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The conformal standard model is a minimal extension of the Standard Model (SM) of particle physics
based on the assumed absence of large intermediate scales between the TeV scale and the Planck scale,
which incorporates only right-chiral neutrinos and a new complex scalar in addition to the usual SM
degrees of freedom, but no other features such as supersymmetric partners. In this paper, we present a
comprehensive quantitative analysis of this model, and show that all outstanding issues of particle physics
proper can in principle be solved “in one go” within this framework. This includes in particular the
stabilization of the electroweak scale, “minimal” leptogenesis and the explanation of dark matter, with a
small mass and very weakly interacting Majoron as the dark matter candidate (for which we propose to use
the name “minoron”). The main testable prediction of the model is a new and almost sterile scalar boson
that would manifest itself as a narrow resonance in the TeV region. We give a representative range of
parameter values consistent with our assumptions and with observation.
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I. INTRODUCTION

The conspicuous absence of any hints of “new physics”
at LHC, and, more pertinently, of supersymmetric partners
and exotics [1,2] has prompted a search for alternative
scenarios beyond the Standard Model (SM) based on the
hypothesis that the SM could survive essentially as is all the
way to the Planck scale, modulo “minor” modifications of
the type discussed here, see [3–22] for a (very incomplete)
list of references. In this paper we follow up on a specific
proposal along these lines which is based on our earlier
work [6], and demonstrate that this proposal in principle
allows for a comprehensive treatment of all outstanding
problems of particle physics proper. This list includes
perturbativity and stability of the model up to the Planck
scale and an explanation of leptogenesis and the nature of
dark matter,1 in a way which is in complete accord with the

fact that LHC has so far seen nothing, and furthermore
appears to be fully consistent as a relativistic QFT all the
way up to the Planck scale MPL (for which we use the
reduced valueMPL ≈ 2.4 × 1018 GeV). The consistency up
to that scale, but not necessarily beyond, is in accord with
our essential assumption that, at the Planck scale, an as yet
unknown UV complete theory of quantum gravity and
quantum space-time takes over that transcends space-time
based relativistic QFT. Importantly, the present approach is
essentially “agnostic” about what this theory is.
Added motivation for the present investigation comes

from very recent LHC results which indicate that the low-
energy supersymmetry (SUSY) paradigm which has
dominated much of particle physics over the past three
decades is close to failure, unless one resorts to the more
exotic possibility that “low-energy” (N ¼ 1) supersym-
metry is broken at a very high scale. In our opinion,
however, the latter option would defeat the original
purpose of solving the hierarchy problem, and thus lack
the plausibility of the original minimal supersymmetric
standard model (MSSM). One crucial question is there-
fore how the “naturalness” of the electroweak scale can be
explained without appealing to supersymmetric cancella-
tions. In this paper we offer one possible such alternative
explanation based on [25]; another possibility which bears
some resemblance to the present scheme as far as physics
up to MPL is concerned (but not beyond) is to invoke
asymptotic safety, see e.g. [13,26,27].
In its original form the model proposed in [6] tried to

exploit the fact that, with the exception of the scalar mass
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1We thus exclude dark energy and the origin of inflation from
this list; these are problems that, in our view, will likely require a
proper theory of quantum gravity for their complete resolution.
We note, however, that Higgs inflation [23] can be easily
incorporated into the present model [24].
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term that triggers spontaneous breaking of electroweak
symmetry, the SM Lagrangian is classically conformally
invariant. For this it relied on the Coleman-Weinberg
(CW) mechanism [28] to break electroweak symmetry
and to argue that mass scales can be generated purely by
the quantum-mechanical breaking of classical conformal
invariance. In this paper a modified version of this
model is presented which has explicit mass terms but
which is still conformal in the sense that it postulates
the absence of any intermediate scales between 1 TeV
and the Planck scale MPL—hence the name, conformal
standard model (CSM). The model nevertheless
achieves a stabilization of the electroweak hierarchy
thanks to an alternative proposal for the cancellation of
quadratic divergences presented in [25], and it is in this
sense that we speak of softly broken conformal sym-
metry (SBCS). This term is meant to comprise three
main assumptions, namely: (i) the avoidance of quad-
ratic divergences, (ii) the smallness (with respect to the
Planck scale) of all dimensionful quantities, and (iii) the
smallness of all dimensionless couplings up to MPL.
With these assumptions the model is indeed “almost
conformal,” and the quantum-mechanical breaking of
conformal invariance (as embodied in the CW correction
to the effective potential) remains a small correction
over this whole range of energies. Here, we extend our
previous considerations towards a more complete pic-
ture, in an attempt to arrive at a minimal comprehensive
solution to the outstanding problems of particle physics,
in a way that remains compatible with all available LHC
results. More specifically, we here focus on the question
whether the model can offer a viable explanation for
leptogenesis and the origin of dark matter. The main
message of this paper, then, is that indeed these
problems can be solved at least in principle within this
minimal SBCS scheme. However, as we said, no attempt
will be made towards a solution of cosmological
constant problem, nor inflation or dark energy, as these
probably require quantum gravity.
The present paper thus puts together different ideas

most of which have already appeared in different forms in
the literature (in particular, conformal symmetry, extra
sterile scalars and “Higgs portals,” low mass heavy
neutrinos, resonant leptogenesis, and quantum gravity
induced violations of the Goldstone theorem), though,
to the best of our knowledge, never in the combination
proposed and elaborated here. Let us therefore summarize
the distinguishing special features and assumptions under-
lying the present work:

(i) There are no large intermediate scales between the
TeV scale and the Planck mass; in particular there is
no grand unification nor grand unified theory (GUT)
scale physics.

(ii) There is no low-energy supersymmetry; instead the
electroweak hierarchy is stabilized by the alternative

mechanism for the cancellation of quadratic diver-
gences proposed in [25].2

(iii) The consistency of the model up to the Planck scale
is ensured by demanding absence of Landau poles
and of instabilities or metastabilities up to that scale.
Possible pathologies that might appear if the model
is extrapolated beyond that scale are assumed to be
taken care of by quantum gravity, hence are not
relevant for the present analysis.

(iv) The model naturally incorporates resonant lepto-
genesis [29–32] with low mass heavy neutrinos,
where we show that a range of parameters exists
which meets all requirements. Furthermore, the
predictions of the model do not in any way affect
the SM tests that have so far confirmed the SM as is.

(v) The Majoron, i.e. the Goldstone boson of sponta-
neously broken lepton-number symmetry, is as-
sumed to acquire a small mass ∼10−3 eV due to a
(still conjectural) folklore theorem according to
which there cannot exist unbroken continuous
global symmetries in quantum gravity, as a conse-
quence of which it becomes a possible dark matter
candidate (whose abundance comes out with the
right order of magnitude subject to our assump-
tions). The ensuing violation of the Goldstone
theorem entails calculable couplings to SM particles
from radiative corrections, which are naturally
very small.

(vi) The main testable prediction of the model is a new
scalar resonance at Oð1 TeVÞ or even below that is
accompanied by a (in principle measurable) reduc-
tion of the decay width of the SM-like Higgs boson.
The couplings of the new scalar to SM particles are
strongly suppressed in comparison with those of the
SM Higgs boson by a factor sin β, where the angle β
parametrizes the mixing between the SM Higgs
boson and the new scalar. The only new fermionic
degrees of freedom are three right-chiral neutrinos.

(vii) Because our model contains no new scalars that
carry charges under SM gauge symmetries it can be
easily discriminated against many other models with
an enlarged scalar sector, such as two doublet
models.

We note that a comprehensive “global” and quantitative
analysis of the type performed here would be rather more
cumbersome, or even impossible, for more extensive
scenarios beyond the SM with more degrees of freedom
and more free parameters. For instance, even with a very
restricted minimal set of new degrees of freedom and
parameters as in the present setup, closer analysis shows

2However, this assumption by no means excludes the pos-
sibility that (extended) supersymmetry does play an essential role
at the Planck scale to ensure finiteness (UV completeness) of a
unified theory of quantum gravity.

LEWANDOWSKI, MEISSNER, and NICOLAI PHYS. REV. D 97, 035024 (2018)

035024-2



that in order to arrive at the desired physical effects such as
resonant leptogenesis with the right order of magnitude for
the lepton asymmetry a very careful scan over parameter
space is required, as the physical results can depend very
sensitively on all parameters of the model, so some degree
of fine-tuning may be unavoidable.
The structure of this paper is as follows. In Sec. II we

describe the basic properties of the model, and explain how
to maintain perturbativity and stability up to the Planck
scale. Section III is devoted to a detailed discussion of
leptogenesis in the CSM, and shows that a viable range of
parameters exists for which resonant leptogenesis can
work. In Sec. IV we discuss (B − L) breaking and the
possible role and properties of the associated pseudo-
Goldstone boson (“minoron”) as a dark matter candidate.
Although we present a representative range of parameters
consistent with all our assumptions and with observations,
we should emphasize that our numerical estimates are still
quite preliminary. Of course, these estimates could be much
improved if the new scalar were actually found and its mass
value measured. For the reader’s convenience we have
included an appendix explaining basic properties of neu-
trino field operators in Weyl spinor formalism.

II. THE CSM

The CSM is a minimal extension of the Standard Model
that incorporates right-chiral neutrinos and an additional
complex scalar field, which is charged under SM lepton-
number, like the right-chiral neutrinos, and generates a
Majorana mass term for the right-chiral neutrinos after
spontaneous breaking of lepton-number symmetry. In
keeping with our basic SBCS hypothesis of softly broken
conformal symmetry, that is, the absence of large inter-
mediate scales between the TeV scale and the Planck scale
MPL, this mass is here assumed to be of Oð1 TeVÞ. To
ensure the stability of the electroweak scale it makes use of
a novel mechanism to cancel quadratic divergences [25],
relying on the assumed existence of a Planck scale finite
theory of quantum gravity, as a consequence of which the
cutoff is a physical scale that is not taken to infinity.
The phase of the new scalar is a Goldstone boson that
within the framework of ordinary quantum field theory
remains massless to all orders due to the vanishing (B − L)
anomaly, but will be assumed to acquire a tiny mass by a
quantum gravity induced mechanism, as a result of which it
acquires also small and calculable nonderivative couplings
to SM matter. The viability of the model up to the Planck
scale will be ensured by imposing the consistency require-
ments listed above. In particular, the extra degrees of
freedom that the CSM contains beyond the SM are essential
for stability: without these extra degrees of freedom the SM
does suffer from an instability (or rather, metastability)
because the running scalar self-coupling becomes negative
around 1010 GeV [33].

The field content of the model is thus almost the same as
for the SM (see e.g. [34–36] for further details, and [37] for
a more recent update). For the fermions we will mostly use
SLð2;CÞ Weyl spinors χα in this paper, together with their
complex conjugates χ̄ ̇α, see e.g. [38] for an introduction.
The quark and lepton SUð2ÞL doublets are thus each
composed of two SLð2;CÞ spinors

Qi ≡
�
uiα
diα

�
; Li ≡

�
νiα

eiα

�
;

where indices i; j;… ¼ 1, 2, 3 label the three families. In
addition we have their SUð2ÞL-singlet partners Uj

α, D
j
α and

Ej
α. The new fermions in addition to the ones present in the

SM are made up of a family triplet Ni
α of gauge singlet

neutrinos. The scalar sector of the model consists of the
usual electroweak scalar doubletH ≡ ðH1; H2Þ⊤ and a new
gauge-sterile complex singlet scalar ϕðxÞ, which carries
lepton number. This field couples only to the sterile
neutrinos and, via the Higgs portal, to the electroweak
doublet H.

A. Lagrangian

Apart from the ghosts and gauge fixing terms [34], the
CSM Lagrangian takes the form

LCSM ¼ Lkin þ LY − V; ð1Þ

with gauge-invariant kinetic terms

Lkin ¼ LSM
kin þ ðDμHÞ†DμH

þ ∂μϕ
⋆∂μϕþ iN̄j

̇ασ̄
μ̇αβ∂μN

j
β; ð2Þ

where we only display the kinetic term of the Higgs doublet
and the kinetic terms of the new fields, while LSM

kin takes
the standard form that can be found in any textbook, see
[34–36]. The scalar potential reads

V ¼ −m2
1H

†H −m2
2ϕ

⋆ϕ
þ λ1ðH†HÞ2 þ 2λ3H†Hϕ⋆ϕþ λ2ðϕ⋆ϕÞ2; ð3Þ

with m2
1, m

2
2 > 0. Exploiting the symmetries of the action

we assume that the vacuum expectation values take the
form3

ffiffiffi
2

p
hHii ¼ vHδi2;

ffiffiffi
2

p
hϕi ¼ vϕ; ð4Þ

with non-negative vH and vϕ. Clearly, we are interested in a
situation in which both the electroweak symmetry and
lepton-number symmetry are broken, and therefore we

3For the vacuum expectation values we adopt the normaliza-
tion conventions of [25].
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assume that vH and vϕ are nonzero. The values (4)
correspond to the stationary point of (3), provided that
the mass parameters are chosen as follows:

m2
1 ¼ λ3v2ϕ þ λ1v2H; m2

2 ¼ λ3v2H þ λ2v2ϕ:

The tree-level potential (3) is bounded from below provided
that the quartic couplings obey

λ1 > 0; λ2 > 0; and λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð5Þ

If, in addition to (5), λ3 <
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
, then (4) is the global

minimum of V. The physical spin-zero particles are then
two CP-even scalars h and φ, and one CP-odd scalar
a ¼ ffiffiffi

2
p

ImðϕÞ.4 The latter is the Goldstone boson, which—
as we will argue later—acquires a small mass due to
quantum gravity effects (see Sec. IVA).
The two heavy scalar bosons are thus described as

mixtures of the two real scalar fields with nonvanishing
vacuum expectation values (sβ ≡ sin β, cβ ≡ cos β),�

h

φ

�
¼

�
cβ sβ
−sβ cβ

�� ffiffiffi
2

p
ReðH2 − hH2iÞffiffiffi
2

p
Reðϕ − hϕiÞ

�
; ð6Þ

with masses Mh and Mφ. The angle β thus measures the
mixing between the SM Higgs boson and the new scalar. In
order not to be in conflict with existing data the angle β
must obviously be chosen small, and furthermore such that
h can be identified with the observed SM-like Higgs boson
with Mh ¼ ð125.6� 0.4Þ GeV [39]. Introducing the tree-
level SM quartic coupling

λ0 ≡ 1

2

M2
h

v2H
≈ 0.13; ð7Þ

one can conveniently parametrize the tree-level values of
unknown parameters vϕ, Mφ and β in terms of the five
parameters ðvH; λ0; λ1; λ2; λ3Þ as follows:

vϕ ¼ vH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ0ðλ1 − λ0Þ

λ2ðλ1 − λ0Þ − λ23

s
; M2

φ ¼ 2
λ1λ2 − λ23

λ0
v2ϕ ð8Þ

and

tan β ¼ λ0 − λ1
λ3

vH
vϕ

; sβ ≡þ tan βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2β

p : ð9Þ

As a consequence, the model predicts the appearance of a
“heavy brother” of the usual Higgs boson, which would
manifest itself as a narrow resonance in or below the TeV
region (see Table I below; the narrowness of the resonance
is due to the small mixing sin2 β and the relatively large vϕ
scale). The SM-like Higgs boson h can, in principle, decay
into a pair of pseudo-Goldstone bosons. The corresponding
branching ratios are, however, very small (for all exemplary
points in Table I they do not exceed 0.2%). Thus, the decay
width of h is decreased with respect to the SM value by a
factor cos2 β. In the numerical analysis we assume that
jβj ≤ 0.3; we note that available LHC data leave enough
room for such a modification of SM physics [40,41].
The Yukawa couplings are given by

LY ¼
�
−YD

jiD
jαH†Qi

α þ YU
jiU

jαH⊤ϵQi
α

− YE
jiE

jαH†Li
α þ Yν

jiN
jαH⊤ϵLi

α

−
1

2
YM
jiϕN

jαNi
α

�
þ H:c:; ð10Þ

TABLE I. Exemplary Values.

Mφ [GeV] sβ MN [GeV] vϕ [GeV] YB0 Γh [MeV] Γφ [GeV] Brðφ → ½SM�Þ Brðφ → hhÞ
1030 −0.067 1604 17 090 7.9 × 10−11 4.19 4.02 0.78 0.2
893 −0.076 1238 11 331 1.2 × 10−10 4.186 3.3 0.76 0.2
839 −0.082 1181 11 056 1.2 × 10−10 4.182 3.08 0.76 0.2
738 −0.093 1052 10 082 1.1 × 10−10 4.174 2.66 0.76 0.22
642 −0.11 1303 19 467 1.7 × 10−10 4.16 2.34 0.76 0.22
531 −0.13 949 12 358 1.5 × 10−10 4.138 1.92 0.74 0.22
393 −0.18 801 12 591 1.0 × 10−10 4.07 1.28 0.72 0.26
362 −0.20 815 14 534 1.6 × 10−10 4.04 1.06 0.68 0.3
350 −0.21 738 12 302 7.4 × 10−11 4.028 0.96 0.66 0.32
320 −0.23 751 14 437 1.3 × 10−10 3.984 0.86 0.66 0.32
279 −0.28 683 14 334 9.6 × 10−11 3.896 0.68 0.7 0.28
258 −0.31 675 15 752 1.3 × 10−10 3.824 0.54 0.78 0.20

4Here we employ a linear parametrization of the scalar fields,
i.e. ϕ ¼ Reϕþ iImϕ, because this is the most convenient one for
loop calculations. Later, however, we will switch to an expo-
nential parametrization, see Eq. (73) below, which is more
convenient to study properties of the Goldstone boson, but where
the renormalizability of the model is no longer manifest.
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with the usual Yukawa matrices YE, YD and YU of the SM,
where ϵ is the antisymmetric SUð2ÞL metric. The matrix Yν

mediates the coupling of the SM fields to the sterile
neutrino components, while the complex symmetric matrix
YM describes the interactions of the latter with the new
scalar ϕ. By fermionic field redefinitions that preserve
Eq. (2), one can assume that YM, YE and YU are diagonal
and non-negative, and that YD differs from a positive and
diagonal ỸD by the (inverse of) unitary CKM matrix
YD ¼ ỸDV†

CKM. In more customary notation the fermionic
fields are described by 4-component Dirac spinors of
charged leptons and up-type quarks

Ψi
E ¼

�
eiα
Ēi ̇α

�
; Ψi

U ¼
�
uiα
Ūi ̇α

�
; ð11Þ

together with the analogous 4-spinor field Ψi
D

Ψi
D ¼

�
d0iα
D̄i̇α

�
ð12Þ

for the down quarks, with a VCKM-induced rotation
diα → d0iα of the upper components [34].5

After spontaneous symmetry breaking the neutrino mass
terms are

−L ⊃ mDijNαiνjα þm⋆
DijN̄

i
̇αν̄

̇αj

þ 1

2
MNijNiαNj

α þ 1

2
M⋆

NijN̄
i
̇αN̄

̇αj ð13Þ

with

MN ≡ YMvϕ/
ffiffiffi
2

p
; mD ≡ YνvH/

ffiffiffi
2

p
: ð14Þ

The masses for light neutrinos are thus obtained via the
seesaw mechanism [42–44] and follow easily by diagonal-
izing the symmetric tree-level mass matrix (see also [45])

M ¼
�

0 mD
⊤

mD MN

�
: ð15Þ

Introducing unitary 3 × 3 matrices U0 and V0 and the
6 × 6 block matrix

V ¼
�
X1 X2

X3 X4

�
; ð16Þ

with the 3 × 3 submatrices

X1 ¼ i

�
1 −

1

2
m†

DM
−1†
N M−1

N mD

�
U0;

X2 ¼ m†
DM

−1†
N V0;

X3 ¼ −iM−1
N mDU0;

X4 ¼
�
1 −

1

2
M−1

N mDm
†
DM

−1†
N

�
V0;

one has V†V ¼ 1þOðkmDk3Þ, and

Mph≡V⊤MV ¼
�
U⊤

0 MνU0 0

0 V⊤
0 MNV0

�
þOðkmDk3Þ;

ð17Þ

with complex symmetric matrices

Mν ¼ m⊤
DM

−1
N mD; ð18Þ

MN ¼ MN þ 1

2
M−1⋆

N m⋆
Dm

⊤
D þ 1

2
mDm

†
DM

−1†
N : ð19Þ

Observe that up to Oðm3
DÞ the matrix V achieves the

diagonalization of the 6 × 6 matrix M in (15) into the two
blocks of 3 × 3 matrices exhibited above, but that the latter
are not necessarily in diagonal form yet. Employing the
Casas-Ibarra parametrization [46] of the Dirac mass matrix
mD (or equivalently the Yukawa matrix Yν; as explained
above, MN can be assumed positive diagonal)

mD ¼ M1/2
N R⊤

CI½diagðmν1; mν2; mν3Þ1/2�U†
MNS; ð20Þ

with the unitary Maki-Nakagawa-Sakata UMNS matrix (see
[46] and references therein) and a complex orthogonal
Casas-Ibarra matrix RCI (R⊤

CIRCI ¼ 1) one has

Mν ¼ U⋆
MNS½diagðmν1; mν2; mν3Þ�U†

MNS; ð21Þ

which shows that mνi are light neutrino masses at the tree
level. The main advantage of the Casas-Ibarra parametri-
zation, and the reason we use it here, is that it provides a
clear separation of the parameters of Yν into the ones that
are relevant for neutrino oscillations, namely mνi and the
CKM-like unitary matrix UMNS, and the ones describing
heavy neutrinos and their properties (MN , RCI).
The matrix V0 is now chosen such as to make V⊤

0 MNV0

a positive diagonal matrix [note that MN differs from MN ,
cf. (19)]. The matrix Mph in Eq. (17) is then diagonal
provided that U0 ¼ UMNS; however, we will be mainly
interested in light neutrino states that participate in specific
fast interactions during the leptogenesis, i.e. that are
approximate eigenstates of weak interactions. Therefore,
we take U0 ¼ 1, and change the basis in the field space
so that Mph in Eq. (17) is a new mass matrix (in other
words, we are using interaction eigenstates rather than mass

5The chiral Dirac fields usually employed are thus eL ≡
PLΨE ¼ ðe; 0Þ and eR ≡ PRΨE ¼ ð0; ĒÞ, etc.
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eigenstates for the light neutrinos). Henceforth, νiα and Nj
α

denote neutrino fields in this new basis, unless stated
otherwise, and are referred to as light and heavy neutrinos.
It is sometimes convenient to assemble these 2-component
Weyl spinors into Majorana 4-spinors

ψ i
N ¼

�
Ni

α

N̄i ̇α

�
; ψ i

ν ¼
�
νiα

ν̄i̇α

�
: ð22Þ

Note that, as a result of the rotation with V , the (new) N’s
do couple to the massive gauge bosons already at the tree
level

LZNν ¼ iZμðF ðZÞ
ji N̄j

̇ασ̄
μ̇αανiα þ F ðZÞ⋆

ji Njασμα̇αν̄
i ̇αÞ

≡ iZμψ̄
j
Nγ

μðF ðZÞ
ji PL þ F ðZÞ⋆

ji PRÞψ i
ν; ð23Þ

LWNe ¼ iðW1
μ − iW2

μÞF ðWÞ
ji N̄j

̇ασ̄
μ̇ααeiα þ H:c:

≡ iðW1
μ − iW2

μÞF ðWÞ
ji ψ̄ j

Nγ
μPLΨi

E þ H:c:; ð24Þ

where for clarity we also give the result in standard 4-spinor
notation, and where PL/R ≡ 1

2
ð1 ∓ γ5Þ are the usual chiral

projectors. The matrices F ðZ;WÞ follow immediately from
Eq. (16)

F ðZÞ ¼ −
i
2
ðg2w þ g2yÞ1/2X†

2X1; ð25Þ

F ðWÞ ¼ −
i
2
gwX

†
2: ð26Þ

To avoid confusion we also use calligraphic letters to
denote the couplings between the new fields N/ν and the
scalars S ¼ h, φ, a, to wit,

LSNν ¼ −SðYðSÞ
ji N

jανiα þ YðSÞ⋆
ji N̄j

̇αν̄
i ̇αÞ

≡ −Sψ̄ j
NðYðSÞ

ji PL þ YðSÞ⋆
ji PRÞψ i

ν; ð27Þ

where the leading terms in mD read

YðhÞ ¼ þi

�
cβ
vH

−
sβ
vϕ

�
V⊤
0 mDU0;

YðφÞ ¼ −i
�
sβ
vH

þ cβ
vϕ

�
V⊤
0 mDU0;

YðaÞ ¼ 1

vϕ
V⊤
0 mDU0;

(as said, U0 ¼ 1). Because a main postulate behind the
CSM is the presumed absence of any intermediate scales
between the electroweak scale and the Planck scale MPL,
the scale of lepton-number symmetry breaking vϕ is
assumed to lie in the TeV range. With YM ∼ 1, the masses

of heavy neutrinos are relatively small, and the light
neutrino data [39] indicate that Yν is of order Yν ∼ 10−6.
To allow for baryon number generation despite the low
masses of heavy neutrinos, the mechanism of “resonant
leptogenesis” was proposed and explored in [29–32]. This
mechanism is based on the observation that CP violation
(a crucial ingredient in dynamically generated baryon
asymmetry [47]) is enhanced whenever the masses of heavy
neutrinos are approximately degenerate. Accordingly, we
assume that the Yukawa Majorana matrix is in fact propor-
tional to the unit matrix, that is,

YM
ij ¼ yMδij ð28Þ

with yM ∼Oð1Þ. Consequently there is an approximate
SO(3) symmetry in the heavy neutrino sector, which is only
very weakly broken by the Yukawa couplings Yν. For
definiteness, we assume Eq. (28) to hold at the electroweak
scale, for the MS renormalization scale μ ¼ Mtop. In turn,
the mass splitting of heavy neutrinos is entirely due to the
seesaw mechanism, Eq. (19). [As emphasized in [48] the
SO(3) symmetry ensures that (28) is stable against quantum
corrections in a good approximation; nonetheless,when (28)
holds instead at high Renormalization Group (RG) scale
μ� ∼MPL, then Yν-induced RG-splitting of yM ’s yields
splitting of heavy neutrino masses that is of similar order
as the seesaw one, see e.g. [49] ]. It should be stressed here
that, due to the degeneracy (28), the V0 matrix in Eq. (17) is
clearly not an OðYνÞ perturbation of the identity matrix;
this is technically similar to (though physically different
from) the Dashen’s vacuum realignment condition [50] (see
also [34]).

B. Canceling quadratic divergences

We stress again the presence of explicit scalar mass terms
in (3), in contrast to the original model of [6] which relied
on the CW mechanism [28] to break electroweak sym-
metry. Our main reason for this is that the CW mechanism
does not eliminate quadratic divergences, and thus the low-
energy theory would remain sensitive to Planck scale
corrections.
At one loop the coefficients of the quadratic divergences

Λ2 for the two scalar fields are [25]

16π2fquad1 ðλ; g; yÞ ¼ 6λ1 þ 2λ3 þ
9

4
g2w þ 3

4
g2y − 6y2t

16π2fquad2 ðλ; g; yÞ ¼ 4λ2 þ 4λ3 − 3y2M: ð29Þ

Here gw and gy are the SUð2ÞL × Uð1ÞY gauge couplings,
while yt is the top quark Yukawa coupling. For simplicity
(and without much loss in precision) we neglect all other
Yukawa couplings. Note that Eq. (29) is independent of the
details of the cutoff regularization, as long as the regulator
(here assumed to be provided by the quantum theory of

LEWANDOWSKI, MEISSNER, and NICOLAI PHYS. REV. D 97, 035024 (2018)

035024-6



gravity) acts in the same way on all fields. Of course,
another crucial assumption here is that we can neglect
contributions of graviton loops to (29); this assumption is
based on the hypothesis that the UV finite theory of
quantum gravity effectively screens these contributions
from low-energy physics.
An obvious question at this point is the following. One

would at first think that Eq. (29) depends on the renorm-
alization scale μ via the RG running of the couplings, a
well-known issue in the context of Veltman’s conditions
[51]. This is, however, only apparent, since when all higher
corrections are included, the functions f1, f2 obey appro-
priate renormalization group equations, in such a way that
the implicit scale dependence is exactly canceled by the
explicit presence of logðμÞ introduced by higher loop
corrections. Therefore, the all-order coefficients f1, f2
are in fact μ-independent (and Λ-independent) functions
of the bare couplings λB (which themselves depend on the
cutoff Λ, as the latter is varied). Thus, the couplings
appearing on the right-hand side of (29) are λBðΛÞ etc.,
rather than λðμÞjμ¼Mtop

.6 Nonetheless, employing running
couplings λðμÞ is convenient also in the present context, as
these allow for a resummation of leading logarithms in the
relation between the bare couplings λBðΛÞ and the renor-
malized ones λR ¼ λðμÞjμ¼Mtop

, via the usual renormaliza-
tion group improvement (see e.g. [52–54]). In fact, in a
minimal-subtraction-type scheme based on cutoff regulari-
zation [25] (below called Λ-MS), the bare couplings λBðΛÞ
coincide with the running couplings λðμÞ corresponding
to μ ¼ Λ,

λBðΛÞ≡ λðμÞjμ¼Λ; ð30Þ

see also [55] for a discussion of the issues appearing in
cutoff regularized gauge theories.
The appearance of bare couplings in (29) can also be

motivated and understood from the point of view of
constructive QFT (see e.g. [56]), although we are, of
course, aware that there is no rigorous construction
of the SM. There is one attempt to rigorously construct
a functional measure for interacting QFTs. This requires the
introduction of both UV and IR (i.e. finite volume)
regulators. For the regularized theory one then introduces
counterterms as functions of the bare parameters λBðΛÞ and
tries to adjust the latter as functions of the UV cutoff Λ in
such a way that the theory gives well-defined physical
answers in the limit Λ → ∞ (in which the bare couplings
usually assume singular values). In particular, for a given
value of the cutoff one can thus impose the vanishing of the

coefficient of the quadratic divergence as a single condition
on the bare parameters. In that framework running cou-
plings λðμÞ play no role; they are merely an auxiliary device
to conveniently parametrize the scale dependence of
correlation functions.
In summary, the coefficients of quadratic divergences

(29) are calculable functions of the cutoff scale Λ, provided
that all low-energy parameters λ1ðμÞjμ¼Mtop

etc. are fixed by
experiment. To determine the evolution of the couplings
from μ ¼ Mtop up to Λ (where they are identified with the
bare couplings) in the leading logarithmic (LL) approxi-
mation we need only the one-loop beta functions [25]
[we use the notation β̃≡ 16π2β; furthermore we make use
of (28)]

β̃λ1 ¼ 24λ21 þ 4λ23 − 3λ1ð3g2w þ g2y − 4y2t Þ

þ 9

8
g4w þ 3

4
g2wg2y þ

3

8
g4y − 6y4t

β̃λ2 ¼ 20λ22 þ 8λ23 þ 6λ2y2M − 3y4M

β̃λ3 ¼
1

2
λ3f24λ1 þ 16λ2 þ 16λ3

− ð9g2w þ 3g2yÞ þ 6y2M þ 12y2t g ð31Þ

β̃gw ¼ −
19

6
g3w; β̃gy ¼

41

6
g3y; β̃gs ¼ −7g3s ;

β̃yt ¼ yt

�
9

2
y2t − 8g2s −

9

4
g2w −

17

12
g2y

�
;

β̃yM ¼ 5

2
yM3; ð32Þ

which show in particular how the SUð3Þc gauge coupling
gs affects the evolution of yt so no Landau pole develops for
yt. This effect is also seen in the other expressions where
bosonic and fermionic contributions balance each other in
such a way that the theory remains perturbatively under
control up to MPL (with appropriate initial values).
At this point it should be stressed that all the ingredients

necessary to find the coefficients f1, f2 with resummed
next-to-leading logarithms are at our disposal. In particular,
the two-loop beta functions in Λ-MS together with the two-
loop coefficients in a generic renormalizable model are
given in [55] (one can also find there the generic one-loop
relation between renormalized parameters in Λ-MS and
their counterparts in the conventional MS scheme of
dimensional regularization). However, as most of the
parameters of CSM are still unknown, we are content here
with resummation of the leading logarithms only. The
rationale behind this restriction, is that the one-loop RG
evolution in gauge-Yukawa sector is independent of quartic
scalar couplings, which significantly simplifies the scan
over the parameter space; in particular yt and gauge
couplings at the Planck scale are known. Recall that the
one-loop beta functions reflect the structure of nonlocal

6In writing these equations we suppress a reference scale μ0
needed to render the arguments dimensionless. The latter can be
chosen as μ0 ¼ Mtop, or alternatively as μ0 ≡ μ, in which case all
couplings would depend only on the ratio μ/Λ where the cutoff Λ
is kept fixed (which is the case we consider below).
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terms in one-particle-irreducible effective action Γ½·�, and
thus are universal across different regularizations (at least in
the class of mass independent renormalization schemes
[57], to which Λ-MS belongs). Therefore the RG-improved
coefficients (29) at the LL order are independent of the
details of cutoff regularization as well.
We note that the cutoff dependence of coefficients

of quadratic divergences in the pure SM was already
analyzed in [58] where it was found that they cancel for
Λ ≈ 1024 GeV), and thus (logarithmically speaking) not so
far from the Planck scale. This observation motivated our
proposal that the vanishing of quadratic divergences at the
Planck scale, and thus stabilization of the electroweak
scale, may be achieved by means of a “small” modification
of the SM like the one proposed here. Ultimately, the
cancellation of quadratic divergences would be due to a still
unknown quantum gravity induced mechanism which is
different from low-energy supersymmetry (but which
could still involve Planck scale supersymmetry in an
essential way).
From the perspective of effective field theory (EFT),

valid for energies E≲MPL, we have a clear distinction
between low-energy (N ¼ 1) supersymmetry and the
present proposal. In supersymmetric models, the under-
lying mechanism of quantum gravity appears via the
(super)symmetry of the EFT itself, and thus the cancella-
tion holds independently of the value of the cutoff

fquadSUSYðΛÞ ¼ 0; ∀Λ:
By contrast, in the present context the absence of quadratic
divergences (and thus the stabilization of the electroweak
scale) manifests itself via the existence of a distinguished
value Λ� of the cutoff (close to the Planck scale) such that
fðΛ�Þ ¼ 0. Importantly, the question whether or not such a
scale exists for which both coefficients (29) vanish, can in
principle be answered provided that all CSM parameters
can be measured with sufficient accuracy.
We therefore assume that such a distinguished value

close to MPL exists, so we can impose the conditions

fquad1 ðλ; g; yÞ ¼ fquad2 ðλ; g; yÞ ¼ 0 ð33Þ

on the running couplings with μ equal to the (reduced)
Planck scale; from a low-energy perspective these can be
considered as an RG-improved version of Veltman’s con-
ditions [51]. Disregarding the other SM couplings this
condition restricts the four-dimensional space of parame-
ters ðλ1; λ2; λ3; yMÞ, cf. Eq. (8), to a two-dimensional
submanifold.7 To implement our conditions in practice
we then evolve the couplings along this submanifold from

MPL back down to the electroweak scale μ ¼ Mtop and
calculate the masses and mixing angle using Eqs. (8)–(9).
Moreover, to ensure perturbativity we demand that all
running couplings (including yM) remain small over the
whole range of energies between Mtop and MPL (more
concretely, for our numerical checks we demand 0 < λ1, λ2,
yM < 2, and −2 < λ3 < 2, see also the next subsection; in
practice for all points in Table I scalar self-couplings at the
electroweak scale are smaller than 0.25). It should be
stressed that this approach is consistent because the values
of the gauge and Yukawa couplings at the Planck scale are
independent of the values of quartic couplings, as far as
leading logarithms are concerned.

C. Stability of electroweak vacuum

One of the very few “weak spots” of the pure SM is the
metastability of the electroweak vacuum [33]. Namely, the
effective potential of the SM (with appropriately resummed
large logarithms) develops a new deeper minimum for
H ≳ 1010 GeV, thus implying an instability of the electro-
weak vacuum via quantum-mechanical tunneling. This can
be seen also more heuristically, by following the RG
evolution λ ¼ λðμÞ of the scalar self-coupling and noticing
that for μ ∼ 1010 GeV the function λðμÞ dips below zero
due to the large negative contribution from the top quark
[33] (but becomes positive again for yet larger values of μ).
For values of the fields that are much larger than the
electroweak scale, the full effective potential of the SM is
well approximated by the quartic term

VeffðHÞ ≈ λ̃ðH†HÞ2: ð34Þ

However, here one cannot simply substitute the self-
coupling at the electroweak scale; rather, in order to avoid
huge logarithmic corrections on the right-hand side, the
correct value of the quartic coupling λ̃ in the above formula
is obtained by substituting the running coupling evaluated
at the appropriate energy scale of the order of

ffiffiffiffiffiffiffiffiffiffi
H†H

p
, i.e.

λ̃ ¼ λðμÞjμ≡ ffiffiffiffiffiffiffi
H†H

p ; ð35Þ

rather than λ̃ ¼ λðμÞjμ¼Mtop
. For theories like the SM, in

which the effective potential depends only on a single field
(up to the orbits of symmetry group), this somewhat
heuristic reasoning can be put on firmer grounds, by
resumming large logarithms via the renormalization group
improvement [52–54].
For the CSM there are now two scalar fields (up to

symmetries of Veff ) and the situation is more complicated,
basically because with more than one scalar field, the RG
improvement cannot simultaneously determine the resum-
mation of logarithms in all directions in field space. For this
reason we have to rely on the more heuristic argument, by
demanding that the positivity conditions (5) be satisfied not

7Because the conditions (33) are RG invariant, our approach
bears also some resemblance to Zimmerman’s reduction of
couplings [59,60].
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only at the electroweak scale μ ¼ Mtop, but also for the
running couplings at all intermediate scales Mtop <
μ < MPL. This provides a strong indication that the
electroweak vacuum (4) in the CSM remains the global
minimum of the full effective potential, at least in the region
jϕj2 < M2

PL, H
†H < M2

PL, in which EFT is valid. Thus,
following the RG evolution from the Planck scale, where
the conditions (33) are imposed, down to the electroweak
scale we impose the inequalities

λ1ðμÞ > 0; λ2ðμÞ > 0; λ3ðμÞ > −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðμÞλ2ðμÞ

p
ð36Þ

in addition to the conditions enunciated at the end of the
foregoing subsection. These extra stability conditions lead
to further restrictions on the parameters. It is therefore a
nontrivial fact that parameter ranges exist which satisfy all
these conditions and restrictions.
A set of exemplary points consistent with all our

restrictions is given in Table I. Γh;φ denote decay width
of the Higgs particle h and its “heavy brother” φ.
Brðφ → ½SM�Þ is the branching ratio for SM-like decay
channels of φ, while non-SM-like decay channels of h are
negligible for all points in the Table. YB0 denotes the
current baryon number density to entropy density ratio
calculated on assumptions specified in Sec. III. In particu-
lar, the table displays a viable range of mass values for both
the new scalar and the heavy neutrinos. For all points the
heavy neutrinos are heavier than the new scalar field φ, and
thus their decays are the main source of lepton asymmetry.
Note also the relatively large values of vϕ which are
necessary for successful leptogenesis. This comes about
because yM must remain sufficiently small so as to allow for
the departure of heavy neutrinos from thermal equilibrium,
while their masses ∼yMvϕ should be large enough so that
the departure takes place when baryon-number violating
processes are still fast. Importantly, the values of dimen-
sionless couplings corresponding to all points in the Table
are small while masses of new states are comparable to the
electroweak scale; thus one can trust that radiative correc-
tions to the tree-level masses etc. are small.

III. RESONANT LEPTOGENESIS

By assumption the lepton-number symmetry L of the
CSM is spontaneously broken by the nonvanishing vacuum
expectation value hϕi ∼Oð1 TeVÞ. The proper quantity to
study is therefore the lepton-number density L0 of the SM
under which heavy neutrinos have vanishing charges.8 The
individual lepton-number symmetries L0

i, i ¼ e, μ, τ, of the

SM (with L0 ¼ P
iL

0
i) are only weakly broken by Y

ν effects
as well as by gauge anomalies.
In the framework of leptogenesis [61] the baryon number

density nB in the Universe [39,62]9

nB ¼ ð6.05� 0.07Þ × 10−10nγ; ð37Þ

(where nγ denotes the number density of photons) is
produced by nonperturbative SM interactions that break
baryon and lepton-number symmetries down to the non-
anomalous combination ðB − L0Þ, and generate baryons
from nonvanishing lepton-number density nL0 via the usual
sphaleron mechanism [63]. Thus the problem can be
reduced to that of explaining the lepton asymmetry nL0,
which itself is produced in lepton-number and CP violating
out-of-equilibrium decays of heavy neutrinos, as they occur
in the CSM. In this way all the Sakharov conditions [47]
can be satisfied.10

To achieve the correct order of CP violation despite
small Yν values, we rely on the mechanism of resonant
leptogenesis [29–32], which can be naturally realized
within the present scheme as a consequence of the assumed
degeneracy of the Yukawa matrix YM, cf. Eq. (28). The
baryon number density nB can then be calculated by
solving the relevant Boltzmann equations (see e.g. [64]).

A. CP violation

The CP asymmetries relevant for calculation of nB are

εðhνÞji ≡ ΓðNj → hνiÞ − ΓðNj → hν̄iÞ
ΓðNj → hνiÞ þ ΓðNj → hν̄iÞ

; ð38Þ

εðZνÞji ≡ ΓðNj → ZνiÞ − ΓðNj → Zν̄iÞ
ΓðNj → ZνiÞ þ ΓðNj → Zν̄iÞ

; ð39Þ

together with their counterparts with additional scalars (or
W-bosons and charged leptons) in the final states. The tree-
level contributions to the decay widths in the formulas
above follow immediately from the vertices in Eqs. (27)
and (23)–(24),11 while nonzero contributions to εji origi-
nate from the interference between these tree-level vertices
and loop diagrams describing the correction to proper
vertices and external lines [65]. Generically, both kinds
of corrections are of the same order [65], and are way too
small to ensure a successful leptogenesis for Yν having the

8In the following we adopt the convention that primed
quantities refer to the pure SM, while unprimed letters refer to
the CSM with its enlarged set of fields. For instance, L0

i is the
lepton number of species i in the pure SM, which thus excludes
the contributions of Ni and the new scalar ϕ.

9This number is often given by normalizing with respect to the
entropy density, see (61) and (72) below.

10See also [49] for a discussion of resonant leptogenesis for a
CSM-like model with gauged (B − L) symmetry.

11Here we can neglect the light neutrino masses in very good
approximation. Thus the field PLψν ≃ να in (27) annihilates
neutrinos ν and creates antineutrinos ν̄, while PRψν ≃ ν̄ ̇α does the
opposite, see also the appendix for an explicit description of the
neutrino operators in the SLð2;CÞ basis.
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matrix elements of the order of 10−6. However, the external
line corrections are resonantly enhanced for (approxi-
mately) degenerate masses of heavy neutrinos [29–32].
In fact, calculation of “external” line corrections (espe-

cially in the resonant regime) requires some care, since the
incoming states correspond to unstable particles. In [66],

see also [29,67,68], the CP asymmetry εðXlÞji was calculated
without any references to the external lines of unstable
states. Instead, the amplitudes of associated scattering
processes in which unstable heavy neutrinos appear only
as internal lines were studied; the resulting prescription for

εðXlÞji can be summarized as follows [66]. Consider the
interaction (27) between a Hermitian scalar field h, heavy
neutrinos Nj (described in terms of Majorana fields ψ j

N),
and (approximately) massless SM (anti)neutrinos, descri-
bed in terms of Majorana fields ψ i

ν. Suppose that the matrix
of propagators of heavy neutrino Majorana fields ψ j

N has
the following form (C is the charge-conjugation matrix)12

ĜðpÞ ¼ iζ̂½p2 − m2�−1½=pþ m�ζ̂⊤C−1 þ ½nonpole part�;
ð40Þ

where the matrix of pole masses,

m ¼ diagðm1;m2;m3Þ; ð41Þ
is diagonal with positive real parts ReðmaÞ > 0, while its
imaginary part gives the total decay widths. The residue
matrices ζ̂ can be written as

ζ̂ ¼ ζL ⊗ PL þ ζR ⊗ PR;

ζ̂⊤ ¼ ζ⊤L ⊗ PL þ ζ⊤R ⊗ PR; ð42Þ

with 3 × 3 matrices ζL;R carrying only family indices, and
chiral projections PL;R; clearly, at tree level, in the basis of
mass eigenstates one has ζL ¼ ζR ¼ 1. If these matrices are
known, the CP asymmetry (38) can then be calculated with
the aid of the following formula [66]:

εðhνÞji ¼ jYR
jij2 − jYL

jij2
jYR

jij2 þ jYL
jij2

; ð43Þ

with

YL
ji ¼ YðhÞ

ki ðζLÞkj þ � � � ; ð44Þ

YR
ji ¼ YðhÞ⋆

ki ðζRÞkj þ � � � ; ð45Þ
where the ellipses indicate contributions of corrections to
external lines of h and ψν fields, as well as loop corrections

to the 1PI vertices (which are negligible in TeV-scale
leptogenesis). If heavy neutrinos were stable, the matrix
ζR would be the complex conjugate of ζL. In that case
Eqs. (44)–(45) are nothing more than the ordinary
Lehmann-Symanzik-Zimmermann reduction rules for cal-
culating the S-matrix elements, see e.g. [69]. Similarly, the

CP asymmetry εðZνÞji can be calculated with the aid of
Eq. (43), with the following replacements:

YL
ji ¼ F ðZÞ

ki ðζRÞkj þ � � � ;
YR

ji ¼ F ðZÞ⋆
ki ðζLÞkj þ � � � ;

(the change of chirality is caused by γμ). The enhancement
effect that underlies resonant leptogenesis is due to the
ζL;R matrices which contain the factors ∼ðm2

1 − m2
2Þ−1 etc.

(see below).
To find the ζL;R matrices we use the prescription given

in [70], to which we also refer for further details.
Adopting some renormalization scheme, let Γ̃ð−p; pÞ be
the matrix of renormalized 1PI two-point functions (inverse
propagators) of the Majorana fields ψ j

N

Γ̃ð−p; pÞ ¼ Cfð=pZLðp2Þ −MLðp2ÞÞPL

þ ð=pZRðp2Þ −MRðp2ÞÞPRg; ð46Þ

where matrices ML;R and ZL;R ¼ 1þOðℏÞ carry only
family indices. Now let M2

Lðp2Þ be the following matrix
(with s≡ p2):

M2
LðsÞ≡ ZLðsÞ−1MRðsÞZRðsÞ−1MLðsÞ: ð47Þ

Then the propagator of ψ j
N has the form (40) where the

(complex) pole masses m are solutions to

detðs1 −M2
LðsÞÞjs¼m2

a
¼ 0; ð48Þ

while the columns of ζL;R matrices are given by vectors
ζL;R½a�

ζX ¼ ½½ζX½1��½ζX½2��½ζX½3���; X ¼ L;R;

which are obtained in the following way. Let ξ½a� be an
eigenvector of M2

Lðm2
aÞ, with eigenvalue m2

a

M2
Lðm2

aÞξ½a� ¼ m2
aξ½a�; ð49Þ

and obeying the following normalization condition:

ξ⊤½a�MLðm2
aÞξ½a� ¼ ma; ð50Þ

then

ζL½a� ¼ N ðaÞξ½a�; ð51Þ
12With apologies to the reader for the proliferation of different

fonts; unlike the tree-level masses pole masses m are in general
complex.
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with a normalizing factor

N ðaÞ ¼
�
1 −

1

ma
ξ⊤½a�MLðm2

aÞM2
L
0ðm2

aÞξ½a�
�

−1/2
; ð52Þ

where M2
L
0ðsÞ≡ dM2

LðsÞ/ds, and

ζR½a� ¼
1

ma
ZRðm2

aÞ−1MLðm2
aÞζL½a�: ð53Þ

For heavy neutrinos ma ≠ 0 and the corresponding
eigenspaces are one dimensional. Thus the above pre-
scription is all we need to calculate the CP asymmetries
εji (for a generalization to massless or Dirac fermions, as
well as the discussion of reality properties of ζL;R
matrices, see [70]). To obtain the required numerical
values of ZL;R and ML;R matrices, we use the one-loop
formulas given in [70]; these are valid for a general
renormalizable model in the Landau gauge and corre-
spond to the diagrams shown in Fig. 1. Since ζL½a� is an
eigenvector, the ordinary quantum-mechanical perturba-
tion theory for discrete spectra (more precisely, its
generalization to non-Hermitian matrices) indicates that
the components of ζL are enhanced whenever masses of
fermions are approximately degenerate. This in turn
causes the enhancement of the CP asymmetry (43),
and thus lepton asymmetry, dubbed “resonant leptogen-
esis” [29].
Some remarks are in order. While the above prescription

for finding ζL;R matrices is, in principle, independent of
the choice of basis in the space of fields, we apply it in the
basis of tree-level mass eigenstates in which loop calcu-
lations are done. In this basis the ζL;R matrices [unlike the
V0 matrix that diagonalizes the tree-level mass matrix itself,
cf. Eq. (17)] are numerically small perturbations of the
identity matrix, for all cases studied below. It is also worth
stressing that we completely neglect the masses of light
neutrinos circulating in loops as in Fig. 1; this is justified
since contributions of these masses are subdominant in Yν,
as can be easily checked from the mentioned generic one-
loop formulas. In light of this fact, our choice U0 ¼ 1
(rather than U0 ¼ UMNS) in Eq. (17) for light neutrino
states is self-consistent.

B. Boltzmann equations

To determine the lepton-number asymmetry one has to
solve the Boltzmann equations in the context of an
expanding universe [64]. For the CSM the full set of
equations would be close to unmanageable due to the large
number of degrees of freedom and possible processes
involved, and one therefore has to resort to several
simplifying assumptions. A first such assumption is that
the elastic processes are fast, so that all species are in
kinetic equilibrium, having the occupancy given by the
Fermi-Dirac/Bose-Einstein distributions

fðpÞ ¼ fexp½ðEðpÞ − μÞ/T� � 1g−1: ð54Þ

Second, in order to reduce the large number of independent
distribution functions f (or, equivalently, the associated
chemical potentials μ), we assume that all the interactions
described by the Lagrangian density (1), with the exception
of those triggered by Yν or YM, are in chemical equilib-
rium.13 Note that in TeV-scale leptogenesis this assumption
is justified for the SM Yukawa couplings [71]. A further
simplification is achieved by assuming that the nonpertur-
bative SM interactions that violate B and L0

i symmetries
down to the combinations B − L0 and L0

i − L0
j are also in

equilibrium; direct analysis of these processes [48,63] indi-
cates that this assumption is reasonable for T ≳ 80 GeV.
Note that, although X ≡ ðB − L0Þ unlike (B − L) or
(L0

i − L0
j) has a X − X − X anomaly, it does not have

anomalies in the presence of the SM gauge field back-
ground, and thus it is preserved by sphalerons. In other
words, B − L0 and L0

i − L0
j are violated only by Yν induced

interactions, and only these interactions contribute to the
Boltzmann equations for the densities of these differences,
see Eqs. (63) and (64), i.e. spaleronic interactions cancel
out [clearly, these equations must then still be supple-
mented by the ones for the heavy neutrino densities,
see (68)].
Under these circumstances, there are four independent

chemical potentials for the SM species, which correspond
to these global symmetries, and, in addition, after the
electroweak phase transition, to the electric charge; how-
ever, the electric neutrality of the Universe allows us to
express the charge potential as linear combinations of the
remaining ones [72]. For our purposes, it is convenient to
choose the light neutrinos’ potentials as independent ones

μνi ≡ μei þ μWþ : ð55Þ

Neglecting masses of SM particles, μνi can be
expressed in terms of individual SM lepton-number

A B

FIG. 1. One-loop contributions to ML;R and ZL;R in the
Landau gauge. In CSM external lines represent heavy neutrino
Majorana fields. Solid internal lines represent all fermions (with
the exception of quarks), with dashed/springy lines denoting
scalars/massive vectors.

13Recall that, when the reaction iþ j → kþ l between par-
ticles i, j, k and l is in chemical equilibrium, then the corres-
ponding chemical potentials obey the relation μi þ μj ¼ μk þ μl.
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densities nL0
i
in the broken phase of the SM, which

simplifies to14

μνi
T

¼
166nL0

i
þ 16ðnL0

j
þ nL0

k
Þ

75T3
; ð56Þ

where i ≠ j ≠ k ≠ i. Similarly, the lepton-number den-
sity can be expressed in terms of the B − L0 density as
follows [72]:

X
i

nL0
i
¼ −

25

37

�
nB −

X
i

nL0
i

�
: ð57Þ

To simplify the BEQs for the number densities, we
approximate the occupancies (54) with the Maxwell-
Boltzmann distributions

f ≈ exp½−ðE − μÞ/T�: ð58Þ

This allows us to perform some of the momentum
integrals analytically (and should not lead to errors
bigger than 20% [66]). In this approximation, the
distribution of heavy neutrinos Ni can be written as

fNi
¼ expð−E/TÞ nNi

nEQNi

; ð59Þ

where nNi
is the number density of Ni, while nEQNi

is
the value nNi

in the chemical equilibrium (i.e. the one
corresponding to the vanishing chemical potential, as
indicated by various yM-induced annihilation processes,
e.g. NiNi → tt̄, see Fig. 2) that reads (see e.g. [73])

nEQNi
¼ m2

NT
π2

K2ðmN /TÞ; ð60Þ

with KlðzÞ denoting the modified Bessel functions of
the second kind [similarly, thermally averaged decay
widths lead to the appearance of K1ðzÞ in BEQs below]
and mN ¼ yMvϕ/

ffiffiffi
2

p
being the Majorana mass (the mass

splitting due to Yν is negligible as far as the distri-
butions of heavy neutrinos are concerned). Since the
Majorana mass in the present model originates from the
vacuum expectation value of ϕ, we assume below that
the baryon asymmetry is produced after spontaneous
breaking of B − L, from initially symmetric state. The
analysis of phase transition will be given elsewhere.
Due to the expansion of the Universe it is convenient to

write the BEQs for densities normalized to the entropy
density sðTÞ ∝ T3 (see e.g. [64])

YX ¼ nX
sðTÞ ; ð61Þ

as functions of the following “time” variable

z ¼ zðTÞ ¼ mN

T
: ð62Þ

With these approximations, it is fairly easy to write
BEQs for the densities of (approximately) conserved
charges. In particular, the symmetries B −

P
iL

0
i and L0

i −
L0
j are violated only by the Y

ν-induced interactions (but not

by anomaly induced instanton processes). Denoting byDL0
i

the appropriate combinations of averaged squared ampli-
tudes of Yν-induced processes that violate L0

i, one can write
the relevant BEQs for the densities of these nonanomalous
charges in the following form:

sðTÞHðTÞz d
dz

½YL0
i
− YL0

j
� ¼ DL0

i −DL0
j ; ð63Þ

sðTÞHðTÞz d
dz

h
YB −

X
i

YL0
i

i
¼ −

X
i

DL0
i ; ð64Þ

whereHðTÞ ∝ T2 is the expansion rate of the universe [64].
The BEQs for individual YL0

i
follow then immediately from

(57). The dominant contributions to DL0
i come from decays

and inverse decays of heavy neutrinos (as well as the
subtraction of their real intermediate states from the
associated scattering processes, the latter has been taken
care of by following the approach of [66]; in particular
decays of heavy neutrinos with equilibrium distributions
YNi

¼ YEQ
Ni

do not contribute to DL0
i given below, in

agreement with the Sakharov conditions [47]). To the first
order in small parameter (56), DL0

i have the form (for a
discussion of thermally averaged rates, see e.g. [73])

DL0
i ¼ m3

N

π2z
K1ðzÞ

X
j

��
YNj

YEQ
Nj

− 1

�
Δji −

μνi
T

Σji

�
;

with

Σji ¼
X
X;l

½ΓðNj → XliÞ þ ΓðNj → X̄l̄iÞ�; ð65Þ

Δji ¼
X
X;l

½ΓðNj → XliÞ − ΓðNj → X̄l̄iÞ�; ð66Þ

where the summation runs over different decay channels
with li ∈ fei; νig denoting a charged or neutral lepton of
ith flavor. Clearly, Σji can be calculated with a good
accuracy at the tree level. In calculating Δji, the CP
asymmetries introduced in the previous section are crucial
[cf. Eq. (38)]

14This result can be easily obtained by repeating the analysis of
[72] without the assumption that μνi ≡ μν for all flavors i. Note
that in the present context there are no rapid flavor-mixing
interactions; in particular matrix elements of Yν are small.
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Δji ¼
X
X;l

εðXlÞji × ½ΓðNj → XliÞ þ ΓðNj → X̄l̄iÞ�: ð67Þ

For given YNj
¼ YNj

ðzÞ, Eqs. (63)–(64) form a system
of three equations for three independent functions nL0

i
,

cf. Eqs. (56) and (57). They have to be supplemented with
three more equations for YNj

sðTÞHðTÞz dYNj

dz
¼ DN

j þ AN
j þ SNj ; ð68Þ

where DN
j represents the effects of Yν-induced decays of a

heavy neutrino Nj

DN
j ¼ −ΓNj

m3
N

π2z
K1ðzÞ

�
YNj

YEQ
Nj

− 1

�
; ð69Þ

where the total decay width is determined via ΓNj
≈

−Imðmj/2Þ with the pole mass obtained from Eq. (48).
While this is the standard contribution to BEQs that occurs
also in “minimal” leptogenesis scenarios, the other two
contributions labeled AN

j and SNj are absent in such a
minimal framework, as they represent contributions arising
from the new scalar field ϕ. More specifically, AN

j describes
the rates of yM-induced annihilation processes of heavy
neutrinos (see Fig. 2), and SNj represents the rates of
inelastic scatterings shown in Fig. 3.

AN
j ¼ −

mN

64π4z
K½σj�

��
YNj

YEQ
Nj

�
2

− 1

�
;

SNj ¼ −
mN

64π4z

X
i≠j

K½σj→i�
��

YNj

YEQ
Nj

�
2

−
�
YNi

YEQ
Ni

�
2
�
;

where

K½σ� ¼ 2

Z
∞

ð2mNÞ2
ds

ffiffiffi
s

p ðs − 4m2
NÞK1ð

ffiffiffi
s

p
/TÞσðsÞ: ð70Þ

Here σjðsÞ denotes the total cross-section for the processes
NjNj → XY shown in Fig. 2, while σj→iðsÞ is the cross-
section for the processes NjNj → NiNi (Fig. 3). [Note that

these cross sections are summed, rather than averaged, over
initial spin states, and that the form of the lower limit in (70)
appears because heavy neutrinos turn out to be the heaviest
particles in the model; for a discussion of thermally
averaged cross sections see e.g. [73].] Despite the huge
hierarchy between yM and Yν, both classes of processes are
equally important, since DN

j and AN
j (SNj ) have different

dependencies on z. The importance of yM-induced proc-
esses was emphasized in [74] (see also [49,75] for a
discussion in the context of local B − L models). Their
presence is a main difference between models with sponta-
neous lepton-number violation and the “minimal lepto-
genesis,” in which Yν is the sole source of nonconservation
of both, B − L0 as well as the number of heavy neutrinos. In
particular, they keep heavy neutrinos in thermal equilib-
rium at early times (see also the discussion in the next
subsection).

C. Results

For Yν ¼ ffiffiffi
2

p
mD/vH we use the Casas-Ibarra parametri-

zation (20), assuming inverted ordering (mν3<mν1<mν2
15)

with central values of all neutrino oscillation parameters,
including the Dirac phase of the matrixUMNS, given in [39]
(Table 14.7 on page 252). For both unconstrained Majorana
phases in UMNS we take the value 2π/5, while for the
lightest neutrino we assume mν3 ¼ 1.08 × 10−3 eV. As to
the complex angles of Casas-Ibarra matrix, a set of values
(in the standard CKM-like parametrization) that works is
the following:

α ¼ 9π

25
þ 33i

25
; β ¼ 6π

5
þ 18i

25
; γ ¼ 4π

5
þ 11i

25
; ð71Þ

so that

RCI ≈

0B@ −0.15þ 2.0i −2.2þ 0.1i −0.75− 0.63i

2.2þ 0.13i 0.02þ 1.9i −0.49þ 0.68i

−0.18− 0.06i −0.31− 0.42i 1.0− 0.13i

1CA:

While the matrix elements of RCI are of order Oð1Þ, the
above form of RCI ensures that the decay width of one
of the heavy neutrinos is suppressed in comparison with
the other two. This allows for a sufficient departure
from equilibrium in the range of temperatures in which
B-violating processes are still fast. Let us emphasize that

FIG. 3. Oðy2MÞ inelastic processes NiNi → NjNj.

FIG. 2. Annihilation diagrams NiNi → XY induced by yM.
Standard Model fermions are depicted as double solid lines.

15The inverted ordering of light neutrino masses is just a choice
that we made for the scan over remaining parameters, but not
necessarily a prediction of our model.
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there is nothing unique about this choice of parameters,
which we have adopted here simply because it does give the
right order of magnitude for the lepton asymmetry; there
may thus exist other viable ranges of parameters.
For the integration of the BEQs, we assume that for

T ¼ 10mN heavy neutrinos are in equilibrium (YNi
¼ YEQ

Ni
)

while all leptonic asymmetries YL0
i
vanish. The resulting

baryon asymmetry YB (for T ¼ 100 GeV, when B-violat-
ing interactions decouple) is given in Table I. It corresponds
directly to the present value YB0 predicted by CMS, under
assumption of entropy conservation. Using the present
entropy to photon ratio s ≈ 7nγ [64], the baryon-to-photon
ratio (37) translates into

YB0 ≈ 8.6 × 10−11; ð72Þ

we thus see that the values in Table I agree quite well with
the data. Although our input value for s does not include the
contribution form Majorons to the total entropy, their
inclusion would not affect our results in any essential way.
The integral curves of Boltzmann equations are illus-

trated, for the first point in Table I, in Figs. 5 and 4. Note
that, due to fast yM-induced interactions, heavy neutrinos
depart from equilibrium for relatively small temperatures;
this behavior was also observed in [74]. Nonetheless, our
analysis shows that successful resonant leptogenesis is
possible. We note that the yM-induced processes justify our
assumption about initial thermal abundance of heavy
neutrinos. In fact, the present baryon asymmetry is essen-
tially independent of the distribution of heavy neutrinos for
T ≫ mN . This can be seen in Fig. 6, where the dynamically
generated lepton asymmetry for thermal initial distribution
of heavy neutrinos (solid line) is compared with its
counterpart for vanishing initial abundance (dashed line).
We also stress that the effects of thermal corrections to
particles’ masses were neglected here, and will be dis-
cussed in a separate publication, where also issues related
to the phase transition will be addressed.

Let us also mention that a similar analysis can be
performed for the model with an extended scalar sector
that was proposed in our previous work [17]. The result is
that resonant leptogenesis does not work in that case, even
though for that model Eq. (28), and thus the near degen-
eracy of heavy neutrino masses, is an automatic conse-
quence of spontaneous symmetry breaking. The reason is
that with this extended scalar sector, the minimization
condition for the pseudo-Goldstone boson potential
(Dashen’s condition [34,50]) requires RCI to be real,
whence the unitary matrix UMNS in (20) is the sole source
of CP violation. This CP breaking turns out to be
insufficient to overcome the rapid yM-induced interactions
that keep heavy neutrinos in thermal equilibrium: the
processes of the type A and S above are generically faster
in the presence of more scalar fields.

FIG. 4. Leptonic asymmetries YL0
i
for different flavors as a

function of inverse temperature for the first point in Table I.

FIG. 5. Departure δNj
≡ YNj

/YEQ
Nj

− 1 of different flavors of
heavy neutrinos from thermal equilibrium as a function of inverse
temperature for the first point in Table I. Only one flavor has
a significant departure in the range of temperatures in which
B-violating processes are fast.

FIG. 6. Total leptonic asymmetry YL0 for the first point in
Table I. The solid line corresponds to thermal initial abundance of
heavy neutrinos (for T0 ¼ 10mN). The dashed line corresponds
to vanishing initial abundance of heavy neutrinos (for
T0 ¼ 10mN). In both cases vanishing of initial asymmetries
YL0

i
is assumed.
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IV. DARK MATTER

We next turn attention to the Goldstone boson that
accompanies the spontaneous breaking of (B − L) sym-
metry. We note that this particle comes “for free” with our
model, and provides a natural “habitat” for lepton-number
violation, a feature that we exploited already in the previous
section. However, spontaneous symmetry breaking is not
enough for a possible explanation of dark matter, because
for that the Goldstone boson must acquire (an albeit tiny)
mass by a separate mechanism.

A. Explicitly breaking (B−L) symmetry

As already evident from the previous section an impor-
tant feature of the CSM in its unbroken phase is the lepton-
number symmetry under which also the new scalar ϕ
transforms nontrivially. However, rather than focusing on
this symmetry separately, we will now consider the (B − L)
transformations which likewise leave the Lagrangian (1)
invariant

ðLi
αðxÞ; Ēi

̇αðxÞ; N̄i
̇αðxÞÞ → e−iωðLi

αðxÞ; Ēi
̇αðxÞ; N̄i

̇αðxÞÞ
ðQi

αðxÞ; Ūi
̇αðxÞ; D̄i

̇αðxÞÞ → e
1
3
iωðQi

αðxÞ; Ūi
̇αðxÞ; D̄i

̇αðxÞÞ
ϕðxÞ → e−2iωϕðxÞ:

The appearance of both barred and unbarred spinors here is
dictated by demanding invariance of the Yukawa inter-
actions (10); clearly, the resulting transformations of the
Dirac fields (11) and (12) are indeed nonchiral. The reason
for considering (B − L) rather than just lepton number is
that this symmetry is anomaly free (see e.g. [34]), which
ensures that after spontaneous symmetry breaking ϕðxÞ
contains, in addition to a real massive scalar, also a
Goldstone boson that remains massless to all orders in
perturbation theory thanks to the vanishing (B − L)
anomaly. Some of these properties are better visible in
the exponential parametrization

ϕðxÞ ¼ 1ffiffiffi
2

p ðvϕ þ RðxÞÞ expð2iAðxÞÞ ð73Þ

where we split the complex field ϕðxÞ into a modulus
RðxÞ þ vϕ and a phase AðxÞ. The latter can be absorbed
into a redefinition of the fermions

χαðxÞ → χαðxÞNEW ≡ exp½−iðb − lÞAðxÞ�χαðxÞ;
χ̄ ̇αðxÞ → χ̄ ̇αðxÞNEW ≡ exp½þiðb − lÞAðxÞ�χ̄ ̇αðxÞ; ð74Þ

where χαðxÞ is any CSM Weyl field, and (b − l) is its
charge under Uð1ÞB−L. Due to the exact (B − L) invariance
the field AðxÞ then appears in the new Lagrangian with
redefined fields only via derivative couplings originating
from the kinetic terms of ϕ and χα’s, to wit,

Lint ∝ ðb − lÞχ̄ ̇ασ̄μ̇αβχβ∂μA ð75Þ

(we drop the label NEW) and the kinetic term

LA
kin ¼ 2v2ϕ∂μA∂μAþ � � � ð76Þ

which is not canonically normalized; the dots stand for
couplings of AðxÞ to the real scalar RðxÞ. In this picture the
fact that AðxÞ couples only via derivatives is completely
manifest.16

The above parametrization in terms of redefined fields
will be referred to as the “exponential picture” (as opposed
to the “linear picture” introduced in Sec. II A). In particular
RðxÞ is the counterpart ffiffiffi

2
p

ReðϕÞ from Sec. II A, that is, it
describes mainly the extra massive scalar boson φ with a
small admixture of the SM-like particle h, cf. Eq. (6), while
AðxÞ corresponds to the Goldstone mode aðxÞ up to
normalization. The shift symmetry in the Goldstone field,
AðxÞ → AðxÞ þ const, is manifest in the exponential pic-
ture, but the price to pay is that manifest renormalizability
is lost.
Although the field AðxÞ thus cannot acquire a mass term

within the framework of relativistic QFT in flat spacetime,
we now recall a folklore theorem (still based on somewhat
heuristic reasoning, cf. [76–78]) according to which there
cannot exist exact continuous global symmetries in a
quantum theory of gravity. This then leaves two options:
either (B − L) is gauged, in which case there is an extra
massive Z0 boson, or otherwise the (B − L) symmetry is
broken explicitly by quantum gravity effects.
The former possibility has been studied both within a

GUT context (in which case Z0 would be very heavy) or in a
“low-energy” realization with a Z0 boson whose mass is
∝ v2ϕ; a possible realization of the latter scenario within the
CW context was investigated in detail in [8]. Although we
will not further consider this possibility here, let us note
that for the CSM, gauging (B − L) would give a very
definite prediction for the mass of the Z0 vector boson.
From the gauged kinetic term for ϕ

ð∂μϕþ 2iqBLZ0
μϕÞ†ð∂μϕþ 2iqBLZ0

μϕÞ ð77Þ

we would get (after spontaneous symmetry breaking)

mZ0 ¼ 2
ffiffiffi
2

p
qBLhϕi ¼ 2qBLvϕ: ð78Þ

The potential discovery of ϕ and knowledge of vϕ and qBL
would thus severely constrain the possible range of mass
values for Z0, such that existing lower bounds on the mass
of Z0 (that now exceed 4 TeV [2]) could already exclude
this possibility.

16Due to the small mass term to be introduced below, cf. (80),
there will also arise nonderivative effective couplings to SM
fields which are very small [45].
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Because there is so far no evidence for a low lying Z0
vector boson, and because we wish to exploit the presence
of the Goldstone boson in a different way by exploring its
possible role as a dark matter candidate, we will here
consider the second option, invoking (as yet unknown)
quantum gravity effects, possibly in the form of a non-
perturbative self-regularization of IR divergences, to gen-
erate a mass for the Goldstone boson. The nonperturbative
breaking of (B − L) symmetry via quantum gravity was
already considered in [79] which also invokes a gravity
induced mass for the Majoron to derive limits on its mass
from the requirement that it should not lead to overclosure
of the Universe. Although that work invokes a dimension 5
operator rather than a dimension 6 operator, as we do here,
and does not appear to consider possible connections with
dark matter, we note that, interestingly, it also arrives at the
conclusion that the scale of (B − L) symmetry breaking
must not exceed Oð10 TeVÞ. See also [80] for a proposal
along these lines with gauged Uð1ÞB−L and an extra scalar
field as the dark matter candidate.
To implement the explicit symmetry breaking, we thus

postulate the mass term

LA ¼ v4

M2
PL

ϕ2 þ H:c: ð79Þ

which breaks Uð1ÞB−L symmetry explicitly to its discrete
subgroup Z2. Unlike continuous symmetries, discrete
symmetries are generally believed to be compatible with
quantum gravity, which is our reason for excluding
dimension 5 operators, as the Z2 symmetry of the CSM
is thus preserved. Here v is assumed to be of the same order
of magnitude as vϕ, and the above mass term should thus be
treated on a par with the tree-level Lagrangian. The inverse
factor of M−2

PL in (79) is included because this term is
expected to be the low-energy effective operator originating
from quantum gravity. Importantly, (79) breaks (B − L)
symmetry only softly, and thus does not entail new
quadratic divergences, nor (B − L) breaking dimensionless
couplings, in analogy with the soft terms in MSSM-like
models.
Without spontaneous symmetry breaking the above mass

term is completely negligible. When (B − L) symmetry is
spontaneously broken, however, this term will manifest
itself in the form of a violation of the Goldstone theorem,
by endowing the Goldstone boson with a tiny mass and,
in fact, a periodic potential for the Goldstone field AðxÞ.
The Goldstone theorem is a well-known result of flat space
QFT, but there is no reason to expect it to hold in the
presence of a curved spacetime background or in the con-
text of quantum gravity, and this is a possibility we wish to
exploit here. A possible breakdown of the Goldstone
theorem in the framework of curved space QFT has already
been discussed in the literature, see e.g. [81–83] all of
which reach the conclusion that in a curved background

such as de Sitter space the Goldstone boson acquires a
(small) mass. Choosing v ∼ 1 TeV in formula (79) as an
example we get

mA ¼ 2v2

MPL
∼ 10−3 eV: ð80Þ

With the assumed small quantum gravity induced mass and
because of its very small couplings to SM particles, we
name the associated pseudo-Goldstone particle minoron.
Importantly, the operator equation (79) in the exponen-

tial picture not only generates a mass term for the minoron,
but also induces very small (and calculable) nonderivative
couplings for the scalar field AðxÞ. In particular the
continuous shift symmetry AðxÞ → AðxÞ þ const is now
reduced to a symmetry under discrete shifts, which implies
that the induced potential for AðxÞ must be a periodic
function.

B. Minorons as dark matter candidates

The mass estimate (80) lies very well within the range
of mass values generally accepted (or even desired) for
dark matter constituents. Of course, in any such model
we have to ensure that the dark matter candidate cannot
decay early on in the history of the Universe, and therefore
we assume that mA < 2mν.

17 In this section we briefly
discuss the potential prospects for the minoron to be a
viable dark matter candidate. In addition to its stability to
decays, this requires that minorons must be created in
sufficient amounts and in such a fashion that they can
clump (as opposed to being thermally distributed like the
CMB). There are obviously many analogies between the
present proposal and axionic dark matter scenarios [87,88],
as the axion is also a pseudo-Goldstone particle. On the
other hand, there are also differences—in particular, there
is no immediate link between the minoron and the
strong interactions, unlike for the usual axion, although
axionlike couplings can be generated via higher loop
corrections [45].
A main feature of any dark matter model concerns the

possible interactions with SM matter which must be small.
The coupling between the minoron and photons is of the
loop origin. After summation over the helicity states of final
photons, the amplitude for the processes a → γγ can be
bounded above by the following estimate:

fM ¼
�X

spin

jMj2
�

1/2 ≲ 1

F
yMe2

ð4πÞ2 p
2; ð81Þ

where F is at least of the order of masses of particles
circulating in the loops. Clearly gauge invariance of the aγγ

17For a discussion of mA > 2mν case in the context of dark
matter, see [84–86].
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vertex requires at least one momentum for each photon;
when the minoron is on-shell we have p2 ∼m2

A. Taking
F ¼ 100 GeV and mA ¼ 10−3 eV we get

Γða → γγÞ ¼
fM2

16πmA
≲ 10−48 GeV: ð82Þ

Comparing this with the age of the Universe
(H0 ∼ 10−42 GeV) we see that the minorons can easily
survive to the present epoch. Nonetheless we should note
that the decay width in Eq. (82) is, in fact, overestimated by
many orders of magnitude. First, the amplitude (81)
originates from multiloop diagrams of the type discussed
in [45], while in (81) we have included only coupling from
vertices to which external lines are attached, as well as a
single loop-suppression factor. Second, Goldstone bosons
of nonanomalous symmetries have derivative couplings to
gauge-invariant operators (see e.g. [34]), thus additional
powers of p2/v2ϕ ∼m2

A/v
2
ϕ should appear on the right-hand

side of (81); while the minoron is pseudo-Goldstone boson,
the explicit breaking of (B − L) would itself introduce an
additional factor m2

A/v
2
ϕ.

The minoron abundance is more difficult to estimate,
and we can offer only some preliminary heuristic argu-
ments at this point. The contribution to the density can
come from three sources: particles, strings and domain
walls. Minorons, being lighter than light neutrinos, can
decay only into photons but their lifetime is longer than
the age of the Universe, so they are effectively stable—
therefore they pose no problem for the galaxy formation,
nor for the nucleosynthesis. At the present time the relic
thermal density of minorons is negligible. The minoron
potential becomes relevant when the field ϕ acquires its
vacuum expectation value, and the minoron field decouples
from other fields (its interaction with neutrinos is too weak
to maintain equilibrium). The field starts to be dynamical
when 3H ∼mA; hϕi thus starts to differ from zero at
T ∼ 1 TeV. In this case both quantities are of the order of
10−3 eV. The initial density of coherent oscillations is
ρosc ∼m2

Av
2 and after dilution it gives a negligible con-

tribution now. So we are left with strings (that decay very
fast) and domain walls as the most important possible
source of dark matter in the late history of the Universe
relevant for the present day [80,89–91].
We can write the approximate Lagrangian for AðxÞ as

Lminoron ¼ 2v2ϕg
μν∂μA∂νA −

1

4
v2ϕm

2
A½1 − cosð4AÞ�: ð83Þ

Since 2A is a phase [see (73)] the period equals π (and not
2π), and this is important for the stability of domain walls.
For axion dark matter scenarios this stability is usually a
problem, as it could lead to an overclosure of the Universe,
but it is not a problem for the present scheme because the
domain walls start to have a significant effect only in the

present era, when the cosmological constant starts to
dominate the evolution of the Universe.
We now assume that the domain wall connects two

consecutive minima of the potential (along the z direction),
for example 0 and π. Neglecting time derivatives we have to
solve the equation (where the prime denotes derivative with
respect to the physical coordinate z)

A00ðzÞ −m2
A

4
sinð4AðzÞÞ ¼ 0 ð84Þ

with Að−∞Þ ¼ 0 and Að∞Þ ¼ π/2. The solution reads

AðzÞ ¼ arctanðemAzÞ: ð85Þ

We can calculate the surface energy of the domain wall by

σ ¼
Z

∞

−∞
dz2v2ϕ

��
dA
dz

�
2

þm2
A

8
ð1 − cos 4AÞ

�
ð86Þ

with the result

σ ¼ 2mAv2ϕ: ð87Þ

Assuming mA ∼ 10−3 eV and vϕ ∼ 2 TeV we get σ ∼ 2×
1035 eV/m2. Assuming that these domain walls are very
large, and that there is one wall per Hubble volume, the
energy density thus comes out to be

ρðtÞ ∼ σHðtÞ ∼ t0
t
ðGeV/m3Þ ð88Þ

where t0 ∼ 4 × 1017 s is our present time. Remarkably, we
thus arrive at the right order of magnitude for the present
density of dark matter

ρDM ≈ 1 GeV/m3: ð89Þ

The presence of one or several large domain walls at the
time of last scattering could have observable impact on
the CMB spectrum especially for low l (quadrupole) so
possibly the domain walls should start decaying into
(cold) minorons before the last scattering. Then the above
estimate should be slightly changed since the energy
density of particles decreases faster than that of domain
walls. However, this topic requires further study for a more
precise analysis.
One can also note that the self-interaction of massive

minorons via interactions with right-chiral neutrinos
(via box diagrams à la Euler-Heisenberg) gives similar
values as would be required by the Steinhardt-Spergel
analysis of dark matter in the Abell cluster [92]. The values
for the cross section are in the region σ ∼mA ×
10−24�1 cm2GeV−1 which gives (for mA ∼ 10−3 eV) σ ∼
10−36�1 cm2 i.e in the region of cross sections mediated by
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the exchange of heavy neutrinos. In conclusion, and subject
to our assumptions on quantum gravity induced mass
generation for the minoron we have shown that the
CSM can offer a viable scenario for the explanation of
dark matter.

V. OUTLOOK

To conclude we summarize the main features of the CSM
elaborated in this paper:

(i) There is a range of parameter values for which the
CSM is perturbative and the electroweak vacuum
remains stable for all energies up to MPL.

(ii) The main prediction of the model is a new and
almost sterile scalar resonance which comes with
low mass heavy neutrinos, but nothing else.

(iii) All new degrees of freedom are very weakly coupled
to SM matter.

(iv) There exist Casa-Ibarra matrices RCI for which
resonant leptogenesis is possible.

(v) The pseudo-Goldstone boson associated with the
breaking of (B − L) (minoron) is a possible dark
matter candidate, whose nonvanishing mass is an
indirect manifestation of quantum gravity.

We stress again that these properties set the CSM apart
from many other current proposals (such as SUSY Higgs,
two doublet models, vectorlike models) where neutral
scalars are usually accompanied by other and “nonsterile”
charged excitations, and which would all have to be
produced together. So, barring the inconvenient possibility
that a new scalar could escape detection because the
associated resonance could be too narrow for the LHC
energy bins, the acid test of the present model will be
whether or not the new scalar shows up in future LHC
searches with increased luminosity. In this way the model is
eminently falsifiable.
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APPENDIX: FIELD OPERATORS FOR MASSIVE
AND MASSLESS NEUTRINOS

Since the use of the Weyl fields in S-matrix calculations
is perhaps not so common, for readers’ convenience we
here give the explicit decompositions of the corresponding
field operators in terms of creation and annihilation
operators [see e.g. [38] for an introduction to SLð2;CÞ
spinor formalism]. These expressions can be derived for
instance following Weinberg’s procedure [93,94] (although
we use different normalization conventions), and they are
the ones used in the computation of the matrix elements

hhνjLY jNi and hhν̄jLY jNi required for the determination of
the CP asymmetries in (38).
For the massive case, and suppressing family indices, the

field operator N̄ ̇αðxÞ in the fundamental representation
takes the form

N̄ ̇αðxÞ ¼
X

r¼�1/2

Z
d3p

2ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
× fu̇̄αr ðpÞbrðpÞe−ipμxμ þ v̇̄αr ðpÞb†rðpÞeipμxμg;

where pμ ¼ ðp0;pÞ is on shell: p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. The

normalization of creation and annihilation operators can
be read off from the anticommutator

½brðpÞ; b†sðqÞ�þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
δrsð2πÞ3δð3Þðp − qÞ:

The two-component spinor wave functions u̇̄αr ðpÞ and
v̇̄αr ðpÞ can be likewise read off as the column vectors

ūðpÞ ¼ Bp; v̄ðpÞ ¼ Bpϵ
−1 ðA1Þ

from the 2 × 2 matrix

Bp ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmþ p0

p
Þ ½p

μσ̄μ þm1�; ðA2Þ

where ϵ−1 is the inverse antisymmetric metric, and where r,
s ¼ �1/2 label the eigenvalues of J3 in the rest frame. The
conjugate Weyl spinor operator is obtained by taking the
Hermitian conjugate Nα ≡ ϵαβN̄ ̇β†.
These formulas are, of course, in complete accord with

textbook formulas in 4-spinor notation. More precisely,
combining Nα and N̄ ̇α into a Majorana spinor as in (22) we
reproduce the standard formula

ψNðxÞ ¼
X

r¼�1/2

Z
d3p

2ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
× fUrðpÞbrðpÞe−ipμxμ þ VrðpÞb†rðpÞeipμxμg;

ðA3Þ

with the 4-spinors U≡ ðvα; u̇̄αÞ and V ≡ ðuα; v̇̄αÞ obeying
the completeness relationsX

r

UrðpÞŪrðpÞ ¼ =pþmX
r

VrðpÞV̄rðpÞ ¼ =p −m; ðA4Þ

with the Weyl representation of Dirac matrices, see [38].
Although with this normalization the limit m → 0 is
nonsingular, a more physical choice of basis for massless
spinors corresponds to the helicity eigenstates, rather than

LEWANDOWSKI, MEISSNER, and NICOLAI PHYS. REV. D 97, 035024 (2018)

035024-18



just the formal limit of the above expressions. In this basis
we have for massless spinors

ν̄ ̇αðxÞ ¼
Z

d3p
2ð2πÞ3jpj ẇ̄

αðpÞ

× faþðpÞe−ipμxμ − a†−ðpÞeipμxμg:

Because of the degeneracy of the Weyl operator pμσ
μ in the

massless case there is now only one spinor wave function,
unlike for the massive case where there are two. This
helicity wave function satisfies the Weyl equation
pμσ

μ
α̇βẇ̄

βðpÞ ¼ 0 and obeys the completeness relation

ẇ̄αðpÞwβðpÞ ¼ pμσ̄
μ ̇αβ: ðA5Þ

The helicity eigenstates are

jνðpÞi ¼ a†−ðpÞj0i; jν̄ðpÞi ¼ a†þðpÞj0i ðA6Þ

whence a†−ðpÞ creates a helicity −1/2 neutrino, while
a†þðpÞ creates a helicity þ1/2 antineutrino. Notice also,
that the associated 4-spinors appearing in the resulting
decomposition of the Majorana field ψν in (22) are
consistent with the massless limit of (A4).
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