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Abstract

We analyze in details the effects associated with mixing of fermionic fields. In a system with an arbitrary 
number of Majorana or Dirac particles, a simple proof of factorizability of residues of non-diagonal prop-
agators at the complex poles is given, together with a prescription for finding the “square-rooted” residues 
to all orders of perturbation theory, in an arbitrary renormalization scheme. Corresponding prescription for 
the scalar case is provided as well.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In all realistic models of particle physics, one has to do with mixing of fields. For example, 
in the Standard Model (SM), non-scalar fields are mixed (photon-Z0 mixing and Cabibbo–
Kobayashi–Maskawa mixing), see e.g. [1]. Similarly, mixing of scalars is a common feature 
of models with the extended Higgs sector.

While the mixing can be easily removed at the tree level by a rotation in the space of fields, 
it reappears at higher orders. The proper way of extracting S-matrix elements is then provided 
by the Lehmann–Symanzik–Zimmermann (LSZ) asymptotic approach (see e.g. [2,3]) which ba-
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sically consist of analyzing the pole structure of the relevant two-point functions of the fields 
which mix. In this way one can reconstruct the Fock space of the true asymptotic states, as well 
as identify unstable particles (resonances).

In the case of mixed Hermitian scalar fields φi , the matrix of the two-point Green’s functions 
(full propagators) can, in general, be represented in the following way

〈T (φk(x)φj (y))〉 =
∫

d4p

(2π)4 e−i p(x−y)

{∑
�

ζ kS[�]
i

p2 −m2
S(�)

ζ
j
S[�] +

[
non-pole

part

]}
. (1)

The factorization of the residues at the (complex) poles in Eq. (1) is a well-known property [4].2

For the mixed Z-photon system of the Standard Model, the analogous factorization was explicitly 
demonstrated in [5], while for fermionic systems it was shown in [6,7] (see also [8,9]).3

The coefficients ζ kS[�] associated with real poles m2
S(�) are crucial for obtaining correctly nor-

malized (i.e. consistent with unitarity) transition amplitudes between the states of stable particles. 
On account of Cutkosky–Veltman rules, it is well-known [12] that the S-matrix is unitary pro-
vided that (1.) unstable particles appear only as internal lines, and (2.) asymptotic (free) fields 
appearing in the LSZ-reduced formula for the S-operator (see e.g. [13] and Eq. (37) below) are 
normalized so as to reproduce the behavior of full propagators about the poles associated with sta-
ble particles. Thus, the asymptotic field φφφj associated with φj can be written as φφφj = ∑ ′

�ζ
j

S[�]��, 
where �� is a canonically normalized free scalar field of mass mS(�), and the summation runs 
over indices labeling real poles.

For resonances the external lines, aka the “in” and “out” states, do not really exist. Nonethe-
less, coefficients ζ kS[�] associated with the complex poles are useful in studying properties of 
unstable particles [4–7]. In this connection, the problem of finding a convenient prescription 
for coefficients ζ kS[�] parameterizing the residues in Eq. (1) have gained renewed interest in re-
cent years. In Ref. [14] the case of 3-by-3 mixing of scalar particles was analyzed in details. 
The factorization property (1) was demonstrated and explicit formulae for the coefficients ζ kS[�]
were given. These results were applied to the neutral Higgs sector of MSSM; it was shown that 
cross-sections obtained by neglecting the non-pole part in Eq. (1) agree to good accuracy with 
the cross-sections based on full propagators. Analysis of a generic n-by-n mixing in fermionic 
systems was given in [15–17].

The purpose of this paper is to generalize and to simplify the available in the literature pro-
cedure of calculating coefficients ζ for fermions and scalars. Our analysis is closest in spirit to 
the one given in [15–17]; there are, however, some differences. First, we follow the philosophy 
of keeping the renormalization scheme as general as possible. In particular, we do not impose 
any concrete renormalization conditions on the two-point functions. Second, we offer a technical 
improvement in comparison with the analyzes of [4,15–17], where the cofactor matrix was used 
to get the formulae for ζ . By contrast, the coefficients ζ in our approach are expressed directly in 
terms of properly normalized eigenvectors of certain “mass-squared matrices”, so that the case 

2 It is worth noticing that the factorization of residues at real poles follows also from formal manipulations [2,3] that 
is, from inserting the complete set of asymptotic states between the field operators in the left hand side of (1). The ζ k

S[�]
factors are then simply equal 〈0|φk(0)|p, �〉, where |0〉 is the true vacuum of the theory and |p, �〉 are the states of a single 
spin 0 particles labeled by �.

3 We also mention in this context Ref. [10] where the possibility of imposing on-shell renormalization conditions in 
systems with mixed scalar, vector and fermionic fields was studied. For mixed fermions this possibility was re-examined 
in [11] with the aid of special parametrization of the propagator.
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of degenerated eigenvalues is naturally covered by our prescription. Thus, the proposed prescrip-
tion for finding ζ can be considered as a generalization of the standard procedure for finding 
tree-level mass eigenstates. The analysis of mixed vector fields along these lines will be given 
elsewhere [18].

The formulae presented below are valid in the generic case of mixed unstable Majorana or/and 
Dirac fermions (a scalar version is also given). For completeness, the expression for the Landau-
gauge one-loop fermionic self-energy of a general renormalizable model in the MS scheme is 
provided below. The paper is therefore intended to cultivate a long tradition by providing generic 
formulae that can be easily applied to (almost) any model at hand, especially in the present com-
puter era, see e.g. [19–26].

The remainder is organized as follows. In the next section the notation is specified, together 
with basic assumptions. In Sec. 3 the prescription for ζ matrices is given for massive Majorana 
particles (3.A), massive Dirac particles (3.B), generic spin-1/2 fermions (3.C) and scalars (3.D), 
together with the generic expression for fermionic one-loop self-energy (3.E). The correctness 
of the prescription is proved in Sec. 4 and the last section is reserved for conclusions.

2. Notation and assumptions

In most formulae given below indices are suppressed and matrix multiplication is understood. 
The summation convention is used only when an upper index is contracted with a lower one; 
whenever ambiguities may arise, sums are explicitly present. The Minkowski metric has the 
form

η = [ημν] = diag(+1,−1,−1,−1) . (2)

Recall that a Majorana field [31] ψã is a pair of a Weyl field χa
A, below referred to as the 

left-chiral Weyl field (LW), and its Weyl conjugate χaȦ, alias the right-chiral Weyl field (RW)

ψã =
[
χa
A

χaȦ

]
, (3)

here a = 1, . . . , n is a generalized-flavor index, A and Ȧ are SL(2, C) indices, while ã =
(a, (A, Ȧ)).

Take, for instance, (a toy version of) the Standard Model [1] in which all Weyl fields except 
for these that describe the electron–positron pair of states have been forgotten. Let λA be a LW 
representing the charged component of the lepton (would-be) SU(2)L-doublet and let ρA be a 
LW of the charged lepton SU(2)L-singlet. In this case n = 2 and the fields with the definite 
generalized-flavor (henceforth called flavor) can be chosen as

χ1 = λ , χ2 = ρ, (4)

though nothing (but common sense) prevents a more general choice

χa = ua1 λ+ ua2 ρ , (5)

with an arbitrary unitary matrix u , which off-diagonalizes the charge generator.
With chiral projections PL,R

PL ψ �
[
χ

0

]
, PR ψ �

[
0
χ

]
,



A. Lewandowski / Nuclear Physics B 937 (2018) 394–421 397
and the charge conjugation matrix C that expresses the Dirac conjugate of ψ in terms of ψ itself

ψ̄ =ψ�C ,
the renormalized (in some renormalization scheme) one-particle-irreducible (1PI) two-point 
function of Majorana fields can be written in the following form

̃ãb̃(−p,p)=
[
C
{(

/pZL(p
2)− ML(p

2)
)
PL +

(
/pZR(p

2)− MR(p
2)

)
PR

}]
ãb̃

, (6)

where

ZL,R(p
2)= 1+O(h̄) . (7)

Clearly, matrices PR,L, C and /p carry only the SL(2, C) indices, while ZL,R and ML,R carry 
only the flavor indices; the tensor products ⊗ are not explicitly shown in Eq. (6). (ZL,R and 
ML,R are, essentially, the 1PI functions of different pairs of Weyl fields; Majorana fields are 
used here and below only for bookkeeping reasons.)

The full propagator of Majorana fields is given by

G̃ ãb̃(p,−p)= i
[
̃(−p,p)−1

]ãb̃ = i
[
D̂F (p)C−1

]ãb̃
. (8)

Inverting the two-point function in Eq. (6) one finds

D̂F (p)= PL D̂L(p)+ PR D̂R(p), (9)

where (s ≡ p2)

D̂L(p)=
[
s1−M

2
L(s)

]−1
ZL(s)

−1
[
/p + MR(s)ZR(s)

−1
]
,

D̂R(p)=
[
s1−M

2
R(s)

]−1
ZR(s)

−1
[
/p + ML(s)ZL(s)

−1
]
, (10)

and

M
2
L(s)= ZL(s)

−1 MR(s)ZR(s)
−1 ML(s) ,

M
2
R(s)= ZR(s)

−1 ML(s)ZL(s)
−1 MR(s) . (11)

The antisymmetry of the fermionic two-point function, Eq. (6), yields

MX(s)= MX(s)
� , X = L,R,

ZR(s)= ZL(s)
� , (12)

and thus

M
2
R(s)

� = ZL(s)M
2
L(s)ZL(s)

−1 , (13)

what gives

X (s)≡ det(s1−M
2
L(s))= det(s1−M

2
R(s)) , (14)

hence the poles of both chiral parts D̂L,R of propagator in Eq. (9) appear at the same points 
s =m2

(a), obeying the condition

X (m2 )= 0 . (15)
(a)
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In this paper three technical assumptions are made about the solutions to Eq. (15) and the 
matrices M2

L(m
2
(a)). First, it is assumed that each generalized eigenvector (see e.g. [27]) of 

M
2
L(m

2
(a)) associated with the eigenvalue m2

(a) is an (ordinary) eigenvector; in other words, it is 

assumed that in the Jordan basis for M2
L(m

2
(a)) the block corresponding to m2

(a) is diagonal. This 
excludes standard pathologies associated with non-diagonalizable matrices (e.g. second order 
poles of gauge-field propagators in covariant non-Feynman gauges caused by pseudoHermiticity 
of the Hamiltonian [30]).

Second, it is assumed that each nonzero solution m2
(a) is nonzero at the tree level, as is usually 

the case in the common seesaw models.
Third, it is assumed that, roughly speaking, the quantum corrections do not change the total 

number of solutions to Eq. (15). More specifically, suppose that the a label distinguishes different 
solutions m2

(a). Let ξ[a1], ξ[a2] , . . . , be a basis of the eigenspace of M2
L(m

2
(a)) associated with the 

eigenvalue m2
(a). It is assumed that each element in the sequence

ξ[11], . . . , ξ[21] . . . ,

has the form ξ[ar ] = ξ0[ar ] +O(h̄), where vectors

ξ0[11], . . . , ξ
0[21] . . . ,

are of zeroth order in h̄ and form a basis of Cn, with n denoting the total number of LWs.4

The pole masses m2
(a) are formal power series in h̄. Thus, if all of the tree-level masses of 

fermions are different, then M2
L(s) is diagonalizable as a formal power series

M
2
L(s)=W(s)−1 diag

(
d1(s), ..., dn(s)

)
W(s) ,

and

X (s)=
n∏

p=1

(
s − dp(s)

)
.

If da(s) = (mtree
(a) )

2 +O(h̄), then Eq. (15) reads

da(m
2
(a))=m2

(a) ,

and has a unique solution m2
(a) = (mtree

(a) )
2 +O(h̄). In particular, the first and the third assumption 

are satisfied in this case. In general, assuming non-degeneracy of the tree-level masses is however 
not an option as physics is about symmetries. Therefore it is convenient (and desirable from 
practical point of view) to distinguish two special situations called below the Majorana case and 
the Dirac case.

Let G be the group of exact, linearly realized, internal global symmetries of the tree-level 
action that are respected by the renormalization conditions and let U(·) be the representation 
of G on the left-chiral flavor eigenfields χa . The two-point function (6) obeys the following 
conditions

4 The reader should be warned that the a label on pole masses is the same as the index on flavor eigenfields χa , even 
though χa are not assumed to be the eigenstates of the tree-level (nor the pole) masses. This little abuse of notation will 
not lead to any misunderstandings.
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ML(s)= U(g)�ML(s)U(g) ,
MR(s)= U(g)†MR(s)U(g)� ,
ZL(s)= U(g)†ZL(s)U(g) ,
ZR(s)= U(g)�ZR(s)U(g)� , ∀g∈G . (16)

Consider first a toy model in which fermions form three families, each one consisting of 
gluinos of the Minimal Supersymmetric Standard Model [31]. In this case the flavor index is a 
pair of an adjoint color index and a family index, and the most general matrices ZL,R and ML,R

consistent with the SU(3)C symmetry have the form

ML,R(s)= 1k×k ⊗ M fam
L,R(s) ,

ZL,R(s)= 1k×k ⊗ Z fam
L,R (s) , (17)

and thus

M
2
L(s)= 1k×k ⊗M

2 fam
L (s) , (18)

where 1k×k (with k = 8) is the identity matrix in the adjoint color space, while M fam
L,R and Z fam

L,R

are 3 × 3 matrices in the family space. In particular, M2
L(m

2
(a)) are diagonalizable if e.g. the 

tree-level contribution to M2 fam
L (0) has non-degenerate eigenvalues. A situation in which the 

two-point functions have the form (17) with an arbitrary number f of “families”, an arbitrary 
k, and with f different and nonvanishing eigenvalues of the tree-level contribution to M2 fam

L (0)
is called below the Majorana case; the total number of flavors equals n = f × k. As far as the 
propagator and mixing are concerned, one can in this case restrict attention to a single color.5 It 
is worth emphasizing that the Majorana case (as well as the Dirac case below) is defined here 
by demanding mtree

(a) �= 0 for all a, in order to make the corresponding prescription in Sec. 3.A 

(respectively, 3.B) as simple and practical as possible.6 Vanishing masses require a separate 
treatment and they are dealt with in Sec. 3.C devoted to the generic case.

Consider next a more interesting example of three families of down-type quarks in the SM 
(clearly, the SU(3)C × U(1)Q symmetry of the SM prohibits down-type quarks from mixing 
with other SM fermions). Without loss of generality, it can be assumed that the flavor eigenfields 
χa have been chosen so that the anti-Hermitian generator of U(1)Q is diagonal

fQ = 1�×� ⊗
[ − i e

3 13×3 0
0 i e

3 13×3

]
,

U(gQt )= exp(t fQ) ,

where 1�×� (with � = 3) is the identity matrix in the color space. The most general matrices 
ZL,R and ML,R consistent with Eqs. (12) and the SU(3)C ×U(1)Q symmetry read

ZL(s)= ZR(s)
� = 1�×� ⊗

[
I+(s)−1 0

0 I−(s)−1

]
,

5 A more physical representative of the Majorana case is the type I seesaw mechanism with k = 1 and f = 3 + 3
neutrinos.

6 In light of neutrino oscillations, theories with massless spin-1/2 fermions are no longer so appealing. In fact even in 
the pure SM, symmetries exclude not only neutrino masses but also any mixing between, say, the muon–neutrino and 
other fermions, and thus allow to restrict the attention to the block of massive fermions.
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MX(s)= 1�×� ⊗
[

0 μX(s)

μX(s)
� 0

]
, X = L,R, (19)

where μL,R and I±(s) are arbitrary 3 × 3 matrices and, in addition, I±(s) are nonsingular. 
Thus

M
2
L(s)= 1�×� ⊗

[
M

2+(s) 0
0 M

2−(s)

]
, (20)

with

M
2+(s)= I+(s)μR(s)I−(s)�μL(s)

� ,

M
2−(s)= I−(s)μR(s)

�I+(s)�μL(s) . (21)

Using the relation (valid if, e.g. tree-level masses are non-vanishing, so that μL(s) is nonsingular)

M
2−(s)� = μL(s)

�
M

2+(s)
{
μL(s)

�}−1
, (22)

one gets

X+(s)≡ det(s1−M
2+(s))= det(s1−M

2−(s)) , (23)

hence the determinant in Eq. (14) reads

X (s)= X+(s)2� . (24)

It follows from Eq. (23) that complex poles corresponding to the left-chiral flavor eigenfields 
with opposite charges are located at the same points s =m2

(a). A situation in which the two-point 
functions have the form (19) with an arbitrary number f of families, an arbitrary �, and with f
different and nonvanishing eigenvalues of the tree-level contribution to M2+(0) is called below 
the Dirac case (the total number of flavors equals n = 2 × f × �). Once again, as far as the 
propagator and mixing are concerned, one can in this case restrict attention to a single color, i.e. 
one can effectively neglect color factors 1�×� in Eqs. (19)–(20).

A simple prescription for the pole part of the propagator (9) is given in the next section for 
these two special cases. A generalization to arbitrary M2

L(m
2
(a)) matrices consistent with three 

assumptions stated above is provided as well.
It should be noted, however, that infrared problems (see e.g. [28]) are not discussed in this 

paper. In other words, it is assumed that an IR regulator was introduced (if necessary) so that the 
propagators do have simple poles at the points obeying Eq. (15).

3. Prescription

3.A. Majorana case. Consider first the Majorana case, Eqs. (17). In order not to obscure the 
notation it is assumed that k = 1 and fam superscripts are omitted; thus the total number of LWs 
is n = f . On the assumptions stated in Sec. 2, it is clear that Eq. (15) has, in the sense of formal 
power series, n different and non-vanishing solutions

m(a) =mtree
(a) +O(h̄) , (25)

such that Re(m(a)) > 0. Define

m= diag(m(1) , . . . ,m(n)) . (26)
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It will be shown (in Sec. 4) that the D̂F (p) matrix in the full propagator of two Majorana fields, 
Eq. (8), has the following simple form

D̂F (p)= ζ̂ [p2 −m2]−1[/p +m] ζ̂ � + [non-pole part] , (27)

where

ζ̂ = ζL PL + ζR PR ,

ζ̂ � = ζ �
L PL + ζ �

R PR , (28)

matrices ζL,R (as well as m) carry only flavor indices, while columns of ζL and ζR are given, 
respectively, by vectors ζL[a] and ζR[a] in the flavor space

ζX =
[[

ζX[1]
]

· · ·
[
ζX[n]

]]
, X = L,R,

obtained in the following way. Let ξ[a] be an eigenvector of M2
L(m

2
(a)), Eq. (11), corresponding 

to the eigenvalue m2
(a)

M
2
L(m

2
(a)) ξ[a] =m2

(a) ξ[a] , (29)

and obeying the following normalization condition

ξ �[a] ML(m
2
(a)) ξ[a] =m(a) , (30)

then

ζL[a] =N (a) ξ[a] , (31)

with a normalizing factor

N (a)=
{

1 − 1

m(a)

ξ �[a] ML(m
2
(a))M

2
L

′(m2
(a)) ξ[a]

}−1/2
, (32)

where M2
L

′(s) ≡ dM2
L(s)/ds, and

ζR[a] = 1

m(a)

ZR(m
2
(a))

−1ML(m
2
(a)) ζL[a] . (33)

(Note that, on the assumptions stated above, Eqs. (29)–(30), determine ξ[a] uniquely up to a sign; 
one could worry that the condition (30) cannot be imposed since e.g. [1, i] [1, i]� = 0, however 
such a pathology is impossible at the tree-level, and thus it is impossible for formal power series.)

Moreover it will be shown that, if Feynman integrals contributing to ZL,R(p
2) and ML,R(p

2)

do not acquire imaginary parts in a left neighborhood Ua ⊂R of p2 = (mtree
(a) )

2

Ua ≡ {
p2 ∈R| (mtree

(a) )
2 − ε < p2 ≤ (mtree

(a) )
2} , ε > 0 ,

so that the following reality conditions are satisfied

ZR(s)= ZL(s)
� , MR(s)= ML(s)

� , ∀s∈Ua
, (34)

then all terms of a formal power series m(a), Eq. (25), are real, and conditions (29)–(33) imply 
that ζR[a] is the complex conjugation of ζL[a].
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If, in particular, conditions (34) are satisfied for all a = 1, . . . , n, then matrices appearing in 
Eq. (28) obey ζR = ζL

� and Eq. (27) has a simple interpretation: the Majorana field ψ in, e.g., 
the MS scheme of dimensional regularization can be expressed in terms of its on-shell scheme 
counterpart ψOS (see e.g. [10]) as follows

ψ = ζ̂ ψOS. (35)

What if only some of the particles are stable? If Im(m(aS)) = 0, then one can introduce a free 
(interaction picture) Majorana field �ãS of mass m(aS) with canonically normalized propagator 
and define (recall that ̃b is the “total” index, cf. Eq. (3))

�b̃
red =

∑
ãS

[
ζ̂

]b̃
ãS
�ãS , (36)

where the summation runs over all “stable indices”. Clearly, �red is a free quantum field and 
Eq. (27) implies that the chronological propagator of �red reproduces the behavior of propagator 
in Eq. (8) about all poles located on the real axis. Thus, �red is the field that appears in the 
LSZ-reduced formula for the S-operator describing the transitions between stable states [13]

S = :exp(�): exp(i W [J ])
∣∣∣∣
J=0

, (37)

with

�= −
∫

d4x �b̃
red(x)

∫
d4y b̃c̃(x, y)

δ

δJc̃(y)
, (38)

where b̃c̃(x, y) is the Fourier transform of (6), normal ordering in Eq. (37) refers to free quantum 
fields �red, while the connected generating functional W [J ] is related through the Legendre 
transform to the (renormalized) 1PI effective action [ψ]

[ψ] =W [J ψ ] −J ψ ·ψ ,
δW [J ]
δJb̃(x)

∣∣∣∣∣
J=J ψ

=ψb̃(x) ,

(in the last three equations, ψ and � represent not only fermions but also scalars and vectors).
What about unstable particles? Consider, for instance, a theory in which heavy neutrinos de-

scribed in terms of Majorana fields ψā
N carrying a family index ā, interact with a Hermitian 

scalar field h and massless SM (anti)neutrinos, described in terms of Majorana fields ψb̌
ν carry-

ing a family index b̌, through the following Lagrangian density (spinor indices are suppressed)

Lint = −h ψ̄ā
N

(
Y
āb̌
PL +Y �

āb̌
PR

)
ψb̌
ν . (39)

The CP-asymmetry

ε
āb̌

= (Nā → hν
b̌
)− (Nā → hν̄

b̌
)

(Nā → hν
b̌
)+ (Nā → hν̄

b̌
)
, (40)

was calculated in [8,6,7,9] by looking at diagrams in which Nā is an internal (rather than an 
external) line, what leads to the following expression

ε
āb̌

=
|YR

āb̌
|2 − |YL

āb̌
|2

|YR |2 + |YL |2 , (41)

āb̌ āb̌
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with

YL

āb̌
= Y

ā′b̌(ζL)
ā′
ā + . . . , (42)

YR

āb̌
= Y �

ā′b̌(ζR)
ā′
ā + . . . , (43)

where ζR,L are ζ matrices for the ψā
N fields, while the ellipsis indicates contributions of cor-

rections to external lines of h and ψb̌
ν fields, as well as loop corrections to the 1PI vertices (for 

simplicity it is assumed here that the mixing between light and heavy neutrinos is negligible, 
even though the present formalism is capable of describing quantum corrections to the mixing in 
the full 6×6 system).

3.B Dirac case. Consider now the Dirac case, Eqs. (19). For simplicity of the notation it is 
assumed that � = 1, thus the total number of LWs is n = 2f . On the assumptions stated in Sec. 2, 
it is clear that Eq. (15), cf. Eqs. (23)–(24), has f different and non-vanishing solutions

m(a) =mtree
(a) +O(h̄) , (44)

such that Re(m(a)) > 0. Define

mD = diag(m(1) , . . . ,m(f )) , (45)

and

m̃=
[

0 mD

mD 0

]
. (46)

It will be shown that the D̂F (p) matrix in the full propagator of two Majorana fields, Eq. (8), has 
the form

D̂F (p)= ζ̂ [p2 − m̃2]−1[/p + m̃] ζ̂ � + [non-pole part] , (47)

where

ζ̂ = ζL PL + ζR PR , (48)

while the ζL,R matrices have a block-diagonal form

ζX =
[
ζ̄X+ 0

0 ζ̄X−

]
, X = L,R, (49)

with matrices ζ̄X± built out of vectors ζ̄X[a±]

ζ̄X± =
[[

ζ̄X[1±]
]

· · ·
[
ζ̄X[f±]

]]
, X = L,R,

obtained in the following way. Let ξ̄[a±] be arbitrary but fixed eigenvectors of M2±(m2
(a)), 

Eqs. (21), corresponding to the eigenvalue m2
(a)

M
2+(m2

(a)) ξ̄[a+] =m2
(a) ξ̄[a+] ,

M
2−(m2

(a)) ξ̄[a−] =m2
(a) ξ̄[a−] , (50)

(eigenspaces of M2±(m2
(a)) are one-dimensional on the assumptions stated in Sec. 2), and obeying 

the following normalization condition
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ξ̄ �[a+]μL(m
2
(a)) ξ̄[a−] =m(a) . (51)

Then

ζ̄L[a+] = c(a) N̄ (a) ξ̄[a+] ,
ζ̄L[a−] = c(a)−1 N̄ (a) ξ̄[a−] , (52)

and

ζ̄R[a+] = 1

m(a)

I+(m2
(a))

�μL(m
2
(a)) ζ̄L[a−] ,

ζ̄R[a−] = 1

m(a)

I−(m2
(a))

�μL(m
2
(a))

� ζ̄L[a+] , (53)

with a normalizing factor

N̄ (a)=
{

1 − 1

m(a)

ξ̄ �[a−]μL(m
2
(a))

�
M

2+′(m2
(a)) ξ̄[a+]

}−1/2
, (54)

where M2+′(s) ≡ dM2+(s)/ds, while c(a) ∈ C \ {0} is an arbitrary number which does not affect 
the pole part of the propagator.

Moreover it will be shown that, if the reality conditions (34) hold in a left neighborhood 
Ua ⊂ R of p2 = (mtree

(a) )
2, then all terms of a formal power series m(a), Eq. (44), are real, and 

there exists c(a) ∈C \ {0} such that

ζ̄R[a+] = ζ̄ �
L[a+] , and ζ̄R[a−] = ζ̄ �

L[a−] . (55)

With fixed ξ̄[a±], conditions (55) determine c(a) uniquely up to a phase. Thus, if conditions (34)
are satisfied for all a = 1, . . . , f , then matrices appearing in Eq. (48) obey ζR = ζL

�.

3.C. Generic fermionic case. The above prescriptions can be generalized to the case constrained 
only by the three conditions discussed below Eq. (15). Recall that these conditions imply that the 
number of poles of the full propagator is equal to the total number n of LWs. The a label is as-
sumed to distinguish different solutions m2

(a) to Eq. (15); indices corresponding to this eigenvalue 
are labeled with a1, a2, etc.

Let m̃= m̃� be an arbitrarily chosen symmetric n × n matrix such that

m̃2 = diag(m2
(1) , . . .) , (56)

and

m̃arbq = 0 ∀ar , if m2
(b) = 0 . (57)

Clearly,

[m̃2]araq =m2
(a) δrq .

It will be shown that the D̂F (p) matrix in the full propagator of two Majorana fields, Eq. (8), has 
the following form

D̂F (p)= ζ̂ [p2 − m̃2]−1[/p + m̃] ζ̂ � + [non-pole part] , (58)

where

ζ̂ = ζL PL + ζR PR ,
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matrices ζL,R (as well as m̃) carry only flavor indices, while columns of ζL,R are given by vectors 
ζL,R[ar ]

ζX =
[[

ζX[11]
]

· · ·
]
, X = L,R, (59)

(the order of columns reflects the order of eigenvalues in Eq. (56)) obtained in the following way.

1. Nonzero m2
(a).

Let ξ[a1] , . . ., be a basis of the eigenspace

M
2
L(m

2
(a)) ξ[ar ] =m2

(a) ξ[ar ] , (60)

obeying the following normalization conditions

ξ �[ar ] ML(m
2
(a)) ξ[aq ] = m̃araq , (61)

(recall that for each pair of nonsingular complex symmetric matrices S1,2 there always exists 
a nonsingular matrix N such that S1 = N�S2N , thus starting with an accidentally chosen basis 
of eigenspace one can always find vectors obeying Eq. (61); the non-singularity of the left-hand 
side of Eq. (61) is ensured by the assumptions listed below Eq. (15)). Define the following matrix

�(a)qr = ξ �[aq ] ML(m
2
(a))M

2
L

′(m2
(a)) ξ[ar ] , (62)

which is symmetric (see Sec. 4) and find a matrix N (a) such that

1

m2
(a)

N (a)m(a)N (a)� = (
m(a)−�(a)

)−1
, (63)

where

m(a)rq = m̃araq . (64)

(Clearly, N (a) is determined only up to a complex orthogonal matrix.) Then

ζL[ar ] =
∑
q

N (a)
q
r ξ[aq ] , (65)

and

ζR[ar ] = 1

m2
(a)

ZR(m
2
(a))

−1ML(m
2
(a))

∑
q

ζL[aq ]m(a)qr . (66)

Moreover it will be shown that, if the m̃ matrix is chosen to be diagonal

m̃= diag(m(1) , . . .) ,

with Re(m(a)) > 0, and if reality conditions (34) are satisfied in a left neighborhood Ua ⊂ R

of p2 = (mtree
(a)

)2, then all terms of a formal power series m(a) are real and there exists a N (a)

matrix obeying Eq. (63) and such that ζR[ar ] = ζ �
L[ar ] for all r . With fixed {ξ[ar ]} eigenvectors this 

matrix is unique up to a real orthogonal matrix R(a), i.e. N (a) =N0(a)R(a).

2. Vanishing m2
(a).

Let ξ[01] , . . ., be a basis of the null eigenspace

M
2 (0) ξ[0r ] = 0 , (67)
L
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obeying the following normalization conditions

ξ
†

[0r ] ZL(0) ξ[0q ] = δrq , (68)

(for p2 = 0 reality conditions (34) cannot be violated and thus ZL(0) is a Hermitian and positive 
matrix, cf. Eqs. (7) and (12)). Define the following matrix

�(0)qr = ξ
†

[0q ] ZL(0)M
2
L

′(0) ξ[0r ] , (69)

which is Hermitian (see Sec. 4) and find a matrix N (0) such that

N (0)N (0)† = (
1−�(0)

)−1
. (70)

Then

ζL[0r ] =
∑
q

N (0)qr ξ[0q ] , (71)

and

ζR[0r ] = ζ �
L[0r ] . (72)

It should be stressed that auxiliary normalization conditions (61) and (68) are, in fact, re-
dundant, i.e. prescriptions (63) and (70) for normalizing factors can be easily generalized to the 
case when the basis {ξ[ar ]} of eigenspace is completely arbitrary. Nonetheless, Eqs. (61) and (68)
are imposed here, since the resulting equations (63) and (70) show immediately that, if flavor 
eigenfields are chosen to be canonically normalized eigenstates of the tree-level mass matrix, as 
is usually the case, then the N (a) matrix can be chosen as an O(h̄) perturbation of the identity 
matrix, while ξ[ar ] can be chosen as O(h̄) perturbations of vectors belonging to the canonical 
basis of Rn ⊂C

n.

3.D. Scalar case. Consider a set {φ�} of n scalar fields. Without loss of generality it is assumed 
that φ� are Hermitian. The renormalized 1PI two-point function

̃�j (−p,p)=
[
p21− (M tree)2 −�(p2)

]
�j

≡
[
p21−M2(p2)

]
�j
, (73)

where M2(s) =M2(s)� is a symmetric matrix, leads to the propagator

G̃ �j (p,−p)= i
[(
p21−M2(p2)

)−1
]�j

, (74)

and the gap equation

XS(m
2
(�))= 0 , (75)

with

XS(s)≡ det(s1−M2(s)) . (76)

It is assumed that assumptions listed below Eq. (15) for fermionic solutions m2
(a) and matrices 

M
2
L(m

2
(a)), are satisfied also for their scalar counterparts, m2

(�) and M2(m2
(�)).

Let m2 be a diagonal n × n matrix

m2 = diag(m2 , . . .) . (77)
(1)
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The � label is assumed to distinguish different values m2
(�); indices corresponding to this value in 

Eq. (77) are labeled with �1, �2, etc.
It will be shown that the propagator (74) has the form

G̃(p,−p)= i ζ [p2 −m2]−1 ζ � + [non-pole part] , (78)

where columns of ζ are given by vectors ζ[�r ]

ζ =
[[

ζ[11]
]

· · ·
]
, (79)

(the order of columns reflects the order of eigenvalues in Eq. (77)) obtained in the following way. 
Let ξ[�1] , . . ., be a basis of the eigenspace

M2(m2
(�)) ξ[�r ] =m2

(�) ξ[�r ] , (80)

obeying the following normalization conditions

ξ �[�r ] ξ[�q ] = δrq , (81)

(starting with an arbitrary basis of eigenspace one can always find vectors obeying Eq. (81), just 
as in the fermionic case). Define the following matrix

�(�)qr = ξ �[�q ]M
2′(m2

(�)) ξ[�r ] , (82)

which is manifestly symmetric, and find a matrix N (�) such that

N (�)N (�)� = (
1−�(�)

)−1
. (83)

(Clearly, N (�) is determined only up to a complex orthogonal matrix.) Then

ζ[�r ] =
∑
q

N (�)
q
r ξ[�q ] . (84)

Moreover it will be shown that, if Feynman integrals contributing to M2(p2) do not acquire 
imaginary parts in a left neighborhood U� ⊂ R of p2 = (mtree

(�) )
2, so that the following reality 

conditions are satisfied

M2(s)=M2(s)� , ∀s∈U�
, (85)

then all terms of a formal power series m2
(�) are real and there exists a N (�) matrix obeying 

Eq. (83) and such that ζ[�r ] = ζ �[�r ] for all r . With fixed {ξ[�r ]} eigenvectors this matrix is unique 
up to a real orthogonal matrix R(�), i.e. N (�) =N0(�)R(�).

3.E. Fermionic one-loop self-energy. It is convenient to supplement the prescription for 
fermionic ζL,R matrices by providing generic expressions for one-loop contributions in the MS
scheme with anticommuting γ 5 to the two-point functions ZL,R and ML,R in Eq. (6). Consider 
an arbitrary renormalizable model, in which Majorana fields ψa (spinor indices are suppressed 
for simplicity) interact with Hermitian scalar fields φ� (already shifted if necessary, so that 
〈φ〉 = 0) and Hermitian gauge fields Aα

μ via the following Lagrangian density

Ltree
int = + 1

2! i A
α
μ ψ̄a γ μ

(
fαab PL + f�αab PR

)
ψb +

− 1
φ� ψ̄a

(
Y�ab PL + Y �

�ab PR
)
ψb . (86)
2!
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Here fαab = −f�αba are matrix elements of ordinary anti-Hermitian gauge-group generators (al-
ready containing the coupling constants), while Y�ab = Y�ba are matrix elements of symmetric 
Yukawa matrices. It is assumed that all fields are chosen to be the eigenfields of the tree-level 
mass-squared matrices, so that

Ltree
mass = +1

2

∑
β

m2
Vβ η

μνAβ
μA

β
ν − 1

2

∑
�

m2
S� φ

�φ� +

− 1

2
ψ̄a

(
MFab PL +M�

Fab PR
)
ψb ,

where

MFM
�
F = diag(m2

F1 , m
2
F2 , . . . , m

2
Fn) , (87)

(clearly, without loss of generality one could assume that MF itself is diagonal; such a choice is 
however completely impractical for Dirac particles, as it implies that, for instance, the u matrix, 
Eq. (5), in the SM is non-diagonal).

Functions ZL,R and ML,R can be parametrized in the following way

ZL,R(p
2)= 1+ h̄

(4π)2 Z (1)
L,R(p

2)+O(h̄2) ,

ML(p
2)=MF + h̄ Y� v

�
(1) + h̄

(4π)2 M (1)
L (p2)+O(h̄2) ,

MR(p
2)=M�

F + h̄ Y �
� v

�
(1) + h̄

(4π)2 M (1)
R (p2)+O(h̄2) , (88)

where v�(1) represents the one-loop contribution to the scalar vacuum expectation value (VEV), 

while Z (1)
L,R and M (1)

L,R are produced by one-loop diagrams shown in Fig. 1 (we work in the 
Landau gauge). Using the standard, minimally subtracted one-loop functions aR and bR0 in the 
dimensional regularization [3]

aR(m)=m2
{

ln
m2

μ̄2 − 1

}
,

BM

(
p2,m1,m2

)
≡ bR0

(
p2,m1,m2

)
=

1∫
0

dx ln
x(x − 1)p2 + (1 − x)m2

1 + x m2
2 − i 0

μ̄2 ,

(here μ̄ is the renormalization scale of the MS scheme, related to the usual ’t Hooft mass unit via 
μ̄≡ μH

√
4π e−γE/2), together with their combinations BM(≡ bR0 ), BZ , AM and AZ

BZ

(
p2,mS,mF

)
= 1

2p2

{
aR(mF )− aR(mS)+

+
(
m2
S −m2

F − p2
)
bR0

(
p2,mS,mF

)}
,

AM(p2,mV ,mF )= 3bR0
(
p2,mV ,mF

)
+ 2 ,

AZ(p
2,mV ,mF )= m2

F + 2m2
V − p2

2p2

aR(mV )

m2 +

V
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Fig. 1. One-loop contributions to ML,R and ZL,R in the Landau gauge.

+ 1 − aR(mF )

p2 + p2 +m2
F − 2m2

V

2p2 bR0

(
p2,mV ,mF

)
+

+
(
p2 −m2

F

)
2

2p2

bR0

(
p2,mV ,mF

) − bR0

(
p2,0,mF

)
m2
V

,

one gets7

[Z (1)
L (s)]ac =

∑
β,b

AZ(s , mVβ , mFb) fβab fβbc +

+
∑
�,b

BZ(s , mS� , mFb)Y
�
�ab Y�bc ,

[Z (1)
R (s)]ac =

∑
β,b

AZ(s , mVβ , mFb) f
�
βab f

�
βbc +

+
∑
�,b

BZ(s , mS� , mFb)Y�ab Y
�
�bc ,

[M (1)
L (s)]ac =

∑
β,b,d

AM(s , mVβ , mFb) f
�
βab MFbd fβdc +

+
∑
�,b,d

BM(s , mS� , mFb)Y�ab M
�
Fbd Y�dc ,

[M (1)
R (s)]ac =

∑
β,b,d

AM(s , mVβ , mFb) fβab M
�
Fbd f

�
βdc +

+
∑
�,b,d

BM(s , mS� , mFb)Y
�
�ab MFbd Y

�
�dc .

In particular, reality conditions (34) are violated whenever bR0 has a non-vanishing imaginary 
part.

Clearly, in the expression for AZ , the limits mVβ → 0 are to be taken for contributions of 
massless gauge bosons. On the other hand, the last term in AZ , even for spontaneously broken 
gauge symmetries, contains contributions of unphysical massless modes; as far as corrections 
to the pole masses are concerned, they cancel with similar contributions of would-be Goldstone 
bosons, as the gauge symmetry leads to the following relation

sγ mVγ Yg =MF fγ − f�γ MF , (89)

where Yg is a Yukawa matrix of the (massless) would-be Goldstone boson φg associated with a 
broken generator fγ , while sγ = −1 or sγ = +1. By contrast, contributions of unphysical modes 

7 Correctness of these results was checked with the aid of FeynCalc [29].
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to the ζL,R matrices do not cancel completely, but Eq. (89) ensures that they do not contain reso-
nant factors (m2

Fa −m2
Fb)

−1 [8]. Thus, in the CP-asymmetry (41) these contributions cancel with 
similar “unphysical” corrections to the 1PI vertices (indicated by the ellipsis in Eqs. (42)–(43)).

Finally, the one-loop contribution v(1) to the VEV can be obtained from the tadpole cancella-
tion condition in the Landau gauge

0 = −V ′
i (v(0) + h̄ v(1))+ h̄

(4π)2

{
3
∑
αj

[T 2
α ]ij vj(0)

[
aR(mVα)+ 2

3
m2
V α

]
+

− 1

2

∑
j

ρijj a
R(mSj )+

∑
bc

(MFbcY
�
icb +M�

FbcYicb)a
R(mFb)

}
+O(h̄2) .

Here V is the gauge-invariant tree-level potential of scalar fields, v(0) represents the tree-level 
VEV (i.e. V ′

i (v(0)) = 0), ρijk = V ′′′
ijk(v(0)), while Tα is the generator of the gauge group on scalar 

fields; Tα is normalized in such a way that the covariant derivative reads

(Dμφ)
j = ∂μφ

j +Aα
μ[Tα]jk(φk + vk(0) + h̄ vk(1) + . . .) .

4. Proof

4.A. Proof of generic fermionic prescription.
The proof is a simple exercise in linear algebra.

0 . Generalities. First of all, one has to calculate the following limits (cf. Eqs. (10) and (15))

�L,R(a)= lim
s→m2

(a)

{
(s −m2

(a))
[
s1−M

2
L,R(s)

]−1 }
. (90)

It is convenient to start with something simpler

P(a)= lim
s→m2

(a)

{
(s −m2

(a))
[
s1−M

2
L(m

2
(a))

]−1 }
. (91)

On the assumptions stated in Sec. 2, this limit exists and gives a projection onto the eigenspace 
of M2

L(m
2
(a)) associated with m2

(a) along the direct sum of remaining generalized eigenspaces of 

M
2
L(m

2
(a)). To verify this statement, it is enough to calculate the action of the right-hand side of 

Eq. (91) on generalized eigenvectors of M2
L(m

2
(a)). Introducing the resolvent

R(s)=
(
s1−M

2
L(m

2
(a))

)−1
,

one has

R(s)ξ[ar ] = (s −m2
(a))

−1ξ[ar ] ,

for all eigenvectors ξ[ar ] associated with m2
(a). Let λθ �=m2

(a) be another eigenvalue of M2
L(m

2
(a)); 

the generalized eigenspace associated with it is spanned by (in general more than one) Jordan 
chain θ1 , . . . , θp (a subsequence of the Jordan basis for M2

L(m
2
(a)), see e.g. [27])

θr = (
λθ1−M

2
L(m

2
(a))

)
θr+1 , r = 0, . . . , p − 1 , (92)

where θ0 ≡ 0, i.e. θ1 is an eigenvector. Let Q(s) = (s − λθ )
−1, the following identity can be 

easily checked by induction
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R(s) θr =
r∑

k=1

(−1)k+1 Q(s)k θr+1−k . (93)

Thus

P(a) ξ[ak] = ξ[ak] , P(a) θr = 0 , (94)

as was to be shown. In particular

P(a)2 = P(a) . (95)

Expanding M2
L(s) in Eq. (90) about s =m2

(a) one gets

�L(a)=
{
1− P(a)M2

L
′(m2

(a))
}−1

P(a) . (96)

Eq. (13) now yields

�R(a)= ZR(m
2
(a))

−1 �L(a)
�ZR(m

2
(a)) .

Introducing another family {P̃ (a)} of projections

P̃ (a)= lim
s→m2

(a)

{
(s −m2

(a))
[
s1− m̃2

]−1 }
,

one can decompose the m̃2 matrix in Eq. (56) as follows

m̃2 =
∑
a

m2
(a) P̃ (a) , (97)

clearly∑
a

P̃ (a)= 1 , and P̃ (a)P̃ (b)= δabP̃ (a) .

Now one sees that the formula that needs to be proven, Eq. (58), is equivalent to the following 
four sets of conditions (s̄a ≡m2

(a))

ζL P̃ (a) ζ
�
R =�L(a)ZL(m

2
(a))

−1 , ∀a, (98)

ζR P̃ (a) ζ
�
L = ZR(m

2
(a))

−1�L(a)
�, ∀a, (99)

ζL P̃ (a) m̃ ζ�
L =�L(a)ZL(s̄a)

−1MR(s̄a)ZR(s̄a)
−1 , ∀a,

ζR P̃ (a) m̃ ζ�
R = ZR(s̄a)

−1�L(a)
�ML(s̄a)ZL(s̄a)

−1 , ∀a.
Thus, one has to show that there exist matrices ζL,R obeying, in addition to Eqs. (98)–(99), the 
following conditions

ζL P̃ (a) m̃ ζ�
L = ζL P̃ (a) ζ

�
RMR(m

2
(a))ZR(m

2
(a))

−1 ,

ζR P̃ (a) m̃ ζ�
R = ζR P̃ (a) ζ

�
LML(m

2
(a))ZL(m

2
(a))

−1 .

It is enough to impose, instead of the last two equations, the following two (cf. Eq. (12))

ζR m̃ P̃ (a)= ZR(m
2
(a))

−1ML(m
2
(a)) ζL P̃ (a) , (100)

ζL m̃ P̃ (a)= ZL(m
2
(a))

−1MR(m
2
(a)) ζR P̃ (a) . (101)

Using the following relation (cf. Eq. (64))
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[
P̃ (a) m̃ P̃ (a)

]
araq =m(a)rq ,

together with the identity8 m̃ P̃ (a) = P̃ (a) ̃m, which yields in turn

m̃ P̃ (a)= P̃ (a) [P̃ (a) m̃ P̃ (a)] ,
one can rewrite Eqs. (100)–(101) in terms of respective columns of matrices ζL,R in Eq. (59)∑

r

ζR[ar ]m(a)rq = ZR(m
2
(a))

−1ML(m
2
(a)) ζL[aq ] , (102)∑

r

ζL[ar ]m(a)rq = ZL(m
2
(a))

−1MR(m
2
(a)) ζR[aq ] . (103)

1. Nonzero m2
(a). Consider first the case m2

(a) �= 0; then Eq. (102) is nothing more than the 
relation (66), since

m(a)2 =m2
(a) 1 .

In turn, Eq. (66) allows to rewrite Eq. (103) in an equivalent form

m2
(a) ζL[ar ] = ZL(m

2
(a))

−1MR(m
2
(a))ZR(m

2
(a))

−1ML(m
2
(a))ζL[ar ] , (104)

hence columns ζL[a1], . . . , of ζL are eigenvectors of M2
L(m

2
(a)) corresponding to the eigenvalue 

m2
(a), just as in Eqs. (60) and (65).

Without loss of generality one can thus assume that, for m2
(a) �= 0, ζL[ar ] are linear combina-

tions of linearly independent eigenvectors ξ[aq ] obeying the normalization conditions (61), with 
(yet unspecified) coefficients N (a)

q
r , as in Eq. (65). It remains to be shown that Eqs. (98)–(99)

are equivalent to the condition (63) on the matrix N (a). In fact Eq. (99), being a transposition of 
(98), can be skipped. Clearly,

ζL P̃ (a) ζ
�
R =

∑
q

ζL[aq ]ζ �
R[aq ] .

Employing Eq. (66), and defining

Y(a)≡
∑
q,r

τ (i)qr ξ[aq ] ξ �[ar ] ML(m
2
(a)) , (105)

with

τ(a)≡ 1

m2
(a)

N (a)m(a)N (a)� , (106)

one can rewrite Eq. (98) as

Y(a)=�L(a) ,

or, using Eq. (96), as

Y(a)=
{
1− P(a)M2

L
′(m2

(a))
}−1

P(a) . (107)

Eq. (107) can be further rewritten as

8 This identity follows from (p2 − m̃2)−1 m̃= m̃ (p2 − m̃2)−1, in the limit p2 →m2 .

(a)
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P(a)= S(a) , (108)

where

S(a)≡Y(a)
{
1+M

2
L

′(m2
(a))Y(a)

}−1
. (109)

Note that the left-hand side of Eq. (108) is a projection, cf. Eq. (95), thus it remains to be shown 
that N (a) can be chosen in such a way that S(a) is a projection operator with the same image 
and the same kernel as P(a), cf. Eq. (94). To that end, it is convenient to simplify first the explicit 
expression (109) for S(a). Expanding a geometric series and appropriately changing the order of 
infinite sum with the summation over q and r appearing in Eq. (105) one ends up with another 
geometric series, thus

S(a)=
∑
q,r

[
�(a)−1τ(a)

]qr
ξ[aq ] ξ �[ar ] ML(m

2
(a)) , (110)

where

�(a)≡ 1+ τ(a)�(a) , (111)

with the �(a) matrix defined in Eq. (62). The normalization condition for ξ[ar ] eigenvectors, 
Eq. (61), gives (cf. Eq. (64))

S(a)ξ[ar ] =
∑
q

[
�(a)−1τ(a)m(a)

]q
r
ξ[aq ] , (112)

hence

S(a)2 =
∑
q,r

[
�(a)−1τ(a)m(a)�(a)−1τ(a)

]qr ×

× ξ[aq ] ξ �[ar ] ML(m
2
(a)) . (113)

Comparing this with Eq. (110) one sees that S(a) is a projection operator if, for instance, the 
following equation is satisfied

τ(a)m(a)=�(a) , (114)

this is nothing more than the condition (63). To prove that a matrix N (a) obeying Eq. (63)
indeed exists, it is necessary to show that the �(a) matrix, defined in Eq. (62), is symmetric. The 
following identity

M
2
L

′(s)�ML(s)− ML(s)M
2
L

′(s)=
= M ′

L(s)M
2
L(s)−M

2
L(s)

�M ′
L(s) ,

is easy to verify (cf. Eq. (11)); sandwiched between ξ �[aq ] and ξ[ar ] it gives

�(a)rq −�(a)qr = 0 , (115)

since ξ[aq,r ] are eigenvectors of M2
L(m

2
(a)) corresponding to the same eigenvalue.

Moreover, Eqs. (112) and (114) show that

S(a)ξ[ar ] = ξ[ar ] . (116)

Hence, to complete the proof of the generalized prescription for m2
(a) �= 0, one has to show that 

the S(a) operator annihilates these generalized eigenvectors of M2 (m2 ) which correspond to 
L (a)
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eigenvalues different than m2
(a), so that S(a) = P(a). Because of Eq. (110) it is enough to prove 

the following property: let η be an eigenvector of M2
L(m

2
(a)) corresponding to the eigenvalue λη

and let θ be a generalized eigenvector of M2
L(m

2
(a)) associated with λθ �= λη; then η and θ are 

ML(m
2
(a))-orthogonal

η�ML(m
2
(a))θ = 0 . (117)

This fact follows from the identity (cf. Eqs. (11) and (12))

M
2
L(m

2
(a))

�ML(m
2
(a))− ML(m

2
(a))M

2
L(m

2
(a))= 0 .

Sandwiched between η� and θ1, i.e. the first element of a Jordan chain (92), it gives

(λη − λθ )× η�ML(m
2
(a))θ1 = 0 ,

while sandwiched between η� and θr+1 yields

(λη − λθ )× η�ML(m
2
(a))θr+1 = −η�ML(m

2
(a))θr .

This proves Eq. (117) by induction.

1 1
2 . Reality conditions. Suppose now that conditions (34) are satisfied for s ∈ Ua ⊂ R. Then 

ZL(s) is a Hermitian matrix, cf. Eq. (12), and thus one can parametrize it locally as

ZL(s)=U(s)† �(s)U(s) ,

where U(s) is unitary, while �(s) is diagonal (and positive, cf. Eq. (7)). On the other hand, a 
symmetric matrix

M̃L(s)≡
[(√

�(s)U(s)
)−1

]�
ML(s)

(√
�(s)U(s)

)−1
,

can be written in the following form

M̃L(s)= V (s)�μ(s)V (s) ,

where V (s) is unitary, while μ(s) is diagonal, real and nonnegative. Hence

ZL(s)= ω(s)†ω(s) , (118)

and

ML(s)= ω(s)�μ(s)ω(s) , (119)

where

ω(s)= V (s)
√
�(s)U(s) . (120)

Eq. (11) now reads

M
2
L(s)= ω(s)−1μ2(s)ω(s) , (121)

where μ2(s) ≡ μ(s)2, and thus (cf. Eq. (14))

X (s)=
∏(

s −μc̄c̄(s)
2
)
. (122)
c̄



A. Lewandowski / Nuclear Physics B 937 (2018) 394–421 415
Let {ār} be a set of indices for which μār ār (s) =mtree
(a) +O(h̄). The gap equation (15) reduces 

to

μār ār (m
2
(ār )

)=m(ār ) . (123)

A formal-power-series solution m(ār ) =mtree
(a)

+O(h̄) to this equation obviously exists and is real, 

since all the derivatives μ(k)
ār ār

(s) at s = (mtree
(a) )

2 are real. Let {ar} ⊂ {ār} be a set of indices for 
which m(ar ) =m(a); in other words, a situation in which the degeneracy of the tree-level masses 
is lifted by quantum corrections is not excluded here. Let [ω(m2

(a))
−1][a1] , . . ., be the columns of 

the ω(m2
(a))

−1 matrix such that

μarar (m
2
(a))=m(a) , (124)

clearly

[ω(m2
(a))

−1][ar ] = ω(m2
(a))

−1 1[ar ] .

Eigenvectors {ξ[au]}, cf. Eq. (60), have the form

ξ[au] =
∑
q

C(a)
q
u ω(m

2
(a))

−11[aq ] ,

where C(a) is a square matrix. The normalization condition (61) reduces to (recall that m̃ is now 
assumed to be diagonal)

C(a)� C(a)= 1 , (125)

i.e. C(a) is a complex orthogonal matrix. The �(a) matrix, Eq. (62), reads

�(a)= C(a)��(a)C(a) , (126)

where

�(a)ur =m(a) 1
�[au]μ

2 ′(m2
(a))1[ar ] =m(a) μ

2 ′
auar

(m2
(a)) ,

since terms with derivatives of ω(s) cancel. This shows that �(a) is real. (Since an accidental 
degeneracy of masses is not excluded, it is in principle possible that �(a) is not proportional to 
the identity matrix.)

Eqs. (65) and (66) now read

ζL[ar ] =
∑
q

[
C(a)N (a)

]q
r

[
ω(m2

(a))
−1]1[aq ] , (127)

ζR[ar ] =
∑
q

[
C(a)N (a)

]q
r

[
ω(m2

(a))
−1]� 1[aq ] , (128)

thus ζR[ar ] = ζ �
L[ar ], if C(a)N (a) is a real matrix. Finally, with the aid of Eq. (125), the condition 

(63) for N (a) can be rewritten as[
C(a)N (a)] [C(a)N (a)]� =

{
1− 1

m(a)

�(a)
}−1

. (129)

Since the right-hand side of Eq. (129) is a real diagonal and positive (in perturbation theory) 
matrix, there always exists a real matrix C(a) N (a) obeying this condition. Clearly, Eq. (129), 
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together with the reality condition ζR[ar ] = ζ �
L[ar ], determine N (a) up to a rotation, as was to be 

shown.

2. Vanishing m2
(a). Consider the case m2

(a) = 0. Reality conditions (34) cannot be violated for 
p2 = 0, and thus Eqs. (15) and (11) give∣∣det

(
ML(0)

)∣∣2 = 0 = ∣∣det
(
MR(0)

)∣∣2
.

Eqs. (102)–(103) now show that columns ζL,R[0r ] have to belong to the kernel of ML,R(0), cf. 
Eq. (57), and therefore one can assume that Eq. (72) holds. One needs also the relation

kerM2
L(0)= kerML(0) ,

which follows immediately from the parametrization employed for analysis of reality conditions 
in the massive case, see Eqs. (119) and (121). Hence, one can assume that ζL[0r ] are linear com-
binations of linearly independent vectors ξ[0q ] obeying Eq. (67) and the normalization conditions 
(68), with (yet unspecified) coefficients N (a)

q
r , as in Eq. (71).

It remains to be shown that Eq. (98) reduces to the condition (70) on the matrix N (0). This 
can be done just as before, by rewriting (98) as P(0) = S(0) with S(0) defined by (109) and 
appropriately adjusted matrix Y(0)

Y(0)≡
∑
q,r

[
N (0)N (0)†]qr ξ[0q ] ξ †

[0r ] ZL(0) . (130)

If Eq. (70) is satisfied, one finds

S(0)=
∑
q,r

δqr ξ[0q ] ξ
†

[0r ] ZL(0) , (131)

and Eq. (68) gives

imS(0)⊃ kerM2
L(0)≡ imP(0) .

The existence of matrices N (0) obeying Eq. (70) is ensured by the Hermiticity of �(0), which 
follows from the identity

M
2
L

′(0)†ZL(0)
† − ZL(0)M

2
L

′(0)=
= Z ′

L(0)M
2
L(0)−M

2
L(0)

†Z ′
L(0)

† ,

sandwiched between ξ †
[0q ] and ξ[0r ].

To complete the proof of P(0) = S(0), one has to show that the generalized eigenvectors θ of 
M

2
L(0) associated with non-vanishing eigenvalues satisfy

ξ
†

[0r ] ZL(0) θ = 0 , ∀r . (132)

To that end one can employ once again the parametrization from Eqs. (118)–(121). In particu-
lar, M2

L(0) is diagonalizable, and both ξ[0r ] and θ are linear combinations of (disjoint sets of) 
columns of ω(0)−1; hence Eq. (132) follows immediately from Eq. (118).

4.B. Proof of Majorana prescription. The prescription for Majorana case follows immediately 
from the generalized prescription, since one can take m̃=m, with a diagonal matrix m, Eq. (26). 
In particular, the assumed non-degeneracy of the tree-level masses implies that N (a) is a 1 × 1
matrix and thus the freedom in Eq. (63) reduces to a choice of sign. Hence, regardless of which 
sign is chosen, ζR[a] = ζ � , if reality conditions (34) are satisfied for s ∈ Ua ⊂R.
L[a]
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4.C. Proof of Dirac prescription. Apart from Eq. (55) for stable particles, the prescription for 
the Dirac case can be easily obtained from the generalized prescription. Having eigenvectors 
ξ̄[a±], Eq. (50), it is convenient to choose eigenvectors ξ[ar ] (with [ar ] = [a+], [a−]), Eq. (60), 
as

ξ[a+] =
[
ξ̄[a+]

0

]
, ξ[a−] =

[
0

ξ̄[a−]

]
, (133)

and take N (a) in Eq. (65) to be the following 2×2 matrix

N (a)=
(
N̄ (a)c(a) 0

0 N̄ (a)c(a)−1

)
. (134)

Similarly, a convenient choice of the m̃ matrix in Eq. (56) is given by Eqs. (46) and (45). With 
these choices, one-particle states corresponding to the columns of ζL,R matrices, Eqs. (49), carry 
the definite charge. The normalization condition (61) now reduces to Eq. (51), while Eq. (63) is 
solved by (54).

Suppose that the reality conditions (34) are satisfied for s ∈ Ua ⊂ R. Using the explicit form 
(19) of ZL,R and ML,R matrices as well as the fact that an arbitrary nonsingular complex matrix 
μ̃L(s) can be written as

μ̃L(s)= V+(s)�μ(s)V−(s) ,

where V±(s) are unitary, while μ(s) is diagonal and positive, one finds (similarly as in the generic 
case) the following local parametrization of μL and I −1± matrices

I±(s)−1 = ω±(s)†ω±(s) ,
μL(s)= ω+(s)�μ(s)ω−(s) , (135)

where

ω±(s)= V±(s)�±(s)U±(s) , (136)

with unitary U±(s), V±(s) matrices and positive-diagonal μ(s), �±(s) matrices. Hence

M
2±(s)= ω±(s)−1μ2(s)ω±(s) , (137)

where μ2(s) ≡ μ(s)2, and thus (cf. Eq. (23))

X+(s)=
∏
c

(
s −μcc(s)

2
)
. (138)

Thus, just like before, one sees that the solution m(a) =mtree
(a) +O(h̄) to the gap equation (15) is 

real and that the eigenvectors ξ̄[a±] can be chosen as

ξ̄[a±] = [ω±(m2
(a))

−1][a] , (139)

what ensures that the normalization condition (51) is obeyed. Eq. (54) now yields

N̄ (a)= 1√
1 −μ2

aa
′(m2

(a))
,

showing that N̄ (a) is real. On the other hand, Eqs. (53) give
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ζ̄R[a±] = N̄ (a) c(a)∓1 (
ξ̄[a±])� .

Comparing this with Eqs. (52) one sees that Eqs. (55) hold provided that c(a) is, for a particular
choice (139), a phase factor, as was to be proved.

4.D. Proof of scalar prescription. Similarly to the fermionic case one sees that Eq. (78) is 
equivalent to the following conditions

ζ P̃ (�) ζ� =�(�) , ∀�, (140)

where

P̃ (�)≡ lim
s→m2

(�)

{
(s −m2

(�))
[
s1−m2

]−1 }
,

is a diagonal projection, while

�(�)≡ lim
s→m2

(�)

{
(s −m2

(�))
[
s1−M2(s)

]−1 }
=

{
1− P(�)M2′(m2

(�))
}−1

P(�) , (141)

with P(�) being the projection onto the eigenspace of M2(m2
(�)) corresponding to m2

(�) along the 

direct sum of remaining generalized eigenspaces of M2(m2
(�)).

Clearly,

ζ P̃ (�) ζ� =
∑
q

ζ[�q ]ζ �[�q ] . (142)

In the scalar case, there is no counterpart of Eq. (104); suppose then that ζ[�r ] are linear combina-
tions of (yet unspecified) linearly independent vectors ξ[�q ] obeying the normalization condition 
(81), with (yet unspecified) coefficients N (�)

q
r , as in Eq. (84).

Defining

Y(�)≡
∑
q,r

[
N (�)N (�)�

]qr
ξ[�q ] ξ �[�r ] , (143)

one can (similarly to the fermionic case) rewrite Eq. (140) as

P(�)= S(�) , (144)

where

S(�)≡Y(�)
{
1+M2′(m2

(�))Y(�)
}−1

,

what can be simplified to

S(�)=
∑
q,r

[
σ(�)

]qr
ξ[�q ] ξ �[�r ] , (145)

where

σ(�)≡
{
1+N (�)N (�)� �(�)

}−1
N (�)N (�)� , (146)

with �(�) defined by Eq. (82).
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The normalization condition for ξ[�r ] eigenvectors, Eq. (81), gives

S(�)ξ[�r ] =
∑
q,s

[
σ(�)

]qs
δsr ξ[�q ] , (147)

hence

S(�)2 =
∑
q,s,t,r

σ (�)qs δst σ (�)
tr ξ[�q ] ξ �[�r ] . (148)

Thus, the following condition (equivalent to Eq. (83))

σ(�)rs = δrs , (149)

ensures that S(�) is a projection and that the image of S(�) contains the subspace spanned by 
{ξ[�q ]}. Therefore Eq. (144) requires {ξ[�q ]} to be a basis of the eigenspace of M2(m2

(�)) associated 

with m2
(�). To complete the proof of Eq. (144), one still has to show that the kernel of S(�) is equal 

to the direct sum of generalized eigenspaces of M2(m2
(�)) associated with eigenvalues different 

from m2
(�). This follows from the fact that a generalized eigenvector θ of M2(m2

(�)) associated 
with an eigenvalue λθ is orthogonal to an eigenvector η associated with λη �= λθ

η� θ = 0 . (150)

Eq. (150) can be proved in an analogous way to its fermionic counterpart, Eq. (117), with the aid 
of the relation M2(s)� ≡M2(s).

Suppose now that reality conditions (85) are satisfied in a left neighborhood of p2 = (mtree
(�) )

2. 
A real symmetric matrix M2(s) can be written as

M2(s)= ω(s)−1μ2(s)ω(s) , (151)

where μ2(s) is diagonal and real, while ω(s) is a real orthogonal matrix. A similar argument to 
the one given below Eq. (122) shows that the pole mass squares are real.

Let [ω(m2
(�))

−1][�1] , . . . , be the columns of the ω(m2
(�))

−1 matrix such that

μ2
�r�r

(m2
(�))=m2

(�) . (152)

Following the same reasoning as for the fermionic case in Sec. 4.A, one finds that columns 
(associated with m2

(�)) of the ζ matrix, defined according to Eq. (84), have the form

ζ[�r ] =
∑
q

[
C(�)N (�)

]q
r

[
ω(m2

(�))
−1]1[�q ] , (153)

where the C(�)N (�) matrix obeys[
C(�)N (�)] [C(�)N (�)]� =

{
1−�(�)

}−1
, (154)

with a real symmetric matrix �(�)

�(�)qp = 1�[�q ]ω(m
2
(�))M

2 ′(m2
(�))ω(m

2
(�))

� 1[�p] .

In particular, there exists a matrix C(�) N (�) which obeys Eq. (154) and is real, what ensures the 
reality of ζ[�r ].
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5. Conclusions

We have analyzed in details the effects associated with mixing of scalar and fermionic fields. 
Presented results, together with their counterparts for vector fields [18], can be useful in the study 
of extensions of the Standard Model. In particular, the prescription for “square-rooted residues” 
ζ is formulated entirely in terms of eigenvectors of certain matrices, and thus it can be efficiently 
employed in numerical calculations.
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