
∅ (zj , zA, zB) =

4∑
i=1

V1(i, A,B) (4.42a)

h
(1)
[12](zj , zA, zB) = V1(1, 2, A,B)− V1(2, 1, A,B) (4.42b)

h
(1)
(12)(zj , zA, zB) =

2∑
i=1

V1(i, A,B)−
4∑
i=3

V1(i, A,B) (4.42c)

h
(1)
12,23(zj , zA, zB) = −V1(2, A, 4, B) (4.42d)

h
(1)
[12],[34](zj , zA, zB) = 0 (4.42e)

h
(1)
(12),[34](zj , zA, zB) = −V1(3, 4, A,B)− V1(3, 4, B,A) (4.42f)

h
(1)
[123](zj , zA, zB) = −2V1(1, 2, 3) (4.42g)

h
(1)
12,23,34(zj , zA, zB) =

3∑
i=1

[
V1(i, i+1, A,B) + V1(i, i+1, B,A)

]
(4.42h)

h
(1)
(12),(34)(zj , zA, zB) = −

4∑
i=1

V1(i, A,B) (4.42i)

h
(1)
(1234)(zj , zA, zB) =

1

2

[
V1(1, 2, A,B)− V1(1, 2, B,A) + cyc(1, 2, 3, 4)

]
. (4.42j)

The analogous seven-point correlator can be found in appendix F.1, and the sum over

permutations in (4.41) can be reconstructed from section 2.4.

4.4.2 One excited spin field

Again, the vanishing of the relevant spin sums leads to

4∑
ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)Sa(zA)Sλb (zB)〉〉ν = 0 , (4.43)

resulting in a vanishing three-point amplitude. The first non-vanishing spin-summed cor-

relator with an excited spin field requires two insertions of ψµiψνi(zi),

1√
2

4∑
ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)Sa(zA)Sλb (zB)〉〉ν (4.44)

= (γµ1ν1µ2)abη
ν2λH

(0)
∅ + ην1µ2(γµ1)abη

ν2λH
(0)
12 + permutations ,

with

H
(0)
∅ = H

(0)
12 = −1

2
, (4.45)

or equivalently

4∑
ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)Sa(zA)Sλb (zB)〉〉ν

=
1√
2

[
(γµ1ν1[µ2)abη

ν2]λ + (γ[µ1)abη
ν1][µ2ην2]λ + (1↔ 2)

]
(4.46)

=
1√
2

[
ηλ[ν2(γµ2]γµ1ν1)ab + (1↔ 2)

]
.
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The corresponding five-point correlator

2
√

2
4∑

ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)ψ

µ3ψν3(z3)Sa(zA)Sλb (zB)〉〉ν

= (γµ1ν1µ2ν2µ3)abη
λν3 H

(1)
∅ + ην1µ2(γµ1ν2µ3)abη

λν3 H
(1)
[12]

+ ην1µ2ηµ1ν2(γµ3)abη
λν3 H

(1)
(12) + (γµ1µ2ν2)abη

ν1µ3ηλν3 H
(1)
13

+ ηµ1µ2(γν2)abη
ν1µ3ηλν3 H

(1)
12,13 + permutations (4.47)

involves the following doubly-periodic functions H(1)
... ≡ H(1)

... (zj , zA, zB):

H
(1)
∅ (zj , zA, zB) = −V1(1, A,B)− V1(2, A,B) (4.48a)

H
(1)
[12](zj , zA, zB) = −V1(1, 2, A,B)− V1(1, 2, B,A) (4.48b)

H
(1)
(12)(zj , zA, zB) = −V1(1, 2, A,B) + V1(1, 2, B,A) (4.48c)

H
(1)
13 (zj , zA, zB) = −V1(1, 3, A, 2, B)− V1(1, 3, B, 2, A)− V1(2, A, 3, B) (4.48d)

H
(1)
12,13(zj , zA, zB) = −2V1(1, 2, A,B, 3)− V1(1, A, 2, B) . (4.48e)

The analogous six-point correlator is presented in appendix F.2, and the sum over permu-

tations in (4.44) and (4.47) can be reconstructed from (3.23) and (3.24).

Note that (4.40) and (4.47) yield an expression for the worldsheet integrand of the five-

point amplitude (2.5) in terms of the f
(1)
ij functions with i, j ∈ {1, 2, 3, A,B}. It would be

interesting to relate its factorization properties to the general considerations of [49, 50] on

the distributions of superghost picture numbers at the boundary of (super-)moduli space.

5 Conclusion and outlook

In this work, we have studied the correlation functions of two fermionic and any number

of bosonic vertex operators on the torus, with particular emphasis on the cancellations

between different spin structures reflecting spacetime supersymmetry. These correlators

form the worldsheet integrands for the respective massless one-loop amplitudes of the open

RNS superstring, and their double copy yields closed-string amplitudes involving up to two

Ramond-Ramond forms, gravitinos or dilatinos.

Among other things, the resulting fermionic RNS amplitudes are useful to test the

equivalence with the pure-spinor formalism in more advanced situations. For example, the

explicit correlators in section 4.4 and appendix F.2 are suitable for comparison with the

five- [29] and six-point [26] results in pure-spinor superspace.

Moreover, the τ → i∞ limit of the present results extends the RNS ambitwistor-

string setup [33, 34] to CHY formulae for one-loop SYM amplitudes with external fermions

and the corresponding supergravity amplitudes. In particular, the tensor structure of our

correlators at τ → i∞ can be converted to explicit and local BCJ numerators using the

techniques of [36]. Finally, we hope that our results are useful to study the forward-limit

relations between ambitwistor-string correlators at different loop orders and the application

of the gluing operators in [71].
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While a detailed investigation of the resulting string and field-theory amplitudes is

relegated to the future, the major novelties of this work are

(i) the one-loop correlation functions involving one excited spin field from the fermion

vertex in the + 1
2 picture and any number of Lorentz currents

(ii) an algorithmic method to systematically perform and simplify the sum over spin

structures for the one-loop integrand of two-fermion amplitudes

The n-point correlator (i) can be found in section 3.3, and the mathematical techniques for

the spin sums (ii) are presented in section 4, see in particular subsection 4.4 and appendix F

for explicit n ≤ 6-point expressions.

A mild generalization of the techniques which led to the main results (i) and (ii) can

be applied to one-loop correlators involving any number of fermion pairs. And we expect

that several of the mathematical tools developed in this work are helpful for higher-genus

amplitudes, for instance to extend the two-loop spin sums of [72, 73] for bosonic external

states to fermionic amplitudes.

On the one hand, the pure-spinor formalism bypasses the spin sums, gathers all com-

ponent amplitudes into supersymmetric expressions and held the key to the first explicit

three-loop calculation [24]. On the other hand, the form of the RNS spin sums at genus

one given in [13, 15] pinpointed the ubiquity of doubly-periodic functions f (n)(z, τ) (see

section 2.5) in multiparticle correlators which is crucial to construct the latter from an

ansatz in both RNS- and pure-spinor variables. Hence, we expect that explicit control over

RNS spin sums provides valuable inspiration for the design of multiparticle correlators at

higher genus and appropriate generalizations of the f (n)(z, τ) functions.

Another kind of follow-up question concerns the extension of the present results to

string compactifications with reduced supersymmetry, see e.g. [74] for a review. Higher-

genus correlators involving two spin fields and an arbitrary number of NS fermions were

found to be robust under dimensional reduction [55], and the same is expected for excited

spin fields, see [75] for tree-level evidence. It remains to incorporate the fingerprints of the

compactification geometry on the fermionic vertex operators where universal statements

for a given number of supersymmetries can be made from [40, 76–78].

For bosonic one-loop amplitudes, the spin sums in half-maximally and quar-

ter-maximally supersymmetric setups could be identified as specializations of maximally

supersymmetric spin sums with two additional legs [58]. Upon extrapolation to external

fermions, the spin-summed five- and six-point correlators in the maximally supersymmet-

ric setup of this work should admit a similar map to spin summed three- and four-point

correlators with reduced supersymmetry.

The resulting expressions for fermionic one-loop RNS amplitudes with reduced super-

symmetry will provide helpful cross-checks and guidance to supersymmetrize their bosonic

counterparts [58–60]: they are important in comparing RNS results with one-loop ampli-

tudes in the hybrid formalism with four or eight supercharges manifest [79–82]. While

one-loop hybrid amplitudes with maximally supersymmetric multiplets in the loop have
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been computed in [83], it remains to derive their generalizations to spectra with reduced

supersymmetry.
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Johannes Brödel, Carlos Mafra and Nils Matthes for fruitful collaboration on related topics.

The research of OS was supported in part by Perimeter Institute for Theoretical Physics.

Research at Perimeter Institute is supported by the Government of Canada through the De-

partment of Innovation, Science and Economic Development Canada and by the Province

of Ontario through the Ministry of Research, Innovation and Science.

A OPEs and bosonization

The bosonization technique discussed in section 3.1 renders the OPEs among ψµ and spin

fields Sa, S
b of SO(D = 2n) accessible to free-field methods. For example, (3.2) and (3.5)

give rise to

ψµ(z)Sa(0) =eiµ·H(z) eia·H(0) ∼ zµ·aei(µ+a)·H(0)

(
1 + ziµ · ∂H(0) + . . .

)
. (A.1)

Since µ = (0, . . . , 0,±1, 0, . . . , 0) and a = (±1
2 ,±

1
2 , . . . ,±

1
2), the exponent µ ·a of z is either

−1
2 or +1

2 . Therefore, one can split (A.1) into (up to the subleading order)

ψµ(z)Sa(0) ∼

{
1

z1/2
ei(µ+a)·H(0) + z1/2iµ · ∂Hei(µ+a)·H(0) if µ · a = −1

2

z1/2ei(µ+a)·H(0) if µ · a = +1
2 .

(A.2)

The subleading term iµ · ∂Hei(µ+a)·H(0) can be further decomposed into a primary and a

descendant part with respect to the energy-momentum tensor T (z) = −1
2∂H · ∂H of the

bosonized system,

iµ · ∂Hei(µ+a)·H(0) =
4

D
i(µ+ a) · ∂Hei(µ+a)·H(0) + i

(
D − 4

D
µ− 4

D
a

)
· ∂Hei(µ+a)·H(0) .

(A.3)

Thus, we have primary fields Sµa (z) defined by

Sµa (z) = δ

(
µ·a+

1

2

)(
D−4

D
µ− 4

D
a

)
·i∂Hei(µ+a)·H(z) + δ

(
µ·a−1

2

)
ei(µ+a)·H(z) (A.4)

at the subleading order in the OPE (A.1). Although the first term of (A.4) could in principle

be used in section 3.2 to evaluate components of the correlators involving Sµa , we found the

second term ei(µ+a)·H(z) more convenient to extract the small number of required examples.
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Moreover, if µ · a = −1
2 , the resulting lattice vector µ+ a = b refers to a spin field Sb

of opposite chirality. Therefore, the OPE (A.1) can be written as

ψµ(z)Sa(0) ∼
∑

b∈(± 1
2
,...,± 1

2
)

δ(µ+ a− b)
z1/2

{
eib·H(0) + z

4

D
∂eib·H(0)

}
+ z1/2Sµa (0)

≡
γµab√
2z1/2

{
Sb(0) + z

4

D
∂Sb(0)

}
+ z1/2Sµa (0) . (A.5)

In passing to the last line, we have used the definition (3.7) of gamma-matrices in the

Cartan-Weyl basis, where the sign of b is flipped by the contraction through the charge-

conjugation matrix in γµabS
b. The computation above exemplifies how Lorentz covariance

can be a posteriori restored in results obtained from bosonization. In [46, 54, 55], this

procedure is applied to construct higher-point correlation functions involving ψµ and Sa.

B Examples for the standard form of spin sums

This appendix complements the discussion in section 3.4 by identifying the standard

form (3.31) of spin sums in correlators with three insertions of ψµjψνj (zj). The evalu-

ation of the spin sums is addressed in section 4.

B.1 Unexcited spin fields

With two unexcited spin fields, the five-point correlator

8

4∑
ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)ψ

µ3ψν3(z3)Sa(zA)Sb(zB)〉〉ν

= (ην1[µ2ην2][µ3ην3]µ1 − ηµ1[µ2ην2][µ3ην3]ν1)δa
b ξ(1)(z1, z2, z3, zA, zB)

+
[
(ηµ2[ν1(γµ1]ν2µ3ν3)a

b − ην2[ν1(γµ1]µ2µ3ν3)a
b) ξ(2)(z1, z2, z3, zA, zB) (B.1)

+ (ηµ3[ν2ηµ2][ν1(γµ1]ν3)a
b − ην3[ν2ηµ2][ν1(γµ1]µ3)a

b) ξ(3)(z1, z2, z3, zA, zB)

+ (ην1[µ2ην2]µ1 − ηµ1[µ2ην2]ν1)(γµ3ν3)a
b ξ(4)(z1, z2, z3, zA, zB) + cyc(1, 2, 3)

]
+ (γµ1ν1µ2ν2µ3ν3)a

bξ(5)(z1, z2, z3, zA, zB)

involves spin sums

ξ(1)(zi,zj ,zk,zA,zB) =− 1

EAB
W

[
zij ,zjk,zki
−

]
− EiAEkB
EABEiBEkA

W

[
zij ,zjk
zki

]

−
EjBEkA

EABEjAEkB
W

[
zij ,zki
zjk

]
−

EiAEjB
EABEiBEjA

W

[
zij

zjk,zki

]

−
EiBEjA

EABEiAEjB
W

[
zjk,zki
zij

]
−

EjAEkB
EABEjBEkA

W

[
zjk

zij ,zki

]

− EiBEkA
EABEiAEkB

W

[
zki

zij ,zjk

]
− 1

EAB
W

[
−

zij ,zjk,zki

]
(B.2a)
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ξ(2)(zi,zj ,zk,zA,zB) =
1

EAB
W

[
zij ,zjk,zki
−

]
− EiAEkB
EABEiBEkA

W

[
zij ,zjk
zki

]

−
EjBEkA

EABEjAEkB
W

[
zij ,zki
zjk

]
+

EiAEjB
EABEiBEjA

W

[
zij

zjk,zki

]

+
EiBEjA

EABEiAEjB
W

[
zjk,zki
zij

]
−

EjAEkB
EABEjBEkA

W

[
zjk

zij ,zki

]

− EiBEkA
EABEiAEkB

W

[
zki

zij ,zjk

]
+

1

EAB
W

[
−

zij ,zjk,zki

]
(B.2b)

ξ(3)(zi,zj ,zk,zA,zB) =− 1

EAB
W

[
zij ,zjk,zki
−

]
+

EiAEkB
EABEiBEkA

W

[
zij ,zjk
zki

]

−
EjBEkA

EABEjAEkB
W

[
zij ,zki
zjk

]
+

EiAEjB
EABEiBEjA

W

[
zij

zjk,zki

]

−
EiBEjA

EABEiAEjB
W

[
zjk,zki
zij

]
+

EjAEkB
EABEjBEkA

W

[
zjk

zij ,zki

]

− EiBEkA
EABEiAEkB

W

[
zki

zij ,zjk

]
+

1

EAB
W

[
−

zij ,zjk,zki

]
(B.2c)

ξ(4)(zi,zj ,zk,zA,zB) =
EkB
EkA
W

[
zBk,zij ,zji

zkB

]
+
EkBEiAEjB
EiBEjAEkA

W

[
zBk,zij
zkB,zji

]
EkBEiBEjA
EiAEjBEkA

W

[
zBk,zji
zkB,zij

]
+
EkB
EkA
W

[
zBk

zkB,zij ,zji

]
(B.2d)

ξ(5)(zi,zj ,zk,zA,zB) =
1

EAB
W

[
zij ,zjk,zki
−

]
− EiAEkB
EABEiBEkA

W

[
zij ,zjk
zki

]

−
EjBEkA

EABEjAEkB
W

[
zij ,zki
zjk

]
+

EiAEjB
EABEiBEjA

W

[
zij

zjk,zki

]

−
EiBEjA

EABEiAEjB
W

[
zjk,zki
zij

]
+

EjAEkB
EABEjBEkA

W

[
zjk

zij ,zki

]

+
EiBEkA

EABEiAEkB
W

[
zki

zij ,zjk

]
− 1

EAB
W

[
−

zij ,zjk,zki

]
. (B.2e)

The notation +cyc(1, 2, 3) in (B.1) refers to cyclic permutations of both the Lorentz

indices and the punctures including for instance {(z1, µ1, ν1), (z2, µ2, ν2), (z3, µ3, ν3)} →
{(z2, µ2, ν2), (z3, µ3, ν3), (z1, µ1, ν1)}.
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B.2 Excited spin field

In case of an excited spin field, the five-point correlator

4
√

2
4∑

ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)ψ

µ3ψν3(z3)Sa(zA)Sλb (zB)〉〉ν

=
[
(γµ1ν1µ2ν2[µ3)abη

ν3]λ Ξ(1)(z1, z2, z3, zA, zB)

+ (ηµ2[ν1(γµ1]ν2[µ3)ab − ην2[ν1(γµ1]µ2[µ3)ab)η
ν3]λ Ξ(2)(z1, z2, z3, zA, zB)

+ (ηµ2[ν1ηµ1]ν2 − ην2|[ν1ηµ1]µ2)(γ[µ3)abη
ν3]λ Ξ(3)(z1, z2, z3, zA, zB) + cyc(1, 2, 3)

]
+
[
(γµ1ν1[µ2)abη

ν2][µ3ην3]λ Ξ(4)(z1, z2, z3, zA, zB)

+ (γ[µ1)abη
ν1][µ2ην2][µ3ην3]λ Ξ(5)(z1, z2, z3, zA, zB) + perm(1, 2, 3)

]
(B.3)

involves spin sums

Ξ(1)(zi,zj ,zk,zA,zB) =− 1

EAB
W

[
zBi,zkB,zij ,zjk

−

]
+

EjBEkA
EABEjAEkB

W

[
zBi,zkB,zij

zjk

]

+
EiBEjA

EABEiAEjB
W

[
zBi,zkB,zjk

zij

]
− EiBEkA
EABEiAEkB

W

[
zBi,zkB
zij ,zjk

]
(B.4a)

Ξ(2)(zi,zj ,zk,zA,zB) =− 1

EAB
W

[
zBi,zkB,zij ,zjk

−

]
+

EjBEkA
EABEjAEkB

W

[
zBi,zkB,zij

zjk

]

− EiBEjA
EABEiAEjB

W

[
zBi,zkB,zjk

zij

]
+

EiBEkA
EABEiAEkB

W

[
zBi,zkB
zij ,zjk

]
(B.4b)

Ξ(3)(zi,zj ,zk,zA,zB) =
1

EAB
W

[
zij ,zji,zBk,zkB

−

]
+

EiAEjB
EiBEjAEAB

W

[
zij ,zBk,zkB

zji

]

+
EiBEjA

EiAEjBEAB
W

[
zji,zBk,zkB

zij

]
+

1

EAB
W

[
zBk,zkB
zij ,zji

]
(B.4c)

Ξ(4)(zi,zj ,zk,zA,zB) =− 1

EAB
W

[
zBi,zkB,zij ,zjk

−

]
− EjBEkA
EABEjAEkB

W

[
zBi,zkB,zij

zjk

]

+
EiBEjA

EABEiAEjB
W

[
zBi,zkB,zjk

zij

]
+

EiBEkA
EABEiAEkB

W

[
zBi,zkB
zij ,zjk

]
(B.4d)

Ξ(5)(zi,zj ,zk,zA,zB) =− 1

EAB
W

[
zBi,zkB,zij ,zjk

−

]
− EjBEkA
EABEjAEkB

W

[
zBi,zkB,zij

zjk

]

− EiBEjA
EABEiAEjB

W

[
zBi,zkB,zjk

zij

]
− EiBEkA
EABEiAEkB

W

[
zBi,zkB
zij ,zjk

]
. (B.4e)
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C Simplifying the spin-structure dependence

C.1 The spin-structure dependent Fay identity

This subsection is dedicated to a proof of the spin-structure dependent Fay identity (4.4)

which generalizes the property [16, 69, 70]

F (x1, y1)F (x2, y2) = F (x1, y1+y2)F (x2−x1, y2) + F (x2, y1+y2)F (x1−x2, y1) (C.1)

of the Kronecker-Eisenstein series (2.24). While (C.1) immediately yields the ν = 1 version

of (4.4) by F (x, y) = Fν=1(x, y), its extension to even spin structures requires (quasi-

)periodicity properties of the Jacobi theta functions θν(x), ν = 1, 2, 3, 4 defined by (2.7)

and (2.8). The latter are quasi-periodic

θ1(z) = −θ1(z + 1) = −q1/2e2iπzθ1(z + τ) (C.2a)

θ2(z) = −θ2(z + 1) = q1/2e2iπzθ2(z + τ) (C.2b)

θ3(z) = θ3(z + 1) = q1/2e2iπzθ3(z + τ) (C.2c)

θ4(z) = θ4(z + 1) = −q1/2e2iπzθ4(z + τ) (C.2d)

with q = e2πiτ and related to each other by the half-periodicity:

θ1(z) = −θ2(z +
1

2
) = −iq1/8eiπzθ4(z +

τ

2
) = −iq1/8eiπzθ3(z +

1

2
+
τ

2
) . (C.3)

Then, the Kronecker-Eisenstein series Fν(x, y) with spin structures ν = 1, 2, 3, 4 as defined

in (3.28) is related to F (x, y) via

Fν(x, y) = eiπφνxF (x, y + sν) , (C.4)

where the shift in the second argument and the complex phase is determined by

sν = (0,
1

2
,
1

2
+
τ

2
,
τ

2
) , φν =

{
0, for ν = 1, 2

1, for ν = 3, 4 .
(C.5)

Finally, the proof of (4.4) follows from the Fay trisecant identity (C.1) and the quasi-

periodicity of F (x, y)

Fν(x1,y1)Fν(x2,y2) = eiπφν(x1+x2)F (x1,y1+sν)F (x2,y2+sν) (C.6)

=F (x1,y1+y2)e
iπφν(x2−x1)F (x2−x1,y2+sν)

+F (x2,y1+y2)e
iπφν(x1−x2)F (x1−x2,y1+sν)

=F (x1,y1+y2)Fν(x2−x1,y2)+F (x2,y1+y2)Fν(x1−x2,y1) .

C.2 Merging products of Fν at the same second argument y

In order to prove (4.5), we note that the derivatives F
(0,k1)
ν (x1, y)F

(0,k2)
ν (x2, y) in the no-

tation of (4.6) can be rewritten as

F (0,k1)
ν (x1, y)F (0,k2)

ν (x2, y) =
∂k1

∂yk1
∂k2

∂y′k2

[
Fν(x1, y)Fν(x2, y

′)
]
y′→y . (C.7)
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Then, (4.5) follows by inserting the corollary

Fν(x1,y)Fν(x2,y
′) =−Fν(x1,y)Fν(−x2,−y′)

=F (x1,y−y′)Fν(x1+x2,y
′)−F (−x2,y−y′)Fν(x1+x2,y) , (C.8)

of the Fay identity (4.4) into (C.7).

In order to prove (4.8), we first note that derivatives F
(0,k)
ν (x, y) with k ≥ 1 are non-

singular at x = 0 since the residue of the simple pole of Fν(x, y) at x = 0 does not depend

on y. A similar argument implies that limx→0 xFν(x, y) = 1. Then, (4.8) can be obtained

by taking x1 → −x2 in (4.5).

C.3 Merging products of Fν at second argument y and −y

In order to prove (4.9), we separate (4.17) into the following two contributions according

to the number of derivatives w.r.t. the second argument of Fν :

4∑
ν=1

Zν(y)F (0,k1)
ν (x1, y)F (0,k2)

ν (x2,−y)

= (−1)k2
4∑

ν=1

Zν(y)

[
Fν(x1 + x2,−y)F (0,k1+k2)(x1, 2y)

− Fν(x1 + x2, y)F (0,k1+k2)(−x2, 2y)

]
(C.9)

+

4∑
ν=1

Zν(y)

[
k2∑
l=1

(
k2
l

)
(−1)k2−lF (0,l)

ν (x1 + x2,−y)F (0,k1+k2−l)(x1, 2y)

−
k1∑
l=1

(
k1
l

)
(−1)k2F (0,l)

ν (x1 + x2, y)F (0,k1+k2−l)(−x2, 2y)

]

Since F
(0,l)
ν (x, y) is non-singular at x = 0 for l ≥ 1, one can set x1 + x2 → 0 or x2 → −x1

in the last two lines of (C.9), casting them into the form

4∑
ν=1

Zν(y)

[
k2∑
l=1

(
k2
l

)
(−1)k2−lF (0,l)

ν (0,−y)F (0,k1+k2−l)(x1, 2y)

−
k1∑
l=1

(
k1
l

)
(−1)k2F (0,l)

ν (0, y)F (0,k1+k2−l)(x1, 2y)

]
. (C.10)

The first two lines on the right-hand side of (C.9) in turn vanish as x1 + x2 → 0, as one

can check by combining

lim
x→0

[
Fν(x,−y)− Fν(x, y)

]
= lim

x→0

1

E(x)

[
θν(x−y)

θν(−y)
− θν(x+y)

θν(y)

]
= −2θ′ν(y)

θν(y)
(C.11)
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with the Riemann identity (4.2):

4∑
ν=1

Zν(y)

[
Fν(x1+x2,−y)F (0,k1+k2)(x1, 2y)− Fν(x1+x2, y)F (0,k1+k2)(−x2, 2y)

]
x1+x2=0

= −2F (0,k1+k2)(x1, 2y)
4∑

ν=1

θν(y)3θ′ν(y) = 0 . (C.12)

Hence, the claim (4.9) follows from identifying (C.10) as the right-hand side of (C.9) in

the limit x2 → −x1.

D Evaluating the leftover spin sums

The general method of section 4.1 reduces all the spin sums (3.31) in two-fermion ampli-

tudes to a family of functions Mj = Mj(zA − zB) with j ∈ N defined in (4.11). In this

appendix, we will present a recursive method to express Mj with arbitrary j ≥ 1 in terms of

the prime form EAB and combinations of Weierstrass functions at argument 2y = zA− zB.

D.1 Properties of the Weierstrass function

Given the Weierstrass ℘-function in (4.12), we define

e1 ≡ ℘
(

1

2

)
, e2 ≡ ℘

(
−1

2
− τ

2

)
, e3 ≡ ℘

(τ
2

)
(D.1)

subject to

e1 + e2 + e3 = 0 . (D.2)

The Weierstrass function obeys the addition theorem

℘(z + w) =
1

4

[
℘′(z)− ℘′(w)

℘(z)− ℘(w)

]2
− ℘(z)− ℘(w) (D.3)

which provides two useful corollaries,

℘(2z) =
1

4

(
℘′′(z)

℘′(z)

)2

− 2℘(z) (D.4)

as well as

℘

(
z +

1

2

)
= e1 +

(e1 − e2) (e1 − e3)
℘ (z)− e1

℘

(
z − 1

2
− τ

2

)
= e2 +

(e2 − e1) (e2 − e3)
℘ (z)− e2

(D.5)

℘
(
z +

τ

2

)
= e3 +

(e3 − e1)(e3 − e2)
℘(z)− e3

.
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For ν = 2, 3, 4, the representation (℘(z) − eν)1/2 =
θ′1(0)θν+1(z)
θ1(z)θν+1(0)

of the fermion Green func-

tion (2.26) implies

Fν(x, 0) = (℘(x)− eν−1)1/2 , ν = 2, 3, 4 , (D.6)

which yields the following representation of the first derivative

℘′(x) = −2
√

(℘(x)− e1)(℘(x)− e2)(℘(x)− e3)
= −2F2(x, 0)F3(x, 0)F4(x, 0) . (D.7)

D.2 Mj and Weierstrass functions

In this subsection, we demonstrate that the above properties of the Weierstrass func-

tion (4.12) can be used cast the spin sums Mj≥1 in (4.11) into the form

Mj(y) =
E(2y)

℘′(y)

{
℘(j−1)(y)−

3∑
k=1

(℘(y)− ek)2
∂j−1

∂yj−1
1

℘(y)− ek
+ 2δj,1℘(y)

}
. (D.8)

We first note that F (1,0)(x, 0) = −℘(x)−G2 (with Gk defined in (2.28)) such that

F (0,j)(0, y) = F (j,0)(y, 0) = − ∂j−1

∂yj−1
[℘(y) + G2] (D.9a)

F
(0,j)
ν 6=1 (0, y) =


− ∂j−1

∂yj−1

[ (e1−e2)(e1−e3)
℘(x)−e1 + e1 + G2

]
, ν = 2

− ∂j−1

∂yj−1

[ (e2−e1)(e2−e3)
℘(x)−e2 + e2 + G2

]
, ν = 3

− ∂j−1

∂yj−1

[ (e3−e1)(e3−e2)
℘(x)−e3 + e3 + G2

]
, ν = 4

, (D.9b)

where (D.9b) results from (D.5). Then, by (D.6) and (D.7),

Z1(y) =
θ1(y)4

θ′1(0)4
=

E(2y)

2F2(y, 0)F3(y, 0)F4(y, 0)
= −E(2y)

℘′(y)
(D.10a)

Zν 6=1(y) =
(−1)ν+1θν(y)4

θ′1(0)4
= Zν(0)Z1(y)Fν(y, 0)4

=



E(2y)(℘(y)− e1)2

℘′(y)(e1 − e2)(e1 − e3)
, ν = 2

E(2y)(℘(y)− e2)2

℘′(y)(e2 − e1)(e2 − e3)
, ν = 3

E(2y)(℘(y)− e3)2

℘′(y)(e3 − e1)(e3 − e2)
, ν = 4

. (D.10b)

Hence, combining (D.9) and (D.10) gives rise to

4∑
ν=1

Zν(y)F (0,j)
ν (0, y) =

E(2y)

℘′(y)

{
℘(j−1)(y)−

3∑
k=1

(℘(y)− ek)2
∂j−1

∂yj−1
1

℘(y)− ek

}

− δj,1
E(2y)

℘′(y)

{
(℘(y)− e1)2e1

(e1 − e2)(e1 − e3)
+

(℘(y)− e2)2e2
(e2 − e1)(e2 − e3)

+
(℘(y)− e3)2e3

(e3 − e1)(e3 − e2)

}
. (D.11)

Finally, the claim (D.8) follows by simplifying the coefficient of δj,1 via (D.2).
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D.3 Initial conditions

By (D.2), the instances of (D.8) at j = 1, 2 imply

M1(y) =
E(2y)

℘′(y)

[
℘(y)−

3∑
k=1

(℘(y)− ek) + 2℘(y)

]
= 0 (D.12a)

M2(y) =
E(2y)

℘′(y)

[
℘′(y)−

3∑
k=1

(℘(y)− ek)2
∂

∂y

1

℘(y)− ek

]
(D.12b)

=
E(2y)

℘′(y)

[
℘′(y)− ∂

∂y

( 3∑
k=1

(℘(y)− ek)
)

+ 6℘′(y)

]
= 4E(2y) .

D.4 Recursive construction of Mj

Given that the initial conditions for Mj at j = 1, 2 have been settled in (D.12), we now

proceed to demonstrating that (D.8) with j > 2 is equivalent to the recursion

Mj(y) = E(2y)
∂

∂y

(
Mj−1(y)

E(2y)

)
−Q1(y)Mj−1(y) + 4E(2y)

j−3∑
l=0

Q
(l)
j−2−l(y) (D.13)

with the following building blocks:

Qk(y) ≡ ℘′(y)
∂k

∂yk
1

℘′(y)
, Q

(m)
k (y) ≡ ∂m

∂ym
Qk(y) . (D.14)

As a first step towards proving (D.13), we note that, by (D.2) and (D.7),

3∑
k=1

1

℘(y)− ek
= −2

∂

∂y

1

℘′(y)
, (D.15)

which implies

3∑
k=1

℘′(y)
∂l−1

∂yl−1
1

℘(y)− ek
= −2Ql(y) . (D.16)

It then follows from (D.16) that, for l > 1,

3∑
k=1

(℘(y)− ek)
∂l

∂yl
1

℘(y)− ek

=
∂

∂y

3∑
k=1

[
(℘(y)− ek)

∂l−1

∂yl−1
1

℘(y)− ek

]
−

3∑
k=1

℘′(y)
∂l−1

∂yl−1
1

℘(y)− ek
(D.17)

= 2

l−1∑
m=0

Q
(m)
l−m(y) ,
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see (D.14) for Q
(m)
l−m(y). Now, as a consequence of (D.17), we have

℘′(y)

E(2y)
Mj(y) = ℘(j−1)(y)−

3∑
k=1

(℘(y)− ek)2
∂j−1

∂yj−1
1

℘(y)− ek

= ℘(j−1)(y)− ∂

∂y

3∑
k=1

(℘(y)− ek)2
∂j−2

∂yj−2
1

℘(y)− ek

+ 2

3∑
k=1

℘′(y)(℘(y)− ek)
∂j−2

∂yj−2
1

℘(y)− ek
(D.18)

=
∂

∂y

{
℘(j−2)(y)−

3∑
k=1

(℘(y)− ek)2
∂j−2

∂yj−2
1

℘(y)− ek

}
+ 4℘′(y)

j−3∑
l=0

Q
(l)
j−2−l(y)

=
∂

∂y

{
℘′(y)

E(2y)
Mj−1(y)

}
+ 4℘′(y)

j−3∑
l=0

Q
(l)
j−2−l(y)

for j > 2. Upon multiplication by E(2y)
℘′(y) and exploiting that Q1(y) = −℘′′(y)

℘′(y) , this lands us

on the claim (D.13).

D.5 The recursion for Mj in terms of Weierstrass derivatives

Finally, we shall express the building blocks Q
(m)
k seen in the recursion (D.13) for Mj in

terms of the Weierstrass function and its derivatives at argument 2y = zAB. As a first

step, we eliminate any Q
(m)
k with k ≥ 2 by repeated application of

Qk(y) = Q′k−1(y) +Q1(y)Qk−1(y) , (D.19)

which can be proven as follows (with Qk = Qk(y) and ℘ = ℘(y)):

Qk = ℘′
∂k

∂yk
1

℘′
=

∂

∂y

(
℘′
∂k−1

∂yk−1
1

℘′

)
− ℘′′ ∂

k−1

∂yk−1
1

℘′
= Q′k−1 +Q1Qk−1 . (D.20)

Then, (D.13) reduces to a polynomial in Q1(y) = −℘′′(y)
℘′(y) and its derivatives. Such polyno-

mials connect with the desired ℘(k)(2y) by means of

℘(2y) =
1

12

{
2Q′1(y) +Q2

1(y)
}

(D.21)

and its derivatives, e.g. ℘′(2y) = 1
12 {Q

′′
1(y) +Q1(y)Q′1(y)}. One can derive (D.21) from

the differential equation

℘′′(z) = 6℘(z)2 − 30G4 (D.22)

of the Weierstrass function which implies

℘(3)(z) = 12℘′(z)℘(z) (D.23)
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for the third derivative. Then, (D.21) follows from (D.4) along with the above expressions

for ℘′′(z) and ℘(3)(z):

℘(2y) = −1

4
℘′′(y)

∂

∂y

1

℘′(y)
− 2℘′(y)℘(y)

℘′(y)

= −1

4

℘′′(y)

℘′(y)
℘′(y)

∂

∂y

1

℘′(y)
− ℘(3)(y)

6℘′(y)

=
1

4
℘′(y)

∂

∂y

1

℘′(y)
Q1(y)− 1

6

(
∂

∂y

℘′′(y)

℘′(y)
− ℘′′(y)

∂

∂y

1

℘′(y)

)
(D.24)

=
1

4
Q1(y)2 − 1

6

(
− ∂

∂y
Q1 +Q1(y)2

)
=

1

12

{
2Q′1(y) +Q2

1(y)
}
.

In summary, the recursion (D.13) along with (D.19) imply that any Mj is given by E(2y)

multiplied by polynomials in Q1(y) = −℘′′(y)
℘′(y) and its derivatives. We have checked up to

order j = 8 that these polynomials can be expressed in terms of ℘(2y) as given on the right-

hand side of (D.21) and its derivatives. It is reasonable to expect this to hold for all Mj

since the properties of Zν(y) and F (0,j)(0, y) under shifts of y imply that
Mj(y)
E(2y) is periodic

under y → y + 1
2 and y → y + τ

2 . Hence,
Mj(y)
E(2y) be expressed through doubly-periodic

functions at argument 2y.

D.6 Additional examples

The above recursive method with (D.21) and (D.19) gives rise to the expressions for Mk≤6
in (4.13) and

M7 = 2688EAB(3℘(2y)℘′(2y) + ℘(3)(2y)) (D.25)

M8 = 192EAB(40℘(4)(2y) + 204℘(2y)℘′′(2y) + 165℘′(2y)2 + 36℘(2y)3) .

This can be simplified to

M7 = 40320EAB℘(zAB)∂℘(zAB) (D.26)

M8 = 80640EAB
[
16℘(zAB)3 − 141G4℘(zAB)− 215G6

]
with ℘(zAB) = (f (1)(zAB))2 − 2f (2)(zAB), see (4.14) for similar representations of Mk≤6.

E Cleaning up prime forms

In this appendix, we prove the central identity (4.15) of section 4.1.4. Let θν(z) 6= 0

and consider complex variables {x1, x2, . . . , xn} and {y1, y2, . . . , yn}, where xj and yk are

pairwise different for j, k = 1, 2, . . . , n. Then, the following Fay trisecant identities hold for

ν = 1, 2, 3, 4 [68],

θν

 n∑
j=1

(xj − yj) + z

 θν(z)n−1
∏n
j<k E(xj , xk)E(yk, yj)∏n

j,k=1E(xj , yk)
= det

j,k

[
θν(xj − yk + z)

E(xj , yk)

]
, (E.1)
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where the determinant refers to the n× n matrix with entries
θν(xj−yk+z)
E(xj ,yk)

. Multiplication

with
(

z
θ1(z)

)n
and setting ν = 1 gives rise to

znθ1

(∑n
p=1(xp − yp) + z

)
θ1(z)

∏n
j<k E(xj , xk)E(yk, yj)∏n

j,k=1E(xj , yk)
= det

j,k
[zF (xj − yk, z)] . (E.2)

Then, inserting 1 =
∏n−1
q=1 θ1(

∑q
r=1(xr−yr))∏n−1

q=1 θ1(
∑q
r=1(xr−yr))

on the left-hand side and using the definition (2.24)

of F (x, y) yields the following lemma: let n > 1, then

det
j,k

[zF (xj − yk, z)] = zn−1

n−1∏
q=2

F

( q−1∑
r=1

(xr − yr), xq − yq
) (E.3)

× F
( n−1∑
p=1

(xp − yp), xn − yn + z

)
zF (xn − yn, z)

∏n
j<k E(xj , xk)E(yk, yj)∏n

j 6=k E(xj , yk)
.

Finally, the identity (4.15) in the main text follows by applying ∂m+n−1

∂zm+n−1 to (E.3) and taking

z → 0.

F Examples for spin-summed correlators

This appendix adds further examples of spin-summed correlators to section 4.4.

F.1 Unexcited spin-fields

The seven-point generalization of the correlators in section 4.4.1 is given by

8
4∑

ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)ψ

µ3ψν3(z3)ψ
µ4ψν4(z4)ψ

µ5ψν5(z5)Sa(zA)Sb(zB)〉〉ν

= (γµ1ν1µ2ν2...µ5ν5)a
bh

(2)
∅ + ην1µ2(γµ1ν2µ3ν3µ4ν4µ5ν5)a

bh
(2)
[12]

+ ην1µ2ηµ1ν2(γµ3ν3µ4ν4µ5ν5)a
bh

(2)
(12) + ην1µ2ην2µ3(γµ1ν3µ4ν4µ5ν5)a

bh
(2)
12,23

+ ην1µ2ην3µ4(γµ1ν2µ3nu4µ5ν5)a
bh

(2)
[12],[34] + ην1µ2ηµ1ν2ην3µ4(γµ3ν4µ5ν5)a

bh
(2)
(12),[34]

+ ην1µ2ην2µ3ηµ1ν3(γµ4ν4µ5ν5)a
bh

(2)
[123] + ην1µ2ην2µ3ην3µ4(γµ1ν4µ5ν5)a

bh
(2)
12,23,34 (F.1)

with the following doubly-periodic functions h(2)... ≡ h(2)... (zj , zA, zB):

h
(2)
∅ (zj , zA, zB) = −

5∑
i=1

5∑
j=i+1

V2(i, A, j, B)− 16V2(A,B) (F.2a)

h
(2)
[12](zj , zA, zB) =

5∑
i=3

V2(1, 2, B, i, A) + 4V2(1, 2, A,B)− (A↔ B) (F.2b)

h
(2)
(12)(zj , zA, zB) =

5∑
i=3

5∑
j=i+1

V2(i, B, j, A)−
2∑
i=1

5∑
j=i+1

V2(i, B, j, A)− 4V2(1, 2) (F.2c)
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h
(2)
12,23(zj , zA, zB) =

5∑
i=1,i 6=2

V2(2, A, i, B)− V2(1, A, 3, B)− V2(4, A, 5, B)

− 2 {V2(2, A, 1, 3) + V2(2, A, 3, 1) + (A↔ B)} (F.2d)

h
(2)
[12],[34](zj , zA, zB) = V2(1, 2, A, 3, 4, B)− (1↔ 2)− (3↔ 4) + (1↔ 2, 3↔ 4) (F.2e)

h
(2)
(12),[34](zj , zA, zB) = (V1(1, A,B) + V1(2, A,B)− V1(5, A,B))

× (V1(3, 4, A,B) + V1(3, 4, B,A))

− V2(3, 4, A,B) + V2(3, 4, B,A) (F.2f)

h
(2)
[123](zj , zA, zB) = V2(1, A, 2, 3, B) +

5∑
i=4

V2(1, 2, A, i, B) + cyc(1, 2, 3)

− (A↔ B) (F.2g)

h
(2)
12,23,34(zj , zA, zB) = −V2(2, A, 3, 4, B)− V2(3, A, 1, 2, B)−

3∑
i=1

V2(i, i+ 1, A, 5, B)

− (A↔ B) (F.2h)

h
(2)
12,23,45(zj , zA, zB) = −V2(2, A, 4, 5, B) + V2(2, B, 4, 5, A) (F.2i)

h
(2)
(12),(34)(zj , zA, zB) = V2(1, A, 2, B) + V2(3, A, 4, B) + 4V2(1, 2) + 4V2(3, 4)

+
4∑
i=1

V2(i, A, 5, B)−
2∑
i=1

4∑
j=3

V2(i, A, j, B) (F.2j)

h
(2)
[123],[45](zj , zA, zB) = −2V1(1, 2, 3) (V1(4, 5, A,B) + V1(4, 5, B,A)) (F.2k)

h
(2)
(1234)(zj , zA, zB) = V2(1, A, 3, B) + V2(2, A, 4, B)−

4∑
i=1

V2(i, A, 5, B)

− 4V2(1, 2, 3, 4) (F.2l)

h
(2)
(12),34,45(zj , zA, zB) = V2(1, B, 4, A) + V2(2, B, 4, A)− V2(1, B, 2, A)− 4V2(1, 2)

− V2(3, B, 4, A)− V2(4, B, 5, A) + V2(3, B, 5, A)

− 2V2(3, A, 5, 4)− 2V2(3, B, 5, 4) (F.2m)

h
(2)
12,23,34,45(zj , zA, zB) = V2(1, A, 2, B)− V2(2, A, 4, B) + V2(4, A, 5, B)

− V2(1, A, 5, B) + 2V2(1, 2, 3, 4, 5, A) + 2V2(1, 2, 3, 4, 5, B) (F.2n)

h
(2)
[123],(45)(zj , zA, zB) = (V2(1, 2, A,B) + cyc(1, 2, 3))− V1(1, 2, 3)

5∑
i=1

V1(i, A,B)

− (A↔ B) (F.2o)

h
(2)
(12345)(zj , zA, zB) =

(
V2(1, A, 2, 3, B) + V2(1, A, 3, 4, B) + V2(1, A, 4, 5, B)

+ 4V2(1, 2, A,B) + cyc(1, 2, 3, 4, 5)
)
− (A↔ B) . (F.2p)
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F.2 One excited spin-fields

The six-point generalization of the correlators in section 4.4.2 reads

4
√

2

4∑
ν=1

(−1)ν+1〈〈ψµ1ψν1(z1)ψ
µ2ψν2(z2)ψ

µ3ψν3(z3)ψ
µ4ψν4(z4)Sa(zA)Sλb (zB)〉〉ν

= (γµ1ν1µ2ν2µ3ν3µ4)abη
ν4λH

(2)
∅ + ην1µ2(γµ1ν2µ3ν3µ4)abη

ν4λH
(2)
[12]

+ ην1µ2ηµ1ν2(γµ3ν3µ4)abη
ν4λH

(2)
(12) + ην1µ2ην2µ3(γµ1ν3µ4)abη

ν4λH
(2)
12,23

+ ην1µ2ην2µ3ηµ1ν3(γµ4)abη
ν4λH

(2)
[123] + (γµ1µ2ν2µ3ν3)abη

ν1µ4ην4λH
(2)
14

+ ην2µ3(γµ1µ2ν3)abη
ν1µ4ην4λH

(2)
[23],14 + ην2µ3ηµ2ν3(γµ1)abη

ν1µ4ην4λH
(2)
(23),14

+ (γν2µ3ν3)abη
µ1µ2ην1µ4ην4λH

(2)
12,14 + ην2µ3(γν3)abη

µ1µ2ην1µ4ην4λH
(2)
12,23,14

+ permutations (F.3)

with doubly-periodic functions H(2)
... ≡ H(2)

... (zj , zA, zB) given by

H
(2)
∅ (zj , zA, zB) =

[
V2(1, A, 2, B) + cyc(1, 2, 3)

]
− 2V2(4, B) + 8V2(A,B) (F.4a)

H
(2)
[12](zj , zA, zB) = V2(1, 2, A, 3, B)− 2V2(1, 2, A,B)− (A↔ B) (F.4b)

H
(2)
(12)(zj , zA, zB) =

[
V2(1, B, 2, A) + cyc(1, 2, 3)

]
+ 4V2(1, 2) + 2V2(4, B) (F.4c)

H
(2)
12,23(zj , zA, zB) = −V2(1, B, 2, A)− V2(2, B, 3, A) + V2(1, B, 3, A)

− 2V2(1, A, 3, 2)− 2V2(1, B, 3, 2)− 2V2(4, B) (F.4d)

H
(2)
[123](zj , zA, zB) = −2V2(2, 3, A,B)− 2V2(1, 2, A,B, 3)− V2(1, A, 2, 3, B)

− (A↔ B) (F.4e)

H
(2)
14 (zj , zA, zB) =

[
− 2V2(1, 4, A,B)−

3∑
i=2

V2(i, A, 1, 4, B)− (A↔ B)
]

−
3∑
i=2

V2(i, B, 4, A) + V2(2, B, 3, A) + 2V2(4, B) (F.4f)

H
(2)
[23],14(zj , zA, zB) =

3∑
i=2

(V2(1, A, i, B) + V2(4, A, i, B))− 2V2(1, A, 4, B)

− 2V2(2, A, 3, B)− 2V2(1, 4, A, 2, 3, B)− 2V2(1, 4, B, 2, 3, B)

+ V2(4, A, 2, 3, B)− V2(4, B, 2, 3, A) (F.4g)

H
(2)
(23),14(zj , zA, zB) =

[
−

3∑
i=2

(V2(i, A, 1, 4, B))− 2V2(1, 4, A,B)− (A↔ B)
]

−
3∑
i=2

V2(4, A, i, B) + 4V2(2, 3) + V2(2, B, 3, A)− 2V2(4, B) (F.4h)

H
(2)
12,14(zj , zA, zB) = −2V2(2, A, 1, 4, B) + 2V2(3, A, 1, 4, B) + 2V2(1, B, 2, A)

− V2(3, A, 1, 2, B) + V2(3, B, 1, 2, A) + 4V2(4, B, 2, 1) (F.4i)
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H
(2)
12,23,14(zj , zA, zB) = −

(
2V2(1, 2, A,B) + 2V2(1, 4, B,A) + 2V2(2, 3, A,B)

+ V2(1, A, 2, 3, B)− (A↔ B)
)
− 2V2(2, B, 4, A)

− 2V2(1, 4, A, 3, 2)− 2V2(1, 4, B, 3, 2) + 2V2(2, A, 1, 4, B)

+ 2V2(4, A, 2, 1, B) + 2V2(4, A, 3, 2, B) + 2V2(4, B) . (F.4j)
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