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On Feynman rules for not entirely external lines in leptogenesis and beyond

Adrian Lewandowski∗

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Am Mühlenberg 1, D-14476 Potsdam, Germany

Abstract. It is well-known that the determination of indirect CP-violation in models with highly
mixed and unstable gauge-singlet neutrinos requires a careful analysis of the matrix of propagators
in the vicinity of its poles. In this paper, in a system with an arbitrary number of unstable mixed
Majorana or Dirac particles, a simple prescription is given for obtaining, roughly speaking, “square-
rooted residues” of propagators, i.e. for obtaining the matrices ζab that (in a special case of stable
particles) together with the ordinary u and v spinors convert the amputated Green’s functions in
the MS scheme (or any other scheme for that matter) into the S-matrix elements. Corresponding
prescription for the scalar case is provided as well.

PACS numbers: 12.60.Fr,1480.Ec,14.80Va

I. INTRODUCTION

Leptogenesis is a natural mechanism for explanation of
the observed baryon-antibaryon asymmetry of the Uni-
verse [1]. In this scenario, non-perturbative interactions
of the Standard Model (SM) [2] break baryon and lepton
number symmetries down to the non-anomalous combi-
nationB−L and generate baryons from lepton-antilepton
asymmetry produced in CP-violating out-of-equilibrium
decays of gauge-singlet neutrinos. The so-called direct
CP-violation εd, resulting from the loop corrections to
proper vertices, is generically of the same order of magni-
tude as the indirect one εi, corresponding to self-energy
insertions [3]. The case of highly mixed singlet neutri-
nos with mN1 −mN2 ≈ ΓN1,2 is, however, an interesting
exception as it leads to an enhancement of εi, even by
many orders of magnitude (“resonant leptogenesis” [4–
7]) . This observation is of the utmost importance in
models with TeV-scale masses mN of singlet neutrinos,
in which CP-asymmetry is generically suppressed due to
the smallness of singlet-doublet Yukawa couplings in the
framework of the seesaw mechanism [8–11]. The models
in question are free from the problem of stability of elec-
troweak scale vs mN -scale and, under the shade of still
invisible supersymmetry, attracted a lot of attention in
last few years, see e.g. [12–29].
The calculation of εi is not completely trivial, as it in-

volves corrections to external lines of particles for which
external lines, aka the “in” and “out” states, do not really
exist. Recall the ordinary Feynman rule for external lines
of stable states. On account of Cutkosky-Veltman rules,
it is well-known [30] that the S-matrix is unitary pro-
vided that (1.) unstable particles appear only as internal
lines, and (2.) asymptotic (free) fields appearing in the
LSZ-reduced formula for the S-operator (see e.g. [31] and
Eq. (36) below) are normalized so as to reproduce the
behavior of full propagators about the poles associated
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with stable particles. Thus, the external lines have to be
multiplied with the usual u and v spinors, and (unless
one imposes the on-shell renormalization conditions on
the two-point functions) with the matrices ζ that are, es-
sentially, square roots of the corresponding residues (see
e.g. [32] for derivation from first principles, ζ matrices

in the present notation generalize the
√
Z factors used

there to the case with mixing).
As said, a generalization of this Feynman rule to un-

stable particles is not entirely obvious, as the ζ factors
associated with the complex poles violate, for instance,
Hermiticity of a Hermitian scalar field and Majorana-
reality of a Majorana field. In order to extract the CP-
asymmetry caused by decays, one can follow a formalism
developed in [4, 34] (see also [35, 36])1: consider the CP-
violation in decays of mixed singlet neutrinos Na into the
Higgs particle h and SM (anty)neutrinos (ν) ν; formally

ε = εi + εd =
Γ(Na → hν)− Γ(Na → hν̄)

Γ(Na → hν) + Γ(Na → hν̄)
.

The indirect part εi of ε was calculated in [35] without
any reference to external lines of Na, by comparing for
s ≈ m2

Na
the process hν → N∗

a → hν, appropriately aver-
aged over the initial phase-space, with its hν → N∗

a → hν
counterpart. The result depends only on (what is called
here) ζ matrices, in a way that closely resembles the
usual LSZ-reduction prescription for external lines of sta-
ble states (for the reader’s convenience, the formula for
ε in the notation used here is given in Eq. (40) below).
The purpose of this paper is to generalize and to sim-

plify the available in the literature procedure of calculat-
ing the pole part of propagators [4, 34–36]. A prescription
will be given for obtaining directly the (columns of) ζ ma-
trices, which parametrize these pole parts (see Eq. (26)

1 As far as the dominant corrections to the tree-level decay widths
of mixed scalar particles are concerned, one can simply take [33]
the real parts of appropriate matrix elements of the ζ matrix
instead.

http://arxiv.org/abs/1710.07165v1


2

below). The formulae presented below are valid in the
generic case of mixed unstable Majorana or/and Dirac
fermions (a scalar version is also given). In particular,
the following restriction on the form of the self-energy

Σ(/p) = z
L
(p2)/pPL + z

R
(p2)/pPR ,

as well as any reference to specific renormalization con-
dition, are avoided here. All the formulae can be used di-
rectly with the expressions for the self-energy in the MS
scheme of dimensional regularization, or any other pre-
ferred scheme (for completeness, the expression for the
Landau-gauge one-loop fermionic self-energy of a general
renormalizable model in the MS scheme is provided be-
low).
The proposed prescription for ζ’s simplifies not only

the procedure of obtaining the CP-violation parameter ε,
but can be also useful for determination of S-matrix el-
ements between states of mixed stable particles. Being
expressed in terms of eigenvectors of a certain matrix,
it can be efficiently employed in numerical calculations.
The paper is therefore intended to cultivate a long tra-
dition by providing generic formulae that can be easily
applied to (almost) any model at hand, especially in the
present computer era, see e.g. [37], [38], [39], [40], [41],
[42], [43].
The remainder is organized as follows. In the next

section the notation is specified, together with basic as-
sumptions. In Sec. III the prescription for ζ matrices
is given for massive Majorana particles (III.A), massive
Dirac particles (III.B), generic spin-1/2 fermions (III.C)
and scalars (III.D), together with the generic expression
for fermionic one-loop self-energy (III.E). The connection
between ε and ζ’s is also recalled (III.A). The correctness
of the prescription is proved in Sec. IV and the last sec-
tion is reserved for conclusions.

II. NOTATION AND ASSUMPTIONS

In most formulae given below indices are suppressed and
matrix multiplication is understood. The summation
convention is used only when an upper index is con-
tracted with a lower one; whenever ambiguities may arise,
sums are explicitly present. The Minkowski metric has
the form

η = [ηµν ] = diag(+1,−1,−1,−1) . (1)

Recall that a Majorana field [44] ψã is a pair of a Weyl
field χaA, below referred to as the left-chiral Weyl field

(LW), and its Weyl conjugate χaȦ, alias the right-chiral
Weyl field (RW)

ψã =

[
χaA
χaȦ

]
, (2)

here a = 1, . . . , n is a generalized-flavor index, A and Ȧ
are SL(2,C) indices, while ã = (a, (A, Ȧ)).

Take, for instance, (a toy version of) the Standard
Model [2] in which all Weyl fields except for these that
describe the electron-positron pair of states have been
forgotten. Let λA be a LW representing the charged com-
ponent of the lepton (would-be) SU(2)L-doublet and let
ρA be a LW of the charged lepton SU(2)L-singlet. In this
case n = 2 and the fields with the definite generalized-
flavor (henceforth called flavor) can be chosen as

χ1 = λ , χ2 = ρ, (3)

though nothing (but common sense) prevents a more gen-
eral choice

χa = ua1 λ+ ua2 ρ , (4)

with an arbitrary unitary matrix u, which off-diagonalizes
the charge generator.

With chiral projections PL,R

PL ψ ≃
[
χ
0

]
, PR ψ ≃

[
0
χ

]
,

and the charge conjugation matrix C that expresses the
Dirac conjugate of ψ in terms of ψ itself

ψ̄ = ψ⊤C ,
the renormalized (in some renormalization scheme) one-
particle-irreducible (1PI) two-point function of Majorana
fileds can be written in the following form

Γ̃ãb̃(−p, p) =
[
C
{ (

/pZL(p
2)− ML(p

2)
)
PL +

+
(
/pZR(p

2)− MR(p
2)
)
PR

}]

ãb̃

, (5)

where

ZL,R(p
2) = 1+O(~) . (6)

Clearly, matrices PR,L, C and /p carry only the SL(2,C)
indices, while ZL,R and ML,R carry only the flavor in-
dices; the tensor products ⊗ are not explicitly shown in
Eq. (5). (ZL,R and ML,R are, essentially, the 1PI func-
tions of different pairs of Weyl fields; Majorana fields are
used here and below only for bookkeeping reasons.)
The full propagator of Majorana fields is given by

G̃ ãb̃(p,−p) = i
[
Γ̃(−p, p)−1

]ãb̃
= i

[
D̂F (p) C−1

]ãb̃
. (7)

Inverting the two-point function in Eq. (5) one finds

D̂F (p) = PL D̂L(p) + PR D̂R(p), (8)

where (s ≡ p2)

D̂L(p) =
[
s1−M

2
L(s)

]−1
ZL(s)

−1
[
/p+ MR(s)ZR(s)

−1
]
,

D̂R(p) =
[
s1−M

2
R(s)

]−1
ZR(s)

−1
[
/p+ ML(s)ZL(s)

−1
]
,

(9)
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and

M
2
L(s) = ZL(s)

−1
MR(s)ZR(s)

−1
ML(s) ,

M
2
R(s) = ZR(s)

−1
ML(s)ZL(s)

−1
MR(s) . (10)

The antisymmetry of the fermionic two-point function,
Eq. (5), yields

MX(s) = MX(s)
⊤ , X = L,R,

ZR(s) = ZL(s)
⊤ , (11)

and thus

M
2
R(s)

⊤ = ZL(s)M
2
L(s)ZL(s)

−1 , (12)

what gives

X (s) ≡ det(s1−M
2
L(s)) = det(s1−M

2
R(s)) , (13)

hence the poles of both chiral parts D̂L,R of propagator
in Eq. (8) appear at the same points s = m2

(a), obeying

the condition

X (m2
(a)) = 0 . (14)

In this paper three technical assumptions are made
about the solutions to Eq. (14) and the matrices
M2
L(m

2
(a)). First, it is assumed that each generalized

eigenvector (see e.g. [45]) of M2
L(m

2
(a)) associated with

the eigenvalue m2
(a) is an (ordinary) eigenvector; in

other words, it is assumed that in the Jordan basis
for M2

L(m
2
(a)) the block corresponding to m2

(a) is diago-

nal. This excludes standard pathologies associated with
non-diagonalizable matrices (e.g. second order poles of
gauge-field propagators in covariant non-Feynman gauges
caused by pseudoHermiticity of the Hamiltonian [46]).
Second, it is assumed that each nonzero solution m2

(a)

is nonzero at the tree level, as is usually the case in the
common seesaw models.
Third, it is assumed that, roughly speaking, the quan-

tum corrections do not change the total number of so-
lutions to Eq. (14). More specifically, suppose that
the a label distinguishes different solutions m2

(a). Let

ξ[a1], ξ[a2] , . . . , be a basis of the eigenspace of M2
L(m

2
(a))

associated with the eigenvalue m2
(a). It is assumed that

each element in the sequence

ξ[11], . . . , ξ[21] . . . ,

has the form ξ[ar ] = ξ0[ar] +O(~), where vectors

ξ0[11], . . . , ξ
0
[21]

. . . ,

are of zeroth order in ~ and form a basis of Cn, with n
denoting the total number of LWs. 2

2 The reader should be warned that the a label on pole masses is
the same as the index on flavor eigenfields χa, even though χa

are not assumed to be the eigenstates of the tree-level (nor the
pole) masses. This little abuse of notation will not lead to any
misunderstandings.

The pole masses m2
(a) are formal power series in ~.

Thus, if all of the tree-level masses of fermions are dif-
ferent, then M2

L(s) is diagonalizable as a formal power
series

M
2
L(s) =W (s)−1 diag

(
d1(s), ..., dn(s)

)
W (s) ,

and

X (s) =

n∏

p=1

(
s− dp(s)

)
.

If da(s) = (mtree
(a) )

2 +O(~), then Eq. (14) reads

da(m
2
(a)) = m2

(a) ,

and has a unique solution m2
(a) = (mtree

(a) )
2 + O(~). In

particular, the first and the third assumption are satis-
fied in this case. In general, assuming non-degeneracy of
the tree-level masses is however not an option as physics
is about symmetries. Therefore it is convenient (and de-
sirable from practical point of view) to distinguish two
special situations called below the Majorana case and the
Dirac case.
Let G be the group of exact, linearly realized, inter-

nal global symmetries of the tree-level action that are
respected by the renormalization conditions and let U(·)
be the representation of G on the left-chiral flavor eigen-
fields χa. The two-point function (5) obeys the following
conditions

ML(s) = U(g)⊤ML(s)U(g) ,
MR(s) = U(g)†MR(s)U(g)⋆ ,
ZL(s) = U(g)†ZL(s)U(g) ,
ZR(s) = U(g)⊤ZR(s)U(g)⋆ , ∀g∈G . (15)

Consider first a toy model in which fermions form three
families, each one consisting of gluinos of the Minimal
Supersymmetric Standard Model [44]. In this case the
flavor index is a pair of an adjoint color index and a
family index, and the most general matrices ZL,R and
ML,R consistent with the SU(3)C symmetry have the
form

ML,R(s) = 1k×k ⊗ M
fam
L,R(s) ,

ZL,R(s) = 1k×k ⊗ Z
fam
L,R (s) , (16)

and thus

M
2
L(s) = 1k×k ⊗M

2 fam
L (s) , (17)

where 1k×k (with k = 8) is the identity matrix in the ad-
joint color space, while M fam

L,R and Z fam
L,R are 3×3 matrices

in the family space. In particular, M2
L(m

2
(a)) are diago-

nalizable if e.g. the tree-level contribution to M2 fam
L (0)

has non-degenerate eigenvalues. A situation in which the
two-point functions have the form (16) with an arbitrary
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number f of “families”, an arbitrary k, and with f dif-
ferent and nonvanishing eigenvalues of the tree-level con-
tribution to M2 fam

L (0) is called below the Majorana case;
the total number of flavors equals n = f × k. As far
as the propagator and mixing are concerned, one can in
this case restrict attention to a single color. 3 It is worth
emphasizing that the Majorana case (as well as the Dirac
case below) is defined here by demanding mtree

(a) 6= 0 for

all a, in order to make the corresponding prescription in
Sec. III.A (respectively, III.B) as simple and practical
as possible.4 Vanishing masses require a separate treat-
ment and they are dealt with in Sec. III.C devoted to
the generic case.
Consider next a more interesting example of three

families of down-type quarks in the SM (clearly, the
SU(3)C × U(1)Q symmetry of the SM prohibits down-
type quarks from mixing with other SM fermions). With-
out loss of generality, it can be assumed that the fla-
vor eigenfields χa have been chosen so that the anti-
Hermitian generator of U(1)Q is diagonal

fQ = 1ℓ×ℓ ⊗
[
− i e

3 13×3 0
0 i e

3 13×3

]
,

U(gQt ) = exp(t fQ) ,

where 1ℓ×ℓ (with ℓ = 3) is the identity matrix in the
color space. The most general matrices ZL,R and ML,R

consistent with Eqs. (11) and the SU(3)C ×U(1)Q sym-
metry read

ZL(s) = ZR(s)
⊤ = 1ℓ×ℓ ⊗

[
I+(s)

−1 0
0 I−(s)

−1

]
,

MX(s) = 1ℓ×ℓ ⊗
[

0 µX(s)
µX(s)⊤ 0

]
, X = L,R,

(18)

where µL,R and I±(s) are arbitrary 3× 3 matrices and,
in addition, I±(s) are nonsingular. Thus

M
2
L(s) = 1ℓ×ℓ ⊗

[
M2

+(s) 0
0 M2

−(s)

]
, (19)

with

M
2
+(s) = I+(s)µR(s)I−(s)

⊤µL(s)
⊤ ,

M
2
−(s) = I−(s)µR(s)

⊤
I+(s)

⊤µL(s) . (20)

3 Amore physical representative of the Majorana case is the type I
seesaw mechanism with k = 1 and f = 3+3 neutrinos. It should
be stressed that in common models of resonant leptogenesis, the
degeneracy of heavy neutrino masses is only approximate, e.g.
even if the Majorana mass matrix of gauge-singlet neutrinos is
degenerate, the degeneracy will usually be lifted by the tree-level
mixing with the neutrino components of lepton doublets.

4 In light of neutrino oscillations, theories with massless spin-1/2
fermions are no longer so appealing. In fact even in the pure SM,
symmetries exclude not only neutrino masses but also any mixing
between, say, the muon-neutrino and other fermions, and thus
allow to restrict the attention to the block of massive fermions.

Using the relation (valid if, e.g. tree-level masses are
non-vanishing, so that µL(s) is nonsingular)

M
2
−(s)

⊤ = µL(s)
⊤
M

2
+(s) {µL(s)⊤}−1

, (21)

one gets

X+(s) ≡ det(s1−M
2
+(s)) = det(s1−M

2
−(s)) , (22)

hence the determinant in Eq. (13) reads

X (s) = X+(s)
2ℓ . (23)

It follows from Eq. (22) that complex poles corre-
sponding to the left-chiral flavor eigenfields with opposite
charges are located at the same points s = m2

(a). A situa-

tion in which the two-point functions have the form (18)
with an arbitrary number f of families, an arbitrary ℓ,
and with f different and nonvanishing eigenvalues of the
tree-level contribution to M2

+(0) is called below the Dirac
case (the total number of flavors equals n = 2 × f × ℓ).
Once again, as far as the propagator and mixing are con-
cerned, one can in this case restrict attention to a single
color, i.e. one can effectively neglect color factors 1ℓ×ℓ in
Eqs. (18)-(19).
A simple prescription for the pole part of the propaga-

tor (8) is given in the next section for these two special
cases. A generalization to arbitrary M2

L(m
2
(a)) matrices

consistent with three assumptions stated above is pro-
vided as well.
It should be noted, however, that infrared problems

(see e.g. [47]) are not discussed in this paper. In other
words, it is assumed that an IR regulator was introduced
(if necessary) so that the propagators do have simple
poles at the points obeying Eq. (14).

III. PRESCRIPTION

III.A. Majoran case. Consider first the Majorana
case, Eqs. (16). In order not to obscure the notation
it is assumed that k = 1 and fam superscripts are omit-
ted; thus the total number of LWs is n = f . On the
assumptions stated in Sec. II, it is clear that Eq. (14)
has, in the sense of formal power series, n different and
non-vanishing solutions

m(a) = mtree
(a) +O(~) , (24)

such that Re(m(a)) > 0. Define

m = diag(m(1) , . . . ,m(n)) . (25)

It will be shown (in Sec. IV) that the D̂F (p) matrix in
the full propagator of two Majorana fields, Eq. (7), has
the following simple form

D̂F (p) = ζ̂ [p2−m2]−1[/p+m] ζ̂ ⊤+[non-pole part] , (26)
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where

ζ̂ = ζL PL + ζR PR ,

ζ̂ ⊤ = ζ ⊤

L PL + ζ ⊤

R PR , (27)

matrices ζL,R (as well as m) carry only flavor indices,
while columns of ζL and ζR are given, respectively, by
vectors ζL[a] and ζR[a] in the flavor space

ζX =

[[
ζX[1]

]
· · ·

[
ζX[n]

]]
, X = L,R,

obtained in the following way. Let ξ[a] be an eigenvector

of M2
L(m

2
(a)), Eq. (10), corresponding to the eigenvalue

m2
(a)

M
2
L(m

2
(a)) ξ[a] = m2

(a) ξ[a] , (28)

and obeying the following normalization condition

ξ ⊤

[a] ML(m
2
(a)) ξ[a] = m(a) , (29)

then

ζL[a] = N (a) ξ[a] , (30)

with a normalizing factor

N (a) =
{
1− 1

m(a)
ξ ⊤

[a] ML(m
2
(a))M

2
L
′(m2

(a)) ξ[a]

}−1/2

,

(31)
where M2

L
′(s) ≡ dM2

L(s)/ds , and

ζR[a] =
1

m(a)
ZR(m

2
(a))

−1
ML(m

2
(a)) ζL[a] . (32)

(Note that, on the assumptions stated above, Eqs. (28)-
(29), determine ξ[a] uniquely up to a sign; one could
worry that the condition (29) cannot be imposed since
e.g. [1, i] [1, i]⊤ = 0, however such a pathology is im-
possible at the tree-level, and thus it is impossible for
formal power series.)
Moreover it will be shown that, if Feynman integrals

contributing to ZL,R(p
2) and ML,R(p

2) do not acquire
imaginary parts in a left neighborhood Ua ⊂ R of p2 =
(mtree

(a) )
2

Ua ≡
{
p2 ∈ R| (mtree

(a) )
2−ε < p2 ≤ (mtree

(a) )
2
}
, ε > 0 ,

so that the following reality conditions are satisfied

ZR(s) = ZL(s)
⋆ , MR(s) = ML(s)

⋆ , ∀s∈Ua
, (33)

then all terms of a formal power series m(a), Eq. (24),
are real, and conditions (28)-(32) imply that ζR[a] is the
complex conjugation of ζL[a].

If, in particular, conditions (33) are satisfied for all
a = 1, . . . , n, then matrices appearing in Eq. (27) obey

ζR = ζL
⋆ and Eq. (26) has a simple interpretation: the

Majorana field ψ in, e.g., the MS scheme of dimensional
regularization can be expressed in terms of its on-shell
scheme counterpart ψOS (see e.g. [48]) as follows

ψ = ζ̂ ψOS. (34)

What if only some of the particles are stable? If
Im(m(aS)) = 0, then one can introduce a free (interaction

picture) Majorana field ΨãS of mass m(aS) with canon-

ically normalized propagator and define (recall that b̃ is
the “total” index, cf. Eq. (2))

Ψb̃red =
∑

ãS

[
ζ̂
]b̃
ãS
ΨãS , (35)

where the summation runs over all “stable indices”.
Clearly, Ψred is a free quantum field and Eq. (26) implies
that the chronological propagator of Ψred reproduces the
behavior of propagator in Eq. (7) about all poles located
on the real axis. Thus, Ψred is the field that appears in
the LSZ-reduced formula for the S-operator describing
the transitions between stable states [31]

S = :exp(Σ): exp(iW [J ])

∣∣∣∣
J=0

, (36)

with

Σ = −
∫
d4xΨb̃red(x)

∫
d4y Γb̃c̃(x, y)

δ

δJc̃(y)
, (37)

where Γb̃c̃(x, y) is the Fourier transform of (5), normal
ordering in Eq. (36) refers to free quantum fields Ψred,
while the connected generating functionalW [J ] is related
through the Legendre transform to the (renormalized)
1PI effective action Γ[ψ]

Γ[ψ] =W [J ψ]− J ψ ·ψ , δW [J ]

δJb̃(x)

∣∣∣∣∣
J=Jψ

= ψb̃(x) ,

(in the last three equations, ψ and Ψ represent not only
fermions but also scalars and vectors).
What about unstable particles? Consider a theory in

which heavy neutrinos described in terms of Majorana
fields ψāN carrying a family index ā, interact with a Her-
mitian scalar field h and massless SM (anti)neutrinos, de-

scribed in terms of Majorana fields ψb̌ν carrying a family
index b̌, through the following Lagrangian density (spinor
indices are suppressed)

Lint = −h ψ̄āN
(
Yāb̌PL + Y ⋆

āb̌
PR

)
ψb̌ν . (38)

As said in Sec. I, the CP-asymmetry

εāb̌ =
Γ(Nā → hνb̌)− Γ(Nā → hν̄b̌)

Γ(Nā → hνb̌) + Γ(Nā → hν̄b̌)
, (39)
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was calculated in [35] by looking at diagrams in whichNā
is an internal (rather than an external) line, what leads
to the following expression

εāb̌ =
|YR
āb̌
|2 − |YL

āb̌
|2

|YR
āb̌
|2 + |YL

āb̌
|2 , (40)

with

YL
āb̌

= Yā′ b̌(ζL)ā
′

ā + . . . , (41)

YR
āb̌

= Y ⋆
ā′ b̌

(ζR)
ā′

ā + . . . , (42)

where ζR,L are ζ matrices for the ψāN fields, while the
ellipsis indicates contributions of corrections to external

lines of h and ψb̌ν fields, as well as loop corrections to the
1PI vertices (for simplicity it is assumed here that the
mixing between light and heavy neutrinos is negligible,
even though the present formalism is capable of describ-
ing quantum corrections to the mixing in the full 6×6
system).
The ordinary quantum-mechanical perturbation

theory for eigenvectors 5 indicates that the components
of ζL are enhanced whenever masses of fermions are
approximately degenerate. This in turn causes the
enhancement of the CP-asymmetry (40) (and thus
lepton asymmetry, dubbed “the resonant leptogenesis”
[4]).

III.B Dirac case. Consider now the Dirac case, Eqs.
(18). For simplicity of the notation it is assumed that
ℓ = 1, thus the total number of LWs is n = 2f . On the
assumptions stated in Sec. II, it is clear that Eq. (14),
cf. Eqs. (22)-(23), has f different and non-vanishing
solutions

m(a) = mtree
(a) +O(~) , (43)

such that Re(m(a)) > 0. Define

mD = diag(m(1) , . . . ,m(f)) , (44)

and

m̃ =

[
0 mD

mD 0

]
. (45)

It will be shown that the D̂F (p) matrix in the full prop-
agator of two Majorana fields, Eq. (7), has the form

D̂F(p) = ζ̂ [p2−m̃2]−1[/p+m̃] ζ̂ ⊤+[non-pole part] , (46)

where

ζ̂ = ζL PL + ζR PR , (47)

5 More precisely: its generalization to non-Hermitian matrices.

while the ζL,R matrices have a block-diagonal form

ζX =

[
ζ̄X+ 0
0 ζ̄X−

]
, X = L,R, (48)

with matrices ζ̄X± built out of vectors ζ̄X[a±]

ζ̄X± =

[[
ζ̄X[1±]

]
· · ·

[
ζ̄X[f±]

]]
, X = L,R,

obtained in the following way. Let ξ̄[a±] be arbitrary but

fixed eigenvectors of M2
±(m

2
(a)), Eqs. (20), corresponding

to the eigenvalue m2
(a)

M
2
+(m

2
(a)) ξ̄[a+] = m2

(a) ξ̄[a+] ,

M
2
−(m

2
(a)) ξ̄[a−] = m2

(a) ξ̄[a−] , (49)

(eigenspaces of M2
±(m

2
(a)) are one-dimensional on the as-

sumptions stated in Sec. II), and obeying the following
normalization condition

ξ̄ ⊤

[a+] µL(m
2
(a)) ξ̄[a−] = m(a) . (50)

Then

ζ̄L[a+] = c(a) N̄ (a) ξ̄[a+] ,

ζ̄L[a−] = c(a)−1 N̄ (a) ξ̄[a−] , (51)

and

ζ̄R[a+] =
1

m(a)
I+(m

2
(a))

⊤µL(m
2
(a)) ζ̄L[a−] ,

ζ̄R[a−] =
1

m(a)
I−(m

2
(a))

⊤µL(m
2
(a))

⊤ ζ̄L[a+] , (52)

with a normalizing factor

N̄ (a) =
{
1− 1

m(a)
ξ̄ ⊤

[a−] µL(m
2
(a))

⊤
M

2
+
′(m2

(a)) ξ̄[a+]

}−1/2

,

(53)
where M

2
+
′(s) ≡ dM2

+(s)/ds , while c(a) ∈ C \ {0} is an
arbitrary number which does not affect the pole part of
the propagator.
Moreover it will be shown that, if the reality conditions

(33) hold in a left neighborhood Ua ⊂ R of p2 = (mtree
(a) )

2,

then all terms of a formal power series m(a), Eq. (43),
are real, and there exists c(a) ∈ C \ {0} such that

ζ̄R[a+] = ζ̄ ⋆
L[a+] , and ζ̄R[a−] = ζ̄ ⋆

L[a−] . (54)

With fixed ξ̄[a±], conditions (54) determine c(a) uniquely
up to a phase. Thus, if conditions (33) are satisfied for
all a = 1, . . . , f , then matrices appearing in Eq. (47)
obey ζR = ζL

⋆.

III.C. Generic fermionic case. The above prescrip-
tions can be generalized to the case constrained only by
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the three conditions discussed below Eq. (14). Recall
that these conditions imply that the number of poles of
the full propagator is equal to the total number n of LWs.
The a label is assumed to distinguish different solutions
m2

(a) to Eq. (14); indices corresponding to this eigenvalue

are labeled with a1, a2, etc.
Let m̃ = m̃⊤ be an arbitrarily chosen symmetric n× n

matrix such that

m̃2 = diag(m2
(1) , . . .) , (55)

and

m̃arbq = 0 ∀ar , if m2
(b) = 0 . (56)

Clearly,

[m̃2]araq = m2
(a) δrq .

It will be shown that the D̂F (p) matrix in the full prop-
agator of two Majorana fields, Eq. (7), has the following
form

D̂F(p) = ζ̂ [p2−m̃2]−1[/p+m̃] ζ̂ ⊤+[non-pole part] , (57)

where

ζ̂ = ζL PL + ζR PR ,

matrices ζL,R (as well as m̃) carry only flavor indices,
while columns of ζL,R are given by vectors ζL,R[ar]

ζX =

[[
ζX[11]

]
· · ·

]
, X = L,R, (58)

(the order of columns reflects the order of eigenvalues in
Eq. (55)) obtained in the following way.

1. Nonzero m2
(a).

Let ξ[a1] , . . . , be a basis of the eigenspace

M
2
L(m

2
(a)) ξ[ar ] = m2

(a) ξ[ar ] , (59)

obeying the following normalization conditions

ξ ⊤

[ar ]
ML(m

2
(a)) ξ[aq ] = m̃araq , (60)

(recall that for each pair of nonsingular complex sym-
metric matrices S1,2 there always exists a nonsingular
matrix N such that S1 = N⊤S2N , thus starting with an
accidentally chosen basis of eigenspace one can always
find vectors obeying Eq. (60); the non-singularity of the
left-hand side of Eq. (60) is ensured by the assumptions
listed below Eq. (14)). Define the following matrix

Ξ(a)qr = ξ ⊤

[aq ]
ML(m

2
(a))M

2
L
′(m2

(a)) ξ[ar ] , (61)

which is symmetric (see Sec. IV) and find a matrix N (a)
such that

1

m2
(a)

N (a)m(a)N (a)⊤ =
(
m(a)− Ξ(a)

)−1
, (62)

where

m(a)rq = m̃araq . (63)

(Clearly, N (a) is determined only up to a complex or-
thogonal matrix.) Then

ζL[ar] =
∑

q

N (a)qr ξ[aq ] , (64)

and

ζR[ar ] =
1

m2
(a)

ZR(m
2
(a))

−1
ML(m

2
(a))

∑

q

ζL[aq ]m(a)qr .

(65)
Moreover it will be shown that, if the m̃ matrix is

chosen to be diagonal

m̃ = diag(m(1) , . . .) ,

with Re(m(a)) > 0, and if reality conditions (33) are sat-

isfied in a left neighborhood Ua ⊂ R of p2 = (mtree
(a) )

2,

then all terms of a formal power series m(a) are real and
there exists a N (a) matrix obeying Eq. (62) and such
that ζR[ar ] = ζ ⋆

L[ar]
for all r. With fixed {ξ[ar]} eigenvec-

tors this matrix is unique up to a real orthogonal matrix
R(a), i.e. N (a) = N0(a)R(a).

2. Vanishing m2
(a).

Let ξ[01] , . . . , be a basis of the null eigenspace

M
2
L(0) ξ[0r ] = 0 , (66)

obeying the following normalization conditions

ξ †

[0r ]
ZL(0) ξ[0q ] = δrq , (67)

(for p2 = 0 reality conditions (33) cannot be violated and
thus ZL(0) is a Hermitian and positive matrix, cf. Eqs.
(6) and (11)). Define the following matrix

Ξ(0)qr = ξ †

[0q ]
ZL(0)M

2
L
′(0) ξ[0r] , (68)

which is Hermitian (see Sec. IV) and find a matrix N (0)
such that

N (0)N (0)† =
(
1− Ξ(0)

)−1
. (69)

Then

ζL[0r] =
∑

q

N (0)qr ξ[0q ] , (70)

and

ζR[0r ] = ζ ⋆
L[0r]

. (71)

It should be stressed that auxiliary normalization
conditions (60) and (67) are, in fact, redundant, i.e.
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prescriptions (62) and (69) for normalizing factors can
be easily generalized to the case when the basis {ξ[ar]}
of eigenspace is completely arbitrary. Nonetheless, Eqs.
(60) and (67) are imposed here, since the resulting
equations (62) and (69) show immediately that, if flavor
eigenfields are chosen to be canonically normalized
eigenstates of the tree-level mass matrix, as is usually
the case, then the N (a) matrix can be chosen as an
O(~) perturbation of the identity matrix, while ξ[ar ] can
be chosen as O(~) perturbations of vectors belonging to
the canonical basis of Rn ⊂ Cn.

III.D. Scalar case. Consider a set {φℓ} of n scalar
fields. Without loss of generality it is assumed that φℓ

are Hermitian. The renormalized 1PI two-point function

Γ̃ℓj(−p, p) =
[
p21− (M tree)2 − Σ(p2)

]
ℓj

≡
[
p21−M2(p2)

]
ℓj
, (72)

where M2(s) = M2(s)⊤ is a symmetric matrix, leads to
the propagator

G̃ ℓj(p,−p) = i
[(
p21−M2(p2)

)−1
]ℓj

, (73)

and the gap equation

XS(m
2
(ℓ)) = 0 , (74)

with

XS(s) ≡ det(s1−M2(s)) . (75)

It is assumed that assumptions listed below Eq. (14)
for fermionic solutions m2

(a) and matrices M2
L(m

2
(a)),

are satisfied also for their scalar counterparts, m2
(ℓ) and

M2(m2
(ℓ)).

Let m2 be a diagonal n× n matrix

m2 = diag(m2
(1) , . . .) . (76)

The ℓ label is assumed to distinguish different values
m2

(ℓ); indices corresponding to this value in Eq. (76) are

labeled with ℓ1, ℓ2, etc.
It will be shown that the propagator (73) has the form

G̃(p,−p) = i ζ [p2 −m2]−1 ζ ⊤ + [non-pole part] , (77)

where columns of ζ are given by vectors ζ[ℓr]

ζ =

[[
ζ[11]

]
· · ·

]
, (78)

(the order of columns reflects the order of eigenvalues in
Eq. (76)) obtained in the following way. Let ξ[ℓ1] , . . . ,
be a basis of the eigenspace

M2(m2
(ℓ)) ξ[ℓr] = m2

(ℓ) ξ[ℓr ] , (79)

obeying the following normalization conditions

ξ ⊤

[ℓr]
ξ[ℓq ] = δrq , (80)

(starting with an arbitrary basis of eigenspace one can
always find vectors obeying Eq. (80), just as in the
fermionic case). Define the following matrix

Ξ(ℓ)qr = ξ ⊤

[ℓq ]
M2′(m2

(ℓ)) ξ[ℓr] , (81)

which is manifestly symmetric, and find a matrix N (ℓ)
such that

N (ℓ)N (ℓ)⊤ =
(
1− Ξ(ℓ)

)−1
. (82)

(Clearly, N (ℓ) is determined only up to a complex or-
thogonal matrix.) Then

ζ[ℓr ] =
∑

q

N (ℓ)qr ξ[ℓq ] . (83)

Moreover it will be shown that, if Feynman integrals
contributing to M2(p2) do not acquire imaginary parts
in a left neighborhood Uℓ ⊂ R of p2 = (mtree

(ℓ) )2, so that

the following reality conditions are satisfied

M2(s) =M2(s)⋆ , ∀s∈Uℓ
, (84)

then all terms of a formal power series m2
(ℓ) are real and

there exists a N (ℓ) matrix obeying Eq. (82) and such
that ζ[ℓr] = ζ ⋆

[ℓr ]
for all r. With fixed {ξ[ℓr]} eigenvectors

this matrix is unique up to a real orthogonal matrix
R(ℓ), i.e. N (ℓ) = N0(ℓ)R(ℓ).

III.E. Fermionic one-loop self-energy. It is conve-
nient to supplement the prescription for fermionic ζL,R
matrices by providing generic expressions for one-loop
contributions in the MS scheme to the two-point func-
tions ZL,R and ML,R in Eq. (5)

ZL,R(p
2) = 1+

~

(4π)2
Z

(1)
L,R(p

2) +O(~2) ,

ML(p
2) =MF +

~

(4π)2
M

(1)
L (p2) +O(~2) ,

MR(p
2) =M⋆

F +
~

(4π)2
M

(1)
R (p2) +O(~2) . (85)

Consider an arbitrary renormalizable model, in which
Majorana fields ψa (spinor indices are suppressed for sim-
plicity) interact with Hermitian scalar fields φℓ (already
shifted if necessary, so that 〈φ〉 = 0) and Hermitian gauge
fields Aαµ via the following Lagrangian density

Ltree
int = +

1

2!
i Aαµ ψ̄

a γµ (fαab PL + f⋆αab PR)ψ
b +

− 1

2!
φℓ ψ̄a (Yℓab PL + Y ⋆ℓab PR)ψ

b . (86)

Here fαab = −f⋆αba are matrix elements of ordinary anti-
Hermitian gauge-group generators (already containing
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the coupling constants), while Yℓab = Yℓba are matrix ele-
ments of symmetric Yukawa matrices. It is assumed that
all fields are chosen to be the eigenfields of the tree-level
mass-squared matrices, so that

Ltree
mass = +

1

2

∑

β

m2
Vβ η

µνAβµA
β
ν − 1

2

∑

ℓ

m2
Sℓ φ

ℓφℓ +

−1

2
ψ̄a (MFab PL +M⋆

Fab PR)ψ
b ,

where

MFM
⋆
F = diag(m2

F1 , m
2
F2 , . . . , m

2
Fn) , (87)

(clearly, without loss of generality one could assume that
MF itself is diagonal; such a choice is however completely
impractical for Dirac particles, as it implies that, for in-
stance, the u matrix, Eq. (4), in the SM is non-diagonal).
One-loop diagrams contributing to the fermionic self-

energy in the Landau gauge are shown in Figure 1. Using
the standard, minimally subtracted one-loop functions
aR and bR0 in the dimensional regularization [32]

aR(m) = m2

{
ln
m2

µ̄2
− 1

}
,

BM
(
p2,m1,m2

)
≡ bR0

(
p2,m1,m2

)
=

=

∫ 1

0

dx ln
x(x − 1)p2 + (1− x)m2

1 + xm2
2 − i 0

µ̄2
,

(here µ̄ is the renormalization scale of the MS scheme,
related to the usual ’t Hoot mass unit via µ̄ ≡
µH

√
4π e−γE/2), together with their combinations BM (≡

bR0 ), BZ , AM and AZ

BZ
(
p2,mS ,mF

)
=

1

2 p2

{
aR(mF )− aR(mS) +

+
(
m2
S −m2

F − p2
)
bR0

(
p2,mS ,mF

)}
,

AM (p2,mV ,mF ) = 3 bR0
(
p2,mV ,mF

)
+ 2 ,

AZ(p
2,mV ,mF ) =

m2
F + 2m2

V − p2

2p2
aR(mV )

m2
V

+

+1− aR(mF )

p2
+
p2 +m2

F − 2m2
V

2p2
bR0

(
p2,mV ,mF

)
+

+

(
p2 −m2

F

)
2

2p2
bR0

(
p2,mV ,mF

)
− bR0

(
p2, 0,mF

)

m2
V

,

one gets 6

[Z
(1)
L (s)]ac =

∑

β,b

AZ(s , mVβ , mFb) fβab fβbc +

+
∑

ℓ,b

BZ(s , mSℓ , mFb)Y
⋆
ℓab Yℓbc ,

6 Correctness of these results was checked with the aid of FeynCalc
[49].

A B

FIG. 1. One-loop contributions to ML,R and ZL,R.

[Z
(1)
R (s)]ac =

∑

β,b

AZ(s , mVβ , mFb) f
⋆
βab f

⋆
βbc +

+
∑

ℓ,b

BZ(s , mSℓ , mFb)Yℓab Y
⋆
ℓbc ,

[M
(1)
L (s)]ac =

∑

β,b,d

AM (s , mVβ , mFb) f
⋆
βabMFbd fβdc +

+
∑

ℓ,b,d

BM (s , mSℓ , mFb)YℓabM
⋆
Fbd Yℓdc ,

[M
(1)
R (s)]ac =

∑

β,b,d

AM (s , mVβ , mFb) fβabM
⋆
Fbd f

⋆
βdc +

+
∑

ℓ,b,d

BM (s , mSℓ , mFb)Y
⋆
ℓabMFbd Y

⋆
ℓdc .

In particular, reality conditions (33) are violated when-
ever bR0 has a non-vanishing imaginary part.
Clearly, in the expression for AZ , the limits mVβ →

0 are to be taken for contributions of massless gauge
bosons. On the other hand, the last term in AZ , even for
spontaneously broken gauge symmetries, contains contri-
butions of unphysical massless modes; as far as correc-
tions to the pole masses are concerned, they cancel with
similar contributions of would-be Goldstone bosons, as
the gauge symmetry leads to the following relation

sγ mVγ Yg =MF fγ − f⋆γMF , (88)

where Yg is a Yukawa matrix of the (massless) would-be
Goldstone boson φg associated with a broken generator
fγ , while sγ = −1 or sγ = +1. By contrast, contribu-
tions of unphysical modes to the ζL,R matrices do not
cancel completely, but Eq. (88) ensures that they do
not contain resonant factors (m2

Fa − m2
Fb)

−1. Thus, in
the CP-asymmetry (40) these contributions cancel with
similar “unphysical” corrections to the 1PI vertices (in-
dicated by the ellipsis in Eqs. (41)-(42)).

IV. PROOF

IV.A. Proof of generic fermionic prescription.

The proof is a simple exercise in linear algebra.
0 . Generalities. First of all, one has to calculate the

following limits (cf. Eqs. (9) and (14))

∆L,R(a) = lim
s→m2

(a)

{
(s−m2

(a))
[
s1−M

2
L,R(s)

]−1
}
.

(89)
It is convenient to start with something simpler

P(a) = lim
s→m2

(a)

{
(s−m2

(a))
[
s1−M

2
L(m

2
(a))

]−1 }
. (90)



10

On the assumptions stated in Sec. II, this limit exists and
gives a projection onto the eigenspace of M2

L(m
2
(a)) asso-

ciated with m2
(a) along the direct sum of remaining gener-

alized eigenspaces ofM2
L(m

2
(a)). To verify this statement,

it is enough to calculate the action of the right-hand side
of Eq. (90) on generalized eigenvectors of M2

L(m
2
(a)). In-

troducing the resolvent

R(s) =
(
s1−M

2
L(m

2
(a))

)−1

,

one has

R(s)ξ[ar] = (s−m2
(a))

−1ξ[ar ] ,

for all eigenvectors ξ[ar ] associated with m2
(a). Let λθ 6=

m2
(a) be another eigenvalue of M2

L(m
2
(a)); the generalized

eigenspace associated with it is spanned by (in general
more than one) Jordan chain θ1 , . . . , θp (a subsequence
of the Jordan basis for M2

L(m
2
(a)), see e.g. [45])

θr =
(
λθ1−M

2
L(m

2
(a))

)
θr+1 , r = 0, . . . , p− 1 , (91)

where θ0 ≡ 0, i.e. θ1 is an eigenvector. Let Q(s) =
(s − λθ)

−1, the following identity can be easily checked
by induction

R(s) θr =

r∑

k=1

(−1)k+1Q(s)k θr+1−k . (92)

Thus

P(a) ξ[ak] = ξ[ak] , P(a) θr = 0 , (93)

as was to be shown. In particular

P(a)2 = P(a) . (94)

ExpandingM2
L(s) in Eq. (89) about s = m2

(a) one gets

∆L(a) =
{
1− P(a)M2

L
′(m2

(a))
}−1

P(a) . (95)

Eq. (12) now yields

∆R(a) = ZR(m
2
(a))

−1 ∆L(a)
⊤
ZR(m

2
(a)) .

Introducing another family {P̃ (a)} of projections

P̃ (a) = lim
s→m2

(a)

{
(s−m2

(a))
[
s1− m̃2

]−1
}
,

one can decompose the m̃2 matrix in Eq. (55) as follows

m̃2 =
∑

a

m2
(a) P̃ (a) , (96)

clearly

∑

a

P̃ (a) = 1 , and P̃ (a)P̃ (b) = δabP̃ (a) .

Now one sees that the formula that needs to be proven,
Eq. (57), is equivalent to the following four sets of con-
ditions (s̄a ≡ m2

(a))

ζL P̃ (a) ζ
⊤

R = ∆L(a)ZL(m
2
(a))

−1 , ∀a, (97)

ζR P̃ (a) ζ
⊤

L = ZR(m
2
(a))

−1∆L(a)
⊤, ∀a, (98)

ζL P̃ (a) m̃ ζ⊤

L = ∆L(a)ZL(s̄a)
−1

MR(s̄a)ZR(s̄a)
−1 , ∀a,

ζR P̃ (a) m̃ ζ⊤

R = ZR(s̄a)
−1∆L(a)

⊤
ML(s̄a)ZL(s̄a)

−1 , ∀a.

Thus, one has to show that there exist matrices ζL,R
obeying, in addition to Eqs. (97)-(98), the following con-
ditions

ζL P̃ (a) m̃ ζ⊤

L = ζL P̃ (a) ζ
⊤

RMR(m
2
(a))ZR(m

2
(a))

−1 ,

ζR P̃ (a) m̃ ζ⊤

R = ζR P̃ (a) ζ
⊤

LML(m
2
(a))ZL(m

2
(a))

−1 .

It is enough to impose, instead of the last two equations,
the following two (cf. Eq. (11))

ζR m̃ P̃ (a) = ZR(m
2
(a))

−1
ML(m

2
(a)) ζL P̃ (a) , (99)

ζL m̃ P̃ (a) = ZL(m
2
(a))

−1
MR(m

2
(a)) ζR P̃ (a) . (100)

Using the following relation (cf. Eq. (63))

[
P̃ (a) m̃ P̃ (a)

]
araq = m(a)rq ,

together with the identity 7 m̃ P̃ (a) = P̃ (a) m̃ , which
yields in turn

m̃ P̃ (a) = P̃ (a) [P̃ (a) m̃ P̃ (a)] ,

one can rewrite Eqs. (99)-(100) in terms of respective
columns of matrices ζL,R in Eq. (58)

∑

r

ζR[ar ]m(a)rq = ZR(m
2
(a))

−1
ML(m

2
(a)) ζL[aq ] , (101)

∑

r

ζL[ar]m(a)rq = ZL(m
2
(a))

−1
MR(m

2
(a)) ζR[aq ] .(102)

1. Nonzero m2
(a). Consider first the case m2

(a) 6= 0;

then Eq. (101) is nothing more than the relation (65),
since

m(a)2 = m2
(a) 1 .

In turn, Eq. (65) allows to rewrite Eq. (102) in an equiv-
alent form

m2
(a) ζL[ar] = (103)

= ZL(m
2
(a))

−1
MR(m

2
(a))ZR(m

2
(a))

−1
ML(m

2
(a))ζL[ar] ,

7 This identity follows from (p2 − m̃2)−1 m̃ = m̃ (p2 − m̃2)−1 , in
the limit p2 → m2

(a)
.
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hence columns ζL[a1], . . . , of ζL are eigenvectors of

M2
L(m

2
(a)) corresponding to the eigenvalue m2

(a), just as

in Eqs. (59) and (64).
Without loss of generality one can thus assume that,

for m2
(a) 6= 0, ζL[ar] are linear combinations of linearly

independent eigenvectors ξ[aq ] obeying the normaliza-
tion conditions (60), with (yet unspecified) coefficients
N (a)qr, as in Eq. (64). It remains to be shown that Eqs.
(97)-(98) are equivalent to the condition (62) on the ma-
trix N (a). In fact Eq. (98), being a transposition of (97),
can be skipped. Clearly,

ζL P̃ (a) ζ
⊤

R =
∑

q

ζL[aq ]ζ
⊤

R[aq ]
.

Employing Eq. (65), and defining

Y(a) ≡
∑

q,r

τ(i)qr ξ[aq ] ξ
⊤

[ar]
ML(m

2
(a)) , (104)

with

τ(a) ≡ 1

m2
(a)

N (a)m(a)N (a)⊤ , (105)

one can rewrite Eq. (97) as

Y(a) = ∆L(a) ,

or, using Eq. (95), as

Y(a) =
{
1− P(a)M2

L
′(m2

(a))
}−1

P(a) . (106)

Eq. (106) can be further rewritten as

P(a) = S(a) , (107)

where

S(a) ≡ Y(a)
{
1+M

2
L
′(m2

(a))Y(a)
}−1

. (108)

Note that the left-hand side of Eq. (107) is a projection,
cf. Eq. (94), thus it remains to be shown that N (a) can
be chosen in such a way that S(a) is a projection operator
with the same image and the same kernel as P(a), cf. Eq.
(93). To that end, it is convenient to simplify first the
explicit expression (108) for S(a). Expanding a geometric
series and appropriately changing the order of infinite
sum with the summation over q and r appearing in Eq.
(104) one ends up with another geometric series, thus

S(a) =
∑

q,r

[
Ω(a)−1τ(a)

]qr
ξ[aq ] ξ

⊤

[ar]
ML(m

2
(a)) , (109)

where

Ω(a) ≡ 1+ τ(a) Ξ(a) , (110)

with the Ξ(a) matrix defined in Eq. (61). The normal-
ization condition for ξ[ar ] eigenvectors, Eq. (60), gives
(cf. Eq. (63))

S(a)ξ[ar ] =
∑

q

[
Ω(a)−1τ(a)m(a)

]q
r
ξ[aq ] , (111)

hence

S(a)2 =
∑

q,r

[
Ω(a)−1τ(a)m(a)Ω(a)−1τ(a)

]qr ×

× ξ[aq ] ξ
⊤

[ar]
ML(m

2
(a)) . (112)

Comparing this with Eq. (109) one sees that S(a) is a
projection operator if, for instance, the following equa-
tion is satisfied

τ(a)m(a) = Ω(a) , (113)

this is nothing more than the condition (62). To prove
that a matrix N (a) obeying Eq. (62) indeed exists, it is
necessary to show that the Ξ(a) matrix, defined in Eq.
(61), is symmetric. The following identity

M
2
L
′(s)⊤ML(s)− ML(s)M

2
L
′(s) =

= M
′
L(s)M

2
L(s)−M

2
L(s)

⊤
M

′
L(s) ,

is easy to verify (cf. Eq. (10)); sandwiched between ξ ⊤

[aq ]

and ξ[ar ] it gives

Ξ(a)rq − Ξ(a)qr = 0 , (114)

since ξ[aq,r ] are eigenvectors of M2
L(m

2
(a)) corresponding

to the same eigenvalue.
Moreover, Eqs. (111) and (113) show that

S(a)ξ[ar ] = ξ[ar ] . (115)

Hence, to complete the proof of the generalized prescrip-
tion for m2

(a) 6= 0, one has to show that the S(a) operator

annihilates these generalized eigenvectors of M2
L(m

2
(a))

which correspond to eigenvalues different than m2
(a), so

that S(a) = P(a). Because of Eq. (109) it is enough to
prove the following property: let η be an eigenvector of
M2
L(m

2
(a)) corresponding to the eigenvalue λη and let θ

be a generalized eigenvector of M2
L(m

2
(a)) associated with

λθ 6= λη; then η and θ are ML(m
2
(a))-orthogonal

η⊤
ML(m

2
(a))θ = 0 . (116)

This fact follows from the identity (cf. Eqs. (10) and
(11))

M
2
L(m

2
(a))

⊤
ML(m

2
(a))− ML(m

2
(a))M

2
L(m

2
(a)) = 0 .

Sandwiched between η⊤ and θ1, i.e. the first element of
a Jordan chain (91), it gives

(λη − λθ)× η⊤
ML(m

2
(a))θ1 = 0 ,
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while sandwiched between η⊤ and θr+1 yields

(λη − λθ)× η⊤
ML(m

2
(a))θr+1 = −η⊤

ML(m
2
(a))θr .

This proves Eq. (116) by induction.
1 1

2
. Reality conditions. Suppose now that conditions

(33) are satisfied for s ∈ Ua ⊂ R. Then ZL(s) is a Hermi-
tian matrix, cf. Eq. (11), and thus one can parametrize
it locally as

ZL(s) = U(s)† Λ(s)U(s) ,

where U(s) is unitary, while Λ(s) is diagonal (and pos-
itive, cf. Eq. (6)). On the other hand, a symmetric
matrix

M̃L(s) ≡
[(√

Λ(s)U(s)
)−1

]
⊤

ML(s)
(√

Λ(s)U(s)
)−1

,

can be written in the following form

M̃L(s) = V (s)⊤µ(s)V (s) ,

where V (s) is unitary, while µ(s) is diagonal, real and
nonnegative. Hence

ZL(s) = ω(s)†ω(s) , (117)

and

ML(s) = ω(s)⊤µ(s)ω(s) , (118)

where

ω(s) = V (s)
√

Λ(s)U(s) . (119)

Eq. (10) now reads

M
2
L(s) = ω(s)−1µ2(s)ω(s) , (120)

where µ2(s) ≡ µ(s)2, and thus (cf. Eq. (13))

X (s) =
∏

c̄

(
s− µc̄c̄(s)

2
)
. (121)

Let {ār} be a set of indices for which µār ār(s) =
mtree

(a) +O(~). The gap equation (14) reduces to

µār ār(m
2
(ār)

) = m(ār) . (122)

A formal-power-series solution m(ār) = mtree
(a) + O(~)

to this equation obviously exists and is real, since all

the derivatives µ
(k)
ār ār(s) at s = (mtree

(a) )
2 are real. Let

{ar} ⊂ {ār} be a set of indices for which m(ar) = m(a);
in other words, a situation in which the degeneracy of the
tree-level masses is lifted by quantum corrections is not
excluded here. Let [ω(m2

(a))
−1][a1] , . . . , be the columns

of the ω(m2
(a))

−1 matrix such that

µarar (m
2
(a)) = m(a) , (123)

clearly

[ω(m2
(a))

−1][ar] = ω(m2
(a))

−1
1[ar] .

Eigenvectors {ξ[au]}, cf. Eq. (59), have the form

ξ[au] =
∑

q

C(a)qu ω(m
2
(a))

−1
1[aq] ,

where C(a) is a square matrix. The normalization con-
dition (60) reduces to (recall that m̃ is now assumed to
be diagonal)

C(a)⊤ C(a) = 1 , (124)

i.e. C(a) is a complex orthogonal matrix. The Ξ(a) ma-
trix, Eq. (61), reads

Ξ(a) = C(a)⊤Θ(a)C(a) , (125)

where

Θ(a)ur = m(a) 1
⊤

[au]
µ2 ′(m2

(a))1[ar] = m(a) µ
2 ′
auar (m

2
(a)) ,

since terms with derivatives of ω(s) cancel. This shows
that Θ(a) is real. (Since an accidental degeneracy of
masses is not excluded, it is in principle possible that
Θ(a) is not proportional to the identity matrix.)
Eqs. (64) and (65) now read

ζL[ar] =
∑

q

[
C(a)N (a)

]q
r

[
ω(m2

(a))
−1

]
1[aq] , (126)

ζR[ar ] =
∑

q

[
C(a)N (a)

]q
r

[
ω(m2

(a))
−1

]
⋆
1[aq] , (127)

thus ζR[ar ] = ζ ⋆
L[ar ]

, if C(a)N (a) is a real matrix. Finally,

with the aid of Eq. (124), the condition (62) for N (a)
can be rewritten as

[
C(a)N (a)]

[
C(a)N (a)]⊤ =

{
1− 1

m(a)
Θ(a)

}−1

. (128)

Since the right-hand side of Eq. (128) is a real diagonal
and positive (in perturbation theory) matrix, there
always exists a real matrix C(a)N (a) obeying this
condition. Clearly, Eq. (128), together with the reality
condition ζR[ar ] = ζ ⋆

L[ar]
, determine N (a) up to a

rotation, as was to be shown.

2. Vanishing m2
(a). Consider the case m2

(a) = 0. Re-

ality conditions (33) cannot be violated for p2 = 0, and
thus Eqs. (14) and (10) give

∣∣ det
(
ML(0)

)∣∣2 = 0 =
∣∣ det

(
MR(0)

)∣∣2.

Eqs. (101)-(102) now show that columns ζL,R[0r ] have
to belong to the kernel of ML,R(0), cf. Eq. (56), and
therefore one can assume that Eq. (71) holds. One needs
also the relation

kerM2
L(0) = kerML(0) ,
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which follows immediately from the parametrization em-
ployed for analysis of reality conditions in the massive
case, see Eqs. (118) and (120). Hence, one can assume
that ζL[0r ] are linear combinations of linearly indepen-
dent vectors ξ[0q ] obeying Eq. (66) and the normaliza-
tion conditions (67), with (yet unspecified) coefficients
N (a)qr, as in Eq. (70).
It remains to be shown that Eq. (97) reduces to the

condition (69) on the matrix N (0). This can be done
just as before, by rewriting (97) as P(0) = S(0) with S(0)
defined by (108) and appropriately adjusted matrix Y(0)

Y(0) ≡
∑

q,r

[
N (0)N (0)†

]qr
ξ[0q ] ξ

†

[0r ]
ZL(0) . (129)

If Eq. (69) is satisfied, one finds

S(0) =
∑

q,r

δqr ξ[0q ] ξ
†

[0r ]
ZL(0) , (130)

and Eq. (67) gives

im S(0) ⊃ kerM2
L(0) ≡ imP(0) .

The existence of matrices N (0) obeying Eq. (69) is en-
sured by the Hermiticity of Ξ(0), which follows from the
identity

M
2
L
′(0)†ZL(0)

† − ZL(0)M
2
L
′(0) =

= Z
′
L(0)M

2
L(0)−M

2
L(0)

†
Z

′
L(0)

† ,

sandwiched between ξ †

[0q ]
and ξ[0r].

To complete the proof of P(0) = S(0), one has to show
that the generalized eigenvectors θ of M2

L(0) associated
with non-vanishing eigenvalues satisfy

ξ †

[0r ]
ZL(0) θ = 0 , ∀r . (131)

To that end one can employ once again the parametriza-
tion from Eqs. (117)-(120). In particular, M2

L(0) is
diagonalizable, and both ξ[0r ] and θ are linear combina-

tions of (disjoint sets of) columns of ω(0)−1; hence Eq.
(131) follows immediately from Eq. (117).

IV.B. Proof of Majorana prescription. The pre-
scription for Majorana case follows immediately from
the generalized prescription, since one can take m̃ = m,
with a diagonal matrix m, Eq. (25). In particular, the
assumed non-degeneracy of the tree-level masses implies
that N (a) is a 1× 1 matrix and thus the freedom in Eq.
(62) reduces to a choice of sign. Hence, regardless of
which sign is chosen, ζR[a] = ζ ⋆

L[a], if reality conditions

(33) are satisfied for s ∈ Ua ⊂ R.

IV.C. Proof of Dirac prescription. Apart from Eq.
(54) for stable particles, the prescription for the Dirac
case can be easily obtained from the generalized prescrip-
tion. Having eigenvectors ξ̄[a±], Eq. (49), it is convenient

to choose eigenvectors ξ[ar] (with [ar] = [a+], [a−]), Eq.
(59), as

ξ[a+] =

[
ξ̄[a+]

0

]
, ξ[a−] =

[
0

ξ̄[a−]

]
, (132)

and takeN (a) in Eq. (64) to be the following 2×2 matrix

N (a) =

(
N̄ (a)c(a) 0

0 N̄ (a)c(a)−1

)
. (133)

Similarly, a convenient choice of the m̃ matrix in Eq.
(55) is given by Eqs. (45) and (44). With these choices,
one-particle states corresponding to the columns of ζL,R
matrices, Eqs. (48), carry the definite charge. The nor-
malization condition (60) now reduces to Eq. (50), while
Eq. (62) is solved by (53).
Suppose that the reality conditions (33) are satisfied

for s ∈ Ua ⊂ R. Using the explicit form (18) of ZL,R

and ML,R matrices as well as the fact that an arbitrary
nonsingular complex matrix µ̃L(s) can be written as

µ̃L(s) = V+(s)
⊤µ(s)V−(s) ,

where V±(s) are unitary, while µ(s) is diagonal and pos-
itive, one finds (similarly as in the generic case) the fol-
lowing local parametrization of µL and I

−1
± matrices

I±(s)
−1 = ω±(s)

†ω±(s) ,

µL(s) = ω+(s)
⊤µ(s)ω−(s) , (134)

where

ω±(s) = V±(s)Λ±(s)U±(s) , (135)

with unitary U±(s), V±(s) matrices and positive-diagonal
µ(s), Λ±(s) matrices. Hence

M
2
±(s) = ω±(s)

−1µ2(s)ω±(s) , (136)

where µ2(s) ≡ µ(s)2, and thus (cf. Eq. (22))

X+(s) =
∏

c

(
s− µcc(s)

2
)
. (137)

Thus, just like before, one sees that the solution m(a) =
mtree

(a) + O(~) to the gap equation (14) is real and that

the eigenvectors ξ̄[a±] can be chosen as

ξ̄[a±] = [ω±(m
2
(a))

−1][a] , (138)

what ensures that the normalization condition (50) is
obeyed. Eq. (53) now yields

N̄ (a) =
1√

1− µ2
aa
′(m2

(a))
,

showing that N̄ (a) is real. On the other hand, Eqs. (52)
give

ζ̄R[a±] = N̄ (a) c(a)∓1
(
ξ̄[a±])

⋆ .
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Comparing this with Eqs. (51) one sees that Eqs. (54)
hold provided that c(a) is, for a particular choice (138),
a phase factor, as was to be proved.

IV.D. Proof of scalar prescription. Similarly to the
fermionic case one sees that Eq. (77) is equivalent to the
following conditions

ζ P̃ (ℓ) ζ⊤ = ∆(ℓ) , ∀ℓ, (139)

where

P̃ (ℓ) ≡ lim
s→m2

(ℓ)

{
(s−m2

(ℓ))
[
s1−m2

]−1
}
,

is a diagonal projection, while

∆(ℓ) ≡ lim
s→m2

(ℓ)

{
(s−m2

(ℓ))
[
s1−M2(s)

]−1
}

=
{
1− P(ℓ)M2′(m2

(ℓ))
}−1

P(ℓ) , (140)

with P(ℓ) being the projection onto the eigenspace of
M2(m2

(ℓ)) corresponding to m2
(ℓ) along the direct sum of

remaining generalized eigenspaces of M2(m2
(ℓ)).

Clearly,

ζ P̃ (ℓ) ζ⊤ =
∑

q

ζ[ℓq ]ζ
⊤

[ℓq ]
. (141)

In the scalar case, there is no counterpart of Eq. (103);
suppose then that ζ[ℓr] are linear combinations of (yet un-
specified) linearly independent vectors ξ[ℓq ] obeying the
normalization condition (80), with (yet unspecified) co-
efficients N (ℓ)qr, as in Eq. (83).
Defining

Y(ℓ) ≡
∑

q,r

[
N (ℓ)N (ℓ)⊤

]qr
ξ[ℓq ] ξ

⊤

[ℓr]
, (142)

one can (similarly to the fermionic case) rewrite Eq.
(139) as

P(ℓ) = S(ℓ) , (143)

where

S(ℓ) ≡ Y(ℓ)
{
1+M2′(m2

(ℓ))Y(ℓ)
}−1

,

what can be simplified to

S(ℓ) =
∑

q,r

[
σ(ℓ)

]qr
ξ[ℓq ] ξ

⊤

[ℓr ]
, (144)

where

σ(ℓ) ≡
{
1+N (ℓ)N (ℓ)⊤ Ξ(ℓ)

}−1

N (ℓ)N (ℓ)⊤ , (145)

with Ξ(ℓ) defined by Eq. (81).

The normalization condition for ξ[ℓr ] eigenvectors, Eq.
(80), gives

S(ℓ)ξ[ℓr] =
∑

q,s

[
σ(ℓ)

]qs
δsr ξ[ℓq ] , (146)

hence

S(ℓ)2 =
∑

q,s,t,r

σ(ℓ)qs δst σ(ℓ)
tr ξ[ℓq ] ξ

⊤

[ℓr]
. (147)

Thus, the following condition (equivalent to Eq. (82))

σ(ℓ)rs = δrs , (148)

ensures that S(ℓ) is a projection and that the image of
S(ℓ) contains the subspace spanned by {ξ[ℓq ]}. Therefore
Eq. (143) requires {ξ[ℓq]} to be a basis of the eigenspace

ofM2(m2
(ℓ)) associated with m2

(ℓ). To complete the proof

of Eq. (143), one still has to show that the kernel of S(ℓ)
is equal to the direct sum of generalized eigenspaces of
M2(m2

(ℓ)) associated with eigenvalues different fromm2
(ℓ).

This follows from the fact that a generalized eigenvector
θ ofM2(m2

(ℓ)) associated with an eigenvalue λθ is orthog-

onal to an eigenvector η associated with λη 6= λθ

η⊤ θ = 0 . (149)

Eq. (149) can be proved in an analogous way to its
fermionic counterpart, Eq. (116), with the aid of the
relation M2(s)⊤ ≡M2(s).
Suppose now that reality conditions (84) are satisfied

in a left neighborhood of p2 = (mtree
(ℓ) )2. A real symmetric

matrix M2(s) can be written as

M2(s) = ω(s)−1µ2(s)ω(s) , (150)

where µ2(s) is diagonal and real,while ω(s) is a real or-
thogonal matrix. A similar argument to the one given
below Eq. (121) shows that the pole mass squares are
real.
Let [ω(m2

(ℓ))
−1][ℓ1] , . . . , be the columns of the

ω(m2
(ℓ))

−1 matrix such that

µ2
ℓrℓr(m

2
(ℓ)) = m2

(ℓ) . (151)

Following the same reasoning as for the fermionic case in
Sec. IV.A, one finds that columns (associated with m2

(ℓ))

of the ζ matrix, defined according to Eq. (83), have the
form

ζ[ℓr] =
∑

q

[
C(ℓ)N (ℓ)

]q
r

[
ω(m2

(ℓ))
−1

]
1[ℓq] , (152)

where the C(ℓ)N (ℓ) matrix obeys

[
C(ℓ)N (ℓ)]

[
C(ℓ)N (ℓ)]⊤ =

{
1−Θ(ℓ)

}−1

, (153)

with a real symmetric matrix Θ(ℓ)

Θ(ℓ)qp = 1
⊤

[ℓq ]
ω(m2

(ℓ))M
2 ′(m2

(ℓ))ω(m
2
(ℓ))

⊤
1[ℓp] .

In particular, there exists a matrix C(ℓ)N (ℓ) which
obeys Eq. (153) and is real, what ensures the reality
of ζ[ℓr ].
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V. CONCLUSIONS

The prescription for the pole part of propagators ob-
tained in this paper is very simple and can be useful for
calculations of the S-matrix elements between states of
stable particles. In conjunction with the generic formula
for the one-loop fermionic self-energy from Sec. III.E, it
can be also used for determination of the CP-asymmetry
in decays of heavy neutrinos and efficiently employed in

computer codes that integrate the Boltzmann equations
for lepton-asymmetry in any model of your likings, see
e.g. [50].
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