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Abstract
The x-ray free electron lasers can enable diffractive structural determination of protein
nanocrystals and single molecules that are too small and radiation-sensitive for conventional
x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray
pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general
x-ray imaging techniques, the minimization of the effects of radiation damage is of major
concern to ensure reliable reconstruction of molecular structure. Here we show that radiation
damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric
down-conversion and ghost diffraction with entangled photons of x-ray and optical frequencies.
We show that the formation of the diffraction patterns satisfies a condition analogous to the
Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several
Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of
radiation damage.

Keywords: x-ray quantum optics, diffraction imaging, atomic resolution

(Some figures may appear in colour only in the online journal)

1. Introduction

The advent of femtosecond x-ray free electron lasers (XFELs)
has enabled diffractive structural determination of protein
nanocrystals and single molecules that are too small and
radiation-sensitive for conventional x-ray diffraction [1–3].
Using x-ray pulses of ~10 fs, sufficient diffraction signals
could be collected before significant structural changes occur
in the sample [1]. Nevertheless, the electronic form factor

could be modified due to photoionization and electron cas-
cades caused by the intense x-ray pulse [4, 5]. For general
x-ray imaging techniques, minimizing the effects of radiation
damage is of major concern to guarantee a reliable recon-
struction of the structure. Here we show that the radiation
damage free diffraction is achievable with an atomic spatial
resolution by using x-ray parametric down-conversion
(XPDC) [6–8] and ghost diffraction with entangled photons
of x-ray and optical frequencies. An intense hard x-ray pulse
generated by an XFEL is used to pump a nonlinear medium,
and is down-converted to two-photon pairs that consist of an
x-ray and an optical photon with wavelengths lX and lo,
respectively. The optical photons are sent to illuminate the
sample crystals or molecules, and the reflected photons are
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collected with a bucket detector DA. The x-ray photons
entangled with the optical photons travel a certain distance,
and are captured by a pixel photon counting detector DB.
Based on the basic principle of ghost imaging [9–14], the
output pulses of the bucket detector DA and the pixel detector
DB are sent to a coincidence circuit with certain time gate for
counting the joint detection of the two-photon pairs.

We show here that diffraction patterns can be formed by
joint detection, and we illustrate that the formation of dif-
fraction patterns satisfies a condition analogous to the Bragg
equation with a resolution that could be as fine as the lattice
length scale of several Ångstrom. Because the samples are
illuminated by low energy optical photons, they can be free of
radiation damage. The ultrabright intensity of XFELs could
be crucial for realization of the proposed scheme to ensure
sufficient two-photon flux and signal strength. Since the
diffraction pattern formation is based on photon counting, the
requirement for signal intensity is benign, we also show
that the modified Bragg condition of the proposed ghost
diffraction method can be satisfied with feasible experimental
parameters.

2. Methods

In the proposed ghost diffraction scheme, optical photons and
x-ray photons from XPDC are directed to illuminate a crystal in
the optical arm and form diffraction patterns in the x-ray arm
(figure 1). Without loss of generality, we assume that the signal
photon has an optical wavelength of l l=s o, and the idler
photon has an x-ray wavelength of l l=i X . The physical
mechanism of the two-color entangled ghost diffraction can be
understood from the particle nature of the optical and x-ray
photons and their position-momentum entanglement. The optical
photon of frequency ω scatters with the atoms in a nanocrystal
or a molecule, and experiences momentum transfer


Q, with

frequency independent Thomson scattering cross section

q= +s
W


( )∣ ( )∣( ) f Q1 cosQ rd

d 2
2 2e

th

2
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photons are unpolarized, where re is the classical electron
radius r 2.82e fm, and


( )f Q is the form factor. The elastic

Rayleigh scattering of optical photon with the cross section
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is

equivalent to the dispersive corrections of form factor in the
x-ray regime (see explanation in appendix A), which can be used
for the phase retrieval in crystallography [15]. For photons as
particles, the probability of reflection from an atom is in fact on
the similar order of magnitude for the optical and x-ray photons.
Without considering the molecular form factor of


( )f Q , we

could model the form factor of a crystal as periodic distributions
of point scatterers as d p= - -

  
( ) ( )f Q r Q G2 ,e hkl where


Ghkl

is the reciprocal vector with =


∣ ∣Ghkl d

1

hkl
. However, for the

scattering of an optical photon on atoms, the momentum transfer
q f q f q q= - -w

( )Q 2 sin cos cos , sin cos , sin ,
c

which is
proportional to the incident optical photon energy, is too small to
form interference patterns at non-imaginary reflection angles
because





Q Ghkl. Thus, Laue diffraction requires x-ray pho-

tons of wavelength l < d2 .
In the entangled two-photon ghost diffraction, the

momentum transfer can be effectively magnified from


Q to
m̃Q with a magnification factor of ~m̃ 103. The mechanism
of momentum transfer magnification can be understood by a
simple quantum model of the ‘unfolded’ two-photon ghost
diffraction [17] (see figure 2). In this simplified model, we do
not consider the transverse momenta of the down-converted
photons. The photon fields on detectors DA and DB can be
written in this case as
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where âlp, =l 1, 2, =p s i, are the annihilation operators
of signal and idler photons at position 1, 2 in figure 2. The

Figure 1. Proposed layout for two-color two-photon ghost diffraction
using entangled x-ray and optical photon pairs from XPDC The
optical photons with wavelength lo scatter off lattice planes with
Miller index [ ]hkl and inter-plane distance dhkl, and are detected by
the bucket detector DA. The distances from the crystal plane to that
XPDC output plane and the plane of bucket detector is ds and Ls
respectively. The entangled x-ray photons with wavelength lX travel
a distance of Di to the pixelated detector DB. Correlation
measurement is carried out for the detectors DA and DB.

Figure 2. Unfolded two-photon diagram of the proposed exper-
imental setup. The optical paths of the x-ray and optical photons are
effectively concatenated at position 1 or 2 on the XPDC plane,
becauseD + =

 
( )k k 0s i and r rD - =

 ( ) 0s i are fulfilled at the same
time for the two position-momentum entangled particles [16].
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two-photon state Yñ∣ can be expressed as

Yñ = ñ + + ñf f∣ ∣ [ ˆ ˆ ˆ ˆ ]∣ ( )† † † †a a a a0 e e 0 , 2s i s i1 1
i

2 2
i1 2

where ò is the two-photon amplitude, and we can assume
f f=1 2 since the pump beam from an XFEL or a synchrotron
must be transversely coherent at position 1 and 2. The two-
photon interference is formed due to the uncertainty in the
birth place of the two-photon pair (either at position 1 or
2 in figure 2), and the property of the two-photon entangled
state permits the uncertainty relation D + =

 
( )k k 0s i and

r rD - =
 ( ) 0s i to be satisfied at the same time [16], which

guarantees the effective operation to concatenate the optical
paths of the x-ray and optical photons exactly at the point
of their birth positions. To keep the physical picture and
expression simple for this illustrative discussion, we assume
that the refractive index ~n 1. It is straightforward to
find the second-order coherence function µG cosAB

2 2

- + -p
l

p
l

⎡⎣ ⎤⎦( ) ( )r r r r ,A A B B1 2 1 2
s i

and Bragg peak is formed

under condition

q
l
l

l+ - =( ) ( )d r r n2 sin . 3s

i
B B s1 2

In equation (3), the modified Bragg condition can be satisfied
despite ld s, because the optical path length difference can
be compensated by that of the arm of idler photons magnified by
a factor l

l
s

i
on the order of~103. From the discussion above, we

have an effective form factor d p= - -
  

( ) ( ˜ )f Q r mQ G2 ,e hkleff
which is able to produce diffraction patterns for reciprocal
vectors on the 1 Å scale.

3. Results

To establish the magnification effect on a solid basis, we carry
out quantitative analysis of the resolving power of the pro-
posed two-color ghost diffraction method. The refraction
effect could be taken into account by employing the dyna-
mical theory of diffraction, which treats the refraction expli-
citly and results in a shift of Laue point that depends on the
refractive index of the crystal [18]. Denote the refractive
index as w = - ¢ - ¢¢( )n n n1 i , where ¢ <n 0 for optical
photons, the refractive index has a relation with the electric
susceptibility w pc= +( )n 1 4 [19], and χ can be deter-
mined by ab initio means for each atomic species at a given
wavelength. From the detailed derivation presented in
appendix B (equations (B.1)–(B.24)), as the optical photons
scatter off lattice planes of inter-plane distance =d dhkl , the
condition for the x-ray photons to form peaks in the diffrac-
tion pattern is

q

q pc
l

- ¢

+
=

˜ ( ) ( )md n
n

2 sin

sin 4
, 4s

2

2

for an integer n. θ is the reflection angle of the optical photon
from the lattice planes of a Miller index [ ]hkl (figure 3).
The magnification factor m̃ is found to be (equation (B.23)

in appendix)

r
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D
1

1
, 5B
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where α is defined as a= l
l

d

D
s

i

i

s
, and rB is a position vector in

the plane of the pixel detector. The magnification factor m̃
guarantees that the modified Bragg condition (equation (4))
can be satisfied in the case of ld s. Note that the refraction
effect could be neglected for the coherent diffractive imaging
of single molecules, as shown in appendix C.

The two-photon coincidence counting rate of the bucket
detector A and the pixel detector B can be written as [10, 12],

òr s r= r
- - + + ( ) ( ) [ ˆ ˆ ˆ ˆ ˆ ]
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where ( )S t t,B A is the coincidence gating function that van-
ishes unless  -t t T0 B A , and describes the finite time
gate of a joint detection of a two-photon pair [10]. rA is a
position vector on the plane of the bucket detector A, which
has an area sA. And sB is the area of the pixel detector B. r̂ is
the density operator of the two-photon state on the output
plane of the nonlinear crystal. +( )Ej , =j A B, is the positive

frequency part of the photon field, and =- +( )( ) ( ) †E Ej j . r  [ ]tr
A

denotes the trace, i.e. coherent summation over rA. RcT gives
the pixelwise number of counted photons in one joint mea-
surement. The photon fields at the plane of the bucket detector

A and the pixel detector B,
+ˆ( )

EA and
+ˆ ( )

EB , can be expressed as

å
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where = +z d Ls s s and =z Di i are the full optical path
lengths for the signal and the idler photon, k


is the transverse

momentum of the photon field with k k= - +
 ˆk k e .z

2 2


ˆ ( )†a kp and


ˆ ( )a kp are creation and annihilation operators of the

Figure 3. Sketch of the proposed experiment. The lattice plane of the
sample forms an angle of θ with the incident optical photon in the
arm A. The relative angle of the x-ray photon (arm B) with the pump
photon is determined from the phase-matching diagram, + =

 
k ks i

+
 
k Gp , where


G is a reciprocal lattice vector orthogonal to certain

atomic planes of a nonlinear crystal;

ks,


ki and


kp are the wave

vectors of the signal, idler and pump fields. And = +z d Ls s s,
=z Di i are the optical path lengths of the signal and idler photons.
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signal and the idler photon field in a specific mode at the
output plane of the nonlinear crystal, with the commutator
relation, d d d¢ = w w k k¢ ¢

 
 [ ˆ ( ) ˆ ( )]†a k a k, .p q p q, , , k w r

 ( )g z, , , is the
Greenʼs function for a specific mode of the photon field.
Assume two atoms in two lattice planes of Miller index [ ]hkl
with distance =d dhkl are in a plane a, ra is a vector in this
plane, and the photon–atom scattering amplitude is r( )t a , the

photon fields
+ˆ( )

EA and
+ˆ ( )

EB at the planes of detectors can be
expressed as,

ò ò
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Using first-order perturbation theory, the two-photon ampl-
itude from an XPDC process is (equation (B.10))

p gd n n

d k k n

á Yñ = - +

´ +
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where Yñ∣ is the two-photon state vector, and g =
c W W( )E L

U U

T T c

n n2
p

s i

s i s i

s i

2 2

, in which c( )2 is the second-order suscept-

ibility of the nonlinear crystal. Uj are the group velocities of
the signal and the idler photons inside the nonlinear crystal of
length L, Tj are their transmission coefficients, and Ep is the
electric field strength of the pump field. Ws and Wi are the fre-
quencies of the signal and the idler photons that satisfy the phase-
matching condition w w - W W - W W =( ) ( ) ( )n n n 0.p p p s s s i i i

Provided that the modified Bragg equation (equation (4)) and the
phase-matching condition are satisfied, diffraction patterns can be
formed from the coincidence photon count in a joint measure-
ment of the bucket detector DA and the pixel detector
DB such that the reflection angle θ is measured with the
detector DA, and the corresponding intensity is measured
with the detector DB from coincidence counts on pixels of a
given radius r∣ ∣B . For the schematic configuration in figure 1, the
Bragg peaks are manifested as modulation of the coincident
counting rate at rB in the plane of the pixel detector with a
background (see equations (B.26), (B.27) in appendix)
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where γ and Dsi are parameters of the XPDC process (see
appendix B), = -Dsi U U

1 1

s i
, and t t t= -BA B A with

t = -ti i
r

c
i , =i A B, . y0 is the Thomson scattering amplitude

of an atom in the lattice with the optical photons. And

= +l
l

R D ds i s
i

s
is the effective optical path length from the

sample to the pixel detector B. We assume the phase-matching
condition to be W W + W W =( ) ( )n n cks s s i i i p, and ignore


G for

simplicity, which can be restored for a given experimental con-
figuration. The frequency of the signal field is w n= W +s s s,
with ns characterizing the deviation from the central frequencyWs

of the phase-matching condition, and n n= -s i.
For realistic experimental consideration, we assume that

the entangled photon pair consists of an x-ray photon of
energy 3.1 keV (l = Å4i ) and an optical photon of energy of
3.1 eV (l = Å4000s ). Nonlinear x-ray process with energy
difference of two-photon pairs on such scale was experi-
mentally demonstrated [6]. Assume the sample is placed at a
distance of 1cm from the XPDC source, the reflection angle
of optical photon is measured on detector DA, and the x-ray
photon in the two-photon pair is measured by the pixels with
radius of 1 m on the pixel detector DB placed at a distance of
10 m. In the XFEL nanocrystal diffraction experiment, virtual
powder diffraction patterns are formed for various reflection
angles. The single photons from the XPDC process have a
certain angular spread [20]. It is practically advantageous to
determine the actual reflection angle θ by a pixel detector DA,
although in an idealized setup the reflection angle can be
uniquely determined by the geometrical configuration of the
photon source and a single crystal, for which a bucket
detector DA is sufficient. The modified Bragg equation gives
the ghost diffraction pattern in figure 4. The resolution
requirement can be satisfied with the state-of-the-art pixel
pnCCD detector that can achieve m75 m pixel pitch [1]. The
requirement for the spectral and angular resolution of the
diffractometer is determined by q q+ D = l

l
D Dcotd

d
s

s
, which

is on the same scale as the conventional Laue diffraction. For
nanocrystals with the size Lc, the analogous Scherrer equation

Figure 4. Simulated two-color two-photon ghost diffraction from a
body centered cubic (bcc) crystal with lattice constant
= = = Åa b c 4 . Optical photons of 3.1 eV are used to illuminate

the sample crystal. Miller indices are labeled for the Bragg peaks.
The broadening of Bragg peaks is determined by the Scherrer
equation (equation (11)) for a nanocrystal of 100 nm size and
refractive index =n 1.2.
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is found to be (see appendix D, equations (D.1)–(D.4))

l q pc

q q q pc
=

+

+ + ¢

( )
˜ ( )

( )B
L m

2 sin 4

sin cos sin 4
, 11s

c
n

2

2
2

3
2

which determines the width B of Bragg peaks. As shown
figure 4, the width of Bragg peaks is on the same scale as
Laue diffraction and is resolvable by the state-of-the-art dif-
fractometer. The optical photon energy of 3.1 eV may fall
below band gap of the crystal, thus significant absorption can
be avoided. The proposed two-color entangled ghost dif-
fraction approach could eventually achieve atomic resolution
without radiation damage.

4. Discussion

It is important to notice, as the photon behaves as a point
particle in the elastic scattering, its wavelength is irrelevant to
the effective size of the photon, thus the optical photon does
not smear out the crystal structure with a period that is much
shorter than the photon wavelength. In fact the wavelength
and the size of a quantum object reflect its wave-like and
particle-like natures respectively, and should be distinguished
one from another. It is known that the intensity of Bragg
peaks should be reduced due to the dynamic structural factor

w


( )S Q, s by a factor of - á - ñ
   { }[ · ( ( ) ( ))]Q u t uexp 0R T

1

2 0
2

[21], where
  ( )u tR and

 ( )u 00 are the displacement vectors
around


0 and


R , and


R is the lattice vector, á ñ T denotes the

thermal expectation value. Due to the small momentum
transfer


Q, the reduction of Bragg peak intensity in the

entangled ghost diffraction is substantially weaker than that of
the x-ray Laue diffraction.

Because the frequency of the optical photon is much
lower than the x-ray photon, w wo X, the experiment would
suffer from strong absorption due to scattering of photon with
bound electrons. Thus the optical photons in the vacuum
ultraviolet regime is not favorable for the proposed ghost
diffraction method. The entangled ghost diffraction scheme
using optical photons to interact with the crystal could also
potentially suffer from the skin effect when the samples are
good conductors like copper, which has ∼3 nm skin depth for
optical photons in the visible and ultraviolet regime, and
optical photons can only penetrate several uppermost lattice
planes. In this sense, the proposed ghost diffraction scheme is
suitable for diffractive structural determination of insulators,
some semiconductors and proteins, which should have poor
conductivity. For good conductors, our method is limited to
the cases of thin and homogeneous samples, and the study of
surfaces.

In order to achieve sufficient photon counting rate, it is
crucially important to have an entangled two-photon source with
high flux using x-ray quantum optical techniques [22]. Because
the XPDC and the sum-frequency generation processes [6] are
subject to the same nonlinear susceptibility, we can expect the
feasibility of two-photon pair production with a similar l

l
s

i
ratio.

Consider the XPDC process w w w +X X o3 2 1, which is phy-
sically equivalent to the Thomson scattering of x-rays by an
atom illuminated with an optical field, Doppler-shifted sideband
is induced by this process [23]. As elaborated in appendix E.1,
the XPDC cross section from nonlinear crystal scales as

wµs
W

-( )
,o

d

d

2
1
1 and especially favors down-conversion to low

energy optical photons. Using a semiclassical treatment [23, 24],
we estimated the cross section of the instance in this work to be
~ ´1.9 10 fm3 2 (see appendix E.1), which can be comparable
to that of the Thomson scattering. We also show in appendix E.1
that the quasi-degenerate XPDC to pairs of two x-ray photons
has a cross section that is four orders of magnitude lower
than the XPDC to pairs of x-ray and optical photons. Moreover,
the strong absorption of x-ray photons by the diamond crystal
[8] and the radiation damage caused deterioration of phase-
matching condition can significantly suppress the XPDC
efficiency.

To overcome this problem, we could use radiation-hard
multilayer metamaterials to enhance quantum efficiency of
XPDC, or use compressed free electrons pulses directly as
nonlinear medium for XPDC by the three-color Kapitza–
Dirac-like mechanism (figure 5) [25]. Unlike SPDC of optical
photons, which stems from the oscillation of bound electrons
in the anharmonic potential around the atomic nuclei, the
electron motion that dominantly contributes to XPDC is the
figure-eight motion driven by the Lorentz force of electro-
magnetic field of intense x-rays, because the x-ray light has
much smaller ponderomotive potential than the optical light.
Since the figure-eight motion is in fact the same for free

Figure 5. Sketch of the seeded Kapitza–Dirac-like XPDC process
using single electron as the nonlinear medium. An x-ray photon of
wX3 is down-converted to two photons of frequencies wo1 and wX2, as
the electron is deflected with Bragg angle qB in coincidence. For the
use of ghost diffraction, the down-converted photon pair can be then
spatially separated by a metal foil that reflects the optical photon.
The collinear geometry of kX3 and (ko1, kX2) can be loosened for more
convenient experimental setup, provided the phase-matching con-
dition is satisfied.
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electrons and electrons in nonlinear crystal, we can use single
electrons directly as the nonlinear medium for XPDC. In
appendix E.2, we used perturbation theory [25–27] to find the
probability of the desired XPDC process under the phase-
matching condition = +

  
k k kX o X3 1 2 as

w w w
w w w

d=( ) ( ) ( )P
v E E E

c
E, ,

2
. 12o X X

z o X X

o X X
fi1 2 3

1 2 3
2

1 2 3

2

In the three-color Kapitza–Dirac-like process, the electrons
are scattered as ñ  ñ =  + + ñ

     
∣ ∣ ∣ ( )p p p k k k ,i f i o X X1 2 3

d d= -( ) ( )E p p2 2fi f i
2 2 ensures the energy conservation of

the electrons, and vz is the initial velocity of the electrons
along the z axis. With electric field intensity ~ -I 10 W cm18 2

which is well below the QED critical intensity, and moderate
electron velocity in non-relativistic regime, the XPDC prob-
ability could reach -10 5.

5. Conclusions

In conclusion, we have theoretically described a mechanism
to realize diffraction with atomic resolution by two-color
entangled ghost diffraction. Because the sample is irradiated
by photons of optical wavelength, the proposed scheme can
be free of radiation damage by x-ray photons. In principle the
proposed scheme could be applied for single molecules to
determine the molecular structure using phase retrieval tech-
niques of coherent diffractive imaging. Moreover, achieving
resolution on a much smaller length scale than the wavelength
of the illuminating photons using entangled state of particles
opens up the possibility for future development of quantum
optics based imaging techniques using various types of
entangled particles, such as entangled photon-electron, elec-
tron-electron pair or electron-anti-neutrino pair from β-decay.
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Table 1. Symbol table.

Symbol Explanation

Rc Counting rate of joint photon detection
Yñ∣ Two-photon state
r̂ Density operator of the two-photon state on the output

plane of the nonlinear medium
+ˆ ( )

EA Positive frequency part of the quantized photon field on
the plane of bucket detector A

+ˆ ( )
EB Positive frequency part of the quantized photon field on

the plane of pixel detector B
-ˆ ( )

EA Negative frequency part of the quantized photon field
on the plane of bucket detector A

-ˆ ( )
EB Negative frequency part of the quantized photon field

on the plane of pixel detector B
ˆ†ap(

k ) Photon creation operator for specific mode


k and

channel p, =p s i,
âp(

k ) Photon annihilation operator for specific mode


k and

channel p, =p s i,
ks Wave vector of the signal photon of optical wavelength
ki Wave vector of the idler photon of x-ray wavelength
ks


∣ ∣ks

ki


∣ ∣ki

k


s Transverse momentum of the signal photon
k


i Transverse momentum of the idler photon
Q Momentum transfer of the photon–atom scattering
ls Wavelength of the signal photon
li Wavelength of the idler photon
rA Position vector on the plane of bucket detector A
rB Position vector on the plane of pixel detector B
ra Position vector on the crystal plane of specific Miller index
rs Position vector for the signal photon on the output

plane of the nonlinear medium
r ¢

s Position vector for the idler photon on the output plane

of the nonlinear medium
d Distance vector between two atoms in the crystal plane

of specific Miller index
d


∣ ∣d

ds Distance from the output plane of the nonlinear med-
ium to the lattice plane of the crystal

Ls Distance from the lattice plane to the bucket detector A
Di Distance from the output plane of the nonlinear med-

ium to the pixel detector B
Rs + l

l
d Ds i

i

s

zs +d Ls s

zi Di

ws Frequency of the signal photon
wi Frequency of the idler photon
Ws Central frequency of the signal photon subject to phase-

matching condition
Wi Central frequency of the idler photon subject to phase-

matching condition
UAB Joint photon detection amplitude

r r ( )V ,A B Interference kernel in the joint photon detection amplitude
a b(∣ ∣ )G , ab ∣ ∣ei 2

2

δ Difference of optical path lengths
θ Reflection angle of the optical photon from the crystal
y0 Photon–atom scattering amplitude
m̃ Magnification factor
 q( ) Line shape of Bragg peak with reflection angle θ

Lc Length of a nanocrystal
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Appendix

The appendix is divided into the following sections.
Appendix A explains the correspondence of the Thomson and
the Rayleigh scattering in the x-ray and optical regime.
Appendix B describes the derivation of the modified Bragg
equation (equations (4) and (5) of the main text). Appendix C
illustrates a simple kinematic description of Laue diffraction
for the completeness of the theory presented in appendix B. In
this section, we also present a Gedanken experiment of
coherent diffraction imaging from a two-electron hydrogen-
like molecule. Appendix D treats the broadening effect of
Bragg peaks and derives the modified Scherrer equation.
Appendix E elaborates the estimation of XPDC efficiency for
the two proposed schemes, the one using diamond crystal and
the another using single electron as the nonlinear medium.
The symbols used in the appendix are listed in table 1.

Appendix A. Thomson and Rayleigh scattering in the
optical and x-ray regime

In this section we elaborate the correspondence of Thomson
and Rayleigh scattering in the x-ray and optical regimes. We
show that the frequency independent Thomson scattering
stays intact for both regimes, and the frequency dependent
Rayleigh scattering in the optical regime is equivalent to the
dispersive corrections of form factor in the x-ray regime.

We apply the Hamiltonian for photon-electron interaction
under velocity gauge [19]

*

*
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 
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H
e

m V
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e
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e

1
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e e , A.1

I
k
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I
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k
k r
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k r

1
,

3 i

i

2
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, , ,

3

i i

i i

for the
 

·p A and A2 type interactions respectively. Ŷ(†)
and

ˆ(†)a are the field operators for the electron and photon fields.
k , ω,  are the momentum, frequency and polarization vector
of the photon. V is the quantization volume.

The A2 type interaction from ĤI2 describes the Thomson
scattering [19]. Assume the initial and final states are



ñ = Y ñ ñ

ñ= Y ñ - ñ 

∣ ∣ ∣

∣ ∣ ˆ ∣ ( )†

I N

F
N

a N
1

1 , A.2

a

a kf f

where ñ∣N denotes the Fock state of the photon field and Y ñ∣ a is
the electronic eigenstate of the molecule. Note in the sum-
mation *    å +¢ ¢

-      
 

 
 

( ˆ ˆ )† · † ·a ae ek k k
k r

k
k r

, , ,
i i  ¢ +¢ ¢
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 

( ˆ ·a ek
k ri

*


¢
¢ ¢

- ¢
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 
ˆ )† ·a e

k
k ri for =

  
k k k,i f , ¢ = ¢ ¢  

k k k,i f , the terms of

nonzero contribution to the transition is  
+   [ ˆ ˆ †a ak ki i f f

 
-   
  

ˆ ˆ ]† ( )·a a e .
k k

k k ri
f f i i

i f The transition matrix element can be

calculated as

*

*

 

 




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  ò

p
w w

d d

p
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+ ñ áY Y Y Y ñ
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-
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

  
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( · )
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·
( )

( )

†
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M
e
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N a a a

N r r
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1 2

d e

2
,

A.3

I
i f

i f
k k k

k k a
k k r

a

i f
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2

2
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2
0

f f f f i i

f i f i
i f

where the form factor is

ò
ò r

= áY Y Y Y ñ

=

  



 

 

( ) ∣ ˆ ( ) ˆ ( )∣

( ) ( )

( ) † ·

·

f Q r r r

r r

d e

d e A.4

a a
Q r

Q r

0 3 i

3 i

for = -
  

Q k ki f . Fermiʼs golden rule gives the elastic
Thomson cross section for w w w= =i f

* 
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2

2
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2

2

1 1
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2

2

1
d

d
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1

2
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A.5
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I f i

f f I f i

f f I f i

I
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i f
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2
2
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2

2
2

3 3
2

2
2
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2

2
2
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2 4 2 2
2

4

2 4
0 2 2
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f

f

where =J c V is the normalized photon flux per unit area
and unit time. Thus the Thomson scattering remains the same
for optical and x-ray photons because it is independent of the
photon frequency.

Next we show the equivalence of Rayleigh scattering in
optical regime to the dispersive correction of form factor

w w¢ + ¢¢( ) ( )f fi in x-ray regime, such that the complete form
factor is w w w= + ¢ + ¢¢

 
( ) ( ) ( ) ( )( )f Q f Q f f, i0 . In the x-ray

regime, the dispersive effects are used as a solution to the
phase problem in crystallography [15, 28].

The Rayleigh scattering is described by the second-order
interaction of

 
·p A type. The corresponding transition matrix

element is
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where Y ñ∣ r are the virtual states for the second-order transition.
The dispersive corrections follow the standard definition in
x-ray physics by decomposing the terms in the bracket of
equation (A.6) using the identity


= -

+
Pr

x x

1

i

1 pd ( )xi
[15, 19].

It can be shown that the matrix element of
 

·p A interaction
(equation (A.6)) relates to the classical Rayleigh scattering cross
section in the optical regime, which has the w w( )0

4 dependence
on the photon frequency. For this purpose, we reduce the model
to a two-level system such that the classical natural frequency
w0 can be defined through w = -E Er a0 , and assume dipole
approximation 

 ·e 1k ri . Since w w 0, we make expansion

+ = + +
w w w w w

w
w+ -

,1 1 1

0 0 0

2

0
3 and insert the expansion into

equation (A.6), the matrix element reduces to

*

*

















ò

ò

ò

ò

ò

ò

ò

ò

p
w

w

w
p w

w

w

w

=- áY Y Y Y ñ

´ áY Y Y Y ñ

+ áY Y Y Y ñ

´ áY Y Y Y ñ

- áY Y Y Y ñ

´ áY Y Y Y ñ

+ áY Y Y Y ñ

áY Y Y Y ñ +

   

   

   

   

   

   

   

    

⎧⎨⎩

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭

∣ ˆ ( ) · ˆ ( )∣

∣ ˆ ( ) · ˆ ( )∣

∣ ˆ ( ) · ˆ ( )∣

∣ ˆ ( ) · ˆ ( )∣

∣ ˆ ( ) · ˆ ( )∣

∣ ˆ ( ) · ˆ ( )∣

∣ ˆ ( ) · ˆ ( )∣

∣ ˆ ( ) · ˆ ( )∣ ( )

M
e

mV
r r p r

r r p r

r r p r

r r p r

e

mV
r r p r

r r p r

r r p r

r r p r

2 1
d

1
d

d

1
d

2
d

1
d

d

1
d . A.7

I a f r

r i a

a i r

r i a

a f r

r i a

a i r

r i a

1

2
3

0

3

3

0

3

2

0
2

3

0

3

3

0

3

Define the polarizibility tensor [29]

 åa
w w

=
áY Y ñáY Y ñ

-
«

 ∣ ∣ ∣ ∣ ( )p p2
, A.8
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we can write equation (A.7) in a simple form
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We take constant polarization approximation that a a=
« «

0 ,
and equation (A.9) gives
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Without considering interference between the two terms in
equation (A.10), it gives the Rayleigh scattering cross section of
second-order

 
·p A interaction in the optical regime, and recall

its form in the x-ray regime in equation (A.6),
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From equation (A.11) we could conceive the usage of Rayleigh
scattering in the entangled optical x-ray ghost diffraction, as it is
applied to the phase problem of x-ray crystallography.

Appendix B. Modified Bragg equation for two-color
two-photon diffraction

We assume paraxial approximation for the wave vectors of
modes ñ


∣k of the photon field, k k= - +

 ˆk k e ,z
2 2 with

k= w k
c

and k =
 ( )k k, , 0x y . The two-photon coincidence

counting rate of the bucket detector A and the pixel detector
can be written as [8, 10, 12],
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where ( )S t t,B A is the coincidence gating function that van-
ishes unless  -t t T0 B A and can be approximated as a
rectangular function, rA and rB are vectors on the plane of the
bucket detector A with an area sA, the plane of the pixel
detector B with an area sB respectively. r̂ is the density
operator of the two-photon state on the output plane of the

nonlinear crystal.
+ˆ( )

Ej , =j A B, is the positive frequency

part of the photon field, and =
- +ˆ ( ˆ )( ) ( ) †E Ej j . And r  [ ]tr

A

denotes the trace and coherent summation over rA. We
compute the photon fields at the plane of the bucket detector

A and the pixel detector B,
+ˆ( )

EA and
+ˆ ( )

EB as,

å

å
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where = +z d Ls s s and =z Di i are the full optical path
lengths for the signal and the idler photons.


ˆ ( )†a kp and


ˆ ( )a kp

are operators of signal and idler photon fields in a specific
mode at the output plane of the nonlinear crystal, with the
commutator relation,

d d d¢ = w w k k¢ ¢
 

 [ ˆ ( ) ˆ ( )] ( )†a k a k, . B.3p q p q, , ,

k w r
 ( )g z, , , is the Greenʼs function for a specific mode of

photon field.
Assume two atoms in two lattice planes of Miller index

[ ]hkl with the distance =d dhkl are in a plane a, ra is a vector
in this plane (figure B1), and the photon–atom scattering

amplitude is r( )t a ,
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With equation (B.6), we can obtain explicitly the second-
order coherence function in equation (B.1),
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where Yñ∣ is the two-photon state vector, and UAB is the joint
photon detection amplitude. Without loss of generality, we
ignore here the reciprocal lattice vector


G of the nonlinear

crystal, which can be added for a given experimental con-
figuration. Suppose the phase-matching condition is satisfied

for w w - W W - W W =( ) ( ) ( )n n n 0,p p p s s s i i i with = W
Kj c

j , and
deviation from the central frequency w n= W +j j j, =j s i, .
Frequency and spatial filtering guarantees n Wj j and
k  Kj j, thus we have
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Figure B1. Proposed layout for two-color two-photon ghost
diffraction using entangled x-ray and optical photon pair. rA, r


B, r

s,

ra are vectors on the planes of the bucket detector A, the pixel
detector B, the x-ray PDC source and atoms in the sample. The path
of the optical photon in the arm A is labeled by blue lines, with the
distance ds from the XPDC plane to the crystal plane and the
distance from Ls to the bucket detector A. The path of the x-ray
photon in the arm B is labeled by green line, with the distance Di

from the XPDC plane to the pixel detector B. kp, ks and ki are the
momentum vectors of the pump, the signal (optical) and the idler
(x-ray) photons.
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Taken equations (B.6) and (B.7), we have
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Using a first-order perturbation theory, the two-photon
amplitude from a PDC process is shown to be [12, 30],
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ceptibility of the nonlinear crystal, Uj is the group velocity of
the signal and the idler photons inside the nonlinear crystal of
length L, Tj are their transmission coefficients, and Ep is the
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where VQ is the quantization volume. We can write ¢U in
equation (B.9) as
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i , =i A B, , and ri are the

full lengths of the optical paths. Define the effective sample-
to-pixel detector path length = + l

l
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The amplitude for joint photon detection at the bucket
detector A and the pixel detector B is then
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where r r ( )V ,A B is the interference kernel of the joint photon
detection amplitude UAB that characterizes the formation of
the two-photon diffraction pattern. We now consider the
scattering of the optical photon with the atoms in a lattice by
integrating over ra, and the collection of optical photons at the
bucket detector A by integrating over rA in the detector plane,
because the bucket detector collects photons without distin-
guishing their actual position. We expect that diffraction
patterns can be formed on the image plane of the pixel
detector B, with intensity r( )I B and joint photon counting rate

r( )Rc B at rB

òr r r r r= ~    ( ) ( ) ( ) ( )I R T Vd , . B.16B c B A A B
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To obtain the analog of Bragg equation for the two-color
two-photon ghost diffraction, we consider two optical paths
A1 and A2 of the optical photons that scatter with two atoms in
adjacent lattice planes with distance ºd dhkl (figure B1). For
optical path A1, we have
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where δ is the optical path difference of the reflected optical
photon. The refraction effect could be taken into account by
employing the dynamical theory of diffraction, which treats
the refraction effect explicitly and results in a shift of Laue
point that depends on the refractive index of the crystal
[18]. Denote the refractive index as = - ¢ - ¢¢n n n1 i ,
where ¢ <n 0 for optical photons, the refractive index has a
relation with the electric susceptibility pc= +n 1 4 [19],
and χ can be determined by ab initio means for each atomic
species at a given wavelength. The optical path difference

could be then expressed as d = q

q pc
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2
. Note that the

refraction effect could be neglected for the coherent
diffractive imaging of single molecules, as shown in
appendix C. Thus the effective two-photon joint detection
amplitude consists of contributions from the two optical
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Take far-field approximation d  Rs that is similar to the
treatment of Laue diffraction (see appendix C), we have
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Analogous to the procedure in appendix C, we obtain the
modified Bragg equation for two-color two-photon ghost
diffraction from equation (B.21) by requiring the δ-depen-
dent phase to vanish, i.e.
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The modified Bragg equation can be then written as
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which reduces to the form q l=m̃d n2 sin s for n 1, i.e.
¢ n 1 and c  1. Provided that the modified Bragg con-
dition is satisfied, and define r =

 ( )x, 0B and =


( )d d, 0 for
simplicity, we find
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which forms a broad and flat background. Using equations
(B.1), (B.7), (B.15) and (B.25), we reach the final equation
for the counting rate of joint photon detection
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and the counting rate of joint detection can be written as

òr s
gy
l

t

p
l

=

´ -



⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( )

( )

R
T

t t S t t
D L R D L

R
d x

d

1
d d ,

2
rect

2

cos
2

2
.

B.27

c B A B B A B
si s s

AB

si

s s

0
2

2

Appendix C. Kinematic description of Laue
diffraction

In appendix B, the modified Bragg condition for the two-color
two-photon ghost diffraction is obtained from a kinematic
scenario. Here we show the conventional Bragg equation can
be obtained from similar procedure for the Laue diffraction
with monochromatic x-ray beam.

According to the Huygens principle, a light wave that
passes the plane z=0, and arrives at the plane = Dz can be
described as
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

p

D =

=-
D

- D
D

+

D +
D

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) { }

( )
( )

P x y

k

, , e e

i e

2
e . C.2

k

k k

k

k k x y

1 i
i

2

i
i

2

x y
2 2

2 2

The physical scenario of equation (C.1) reflects a typical state-
ment of Huygens principle, that (a) the Fourier transformation
on the z=0 plane makes a map to the momentum space

Figure C1. (a) Optical path diagram for Laue diffraction. O and ¢O are the positions of the atoms in adjacent crystal planes, θ is the reflection
angle, and δ denotes the optical path length difference. (b)Momentum relation of Laue diffraction. Δ is the optical path length of the incident
and scattered photons along their momentum vectors, and


q is the momentum transfer.
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 ( ) ( )E x y E k k, , 0 , , 0x y , (b) each Fourier mode ( )E k k, , 0x y

corresponds to a sub-source that travels as a plane wave
+ D( )e ek x k y ki ix y z to the = Dz plane, and (c) an inverse Fourier

transformation on the = Dz plane gives the image D( )E x y, , .
For Laue diffraction, we follow a standard treatment by con-
sidering two optical paths 1 and 2 for photons that scatter
off atoms in two lattice planes (figure C1(a)). Assume the photon
scatters off the two atoms O and ¢O with amplitude

y d= -( )( )t x d y, , 01
0 and y d= ( )( )t x y, , 02

0 , and denote
d q= d sin , we have

 ò

y
y
p

y d

y
p d

D = Ä - - D

=-
D

D = ¢ ¢ ¢ ¢

´

=-
D +

d

d
d

d
d

D
D

+ -

- - ¢+ ¢

D+
- D+

+

D+
D+

+

⎧
⎨⎪
⎩⎪

⎡
⎣

⎤
⎦

⎫
⎬⎪
⎭⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( ) ( )

( ) ( )

( )

[ ( ) ]

( )

( )
( )

( )
( )

( )

C.3

E x y P x y d

k

E x y x y x y

k

, , 0, ,

i e

2
e

, , e d d e , , 0

e e

i e

2 2
e .

k k x y d

k k x k y

k

k k

k

k k x y

1 0

0
i

i
2

2
1 i i

0

i
i

2

0
i 2 i

2 2

z x y

x y

2 2

2 2

2 2

Thus the intensity of diffraction pattern ( )I x at the detector plane
is given by
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For far-field diffraction dD  2 , we have
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using the relation a+ = a1 cos 2 cos2
2
.

The Bragg condition is obtained by requiring the
δ-dependent phase in equation (C.5) to vanish,

d q l= = ( )d n2 2 sin . C.6

We obtain the diffraction pattern on the detector at the dis-
tance Δ from the sample,
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with a period = lDa
d

2 .

Meanwhile, we show that the kinematic description is
consistent with the description of Laue diffraction in
momentum space. The form factor


( )f Q is the Fourier

transformation of the charge distribution. For simplicity, we
model the atoms as point charges, thus

ò d d= + - = +
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and the intensity of diffraction pattern is
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From figure C1(b), we can find that q
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Taken equations (C.9) and (C.10), we obtain the intensity of
diffraction pattern

p
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d
x4 cos , C.112 2

with a period = lDa
d

2 , which is consistent with equation (C.7)
from the kinematic description of Laue diffraction.

Intriguingly, the kinematic description of diffraction can be
directly used for a Gedanken experiment, which could reveal the
essence of the proposed ghost diffraction effect and the origin of
the subdiffraction limit resolution. The ghost diffraction relies
essentially on the optical Thomson scattering from the atoms in
molecules and crystals. Consider the Thomson scattering from a
hydrogen-like molecule with two electrons and bond length R of
several Ångstrom, it is equivalent to the coherent diffractive
imaging from this molecule [15]. Assume the incident light has
an optical wavelength λ, andl  R2 , the wave vectors of the
incident and the scattered wave are


k and ¢


k , for simplicity,

the polarization is perpendicular to the ¢
 

( )k k, plane, and we
take electrons as classical point charges in the simplest
case. As shown in appendix A, the expression of Thomson
scattering cross section remains intact at optical wavelengths.
The wave vector transfer of elastic Thomson scattering is

q= ¢ - = p
l

  
∣ ∣ ∣ ∣Q k k sin4 , and the scattering amplitude from
the two-electron molecule can be written as

= - +
   

( ) ( ) ( )·A Q R r, 1 e , C.12Q R
e

i

and the intensity is thus = =
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( ) ∣ ( )∣I Q R A Q R, , 2

+
 

[ ( · )]r Q R2 1 cos ,e
2 where re is the classical electron radius.

Because the scattering amplitude
 

( )A Q R, is a function of bond
length R, it carries in fact the structure information of the
molecule below the diffraction limit. The actual problem is that
for q= p

l
Q sin4 , no diffraction peak can be formed from the

intensity distribution
 

( )I Q R, as a function of the scattering
angle q2 , thus it is impossible to acquire the bond length R from
observables of measurement of first-order optical coherence. In
this sense, the essence of the ghost diffraction method is to
extract the quantity R with the entangled x-ray photon and the
corresponding measurement of second-order optical coherence,
as described in equation (3) of the main text. Note that a
more realistic treatment to consider the electrons as quantum
particles results in an atomic form factor in the expression of
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intensity distribution = +
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( ) ∣ ( )∣ [ ( · )]I Q R f Q Q R, 2 1 cos .2

For hydrogen-like wave function y =
p
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a
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3

we have

=
+
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f Q ,

Qa

1

1 2 2 2 where = ¢a a Z0 , a0 is the Bohr radius

and ¢Z is the screened nuclear charge. The conclusion from the
classical point charge electron model remains intact—Thomson
scattering at optical wavelength can carry atomic scale structure
information and give nonzero intensity at the detector plane.

Appendix D. Broadening of Bragg peaks

Analogous to the Scherrer equation, we calculate the width of
the Bragg peaks of the two-color two-photon ghost diffrac-
tion, which determines the resolution of the proposed scheme.
It is especially important for the application of XFELs to the
diffraction of nanocrystals with a finite size. Supposing a
nanocrystal of length Lc that contains N lattice planes with
inter-plane distance d, such that =Nd Lc, the accumulated δ-
dependent phase for the diffraction from N atoms can be
calculated using equation (B.21) as
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The width of the Bragg peak can be then found through zeros
of the line shape function as
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Defining the width of the Bragg peak as q= DB 2 , we find

l q pc

q q q pc
=

+

+ + ¢

( )
˜ ( )

( )B
L m

2 sin 4

sin cos sin 4
. D.4s

c
n

2

2
2

3
2

The factor l
m̃

s in the width of Bragg peaks guarantees that the
two-color two-photon ghost diffraction will have a similar
resolution as the Laue diffraction, i.e. on the atomic scale.

Appendix E. X-ray parametric down-conversion
(XPDC) through nonlinear crystal and single
electron

In this section, we present details of the two proposed
schemes for XPDC using conventional nonlinear crystals or

single electron as the nonlinear medium. We also present an
estimation of the efficiency from experimental consideration
for the XPDC of an x-ray photon of frequency wX3 to a pair of
x-ray and optical photons of frequencies wX2 and wo1. Both
schemes rely dominantly on the figure-eight motion of elec-
trons turned by Lorentz force. For the nonlinear crystal based
XPDC, the phase-matching condition relies critically on the
well-defined lattice vectors of reciprocal space, thus the
structural damage to the crystal inevitably causes deteriora-
tion of the XPDC process. Moreover the conventionally used
crystals, like diamond, can strongly absorb the photons and
substantially suppress the XPDC efficiency [8].

In contrast, the XPDC using free electrons and Kapitza–
Dirac-like scattering could have the advantage of being free
of damage to the nonlinear crystal by the intense x-ray light
and strong absorption of the photons inside of the crystal
medium.

E.1. XPDC using nonlinear crystal

To obtain an order-of-magnitude estimation of the XPDC cross
section by nonlinear crystalline medium, we use a semiclassical
formalism to calculate nonlinear response functions for x-rays
[24]. For electrons in the atom with density ρ and velocity
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v ,

we apply the equation of motion and continuity condition
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we obtain the
second-order nonlinear current for a general XPDC process
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where the second term vanishes in the case ^
 
E k1 2,

since  = =
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( · ) ( · )E E E k E 01 2 1 2 2 .
We now consider the XPDC of a hard x-ray photon to a

pair of x-ray and optical photons w w w +X o X3 1 2. Physi-
cally this process is equivalent to the Thomson scattering of
x-rays by an atom illuminated with an optical field, which
induces Doppler-shifted sideband [23]. Of the several terms
that occur in the second-order current (equation (E.2)) for the
nonlinear response of an atom to applied electromagnetic
fields of frequencies wo1, wX2, wX3, only one is of importance
to the present instance [23, 31],
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where w w w= +X o X3 1 2, and ρ is the electron density of the
crystal. Equation (E.3) describes the Doppler-shifted reflec-
tion of


E2 from electron that is driven by the optical field


E1

and moving with velocity

v1. For simplicity, we denote

thereafter w w=o1 1, w w=X2 2, w w=X3 3, the same notation
applies for the momentum k and electromagnetic fields E and
B. We expand the electron density in terms of reciprocal
lattice vector


Gm that r r= å
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( ) ·r em m

G ri m . The dominant
nonlinear current is

åw
r
w w

- w w+ + - +



     

( )
( · )

( )

( ) [( )· ( ) ]J
e

m

e e
e ,

E.4
m

m k k G r t2
3

2

2

2 1

1
2

2

i m1 2 1 2

where

ei is the polarization vector of the electric field


Ei. In

the general case, the relation between the nonlinear response
functions ( )R n and the corresponding nonlinear susceptibilities
c( )n is [24]
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For the quadratic process, the nonlinear current is

w w w w w wµ( ) ( ) ( ) ( ) ( )( ) ( )eJ R A A; , . E.6i ijk j k
2

3
2

3 1 2 1 2

Since w ~
w

( )A cE , by inspection the nonlinear response
function is
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in atomic units, where α is the fine structure constant and re is
the classical electron radius. The estimation of c( )2 in
equation (E.8) is consistent with the earlier work (see com-
ment 28 in [32]). Using Fermiʼs golden rule, we obtain the
differential cross section for XPDC as [24]
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Equations (E.8) and (E.10) give the scaling of cross section
as wµ1 1, which especially favors XPDC to entangled
photon pair with a low energy optical photon. For
the instance given in the main text of XPDC
w w w=  = + =( ) ( ) ( )3.1 keV 3096.9 eV 3.1 eV3 2 1 with
diamond crystal, we obtain c ~ ´ - -( ) 9.1 10 cm StC ,2 12 2 1

where StC is the Gaussian unit of StatCoulomb. The XPDC
cross section is

s
W

~ ´ = ( )
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d
1.9 10 fm 19 b, E.10

2
3 2

which could be comparable to the cross section of Thomson
scattering. Nevertheless, the low XPDC efficiency in actual
experiments could be attributed to the radiation damage
caused deterioration of phase-matching condition and strong
absorption of photons inside the crystal.

We also show here that the (quasi-)degenerate XPDC
w w w +2 2X X X [8] has cross section that is almost four
orders of magnitude lower than the XPDC to x-ray and
optical photons. In this case w w=3 and w w w= = 21 2 are
both in the x-ray regime, the dominant nonlinear current is

w r
w w w

r
w w w

´ ´


  




( ) ( )

( )

( ) ( )

( )

J
e

m

E k E

e k E E

m
. E.11

2
3

0
2

2
1 2 2

1 2 3

2 0
2 1 2

2
1 2 3

Similarly we obtain the nonlinear response function for
(quasi)-degenerate XPDC and the nonlinear susceptibility,

r

c
r
w

a r
=



 ( )

( )

( )

R
e

m c
e

m c

r

k

2
2

. E.12e

2
3

2 3

2
3

2 3

a.u. 2

3

Taken the experimental parameters in the earlier work [8],
w w w=  = + =( ) ( ) ( )18keV 9 keV 9 keV3 1 2 with diamond
crystal, we obtain c ~ ´ - -( ) 7.7 10 cm StC ,2 20 2 1 and the
XPDC cross section is

s
W

~ ´ - ( )
( )d

d
4.7 10 b, E.13

2
3

which is lower than the cross section in equation (E.10) by
four orders of magnitude.

E.2. XPDC using single electron

The XPDC process is essentially different from the SPDC
process of optical photons in the dominant nonlinear motion.
The nonlinear currents that stem from the quivering motion of
bound electrons subject to anharmonic potential and the
figure-eight motion driven by Lorentz force has the relation

l
p

w
w

=
( )

‐
( )

J

J d2
,anharmonic

2

figure 8
2

0
2

2

where d is the lattice spacing and w0 is frequency of atomic
resonance, l and w are the wavelength and frequency of the
driving light field, respectively. It is obvious that for x-rays
with w w 0, the nonlinear currents have the relation

( )
‐

( )J Janharmonic
2

figure 8
2 . The electrons in crystal behaves in fact

similarly as quasi-free electrons in the x-ray field, and follow
the figure-eight trajectory [33, 34]

f

f

= -
+

=
+

( )
x

a

k a

z
a

k a

8 1 2
sin 2

1 2
cos ,

2

2

2

as it is driven by a monochromatic x-ray field, where x and z
are the propagation and polarization direction of the x-ray
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light field, =a A

c
is the amplitude of dimensionless vector

potential of the light, and f w= -t kx is the phase. Note
that the phase is actually proportional to the proper time of the
co-moving system, f tµ , but not the time t in the lab system,
thus harmonics of all orders can appear from the figure-eight
motion. Based on the observation above, it is clear that the free
electrons can directly play the role of the nonlinear medium
without the anharmonic bound potential provided by atoms in a
crystal. Thus we could use the beam of single electrons for
XPDC, as depicted in figure 5. A linearly polarized x-ray field
(wX3, kX3) propagates from the right along the x axis, while two
seeding fields (wo1, ko1) and (wX2, kX2) propagate from the left
along the x axis, and w w w+ =o X X1 2 3, + =k k ko X X1 2 3. The
electric fields Eo1, EX2, EX3 are polarized along the z axis. The
figure-eight motion of the electron in the fields of Eo1 and
EX2 creates polarization along the x axis w =( )( )Px X

2
3

c w w w( )( ) E E; ,xzz X o X o z X z
2

3 1 2 1, 2, . Meanwhile the x-ray field of wX3

induces polarization w c w w=( ) ( )( ) ( )P E;x X xz X X X
1

3
1

3 3 3. The two
wave mixing of w( )( )P X

2
3 and w( )( )P X

2
3 induces the effective

grating for diffractive scattering of the electron with Bragg angle
q =sin B

k

p
X

i

3 (figure 5), where pi is the initial momentum of the

electron [35]. From the perspective of nonlinear optics, this
three-color Kapitza–Dirac-like scattering is an XPDC process, in
which the electron absorbs an x-ray photon of wX3, converts it to
a pair of photons with wo1, wX2 and changes the momentum by 2
kX3 for momentum conservation. Since we use photons of fre-
quencies wo1 and wX2 as seeding photons, we could eventually
identify the entangled photon pair from XPDC by coincidence
with the deflected electron.

In the following, we present a quantum-classical approach
[27, 33] to obtain the probability of the three-color Kapitza–
Dirac-like XPDC process w w w +X o X3 1 2. For the electron
that scatters from the effective grating and transitions from
the initial state ñ

∣pi to the final state ñ = + ñ
  

∣ ∣p p k2f i X3 , we
calculate the periodic stationary potential of the grating and
obtain the transition probability. Similar to E.1, we denote
thereafter w w=o1 1, w w=X2 2, w w=X3 3, the same indices
apply for the momentum k and electromagnetic fields E and B.
For the mixed waves, the electric field =


( ( ))E E x t0, 0, , is

w w
w

= - + -
+ +

( ) ( ) ( )
( ) ( )

E x t E t k x E t k x
E t k x

, cos cos
cos . E.14

1 1 1 2 2 2

3 3 3

Faradayʼs law  ´ = - ¶
¶

  
E

c

B

t

1 gives the magnetic field

=


( ( ) )B B x t0, , , 0 with

w w
w

= - + -
- +

( ) ( ) ( )
( ) ( )

B x t E k x E t k x
E k x

, cos cos
cos . E.15

1 1 1 2 2 2

3 3 3

The classical equations of motion of the electron in the
electromagnetic field are

=
˙ ( ) ( )x
z

c
B x t¨ , , E.16

= - -( ) ˙ ( ) ( )z E x t
x

c
B x t¨ , , . E.17

We separate the motion along x and z axis into fast and slow
components, = +x x xf s, = +z z zf s, where the slow
component corresponds to the electron motion across the laser
focus, and the fast component corresponds to the oscillation of
the electron in the light field. Applying Taylor expansion
around xs and zs, the equations of motion become

+
¶

¶


⎡
⎣⎢

⎤
⎦⎥

˙ ( ) ( ) ( )x
z

c
B x t x

B x t
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,
, E.18s f

s
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x

x
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B x t x
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,
,

. E.19

s f
s

s

s f
s

s

Note that equation (E.17) is full derivative with respect to time,
integrate it once we get

w
w

w
w

w
w

= - - - -

- +

⎡
⎣⎢

⎤
⎦⎥

˙ ( ) ( )

( )
( )

z v
E

t k x
E

t k x

E
t k x

2 sin sin

sin .

E.20

z
1

1
1 1

2

2
2 2

3

3
3 3

Insert ż of equation (E.20) into right-hand side (rhs) of
equation (E.18), and integrate twice over time, we obtain the
trajectory of ( )x t . We inspect equation (E.18), keeping the rhs of
equation (E.18) to the leading order of ( ˙ )z cs , the only pos-
sible terms in the bracket [ ] that are independent of t must rise
from the product of second-order terms in x and the first-order
terms in

¶
( )B x t

x

,s

s
, because the w ti variables can then cancel with

each other due to energy conservation condition w w w+ =1 2 3.
We collect fast oscillating terms in ẍ of equation (E.16) that can
lead to cancellation of the time variable, that



w
w w

w
w w

w
w w

w
w w

w
w w

w
w w
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- - + +

- + - +
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t k k x

E E

c
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c
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c
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E E

c
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c
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¨ sin

sin
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, E.21

f s

s

s

s

s
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1 2

1
1 2 1 2

1 3

1
3 1 3 1

2 1

2
1 2 1 2

2 3

2
3 2 3 2

3 1

3
3 1 3 1

3 2

3
3 2 3 2

where stands for the residual terms that lead to non-stationary
potentials. From equation (E.21) it is straightforward to obtain
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

w w w
w w

w w w
w w

w w w
w w

w w w
w w

w w w
w w

w w w
w w

=
+

+ - +

+
-

- + +

+
+

+ - +

+
-

- + +

+
-

- + +

+
-

- + +

+

( )
[( ) ( ) ]

( )
[( ) ( ) ]

( )
[( ) ( ) ]

( )
[( ) ( ) ]

( )
[( ) ( ) ]

( )
[( ) ( ) ]

( )

x
E E

c
t k k x

E E

c
t k k x

E E

c
t k k x

E E

c
t k k x

E E

c
t k k x

E E

c
t k k x

sin

sin

sin

sin

sin

sin

.

E.22

f s

s

s

s

s

s

1 2

1 1 2
2 1 2 1 2

1 3

1 3 2
2 3 1 3 1

2 1

2 1 2
2 1 2 1 2

2 3

2 3 2
2 3 2 3 2

3 1

3 3 1
2 3 1 3 1

3 2

3 3 2
2 3 2 3 2

Insert equation (E.22) into the term ¶
¶
( )xf

B x t

x

,s

s
of equation (E.18),

and collect the stationary terms



w
w

w
w

w
w

w w w w w w

¶
¶

= - + -

+ +

= + +

´ + + +

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( )

( )

[( ) ]
( )

x
B x t

x

x
E

c
t k x

E

c
t k x

E

c
t k x

E E E

c

k k k x

,

sin sin

sin

1 1 1

cos .

E.23

f
s

s

f s s

s

s

1 1
1 1

2 2
2 2

3 3
3 3

1 2 3
2

1 3 1 2 2 3

1 2 3

Thus we have the equation of motion for the electron to travel
across the light field,

w w w w w w
= + +
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Solving z̈s similarly and integrating once, we obtain

w w w w w w w
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where vz is the initial velocity of the electron along the z axis.
With equations (E.25) and (E.24) we obtain
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From the equation of motion for the scattering of the incident
electron (equation (E.26)), we can directly deduce the effective
stationary periodic potential of the grating as

w w w w w w w
= + +

´ + +

⎛
⎝⎜

⎞
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[( ) ] ( )

U
v E E E
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3
2
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since the first term in equation (E.26) dominates. Using first-
order perturbation theory, the probability of elastic scattering of
an incident free electron from ñ

∣pi to the final state

ñ = + ñ
  

∣ ∣p p k2f i 3 is

w w w
w w w

d=( ) ( ) ( )P
v E E E

c
E, ,

2
, E.28z

fi1 2 3
1 2 3

2
1 2 3

2

where = -E p p2 2fi f i
2 2 . The schematic setup in sketched in

figure 5. To avoid the metal foil filter of being radiated by the
intense x-ray field of wX3, its collinear relation with the coun-
terpropagating seeding fields with wo1 and wX2 can be loosened
with respected to the phase-matching condition.
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