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Abstract

Computer simulations have become a fundamental tool in molecular soft matter research. For
example, they allow the investigation of microscopic details that are not accessible experimen-
tally. However, even the most powerful supercomputers cannot simulate large systems on long
time scales with arbitrarily high accuracy. Therefore, a large variety of computational methods
have been developed, which range from highly accurate but numerically expensive quantum
calculations to efficient but less detailed coarse-grained approaches.

A particular challenge is posed by systems whose macroscopic behavior is sensitively depen-
dent on specific microscopic details. For these multiscale systems, simulation techniques are
being developed that concurrently use two or more models with different computational com-
plexity and accuracy in single simulations. In this way, one can use a demanding high-resolution
model in a small but relevant subregion, while allowing overall large and long simulations
by describing the rest of the system with an efficient, less detailed level. One such method is
the adaptive resolution simulation scheme. In this approach, a predefined region of interest,
for example a protein in a large box of solvent, is modeled atomistically while molecules far
away from this region are described by a coarse-grained force field. A unique feature of the
technique is that particles traveling between the two regions change their resolution on the fly,
such that the high-resolution subsystem behaves as if embedded in an overall high-resolution
environment, although at a significantly lower computational cost.

In this work, we first study the ability of adaptive resolution simulation methods to combine
atomistic and coarse-grained models with very different thermodynamic properties. By cou-
pling a highly structured liquid like water with an ideal gas of non-interacting particles, we
demonstrate that the details of the coarse-grained region have a surprisingly small effect on
the accuracy of the high resolution region. Next, we investigate the theoretical basis behind
the described adaptive resolution approaches and show how a single unifying framework can
be used to derive different kinds of adaptive resolution schemes. We also demonstrate that
the relative entropy—a quantity characterizing differences in the configurational probability
distributions of the models in the different regions—can be used as a guide to set up adaptive
resolution simulations in an optimal manner. Furthermore, we devise a simulation algorithm
that enables atomistic regions with arbitrary geometry and which can adapt during the sim-
ulation to follow, for example, the conformational change of a large biomolecule. Finally, we
derive a new adaptive resolution scheme that allows a clean coupling of quantum mechanical
path integral and classical atomistic models.

The results significantly advance the current state of adaptive resolution simulation method-
ologies both on the theoretical and the practical front. They shed light on the fundamentals
behind such methods and enable more efficient computer simulations of relevant multiscale
systems, such as complex biomolecules, membranes, DNA, or polymeric materials.
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Zusammenfassung

Computersimulationen spielen heutzutage eine wesentliche Rolle in der Erforschung weicher
Materie. Allerdings können selbst die rechenstärksten Supercomputer keine großen Systeme
über lange Zeitskalen mit beliebig hoher Genauigkeit berechnen. Dies führte zur Entwicklung
unterschiedlichster Simulationstechniken, von extrem genauen, aber sehr rechenaufwendigen
quantenmechanischen Modellen bis hin zu effizienten, stark vergröberten Ansätzen.

Eine besondere Herausforderung stellen sogenannte Multiskalensysteme dar, bei welchen
Phänomene und Effekte auf unterschiedlichen Zeit- und Längenskalen miteinander gekoppelt
sind. Hierfür entwickelte Multiskalensimulationstechniken kombinieren mehrere Modelle mit
unterschiedlicher Genauigkeit und Berechnungskomplexität in einzelnen Simulationen. So
kann ein rechenaufwendiges, aber genaues Modell in einem kleinen, aber relevanten Teil der
Simulationsbox genutzt werden, während eine effiziente, gröbere Beschreibung im Rest des
Systems trotzdem eine insgesamt große und lange Simulation ermöglicht. Eine solche Methode
ist das Adaptive Resolution Simulation Scheme. Eine festgelegte Region von hohem Interesse,
beispielsweise ein gelöstes Protein oder eine Grenzfläche, wird atomistisch modelliert, während
weiter entfernte Moleküle vergröbert beschrieben werden. Teilchen, die sich zwischen diesen
Regionen bewegen, ändern ihre Auflösung entsprechend, sodass sich der atomistische Bereich
verhält, als wäre er in ein komplett hochaufgelöstes System eingebettet, nur zu einem wesentlich
geringeren Rechenaufwand.

Als erstes beleuchten wir in dieser Arbeit, inwieweit Adaptive Resolution-Methoden Model-
le mit sehr unterschiedlichen thermodynamischen Eigenschaften kombinieren können, und
wir zeigen, dass man sogar eine komplexe Flüssigkeit wie Wasser mit einem idealen Gas
aus nicht-wechselwirkenden Teilchen koppeln kann. Dann untersuchen wir die theoreti-
schen Grundlagen hinter Adaptive Resolution-Techniken und demonstrieren, wie von einem
grundlegenden Ansatz unterschiedliche Adaptive Resolution-Algorithmen hergeleitet wer-
den können. Weiterhin zeigen wir, wie die relative Entropie zwischen den verschiedenen
Modellen helfen kann, das adaptive System optimal aufzusetzen. Darüber hinaus entwerfen
wir einen Algorithmus, welcher atomistische Regionen in beliebiger Form ermöglicht und
welcher außerdem deren automatische Anpassung wahrend der Simulation erlaubt, um zum
Beispiel der Konfigurationsänderung eines Proteins zu folgen. Zuletzt leiten wir eine neue
Adaptive Resolution-Methode her, welche eine saubere Kopplung von quantenmechanischen
Pfadintegral-basierten mit klassischen atomistischen Modellen erlaubt.

Die Ergebnisse der Arbeit entwickeln Adaptive Resolution-Techniken sowohl vom theoreti-
schen Gesichtspunkt wie auch für die praktische Anwendung wesentlich weiter. Sie werfen ein
neues Licht auf die Konzepte und Mechanismen hinter Adaptive Resolution-Algorithmen und
ermöglichen effizientere Computersimulationen wichtiger Multiskalensysteme, wie komplexe
biologische Makromoleküle, Membranen, DNA, oder polymerische Materialien.
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Chapter 1.

Introduction

The focus of this thesis is the adaptive resolution simulation scheme, a computational method
for the efficient multiscale simulation of molecular systems. To set the work in the right context,
we first recapitulate in section 1.1 of this introductory chapter the emergence and development
of computational molecular modeling in general. In particular, we provide an overview over the
most widely used simulation techniques. Next, in section 1.2 we discuss the idea of multiscale
modeling and review some of its applications. Section 1.3 is devoted to the adaptive resolution
simulation scheme itself, which we present in full detail. In section 1.4, we provide an outline
of the following chapters.

1.1. History and overview

The history of computational molecular modeling reaches back to the 50’s of the 20th century.
In 1953, Enrico Fermi, John Pasta, Stanislaw Ulam, and Mary Tsingou performed numerical
simulations of a vibrating string to study ergodicity and thermalization [2]. Contrary to their
expectation, they did not observe an equipartition of energy but a quasi-periodic behavior.1

This phenomenon is now well-known as the Fermi-Pasta-Ulam problem. Few years later in
1959, the first molecular dynamics (MD) simulation was run by Bernie J. Alder and Thomas E.
Wainwright, who studied elastic collisions between hard spheres [4]. Alder was awarded the
Boltzmann Medal in 2001 and the National Medal of Science in 2009 for these pioneering works,
which mark the invention of the MD simulation method. Independently, MD approaches were
also developed by Aneesur Rahman. His simulations of liquid argon using a Lennard-Jones
potential are another important landmark in computational molecular modeling [5]. The
Aneesur Rahman Prize is now the most prestigious award in computational physics given by
the American Physical Society.

Nowadays, computer simulations play an important role in molecular modeling. Molecular
dynamics and related techniques are widely applied in chemical physics, material science,
as well as in biochemistry and biophysics. They are used to study and characterize new
chemical compounds [6–8], for example in the development of materials for organic electronics

1Later, in 1965, the puzzle was solved by Norman J. Zabusky and Martin D. Kruskal. They investigated the studied
system with the Korteweg-de Vries equation and derived non-linear soliton solutions. This explained the broken
ergodicity and the observed quasi-periodicity [3].

1
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[9–11], or to investigate the functionality of biological membranes [12–16] and the folding
of proteins [17–20]. However, despite ever growing computer power, the introduction of
efficient GPU computation, as well as modern parallelization techniques that enable the
coupling of thousands of CPUs, many interesting applications remain challenging or intractable
with todays computational capabilities. For example, many proteins fold on timescales far
beyond milliseconds, while the longest atomistic protein folding simulations reach only a few
milliseconds [20–24]. Similar challenges also occur on much smaller time and length scales:
Accurate quantum mechanical simulations are still only possible for systems consisting of up to
hundreds or thousands of atoms, but not for larger objects or complex liquids [25–27].

These computational challenges have driven the continuous development of advanced sim-
ulation methods for molecular modeling. In general, these techniques can be described in a
hierarchy (see Fig. 1.1). At one end, there are approaches that incorporate quantum mechanical

Figure 1.1.: Simulation methods for modeling on different scales. On the one hand, highly
accurate techniques, such as ab initio schemes, are computationally expensive and
hence only applicable on small length and short time scales. On the other hand,
numerically efficient but less accurate approaches, like coarse-grained models,
enable longer simulations of larger systems.

effects and aim for an accurate atomistic and electronic description of molecules. These schemes
are computationally very demanding and hence only suitable for the study of small systems on
short time scales.2 On the other end, there are methods that were designed for the investigation
of large, macroscopic systems and for the simulation of much longer physical time scales. In this
spectrum, modeling techniques employed for the computational study of soft matter typically
range from quantum mechanical so-called ab initio schemes that aim to solve the Schrödinger
equation from first principles, over empirical particle-based atomistic (AT) and coarse-grained

2Whenever we talk about the time or length scales of simulations, we refer to the physical times and lengths that are
simulated, not to the real time that a simulation needs to run on a computer.
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(CG) simulations, to continuum approaches.3 In the following, we will provide an overview
of the most relevant and widely used simulation approaches, starting with techniques for an
accurate modeling of microscopic systems.

1.1.1. Density functional theory and beyond

One of the most popular ab initio methods is density functional theory (DFT), providing
an approximate solution of the Schrödinger equation [26, 27, 31]. It builds on the Born-
Oppenheimer approximation, which assumes that the wavefunctions of nuclei and electrons
can be separated. Then, it can be shown that the ground state of the system is described
only by the three-dimensional electron density and that a unique energy functional exists
which is minimized by the correct ground state density [32]. The latter observations are
known as the Hohenberg-Kohn theorems, first proven by Pierre C. Hohenberg and Walter
Kohn. Unfortunately, though, the unique energy functional is unknown. The challenge of DFT
lies in finding a suitable approximation of the exchange-correlation potential, the part of the
unique energy functional which describes the many-body interactions between the electrons.
However, various approaches exist that allow reliable calculations of relevant chemical and
physical quantities [33]. Furthermore, DFT can be applied in the context of molecular dynamics
and used to calculate forces in an atomistic system based on the electronic interactions. The
atoms can then be propagated accordingly for a small time step and the electronic problem is
solved again. This method is known as Born-Oppenheimer molecular dynamics [34]. Since
the computational cost of DFT is still moderate compared to many other quantum chemical
simulation techniques, it has become one of the most popular and widely used ab initio methods
in computational chemistry and physics. In comparison with coarser methods that do not treat
the electrons explicitly, DFT is typically applied when the microscopic electronic structure is
of special relevance or interest. It is used, for example, to calculate molecular energies [35], to
describe chemical reactions [36, 37], to study complex liquids [38], and to accurately model
complex materials with unique electronic characteristics such as semiconductors [10, 11, 37, 39].
In 1998, Walter Kohn was awarded the Nobel Prize in Chemistry for his development of DFT,
together with John A. Pople, who derived a theory for the approximate calculation of molecular
orbitals in π-electron systems [30, 40].

Apart from DFT and its various flavors, there is a whole zoo of further ab initio methods,
which all use different approaches to approximately solve the many-body Schrödinger equation.
Notable techniques include Hartree–Fock [41–43], which assumes that the energy eigenfunctions
are products of one-electron wave functions, as well as Post-Hartree–Fock schemes [44–46],
which improve on the regular Hartree–Fock approach by better describing the electron corre-
lation. This is particularly relevant for excited systems. Furthermore, quantum Monte Carlo
schemes try to solve the many-body problem exactly by using Monte Carlo techniques [47, 48].
A different route is taken by semi-empirical methods, which also incorporate experimental data

3The term ab initio was coined by Roberto Parr, a theoretical chemist, who developed methods for the approximate
calculation of molecular orbitals [28–30].
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to obtain computationally more efficient solutions to the Schrödinger equation [49, 50].

1.1.2. Atomistic molecular dynamics

For larger systems, where ab initio methods are not possible, quantum mechanical phenomena
play often only a negligible role and can hence be treated implicitly. This leads us to the classical
molecular dynamics (MD) approach [51, 52]. In atomistic MD, the atoms’ nuclei are described
as point-like particles that interact classically via empirical force fields. These force fields are
usually fitted to approximately reproduce either ab initio reference calculations, experimental
data, or both [53], and they implicitly incorporate also the electronic interactions. An MD
simulation then consists of the iterative step-wise solution of Newton’s equations of motion to
generate a simulation trajectory. This is done with symplectic integration methods, which offer
important properties for the modeling of physical systems, such as time reversibility and energy
conservation. The most widely used integrator is the velocity Verlet algorithm, which is exact
up to second order in time [52, 54]. In practice, the time step is limited by the highest frequency
motion in the system, which is typically related to bonded or angular interactions. To allow
for larger time steps, constraints can be introduced which keep the molecules or certain bonds
rigid and avoid high frequency motions. For instance, liquid water is often modeled as three
rigidly connected atoms [55]. While standard MD provides sampling in the microcanonical
ensemble, additional techniques also allow the generation of other statistical ensembles. For
example, different thermostating methods can be employed to enforce a constant temperature
and simulate a canonical ensemble. This can be achieved by regularly rescaling the particles’
velocities [56, 57], by explicitly coupling the particles to a heat bath [58–60], or by modeling the
interaction with a heat reservoir in a stochastic fashion via random perturbations and friction
acting on the particles [61, 62]. Similar protocols also allow to generate an isobaric ensemble
[52].

The MD approach is orders of magnitude more efficient than directly solving Schrödinger’s
equation and used whenever the detailed electronic structure is of no importance or not of
interest, hence making an explicit treatment of electrons unnecessary. Consequently, atomistic
MD can be applied on larger-scale problems, such as the calculation of thermodynamic and
macroscopic structural properties or the study of diffusion processes. Optimized hardware
and software achieve simulations of systems of more than 1012 particles [63] or, in the case
of protein folding, up to the millisecond time scale [20–24]. In general, the applications of
atomistic MD are very diverse. Exemplary systems that are modeled using MD include complex
soft matter systems, such as polymeric materials [64–66] and biological objects like proteins
and membranes [16, 19, 20, 67]. However, it always has to be kept in mind that classical MD is
an approximate method and critically depends on the quality of the force field.
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1.1.3. Modeling nuclear quantum delocalization with path integrals

Although ab initio simulations approximately solve the Schrödinger equation, the nuclei are
usually treated as point-like particles at definite positions and with well-defined velocities.
The same is the case in classical MD. A method to account for the quantum mechanical
delocalization of light particles is provided by Richard Feynman’s path integral (PI) formalism
[52, 68]. In this approach, P replicas of the system are considered, each representing one
possible configuration of the system (P is usually called the Trotter number, since the system’s
propagator is split into P terms via Trotter decomposition in the PI methodology). The replicas
of single particles are connected with each other in a cyclic fashion via harmonic springs. More
specifically, each particle is mapped onto a ring polymer, a closed chain of coupled beads
similar to a pearl-necklace (see Fig. 1.2 for a schematic visualization) [69]. The strength of the

Figure 1.2.: Path integral formalism for modeling nuclear quantum decolization in molecular
simulations. The quantum particles are mapped onto classical ring polymers, whose
beads are coupled via harmonic springs. Between different ring polymers, only
those beads interact with each other that correspond to the same imaginary time
slice or replica of the system.

harmonic springs between the beads is proportional to the temperature as well as the mass of
the particles. Heavier particles are mapped onto more collapsed rings corresponding to more
classical behavior. The same happens when increasing the temperature. Loosely speaking, the
extension of the ring polymers can be regarded as the spread of the particles’ wavefunctions.
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The interaction between different atoms, or rather ring polymers in this picture, proceeds in
such a way that beads of different ring polymers only interact with each other if they belong to
the same replica of the system. Note that there is another way of looking at the PI formalism,
which is based on a connection between the canonical density matrix and the propagator:
Evaluating the system’s density matrix at an imaginary temperature yields the propagator and,
similarly, using an imaginary time in the propagator produces the density matrix. Therefore, the
different replicas of the system are often denoted as imaginary time slices and their connection
via harmonic springs defines an integration along a path in imaginary time (hence, the name
“path integral” formalism). Quantum statistical averages in the PI formalism can eventually
be calculated by averaging over all replicas. When applied in simulations, the method is
associated with a significant numerical effort: The computational cost compared to classical
MD is increased proportionally to the number of replicas employed per atom. Although the
approach is formally correct only in the limit of an infinite number of beads per atom (P→ ∞),
well converged results can be obtained with a computationally feasible number of replicas (a
more comprehensive and technical introduction can be found, for example, in Ref. [52]).

The PI formalism is usually applied in an MD or Monte Carlo (MC) setting (path integral
molecular dynamics (PIMD) or path integral Monte Carlo (PIMC)) [52, 69–75], where the forces
or energies come either from a classical force field [76–78] or from ab initio calculations [79–81].
The method can also be extended to allow the calculation of approximate quantum dynamics
and quantum time correlation functions [82–84]. It has been shown that for systems with many
light atoms, such as hydrogen or helium, and in particular at low temperatures the PI approach
can be necessary for a realistic description of the system [76, 77, 85–87]. But even at room
temperature, the PI methodology can yield relevant improvements. For example, an accurate
description of the structure and dynamics of liquid water needs to take into account nuclear
quantum effects, since a classical modeling typically results in overstructured radial distribution
functions and increased oscillation frequencies of the O-H bonds as well as the H-O-H angle
compared to experimental data [78, 88–91]. Furthermore, the PI formalism is regularly applied
in complex biological applications. For example, it is crucial for a proper description of proton
transfer reactions [80, 92–96] and for the hydrogen bond network in the active site of proteins
[81].

1.1.4. Coarse-graining

Although atomistic MD is a very efficient simulation technique compared to ab initio methods,
it can still be too computationally demanding for many large-scale problems in molecular
modeling. For example, the time scales on which most proteins fold cannot be reached with
all-atom MD simulations. Similarly, biological membranes are often too large to allow for
an atomistic description. The same challenges occur in many complex polymer systems. A
solution is provided by coarse-grained (CG) models [97–101]. In coarse-graining, several atoms
are grouped together and described jointly as a single point-like particle (see Fig. 1.3 for a
visualization). This significantly reduces the number of particles in the system and hence also
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Figure 1.3.: Atomistic and coarse-grained representation of a hexane molecule. The 20 atoms of
the original molecule are mapped onto three coarse-grained sites. These are placed
at the centers of mass of the three consecutive carbon atom pairs and the attached
hydrogen atoms.

the computational cost. Furthermore, the interaction potentials in CG models are typically
much softer than atomistic force fields and larger time steps can be chosen when integrating the
equations of motion, further alleviating the numerical effort. It is not only their computational
efficiency that makes CG models attractive though. In many large-scale applications, we are
not interested in the microscopic details of the system anyhow. In a sense, CG approaches
automatically average out these details and focus only on the relevant length scales [101].

The main challenge of coarse-graining lies in the derivation of CG models that correctly
capture the relevant features of the system, while neglecting the unnecessary details. A large
variety of approaches for parametrizing CG representations exists, which can be broadly divided
in bottom-up and top-down methods. In bottom-up coarse-graining, high-resolution, usually
atomistic, reference data is used to systematically fit a CG interaction potential, while employing
a predefined mapping between the atomistic system and a CG description. Noteworthy bottom-
up techniques are force matching [102–104], which tries to reproduce the multi-body potential
of mean force, inverse Monte Carlo [105] and (iterative) Boltzmann inversion [106, 107], which
aim at preserving reference pair correlation functions, as well as relative entropy-based methods,
which minimize the information loss between the CG and the reference system [108, 109]. In
top-down strategies, the CG potential is parametrized to reproduce experimental measurements
or other macroscopic properties [101]. An example for a CG force field derived by such an
approach is the celebrated MARTINI force field [110, 111], which was originally developed for
the modeling of lipid bilayers and is parametrized by matching experimental partitioning free
energies between polar and apolar phases of various chemical compounds.

While CG techniques have been very successful in reproducing relevant structural, thermo-
dynamic and chemical properties of the reference systems, reliably matching the dynamics is
still a largely open problem. Since the free energy landscape of a CG system is significantly
smoothened out compared to its atomistic reference, diffusion is usually strongly enhanced.
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However, if one is only interested in static equilibrium properties of the system, this acceleration
can be helpful, as it provides an enhanced sampling of the phase space [101].

Coarse-graining has gained significant popularity in the molecular modeling community and
has been applied to many different systems. These include proteins [99, 112–119], biological
membranes [15, 120–123], polymer systems [124–135], and complex liquids [103, 104, 136–141].

Beyond CG techniques towards even longer time and length scales, we leave the area of
particle-based simulation methodologies. When studying phenomena of macroscopic systems
with sizes of µm or larger, the microscopic particle nature of matter becomes less and less
relevant. Therefore, in this regime one typically resorts to continuous models based on
continuum mechanics. Examples include various fluid dynamics techniques [142] and the
finite element method [143]. However, such approaches play only a minor role for molecular
modeling and are beyond the scope of this introduction.

1.2. Multiscale modeling

The variety of modeling techniques discussed in the previous section enables computer simula-
tions on many different length and time scales, on various levels of accuracy, and it allows us to
study all kinds of molecular systems. It may seem that for all applications a suitable approach
may be found along the hierarchy of simulation methods (Fig. 1.1). However, there is one class
of systems for which modeling remains particularly challenging, even with all these methods
available: multiscale systems [97, 144–146]. In these systems, short and long time and length
scale phenomena are inherently coupled. Therefore, their accurate description in computer
simulations requires not only large systems and long simulations, but also microscopically
accurate models to correctly capture the short length and time scale effects. This is difficult to
achieve since one usually has to make a compromise between computational efficiency and
modeling accuracy. However, most complex molecular systems, in particular biological ones
[116, 147], exhibit some degree of multiscale behavior. Therefore, the development of so-called
multiscale modeling techniques has become a very active field of research that tries to address
and overcome the described challenges.

1.2.1. Hierarchical approaches

One approach to multiscale modeling is to study the same system with several methods and
run both large-scale, albeit coarse, as well as small, but highly accurate, simulations. The results
from these calculations on different scales can then be combined to obtain the overall picture.
It is crucial that the coarser models approximately capture the most important features of the
high-resolution system. Therefore, bottom-up CG methods are most appropriate here, since they
are designed to reproduce relevant properties of the atomistic reference system. Indeed, such
techniques have been successfully used, for example, for the modeling of complicated polymer
systems [66, 97], such as polymer–solid interfaces [148] and polymer nanocomposites [149].
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Furthermore, they have been employed in biomolecular simulations of membranes and proteins
to study phenomena such as structural transitions, self-assembly, and folding [14, 150–154].

1.2.2. Concurrent coupling

In many multiscale systems, the region that actually requires a high-resolution modeling is
limited in size, often to a tiny domain compared to the overall system. Consider, for example,
the case of a solvated protein that interacts at its active site with a small ligand. When trying
to describe this system accurately in a simulation, we have to fulfill two requirements: On the
one hand, we typically need to simulate the complete protein as well as the solvent molecules
to properly reproduce the protein’s structure as well as the thermodynamic conditions of its
environment. This requires a large simulation. On the other hand, we need a highly accurate,
often DFT-based, description of the active site to correctly model the chemical reaction with the
ligand. Unfortunately, a complete ab initio approach is prohibitively expensive for systems of the
size of extended macromolecules. However, the high-resolution treatment can be limited only to
the protein’s active site, while further away an atomistic force field will likely suffice to capture
the large-scale structure and thermodynamics. This suggests to use a multi-resolution scheme,
in which different modeling techniques with different resolutions are used concurrently in a
single simulation; in the above example, an ab initio model at the active site and a classical force
field for the rest of the system.

Such multi-resolution approaches are useful whenever the region that is of particular interest
and therefore requires a high-resolution description is limited to a small domain within the
simulation box. In fact, there are many more scenarios where this can be the case. For example,
when simulating macromolecules, such as proteins or polymers, solvated in complex liquids,
one can employ a CG description for solvent molecules that are far enough away from the
solute, which itself may be treated on the atomistic level (see Fig. 1.4). Similarly, when studying
interface phenomena, such as particle adsorption, one may want to model only the interface
with a high-resolution model, while using a coarser approach for molecules further away.

Different methodologies have been developed that establish a concurrent coupling of multiple
simulation methods. These techniques share the challenge of smoothly interpolating and
connecting the models.

Quantum Mechanics/Molecular Mechanics

One of the most famous concurrent multi-resolution schemes is the quantum mechanics/molec-
ular mechanics (QM/MM) method [156–164].4 It allows the connection of a small subdomain
that is described with an ab initio approach to a larger region that is treated by means of a
classical atomistic force field. It is applied in scenarios similar to the first one described in this
section, i.e., in simulations of proteins in which a certain part, such as the active site, requires a
rigorous quantum mechanical modeling. For example, QM/MM techniques have been widely

4The nowadays widely used acronym “QM/MM” was coined in 1992 by Jiali Gao and Xinfu Xia, who performed
QM/MM Monte Carlo simulations to study polarization effects in aqueous systems [157].
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Figure 1.4.: Adaptive resolution simulation of ubiquitin [155]. While the protein and the water in
its immediate vicinity is described by an atomistic force field, the solvent molecules
further away are treated on a coarse-grained level.

used for the description of enzymes and enzymatic chemical reactions. However, achieving
a smooth link between the different regions is difficult. In particular, electrostatic coupling
poses a major challenge, since the charges of the classical force field may not be consistent
with the charge distribution generated by the ab initio calculations [161, 164]. A variety of
different schemes have been developed that cope with this problem in various ways: They
range from methods that use only classical charges to calculate the electrostatic interactions
between the quantum mechanical and the classical region to approaches that use polarizable
force fields in the classical region and obtain the electrostatic interactions in a self-consistent
manner [161]. Another difficultly associated with standard QM/MM is that the QM region is
fixed and particles are not allowed to travel between the different regions. This can be overcome
with adaptive QM/MM techniques that allow particles to diffuse freely [165–169], although
these methods introduce further difficulties, such as discontinuities in the forces and energies.
Nevertheless, QM/MM schemes have become a widespread tool and are now also applied
in other areas of materials science, for example, to study crack propagation or chemisorption
processes [170–173]. This importance was highlighted in 2013, when Arieh Warshel and Michael
Levitt, who first introduced the QM/MM method in 1976 [156], were awarded the Nobel Prize
in Chemistry, along with Martin Karplus.
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Coupling atomistic and coarse-grained models

Another class of concurrent multi-resolution schemes are those that aim at bridging atomistic
and CG models. This can be useful, for example, in simulations of solvated macromolecules
that are surrounded by large amounts of solvent molecules, whose only role is to guarantee
the correct large-scale thermodynamic conditions [174, 175]. As described above, one may then
want to treat solvent particles far away from the central macromolecule with a CG description
in order to save computational resources. Only when the solvent molecules approach the solute
do they change their resolution on-the-fly and become atomistic. This scenario is visualized in
the simulation snapshot in Fig. 1.4.

In practice, this idea boils down to a smooth spatial interpolation of atomistic and CG force
fields. Various techniques exist to establish that and they can be categorized into two classes.
On the one hand, there are methods that directly interpolate the forces acting between the
particles [176, 177]; on the other hand, the interpolation can be performed on the level of
potential energies [178–181]. The most popular and widely used methodology for concurrently
coupling atomistic and CG models are the adaptive resolution simulation scheme (AdResS)
[144, 176, 182] and its relative, the Hamiltonian adaptive resolution simulation scheme (H–
AdResS) [181, 183, 184]. In these techniques, the interpolation between the force fields is
achieved by associating a spatially dependent resolution property with each solvent molecule
(see Fig. 1.5). The particles, which can freely diffuse through the system, then change their
resolution on-the-fly according to their positions in space. A hybrid (HY) buffer region between
the atomistic (AT) and CG domains ensures a smooth coupling.

The difference between AdResS and H–AdResS is the previously mentioned aspect: In
standard AdResS, which was introduced earlier than H–AdResS in 2005 [176], the interpolation
takes place on the level of the AT and CG forces. On the contrary, H–AdResS is based on a
Hamiltonian in which the potential energy terms are interpolated. Both schemes have certain
advantages and disadvantages and depending on the application one may want to use either
AdResS or H–AdResS. In fact, both methods have been successfully used for multi-resolution
modeling of various soft matter systems, such as solvated polymers, fullerenes, proteins and
even DNA [155, 185–194].

Since this thesis focuses on the development of advanced adaptive resolution simulation
methods, we will provide a more comprehensive and technical introduction to AdResS and
H–AdResS in section 1.3, including a detailed overview over its applications.

From particles to continuum

We conclude our overview of multiscale simulation techniques by briefly reviewing another
class of concurrent multi-resolution methods. When dealing with very large-scale systems far
beyond the sizes that are typically encountered in particle-based molecular simulation, one
usually resorts to much more efficient continuum models. In some situations, though, it is
advantageous to use an approach that couples a continuum description with a particle-based
scheme in order to retain a more accurate treatment in a locally restricted area. A typical
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example where this can be useful is the formation and propagation of cracks in complex
materials [195–204]. In this situation, the overall system is typically large and in most parts it is
subject to moderate stress. In these regions away from the cracks the material properties can be
accurately described by continuum equations. However, the mechanisms of the forming of local
cracks and in particular their propagation through the material are highly complex and can be
captured reliably only with particle-based models. The tip of a crack is very localized, though,
and a high-resolution is required only in a small subregion of the system. Therefore, this
application is an ideal candidate for the use of multi-resolution particle-continuum methods.

There exists a large variety of techniques for bridging and connecting particle-based and
continuum models. One popular approach is the quasicontinuum method [199], which uses a
finite elements scheme for the overall system and an atomistic model in smaller subregions.
The coupling between the two models is achieved by picking representative atoms that are
employed as quadrature points for the finite elements calculation. Similarly, the strain from
the large-scale finite elements method is applied back on the atoms. Other techniques employ
Lagrange multipliers to enforce a smooth coupling between atomistic and continuum domains
[204], or use molecular dynamics results from a small subregion to provide boundary conditions
for a large-scale continuum calculation and vice versa [205]. Some methods even couple models
ranging from ab initio to continuum level of detail in a single simulation [196–198, 202, 206].

The applications of particle-continuum multi-resolution methodologies are very diverse.
Apart from modeling brittle materials, concurrent particle-continuum schemes are, for example,
employed to study corner and cavity flow [205, 207, 208]. In such complicated flow scenarios
conventional continuum flow equations lead to singularities. Hence, in the singular regions a
particle-based treatment is necessary.

1.3. The adaptive resolution simulation scheme

In this section, we provide a detailed, technical introduction to the AdResS methodology.
Furthermore, we recapitulate its most important applications so far.

In AdResS, two systems with different classical force fields are coupled with each other, typi-
cally an atomistic and a coarse-grained one (see Figs. 1.4 and 1.5) [144, 176]. The high resolution
is usually restricted to a small but relevant subregion within an overall large simulation box. In
this way, computational resources can be concentrated in the high-resolution domain, resulting
in an overall speedup compared to all-atom simulations. An important feature of AdResS is
that particles are allowed to freely travel between the different regions without feeling any
barriers. In this way, the atomistic subregion behaves as if embedded in a completely atomistic
environment [155, 176, 181, 189, 192–194, 209–216].

The interpolation of the different force fields can be implemented either on the level of forces
or on the level of potential energies. This has led to two slightly different adaptive resolution
schemes, which we will review in the following.
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1.3.1. Force interpolation

In the force-based AdResS scheme, proposed in 2005 by Praprotnik et al. [144, 176], the
interpolation occurs directly on the intermolecular forces. The method assumes that all forces in
the system are short-ranged, which means that also electrostatics need to be treated accordingly
using, for example, a reaction field technique [217] (we will address this issue in more detail in
section 1.3.5). The non-bonded force Fαβ between two molecules α and β is then given as

Fαβ = λ(Rα)λ(Rβ)FAT
αβ +

(
1− λ(Rα)λ(Rβ)

)
FCG

αβ , (1.1)

with
FAT

αβ = ∑
i∈α

∑
j∈β

FAT
ij . (1.2)

Here, FAT
αβ is the atomistic (AT) force between the molecules and FCG

αβ is the CG force. Further-
more, λ(Rα) is a position-dependent function that varies between 0 and 1 and determines the
resolution of the molecules. It is typically evaluated based on the molecular center of mass
Rα, although other approaches are in principle possible. The term FAT

αβ is composed of the
individual forces FAT

ij between the atoms i and j of the molecules α and β (Eq. 1.2), while the
CG term FCG

αβ is usually a single force applied on the centers of mass of the CG molecules. Note
that this force interpolation scheme conserves Newton’s third law. The concept is visualized in
Fig. 1.5 for an exemplary system of 3-site liquid water coupled to a single-site CG model.

Figure 1.5.: Snapshot from an adaptive resolution simulation coupling 3-site atomistic water to
a single-site CG model. The green line represents the resolution function. When
molecules diffuse through the system and cross the hybrid region, they change their
resolution accordingly.

In the area where the resolution function λ is 1, the CG term in Eq. 1.1 disappears and
the liquid is fully atomistic. Similarly, where λ is 0 the AT contribution disappears and the
system is fully CG. In between the AT and CG regions, the system switches its resolution as
λ smoothly changes from 0 to 1 and vice versa. This transition area is usually called hybrid
(HY) region. The AT region can be either fixed in space or attached to a central particle and
slowly move with it [176, 190]. Furthermore, it can have different, although regular geometries,
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for example a spherical one as in Fig. 1.4 [155, 188, 190, 192, 212], a cuboid one as in Fig. 1.5
[176, 193, 194, 218], or a cylindrical one [191, 215].

An important aspect is that this force interpolation scheme, Eq. 1.1, does not admit a
Hamiltonian description [219]. Therefore, it is not energy conserving and excess heat is
produced in the HY region. Hence, a thermostat based on the fluctuation-dissipation theorem
needs to be applied, removing the excess heat and establishing a thermal equilibrium [218–223].
Since many applications are run in the canonical ensemble, which is usually enforced with a
thermostat anyway, this may not be a severe limitation. It has also been demonstrated that it is
sufficient to apply a local thermostat only in the CG and HY regions such that the dynamics
in the AT domain are not perturbed [155, 210, 216, 224]. However, force-based AdResS does
not allow true microcanonical simulations or techniques that are based on a Hamiltonian
description such as, for example, most Monte Carlo methods. In the HY region, it is also not
consistent with a standard statistical mechanics formulation based on a partition function. Note
that the temperature is well defined everywhere in the system, though.

It is important to note that the precise shape of the resolution function λ can vary, as long
as it ensures a smooth transition between the force fields. In the literature, squared cosine
functions or different polynomials are commonly used [155, 176, 181, 183, 210, 218]. The width
of the HY region is another crucial parameter in adaptive resolution simulations. On the one
hand, one wants to have a small hybrid region in order to keep the volume in which both
AT and CG forces need to be evaluated as small as possible. On the other hand, it needs to
be wide enough to guarantee a slow transition of forces between the two regions. An abrupt
switch between the force fields would lead to an overgeneration of excess heat. In practice, one
often chooses a width slightly larger than the cutoff of the non-bonded interaction potentials to
prevent direct interactions between molecules in the AT and CG regions.

In addition to the short-ranged non-bonded intermolecular forces, which are interpolated,
there may also be intramolecular forces, like the bond and angular potentials in liquid water.
These play a negligible role in the overall computational effort for the force calculations and are
therefore typically not subject to any interpolation. In force-based AdResS, molecules can be
frozen when being located in the CG region such that the intramolecular forces need not be
computed there.

1.3.2. The thermodynamic force

At a given temperature and density, AT and CG systems have typically strongly deviating
virial pressures [225–227]. In AdResS, where particles are allowed to diffuse freely between
the different regions, this leads to a net force pushing particles from one region to the other
until an equilibrium state with an inhomogeneous density profile along the direction of
resolution change is reached. This thermodynamic imbalance can be corrected with the so-
called thermodynamic force (TF) [182], a compensating force that acts on molecules in the
HY region and its vicinity. It is constructed in order to exactly compensate for the pressure
difference between the two domains and is derived in an iterative fashion, starting from the
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distorted density profile obtained without the application of any correction force:

FTF
i+1(r) = FTF

i (r)− M
ρ2

0κT

∂

∂r
ρi(r), (1.3)

where κT is the isothermal compressibility, ρ0 is the reference density and M is the molecular
mass (in practice, the prefactor in front of the density gradient can be varied to aid convergence).
The force FTF

i (r) is applied in the HY region along the direction of resolution change and r
denotes the position along this direction. The protocol converges by construction, when a flat
density profile is reached. Hence, the TF also smooths out local density distortions in the HY
region. Note that the integral of the TF provides exactly the pressure difference between the
two models [182]. The TF scheme has been used extensively in force-based AdResS simulations
[155, 187, 188, 211, 214–216, 228], including complex mixtures [174, 175, 189, 191, 213, 229].

1.3.3. Energy interpolation

The previously described deficiencies of the force-based AdResS approach have motivated the
development of an adaptive resolution scheme that is based on a Hamiltonian formulation.
In 2013, Potestio et al. proposed Hamiltonian–AdResS (H–AdResS), which implements the
interpolation between the different force fields on the level of potential energies [181, 183, 184].

In H–AdResS, a global Hamiltonian is defined as

H = ∑
α

∑
i∈α

p2
αi

2mαi
+ Vint + ∑

α

{
λ(Rα)VAT

α + (1− λ(Rα))VCG
α

}
. (1.4)

Here, the sum over α denotes a sum over all molecules in the system, and the sum over i
stands for a sum over all atoms within a molecule α. With this notation, mαi is the mass of
atom i of molecule α and pαi is its momentum. Furthermore, Vint represents all intramolecular
interactions, which are, as in force-based AdResS, not subject to any interpolation. The potentials
VAT

α and VCG
α are the sums of all non-bonded AT and CG intermolecular interaction potentials

VAT and VCG acting on molecule α, this is,

VAT
α =

1
2 ∑

β 6=α
∑
i∈α
j∈β

VAT(|rαi − rβj|), (1.5)

VCG
α =

1
2 ∑

β 6=α

VCG(|Rα − Rβ|), (1.6)

where the sum over β runs over all molecules except α and rαi denotes the position of atom
i of molecule α. Differentiating the Hamiltonian in Eq. 1.4 we obtain the force on atom i of
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molecule α as

Fαi = ∑
β 6=α

∑
j∈β

{
λ(Rα) + λ(Rβ)

2
FAT

αi|βj +

(
1− λ(Rα) + λ(Rβ)

2

)
FCG

αi|β

}
+ Fint

αi − [VAT
α −VCG

α ]∇αiλ(Rα),

(1.7)

where FAT
αi|βj is the AT force on atom i of molecule α due to the interaction with atom j of

molecule β and, analogously, FCG
αi|β is the CG force due to the interaction with molecule β.

Furthermore, Fint
αi stands for all intramolecular forces on atom i of molecule α. The last term,

Fdrift
αi = −[VAT

α −VCG
α ]∇αiλ(Rα), dubbed drift force, is the central difference between force-based

AdResS and H–AdResS. It is proportional to the gradient of the resolution function λ and
therefore only acts in the HY coupling region. It pushes molecules from one region to the other,
just like the pressure difference between the AT and the CG models. In the HY region, it also
violates Newton’s third law, that is, the force between pairs of molecules cannot be written as
a sum of antisymmetric terms due to the additional drift term. Note that the drift force on
molecule α does not only depend on its resolution λα, but, because of the term VAT

α −VCG
α , also

on its environment.

1.3.4. Free energy corrections

Introducing a static compensation field ∆H(λ(Rα)) in the HY region, the average of the drift
force can be removed for all λα, effectively compensating for the pushing of molecules from
one region to the other [181]: The modified Hamiltonian Ĥ is

Ĥ = H −∑
α

∆H(λ(Rα)), (1.8)

and the drift force on a molecule α becomes

F̂drift
α = −

[
VAT

α −VCG
α − d∆H(λ)

dλ

∣∣∣∣
λ=λ(Rα)

]
∇αλ(Rα). (1.9)

Note that we dropped the indices for the individual atoms, since the drift force as well as the
correction are usually applied on whole molecules or, for macromolecules such as polymers, on
the monomers or similar coarse units. The forces are then simply redistributed equally among
the atoms belonging to the molecules or monomers.

As we want to remove the average of the drift force, we obtain the following requirement for
∆H(λ(Rα)):

d∆H(λ)

dλ

∣∣∣∣
λ=λ(Rα)

=
〈

VAT
α −VCG

α

〉
Rα

. (1.10)

The subscript of the term on the right hand side of Eq. 1.10 denotes that the average formally
has to be performed in an adaptive simulation constraining the center of mass position of the
molecule α at Rα. In principle, Eq. 1.10 is self-consistent, since the average has to be calculated
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with the Hamiltonian Ĥ, which already includes the correction ∆H(λ). Thus, the right hand
side of Eq. 1.10 is a functional of ∆H(λ).

If the HY region is sufficiently wide, the immediate environment of a molecule with resolution
λα = λ(Rα) consists only of molecules at a similar resolution. Then, we can approximate〈

VAT
α −VCG

α

〉
Rα

≈
〈

VAT
α −VCG

α

〉
λ=λ(Rα)

, (1.11)

where the subscript on the right hand side now indicates an average performed in a simulation
box in which all molecules have a uniform resolution λ = λ(Rα). In this case, we can also
average over all N molecules in the box, such that

〈
VAT

α −VCG
α

〉
λ=λ(Rα)

=
1
N

〈
VAT −VCG

〉
λ=λ(Rα)

, (1.12)

with

VAT =
N

∑
α=1

VAT
α , (1.13)

VCG =
N

∑
α=1

VCG
α . (1.14)

Hence, if the approximation in Eq. 1.11 is fulfilled, the correction term ∆H(λ(Rα)) can be
calculated by standard Kirkwood thermodynamic integration [230]:

∆H(λ) =
∫ λ

0

d∆H(λ′)
dλ′

dλ′

≈ 1
N

∫ λ

0

〈
VAT −VCG

〉
λ′

dλ′

=
∆F(λ)

N
,

(1.15)

where ∆F(λ)/N is the Helmholtz free energy difference per particle between the system at
uniform resolution λ and the fully CG system (λ = 0). We can conclude that the aggregate
strength of the drift force, i.e. its integral over the HY region, is approximately proportional to
the Helmholtz free energy difference ∆F(λ) between the AT and CG system. Therefore, the
derivative of ∆F(λ) with respect to λ can be employed to compensate for it on average.

A similar approach can be taken when the pressure difference between the two subsystems
also needs to be corrected for. In this case, one simply applies the Gibbs free energy difference
per molecule ∆G(λ)/N as correction:

∆H(λ) =
∆G(λ)

N
=

∆F(λ)
N

+
p(λ)
ρ?

, (1.16)

where p(λ) is the pressure at resolution λ and ρ? is the reference density. In this way, both the
explicit drift force as well as the implicit effect by the pressure difference between the AT and
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the CG models are corrected and an approximately flat density profile along the direction of
resolution change is obtained. Note that the additional pressure term in the correction now
leads to an inhomogeneous pressure profile. Eventually, one has to make a compromise and
enforce either a flat pressure profile (using only the Helmholtz free energy-based correction)
or a flat density profile (using the Gibbs free energy-based correction) at equilibrium [181].
However, in most applications it is only the AT region that we truly care about and a different
pressure in the CG domain may not pose a problem.

Because of their interpretations in terms of thermodynamic potentials, the two correction
schemes are often called free energy corrections (FEC). A particular advantage of the FECs is that
all terms can be conveniently calculated during a single thermodynamic integration without
any iterative protocol, as was the case for the thermodynamic force. We want to stress that this
methodology relies on the approximation made in Eq. 1.11. If the AT and the CG system have
very different thermodynamics or if the HY region is not wide enough, the FEC approach may
not lead to a perfect correction of the drift force and the pressure gradient between the two
systems. In this case, we can still fall back onto the thermodynamic force presented earlier in
section 1.3.2 and iteratively refine the density profile if necessary. Recently, there were developed
also advanced iterative methods tailored to H-AdResS that calculate the exact Helmholtz or
Gibbs FEC on the fly during an adaptive resolution simulation [231]. Finally, we want to
mention that the FECs also straightforwardly generalize to mixtures, as was demonstrated by
Potestio et al. [183].

1.3.5. Comparison

Having introduced two different routes for concurrently coupling atomistic and coarse-grained
systems with each other, we now want to compare them and review their advantages and
disadvantages in more detail.

The force-based AdResS scheme is conceptually simple and requires less overhead than
H–AdResS, which includes an additional drift term in the HY region. Force-based AdResS
also obeys Newton’s third law, which is violated in the energy-based approach. However,
being incompatible with a Hamiltonian formulation, the AdResS method does not allow for a
rigorous partition function-based theory and cannot be used for energy-conserving or Monte
Carlo simulations. It also requires thermostating to remove the excess heat produced in the HY
region and to guarantee a thermodynamic equilibrium. In comparison, the main advantage of
H–AdResS is its solid Hamiltonian foundation and also the FECs, which are usually employed
in H–AdResS, have elegant interpretations in terms of thermodynamic potentials.

Since force-based AdResS is not energy-conserving anyhow, the intramolecular interactions
of molecules in the CG region can be frozen. In other words, the intramolecular degrees
of freedom can be removed in the CG region and reintroduced when a molecule enters the
HY region and starts interacting atomistically. This stands in contrast with H–AdResS, in
which, in principle, no degrees of freedom are actually removed. The intramolecular motion
is retained in the CG region in order to be consistent with the Hamiltonian formulation and
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only the intermolecular force field changes. This adds a slight additional overhead compared
to force-based AdResS. When applying a thermostat in H–AdResS simulations to generate a
canonical ensemble, intramolecular interactions of molecules in the CG region can be frozen
like in force-based AdResS, though.

Another more technical difference between the two methodologies is the way in which the
resolution of the molecules is used to interpolate the force fields. In the standard AdResS
approach, the product is used, λα × λβ, whereas H–AdResS employs the average, 1/2(λα + λβ),
see Eqs. 1.1 and 1.7. The latter is a result of writing the potential energy as in Eq. 1.4, while
the product was chosen in force-based AdResS to prevent any atomistic interaction between
molecules in the HY and CG regions whatsoever. In H–AdResS the interaction between HY and
CG molecules contains both CG and AT contributions. A similar force-based AdResS scheme
could also be constructed by utilizing the average for interpolating the forces.

Concluding, neither of the two methods can be regarded as strictly better than the other.
The proper choice of technique depends on the application of interest. For example, when
an exact fulfillment of Newton’s third law is essential, which may be the case, for example,
when studying complicated dynamic or hydrodynamic systems, one probably wants to resort
to force-based AdResS. Additionally, when running large-scale simulations in a canonical
ensemble with strong thermostating, the force-based AdResS approach may be used because
of its lower overhead. For all applications that are based on a solid Hamiltonian formulation,
H–AdResS must be employed.

In the previous sections, the interpolated AT and CG potentials were assumed to be two-body
non-bonded short-ranged interactions. The adaptive resolution methodology was introduced
focusing on such interactions for several reasons. First, it is the non-bonded interactions whose
computation requires the most resources. The overhead of bonded potentials is typically
very small and other relevant simulation costs, such as inter-processor communication, are
rather software and implementation challenges that cannot be addressed by physically inspired
simulation strategies such as AdResS. Second, in most large-scale applications only two-body
non-bonded interactions are considered, neglecting higher order terms. It is worth pointing out
that both force-based and energy-based AdResS can be generalized to higher order potentials.
When interpolating three-body potentials, one would just need to calculate the product or
average of the resolutions of three interacting molecules instead of two.

The last important point that needs to be addressed are long-range electrostatics. In standard
MD simulations, they are usually treated with Ewald summation methods that assume infinite
periodicity of the system and calculate the long-range part of the interaction in Fourier space in a
non-local fashion [232–234]. Adaptive resolution simulations, however, rely on a local definition
of molecular resolution, which can only be provided when the interactions are sufficiently local,
that is, short-ranged. Consider, for example, an aqueous salt solution in which water molecules
are mapped onto single neutral beads in the CG region. In this case, charges are coarse-grained
away in the CG region and water molecules would not screen the electrostatic interactions
of the salt ions. This would lead to incorrect results when explicitly calculating long-range
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interactions. For this reason, Ewald summation and its relatives cannot be directly applied in
adaptive resolution simulations. Instead, electrostatics needs to be treated with methods that
are purely short-ranged, such as the reaction field technique [217, 235–237], which assumes that
beyond a cutoff distance the long-range electrostatic interaction can be modeled by a uniform
and homogeneous dielectric medium, or the damped shifted force [238, 239], which smoothly
truncates the electrostatic interaction at a short-ranged cutoff. It was shown by Bevc et al.
and by Heidari et al. that these schemes lead to accurate results in AdResS and H–AdResS
simulations [213, 231].

1.3.6. Applications

The presented adaptive resolution methodology has been successfully applied on a wide variety
of multiscale systems. It was shown, for example, that in adaptive resolution simulations of
solvated proteins a thin layer of atomistic water around the solute is sufficient to make it behave,
both dynamically and statistically, as if embedded in a fully atomistic environment [155, 188].
Similar tests were also successfully performed for other relevant systems, such as solvated DNA
[189, 191, 229] and complex polymers [192–194].

Another interesting application of AdResS are path integral-based simulations, in which
classical particles are mapped onto small vibrating ring polymers. In fact, this is an ideal
scenario for adaptive resolution methods, since conceptually the mapping gives rise to nothing
but a classical, albeit computationally costly, force field. However, the ring polymers can also
be easily modeled in a coarse-grained fashion as individual classical particles. Concurrently
coupling a path integral model with such a CG force field in adaptive resolution simulations
was first suggested by Poma and Delle Site [177]. It was subsequently shown in adaptive
simulations of liquid parahydrogen and water that such a connection can be successfully
established and that the path integral domain of the simulation behaves as if embedded in
a fully quantum simulation box [212, 216, 224, 240]. It is crucial to note, though, that these
adaptive quantum–classical simulations rest on a weak foundation: The coupling was achieved
by simply interpolating a classical and a path integral force field using the force-based AdResS
method that does not allow a Hamiltonian formulation [219]. The path integral formalism itself,
however, intrinsically relies on the existence of a Hamiltonian.

The applications mentioned so far aim at using the adaptive resolution scheme for speeding up
the simulations compared to fully atomistic ones. AdResS can also be used as a computational
tool to answer questions that are otherwise challenging to tackle. For example, how local is
the hydrogen bond network and the structure formation of water around a large hydrophobic
solute, that is, how does it depend on the bulk [185]? By coupling atomistic water to a simple
CG model, AdResS provides a convenient method to switch on and off the hydrogen bonds
beyond different distances from a hydrophobic solute while not disturbing the large-scale
thermodynamic environment as a whole. This approach has been used by Lambeth et al. as
well as by Fritsch et al. to study the locality of the structure of water and toluene around
fullerenes [185, 187]. A similar analysis of the structure and dynamics of water in the hydration
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shell of proteins was also performed by Fogarty et al. [155]. In all cases, it was found that
the investigated structural and dynamical quantities are fairly local, requiring little atomistic
support from the bulk.

Another important application of AdResS are open-boundary and semi-grand canonical
simulations. Coupling a small AT region to a large CG reservoir that is computationally cheap
but guarantees the correct particle fluctuations of the AT domain, it is possible to efficiently
calculate accurate thermodynamic quantities, such as Kirkwood-Buff integrals, in a grand
canonical fashion in the open AT region [174]. This is particularly relevant when dealing with
liquid mixtures. In fact, in this case, adaptive resolution methods have yet another advantage.
Consider the situation of a complex macromolecule solvated in such a liquid mixture [175]. As
the solute undergoes conformational transitions, it may attract or reject solvent particles, which
leads to concentration fluctuations. Usually, these disturbances can be taken care of by inserting
or deleting solvent molecules. In dense systems, though, the insertion can become difficult or
even impossible. As Mukherji and Kremer have shown, this problem can be elegantly solved by
AdResS [175]. One can simply couple the atomistic system to a coarse-grained subsystem with
much softer interaction potentials and perform the particle exchange there.

Apart from the discussed applications, AdResS has been used in many more contexts. In
particular, various technical enhancements have been proposed and validated. For example,
Delgado-Buscalioni et al. have shown that it is even possible to perform triple-scale simulations
coupling AT to CG to continuum [241–243]. Zavadlav et al. explored the possibilities of coupling
water to more complex CG liquids. They demonstrated that it is possible to use supramolecular
CG models in AdResS that combine four water molecules in a single CG entity. The bundled
molecules either stay connected in the atomistic region [214] or they are linked together or
released in the HY region using clustering algorithms [244]. It is even possible to model the
water bundles not by individual CG sites but by polarizable supramolecular CG molecules
[215]. This can be useful for systems with strong electrostatic interactions. Finally, we want to
mention another interesting technical development that was recently proposed by Fogarty et
al.: In adaptive resolution simulations of proteins, it is possible to not only treat the solvent
molecules with adaptive resolution but to additionally also use a dual-resolution model for the
protein itself, restricting the atomistic description only to the active site [190].

1.4. Outline

Although AdResS and H–AdResS are elegant tools for the coupling of AT and CG models in
adaptive resolution simulations, there are many open questions. How different can the AT
and CG systems be such that a smooth interpolation is still possible and how far can we go,
when trying to connect radically different models? AdResS and H–AdResS, although of course
inspired by each other, were derived independently. Hence, what is their deeper relation? Can
one be constructed from the other? And how can we interpret the additional drift term present
in H–AdResS? As in most concurrent multi-resolution methods, the challenge in AdResS is
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to establish a smooth connection between the different force fields. Therefore, can we come
up with any recipes in order to optimize the coupling? And how does this coupling actually
depend on the size of the hybrid region?

So far, only adaptive resolution simulations with a fixed and well-defined geometry are
possible. The high-resolution region is either of cuboid, cylindrical or spherical shape and
it is not allowed to change throughout the simulation. However, most interesting systems,
in particular biological ones like proteins and membranes, come in complicated forms and
undergo conformational transitions. Hence, can we derive a general scheme that allows adaptive
simulations with arbitrary geometries? Ideally, in such a fashion that the high-resolution can
deform and adapt its shape in order to follow, for example, the conformational changes of a
protein?

We have seen that the force-based AdResS methodology was used to couple path integral with
classical models. However, it has been shown that the standard force-based AdResS scheme
does not allow a Hamiltonian formulation, while the path integral formalism is intrinsically
based on a Hamiltonian. Therefore, can we derive a more rigorous adaptive coupling scheme
for classical atomistic force fields and path integrals?

These are the main questions that are addressed in this thesis. We build on the current state
of the art of adaptive resolution simulations with a twofold goal in mind: We do not only aim at
shedding light on the theory and mechanisms behind the two adaptive resolution methods, but
we also want to improve the existing schemes and construct more powerful AdResS methods in
order to overcome their current limitations. In the following, we provide a brief overview over
the chapters 2-7.

In chapter 2, we couple water, a very structured liquid, to an ideal gas of non-interacting
particles, a completely unstructured system with dynamics and diffusion on a completely dif-
ferent time scale. In this way, we test whether it is possible to smoothly connect so dramatically
different systems like these two exemplary ones with each other without losing accuracy in the
AT region.

In chapter 3, we derive a unifying framework for force-based and energy-based AdResS
simulations. We show that the drift force in H–AdResS can be used to construct a generalized
Langevin equation with memory and that applying it as a colored-noise thermostat on an
H–AdResS Hamiltonian, we can obtain the corresponding force-based AdResS scheme.

We continue along this line in chapter 4, and demonstrate that one can use a relative entropy
based framework to set up adaptive resolution simulations in an optimal fashion. In particular,
we prove that minimizing the relative entropy between the AT and CG potentials results in a
smooth coupling. We also derive and validate a quantitative relationship between the width of
the hybrid region and the quality of the interpolation.

In chapter 5, we devise a scheme to overcome the previous geometrical constraints in adaptive
resolution simulations. We demonstrate how atomistic regions with arbitrary geometries can be
constructed and we show that with our technique the shape can even change and adapt during
a simulation to follow, for example, the conformational transitions of a solvated macromolecule.
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Next, in chapter 6, we derive a path integral-based adaptive resolution method that allows
a clean coupling of classical force fields and path integrals. The scheme is derived from the
bottom up, is Hamiltonian by construction, and is, opposed to previous works, also consistent
with a formal path integral quantization procedure. Most importantly, the technique leads to a
significant speedup compared to all-quantum simulations.

In chapter 7, we build on the previous results and show how the derived Hamiltonian path
integral-based adaptive resolution protocol can be implemented in an efficient manner in a
molecular dynamics framework. For that purpose, we devise a tailored integration scheme and
validate it on quantum–classical path-integral simulations of liquid water. We also demonstrate
that the method can be used to not only calculate quantum statistical quantities in the high-
resolution region but also approximate quantum dynamical properties, such as vibrational
spectra.
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Abstract

In adaptive resolution simulations, molecular fluids are modeled employing different levels of
resolution in different subregions of the system. When traveling from one region to the other,
particles change their resolution on the fly. One of the main advantages of such approaches
is the computational efficiency gained in the coarse-grained region. In this respect the best
coarse-grained system to employ in the low resolution region would be the ideal gas, making
intermolecular force calculations in the coarse-grained subdomain redundant. In this case,
however, a smooth coupling is challenging due to the high energetic imbalance between typical
liquids and a system of non-interacting particles. In the present work, we investigate this
approach, using as a test case the most biologically relevant fluid, water. We demonstrate that a
successful coupling of water to the ideal gas can be achieved with current adaptive resolution
methods, and discuss the issues that remain to be addressed.

2.1. Introduction

Many soft matter systems, ranging from simple liquids to complex polymer mixtures [127, 245–
247] and biomolecules such as proteins [248–259], feature a nontrivial interplay of characteristic
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length and time scales. Because of this property, structural or energetic changes occurring at
a given scale have repercussions on others. Hence, a realistic modeling of these systems has
to take into account all fine-grained details that might affect, or be affected by, larger scale
features.

In most cases, however, the smallest meaningful size of the system is too large to allow its
simulation with a highly detailed model. At the same time, coarse-grained models, which
proved to be extremely successful in understanding the properties of many soft matter systems
[66, 101, 260–263], cannot be employed in those cases in which the fine-grained detail plays a
major role.

A solution to this problem is sometimes offered by dual resolution simulations [144, 176–
178, 181–184, 187, 212, 218, 223, 264–266]. Specifically, we consider here those cases in which the
finest level of detail is needed only in a relatively small functionally or physically relevant part of
the system. At the same time, the remainder is required to provide the aforementioned relevant
part with the necessary thermodynamic support, namely the exchange of energy and matter,
albeit not being interesting per se. This is, for example, the case of a biological system, such as a
protein, immersed in a solution of water and cosolvent, whose solvation properties are correctly
reproduced only if the number of solvent/cosolvent molecules is large enough to mimic the
Grand Canonical limit [267, 268]. In this situation, the (co)solvent is not the interesting part of
the computer experiment; however, it forms its largest part. In such cases one can describe the
relevant subsystem with the necessary accuracy, and represent the remainder with a simpler,
computationally efficient model. Adaptive resolution simulation schemes have been developed
to allow this spatially inhomogeneous treatment of the system. In these approaches, the model
used to describe a given component is not fixed for the entire duration of the simulation; rather,
molecules freely diffuse across the domain, and their resolution, i.e. the model accuracy, is
determined by the specific position they occupy in space at a given point in time.

In most cases, one tries to preserve, in the coarse-grained model, certain fundamental
properties of the higher resolution system. An example is given by the structure-based coarse-
graining procedures applied to molecular fluids, such as iterative Boltzmann inversion (IBI)
[106], which aims to obtain an effective potential energy reproducing the radial distribution
function (RDF) of the fluid. Other choices are possible, based on the desired target properties.

However, if the scope of the simulation does not focus on the low resolution part of the system,
the choice of the coarse-grained interaction may be driven mainly by system simplicity and
computational efficiency, provided that the correct thermodynamical conditions are preserved
in the high resolution domain. In this case, it is easy to see that the optimal choice is to have no
interactions in the low resolution domain. In practical terms, this means coupling the system in
the high resolution region to an ideal gas. Besides computational efficiency, such an approach
has several other advantages. One is, for example, the faster diffusion in the low resolution
domain, which would accelerate the mixing of solvent molecules in different parts of the system,
thereby improving the sampling. Another advantage is the possibility of varying the number
of particles in the system at will by simply creating or destroying molecules in a region of
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the system where they are all “invisible” to each other. This would enable the simulation of a
system with fixed chemical potential rather than number of particles, that is, to simulate a truly
Grand Canonical ensemble with minimal computational effort.

The present work is devoted to the investigation of the practical feasibility of the coupling of
the most biologically relevant fluid, namely water, to an ideal gas of point-like, non-interacting
particles each of which corresponds to a water molecule. Two different but related simula-
tion approaches, the force-based adaptive resolution simulation (AdResS) [144, 176, 218, 264]
scheme and the energy-based Hamiltonian AdResS (H-AdResS) [181, 183, 184, 266] scheme are
employed to perform this coupling, and various strategies are tested and compared to preserve
the correct thermodynamics in the high resolution region, where the system is a fully atomistic
fluid.

The most immediate advantage of replacing the vast majority of the solvent molecules in the
system with an ideal gas is clearly the lack of any force calculation in the low resolution domain.
This benefit naturally comes at some cost, namely the large thermodynamical differences
existing between the equations of state of an ideal gas and a generic molecular fluid. These free
energy discrepancies nontrivially affect the behavior of the hybrid, dual resolution system, and
require particular care in the construction of the interface, in order to allow the atomistic, high
resolution region to behave as expected. Several strategies have been developed in the past to
modulate the thermodynamical balance between the two coupled models [181, 182], but these
were in most cases applied to a “well behaved” coarse-grained system, parametrized for the
corresponding atomistic system. The large free energy difference, as well as diffusion dynamics
that differ by orders of magnitude, make the construction of a smooth seam between water and
ideal gas a challenging problem.

2.2. Adaptive resolution simulations

As briefly sketched in the Introduction, the idea lying at the core of dual resolution simulations
is to introduce into the simulation domain of a soft matter system a spatial, geometrical
separation between two of its parts. One part, typically the smallest, needs to be described
with a computationally expensive, high resolution model, and will be henceforth referred to as
the atomistic (AT) region, assuming that the single-atom level is the finest we can and need to
reach. (This is not the general case, however, and even finer models can be employed, as e.g. in
[177, 212].) The other, larger part of the system is necessary inasmuch as it represents at least
the thermal bath and particle reservoir of the small subsystem, but is not interesting in itself
and can therefore be modeled in terms of coarse-grained (CG) particles and force fields. This
subpart retains simpler, smoother non-bonded interactions, which require a smaller number of
force calculations.

These two domains are joined together through a hybrid (HY) region, by which one set
of interactions is gradually transformed into the other. This smooth change is parametrized
in terms of a resolution, or switching, function λ(x), which continuously and monotonically
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Figure 2.1.: Three consecutive snapshots of the water–ideal gas interface. For clarity we show
only molecules in a 0.7 nm thick layer in the direction perpendicular to the sheet.
The water, in the right half of the figure, is much more structured than the ideal gas
(left), in which several molecules overlap. For the orange highlighted molecules the
time evolution is visualized by copying their previous positions into the subsequent
snapshots. From this it can be seen that the molecules in the ideal gas diffuse much
faster than the water molecules, whose positions almost do not change over 0.8 ps.

goes from 1 (in the AT region) to 0 (in the CG region). In the HY region the interactions
are a combination of the atomistic and coarse-grained force fields, the specific form of this
interpolation being specific to a given adaptive resolution simulation scheme. Molecules are free
to diffuse throughout the whole simulation domain, and their resolution changes dynamically
according to their instantaneous position in space.

In general, it is necessary to take into account the fact that the two models follow different
equations of state. Therefore the equilibrium state they attain once coupled, each in its pertinent
domain, is typically not the state they would have attained if they occupied the entire simulation
box [181, 182]. Hence, system-specific modifications have to be enforced to modulate the local
equilibrium towards the desired state.

The following subsections 2.2.1 and 2.2.2 are devoted to the description of the two dual
resolution simulation schemes employed in the present work. The main difference between
them lies in the interpolation of the interactions in the HY interface: the first one, AdResS, is
built based on a linear combination of forces; the H-AdResS scheme is formulated in terms
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of a Hamiltonian, and the interpolation of the interactions occurs first at the level of potential
energies.

2.2.1. Force-based approach

The adaptive resolution simulation (AdResS) [144, 176, 218, 264] scheme is based on the direct
interpolation of two force fields. This approach satisfies Newton’s Third Law exactly and
instantaneously in every part of the system, including the HY region. The atomistic and
coarse-grained forces acting between two molecules are linearly interpolated in a symmetric
fashion, as follows:

Fαβ = λ(Rα)λ(Rβ)FAT
αβ +

(
1− λ(Rα)λ(Rβ)

)
FCG

αβ (2.1)

In Eq. 2.1, Rα (resp. Rβ) is the centre of mass coordinate of molecule α (resp. β). FAT
αβ and

FCG
αβ are, respectively, the atomistic and the coarse-grained forces acting on molecule α due to

the interaction with molecule β.

The coupling of two different models of the same system naturally leads to a thermodynamical
imbalance, e.g. if one of the two has, for a given temperature and density, a higher virial pressure
than the other. In this particular case, the system will evolve towards an equilibrium state in
which the pressure gradients are flattened out, but the density profile of the system will not
be uniform in the direction of resolution change. To enforce a uniform density profile, one
can make use of an external field, called Thermodynamic Force [182] (TF), which is obtained
iteratively according to the following update scheme:

fi+1
th = fi

th −
M

ρ2
0κT
∇ρi(r) (2.2)

where ρi(r) is the density profile as a function of position after the i-th iteration, M is the
molecular mass, ρ0 is the reference density and κT is the isothermal compressibility of the fluid.
By construction, this iterative protocol reaches a fixed point when the density is uniform, and
the update term ∇ρ is zero. It is worth mentioning that enforcing a flat density profile is not
the only option: in fact, one might wish to keep other thermodynamical quantities, such as
pressure, or higher-order correlations, e.g. RDFs, constant throughout the system. In principle
one can enforce, in the whole system, a uniform profile for two or more of these quantities,
but this possibility ultimately depends on the coarse-grained model: in some cases, in fact,
having a CG force field that correctly reproduces the reference value of a given thermodynamic
quantity implies the impossibility to do the same for one other quantity which is conjugate to
the first. A well-known example of this is provided by the pressure and the compressibility
of a CG potential obtained via IBI, which cannot be simultaneously matched [269]. On the
other hand, this limitation of the CG force field does not turn into a limitation of the adaptive
approach, since in most cases the only requirement is to have the desired thermodynamics
correctly reproduced in the sole AT region.
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The force field in Eq. 2.1 is intrinsically non-conservative, as it cannot be obtained as the
negative gradient of a potential energy function [219]. This fact determines some limitations
to the applicability of this approach, most notably the inability to perform Microcanonical
and Monte Carlo simulations. Additionally, a local thermostat is required to enforce a state
of dynamical equilibrium, in which the temperature is constant. On the other hand, it can be
proven that the system correctly samples the Canonical ensemble in the AT region, and the
configurations generated in a molecular dynamics simulation with the AdResS scheme are
compatible with thermal equilibrium [228, 265].

2.2.2. Energy-based approach

The second simulation strategy we employ in the present work is the Hamiltonian AdResS
(H-AdResS) [181, 183, 184, 266] method, in which two models of a system are coupled directly
at the level of potential energies. The H-AdResS scheme is hence formulated in terms of a
potential energy function, defined as:

VH−AdResS = K+ Vint +
N

∑
α

{
λαVAT

α + (1− λα)VCG
α

}
(2.3)

where N is the number of molecules, K is the kinetic energy, Vint is the internal potential energy
of the molecules, and: 

VAT
α =

1
2

N

∑
β,β 6=α

∑
ij

VAT(|rαi − rβj|)

VCG
α =

1
2

N

∑
β,β 6=α

VCG(|Rα − Rβ|)

λα = λ(Rα)

Contrary to the force-based approach, H-AdResS also allows NVE and MC simulations.
The drawback is the presence in the force field of a term proportional to the gradient of the
switching function. In fact, the force acting on molecule α reads:

Fα = ∑
β,β 6=α

{
λα + λβ

2
FAT

α|β +
(

1− λα + λβ

2

)
FCG

α|β

}
(2.4)

−
[
VAT

α −VCG
α

]
∇αλα

The first term of Eq. 2.4 bears some similarity with the AdResS force interpolation of Eq.
2.1: both, in fact, are anti-symmetric with respect to molecule label exchange. On the other
hand, they differ already at the level of the interpolation weights: in the AdResS case, in fact,
they are given by the product of the switching functions of the two molecules, while in the
H-AdResS case the average of the λ’s naturally appears. This difference mainly results in
diverse interactions between molecules in the CG region and those in the hybrid interface. The
AdResS scheme treats the interaction with a molecule in the CG domain as purely CG, while in
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the H-AdResS scheme the CG molecules interact also at the atomistic level with the ones in the
hybrid region, even though only weakly. For all practical purposes, however, this difference
bears no consequences.

The last term contains the largest difference with the force-based method, namely a term
proportional to the gradient of the switching function. This term, referred to as the drift force,
contains the difference between the atomistic and the coarse-grained potential energy of a
molecule, and is zero outside the HY region, where ∇λ ≡ 0 by construction. In the HY region,
though, it locally breaks Newton’s Third Law, inasmuch as the force acting between molecule
pairs cannot be written as a sum of antisymmetric terms.

The drift force can be compensated on average by including in the definition of the Hamil-
tonian a new term conceptually similar to the thermodynamic force employed in the AdResS
scheme [181, 183]:

V∆ = VH−AdResS −
N

∑
α=1

∆H(λ(Rα)) (2.5)

The functional form of this term is defined by the requirement that its corresponding force
and the drift force cancel out, i.e.:

d∆H(λ)

dλ

∣∣∣∣
λ=λα

=
〈[

VAT
α −VCG

α

]〉
Rα

(2.6)

where the subscript in the average indicates that the latter has to be performed constraining
the coarse-grained site of molecule α in the position Rα. In many cases the term ∆H can be
well approximated by the Helmholtz free energy difference between the coarse-grained model
and a hybrid model with mixing parameter λ. In practice ∆H can be obtained by means of a
Kirkwood Thermodynamic Integration [181, 183, 230] (TI):

∆H(λ) =
∫ λ

0
dλ′

d∆H(λ′)
dλ′

' 1
N

∫ λ

0
dλ′

〈[
VAT −VCG

]〉
λ′

=
∆F(λ)

N

This choice of ∆H removes the average effect of the drift force, thereby restoring, although
only on average, Newton’s Third Law also in the HY region. However, it does not guarantee
that the density in the AT and the CG domain attains the same value. To this end, it is necessary
to add a term proportional to the pressure difference between the two models, which amounts
to choosing, for ∆H, the chemical potential difference as a function of the resolution:

∆H(λ) =
∆F(λ)

N
+

∆p(λ)
ρ0

≡ ∆µ(λ) (2.7)

This correction to the Hamiltonian takes the name of free energy compensation (FEC)
[181, 183].
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2.3. Simulation details

All simulations presented here used a system containing 6526 particles (water molecules and
ideal gas particles) in a simulation box of dimensions ∼ 16.1× 3.5× 3.5 nm. This corresponds
to a density of 33.1 molecules nm−3 or 990.7 kg m−3, a value determined via fully atomistic
simulations at a pressure of 1 bar and 300 K in the isothermal-isobaric ensemble, and close to
the experimental density under ambient conditions. The instantaneous resolution of a given
particle was determined by the distance dx along the X-axis between its centre of mass and
the centre of the simulation box. The atomistic region was defined as dx ≤ 3.0 nm, flanked by
two HY regions at 3.0 < dx < 5.0 nm, and the coarse-grained region at dx ≥ 5.0 nm. Periodic
boundary conditions were used. The water–ideal gas interface region is illustrated in Fig. 2.1.
To assign to a molecule its position-dependent resolution λ, its distance from the boundary
between the atomistic and the HY region is computed, i.e. dx − dat/2, where dat is the width of
the atomistic region. This quantity is then inserted into the resolution function λ(x), which is
given as:

λ(x) =


1 : x ≤ 0

1− 30
d5

hy
( 1

5 x5 − dhy
2 x4 +

d2
hy
3 x3) : 0 < x < dhy

0 : x ≥ dhy

(2.8)

where dhy denotes the width of the HY region. In our simulations, dat = 6 nm and dhy = 2 nm.

Simulations were performed using the ESPResSo++ package [1], and a time step of 2 fs.
Atomistic water was represented using the SPC/E model [270] and the SETTLE algorithm [55].
Non-bonded interactions used a cutoff of 1.0 nm. Electrostatic interactions were calculated
using the reaction field method with a dielectric constant of 67.5998, as previously determined
for SPC/E water [174]. Production runs had a length of between 200 ps and 2 ns, depending on
the convergence time of the properties studied, and were performed in the canonical ensemble
at a temperature of 300 K, using the Langevin thermostat with a friction constant of 0.5 ps−1 in
H-AdResS and 5.0 ps−1 in AdResS. The stronger coupling to the thermostat in the force-based
scheme is necessary in order to counteract the excess heat produced in the HY region due to
the removal of degrees of freedom and the non-conservative nature of the force interpolation
simulations [265]. The use of non-interacting ideal gas particles in the coarse-grained region
allows particle positions to overlap, and two overlapping ideal-gas particles entering the HY
region, where they begin to interact, may lead to unmanageably large forces. The absolute
magnitude of the force between any particle pair was therefore capped at 104 kJ mol−1 nm−1,
in order to allow particle pairs to adapt their inter-particle distance as interaction strength
gradually increases across the HY region.

As well as coupling the atomistic water model to an ideal gas, for comparison we also
performed simulations coupling atomistic water to a coarse-grained potential developed using
Iterative Boltzmann Inversion with pressure correction [106], which reproduces the pressure of
the underlying atomistic model and provides an excellent approximation of its RDF. This IBI
potential acted on particle centres of mass, and was obtained using the VOTCA coarse-graining
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Figure 2.2.: Density profiles for force-AdResS water–ideal gas system, with and without ther-
modynamic force.

package [271], and 300 IBI steps, each running for 100 ps.

2.4. Results and discussion

2.4.1. Force-based coupling with the AdResS method

First, we couple the atomistic water model to an ideal gas using the force-based AdResS scheme.
In this case, i.e. when the coarse-grained interaction is absent, Eq. 2.1 reduces to:

Fαβ = λ(Rα)λ(Rβ)FAT
αβ (2.9)

A direct coupling of the liquid to the ideal gas produces the density profile reported in Fig.
2.2 (blue line). A considerable depletion can be observed in the HY region, where the density
drops to less than 60% of the reference value. Correspondingly, in the AT and CG region the
density is higher, but the value attained is almost the same in both domains. The marked dip
in the density profile is not symmetric and is located closer to the border with the CG than
with the AT region. Its origin can be understood by considering that particles entering the
HY region from the CG region, where they were non-interacting, may be located very close
together in space. In order to permit stable simulations this is dealt with using force-capping,
as outlined above; the high forces nonetheless lead to a peak in the virial pressure profile at the
point corresponding to the dip in the density profile, when an AdResS simulation is launched
from an initial configuration with a uniform density profile.

In order to remove this depletion we make use of the TF iterative correction, Eq. 2.2, discussed
in Sect. 2.2.1. The potential energy function corresponding to the converged TF force field
is reported in Fig. 2.3. As shown in Fig. 2.2 (red line), the application of the TF enforces a
perfectly flat density profile in the AT region, attaining the reference value. Small fluctuations,
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Figure 2.3.: Potential energies corresponding to the Thermodynamic Force and FEC contribu-
tions as obtained from Kirkwood TI. The Gibbs FEC is the sum of the Helmholtz
and the pressure FECs.

of the order of 1− 2%, can be observed in the HY region. In the CG region the ideal gas density
deviates by almost the same amount from the reference. The slightly noisy profile in the latter
region is due to the difficulty to average the position of non-interacting particles.

2.4.2. Energy-based coupling with the H-AdResS method

Next, we move to the case of the H-AdResS method. In the ideal gas case, the H-AdResS
Hamiltonian (without FEC) becomes:

H = K+ Vint + ∑
α

λαVAT
α (2.10)

In this case, as in the AdResS case, the simple coupling of atomistic water to the ideal gas
results in a depletion of molecules in the HY region, see Fig. 2.4. Additionally, we observe a
different density between the AT and the CG regions, due to the presence of the drift force.
Applying the FEC, whose plot is reported in Fig. 2.3, we see that the density attains the
reference value in the whole AT region and in most of the HY region. A small depletion of
approximately 10% is observed at the HY/CG interface, then the density in the CG region
flattens out again, to a value 1− 2% higher than the reference. Also in this case the higher
density in the CG domain is due to the depletion in the HY region. As already mentioned, the
origin of this depletion lies in overlapping pairs of molecules diffusing from the CG region
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Figure 2.4.: Density profiles for H-AdResS simulations of the water–ideal gas system with and
without Kirkwood TI based Gibbs FEC as well as for the water–IBI system, also
with Kirkwood TI based Gibbs FEC.

into the HY layer, where their high intermolecular forces lead to high virial pressure. The
deviations from the reference density observed in the hybrid simulations making use of the
ideal gas as a coarse-grained model are relatively small, do not affect the AT region and, as it
will be discussed below, the density dip does not prevent molecules from diffusing across the
interfaces separating different resolutions. The application of the thermodynamic force scheme
already employed in the AdResS case would in any case remove any minor deviation from the
reference density.

For comparison, we performed a simulation of the same atomistic water model coupled
to a coarse-grained model obtained via iterative pressure-corrected IBI. In this case, the well-
parametrized coarse-grained model, together with the FEC field, enforces a very uniform
density throughout the system. This demonstrates that when the fully atomistic system is
coupled to a coarse-grained model reproducing at least a few thermodynamical properties of
the former at the same state point, the FEC term is sufficiently accurate to remove the remaining
discrepancies in the free energy. In the ideal gas case, in contrast, the mean-field character
of the FEC becomes apparent in the imperfect correction occurring at the HY/CG interface,
where local correlations are present that are not compensated for. The trade-off between a
non-flat density profile and the advantage of not having to parametrize the coarse-grained
model depends on the specific system under consideration.

We now move on to the quantitative assessment of the correctness of the structure of the
fluid in the AT region of the water–ideal gas hybrid system. We measured the pair correlation
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Figure 2.5.: RDFs for pure water and for the atomistic region of the H-AdResS water–ideal gas
with Kirkwood TI based Gibbs FEC. Since a rigid water model is employed, all
RDFs consider only intermolecular atom pairs.

functions for pairs of atoms in which at least one atom had a distance along the X-axis of less
than 1.5 nm from the centre of the atomistic region. Since the sum of this distance and the
RDF cutoff is less than the distance used to define the atomistic region, the RDFs calculated are
fully atomistic. These RDFs are fully consistent with those measured in completely atomistic
reference simulations, as is evident in Fig. 2.5.

A crucial point is to verify that the system in the AT region behaves as if it were a subpart
of a completely atomistic system. This means not only measuring the density profile and the
RDFs, but also checking that the molecules do not have any impediment in diffusing across the
HY region. To this end, we followed the time evolution of a subset of labelled particles at the
AT/HY and CG/HY interface, to check that nothing prevents them from moving across the
system. Obviously, we can expect a different diffusion rate in the two cases, as the friction of
the ideal gas is decidedly smaller than that experienced by the atomistic water molecules.

In Fig. 2.6 (solid lines) we report the diffusion profiles of the molecules initially located in
two symmetric slabs of width 1 nm in the AT region, at the interfaces with the HY regions.
These molecules, uniformly distributed at t = 0, spread out throughout the whole system as
time passes. The overall distribution is quasi-Gaussian, but the half moving towards the CG
region extends further than the half in the AT region, as the friction in the former allows a
faster diffusion.
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Figure 2.6.: Diffusion profiles in H-AdResS simulations of the water-ideal gas system and
in fully atomistic reference simulations of SPC/E water: time evolution of the
position of molecules initially located in a 1-nm-wide slab in the atomistic region,
immediately adjacent to the HY region. The y-axis is the absolute number of these
molecules whose centre of mass X-coordinate is in a given bin at the given time.

The diffusion in the AT region, though, is perfectly compatible with that of a fully atomistic
water system. This can be verified by comparing the diffusion profiles of the H-AdResS
simulation with those obtained by performing the same analysis on a fully atomistic system.
These latter distributions, reported in Fig. 2.6 (dashed lines), overlap very well in the AT region
and even in part of the HY region, while, as expected, the distribution of the molecules in
the H-AdResS simulation (solid lines) extends deeper in the CG region. This asymmetry is
due to the fact that the CG model, the ideal gas, has by construction very different transport
properties with respect to the atomistic water model, and differences between the two cases
have to be present. Our attention, though, focusses on the atomistic subdomain, where the
diffusion occurs exactly as in the reference system, and this is the only aspect we deem crucial.

This difference between the equilibration times of atomistic water and of the ideal gas is most
clearly seen when comparing the plots in Fig. 2.6 (solid lines) with those showing the diffusion
of molecules at the CG/HY interface, Fig. 2.7. Not only are the distributions for t > 0 more
skewed than the ones previously shown, they also evolve on a much faster time scale. For the
distribution peak to reach the height that the particles at the AT/HY interface attain at t = 40
ps, those in the CG/HY interface need only 2 ps.

Finally, we studied the density fluctuations across the system, since these can be expected



38 Chapter 2. Adaptive Resolution Simulations of Water Coupled to an Ideal Gas

0 2 4 6 8 10 12 14 16
position in x-direction [nm]

0

10

20

30

40

50

60

70

80
m

ol
ec

ul
es

pe
r

bi
n

CG HY AT HY CG

t = 0 ps
t = 1 ps
t = 2 ps

Figure 2.7.: Diffusion profiles in H-AdResS simulations of the SPC/E water-ideal gas system:
time evolution of the position of molecules initially located in a 1-nm-wide slab in
the coarse-grained region, immediately adjacent to the HY region. The y-axis is
the absolute number of these molecules whose centre of mass X-coordinate is in a
given bin at the given time.

to differ enormously between a fluid of non-interacting particles and a condensed, strongly
interacting fluid. We measured the molecule number fluctuations, a quantity proportional to
the compressibility and defined as

∆N ≡ 〈N
2〉 − 〈N〉2
〈N〉 (2.11)

where N is the number of particles in a 1-nm wide slab of the simulation box. The resulting
profiles are shown in Fig. 2.8. Although the local density fluctuations in the ideal gas region are
almost an order of magnitude higher than those in the atomistic region, the latter nonetheless
correspond perfectly to the local density fluctuations in a fully atomistic system.

2.4.3. Computational gain

When performing adaptive dual resolution simulations, one of the main advantages when
coupling to a coarse-grained potential is the computational gain over detailed, fully atomistic
simulations. In this respect the ideal gas is the most efficient coarse-grained model, as it
corresponds to no interaction at all. In this section we report a comparison of the performance
of the adaptive water–ideal gas system and a fully atomistic water setup. Additionally, we also
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Figure 2.8.: Molecule fluctuations as a function of position in the simulation box for H-AdResS
water–ideal gas simulation with Gibbs FEC as well as for fully atomistic reference
simulations.

discuss the ideal gas compared to other coarse-grained models, i.e. the coarse-grained potential
from IBI.

We performed 4 sets of simulations, with four different box lengths, each consisting of an
atomistic simulation as well as a water–IBI and a water–ideal gas H-AdResS simulation. Each
of them ran for 10 ps. In the H-AdResS simulations, Kirkwood TI based Gibbs FEC’s were
employed in order to keep the densities flat (compare Fig. 2.4). In all cases under examination
the atomistic region has a total width of 2.0 nm; similarly, the adjacent HY regions always
have widths of 2.0 nm each. The size of the CG region, however, was chosen differently for all
sets; the total simulation box sizes are presented, together with the corresponding molecule
numbers, in Tab. 2.1. In applications of adaptive resolution schemes, the high resolution region
is typically, though not necessarily, much smaller than the coarse-grained region. Therefore, in
our adaptive test setups the AT and HY regions occupy only a relatively small volume in the
simulation boxes compared to the CG part.

To avoid the inclusion of implementation and platform dependent run times we considered,
in the measurements reported, only those quantities that differ for all-atom and adaptive
H-AdResS simulations. Specifically, we only measured the time that the code spends with the
calculation of non-bonded, pairwise forces and with the calculation of the drift term. In order
to obtain results independent of parallelization, we ran the simulations on a single CPU. In
parallelized adaptive resolution simulations, a load balancing protocol is required to benefit
from the computational efficiency of coarse-grained potentials in the low resolution region.
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Number of molecules Lx Ly Lz

6526 16.086 nm 3.500 nm 3.500 nm

9803 24.164 nm 3.500 nm 3.500 nm

13064 32.202 nm 3.500 nm 3.500 nm

16349 40.300 nm 3.500 nm 3.500 nm

Table 2.1.: Number of molecules and box geometries for the different sets of simulations for the
calculation of the computational gain of water–ideal gas simulations compared to
full atomistic and water–IBI simulations.

The results of the simulations are plotted in Fig. 2.9, with the corresponding speedups being
presented as an inset in the same figure. The speedups, reported in the inset of in Fig. 2.9, are
defined as Tatomistic/Tadaptive, with Tatomistic being the time spent for force calculations in the
atomistic simulations and Tadaptive being the corresponding time in the adaptive simulations.

It can be seen that the force calculations in the adaptive simulations are significantly faster
than their corresponding atomistic counterparts. For the largest box, the non-bonded force and
drift term calculations in the water–ideal gas simulations are faster by a factor of ≈ 3.5 than the
full atomistic simulations. The water–IBI simulations reach a similar, though lower, speed-up.
Therefore, the computational efficiency gained by coupling water to an ideal gas is slightly
higher than the one gained by coupling to a typical coarse-grained potential. Furthermore,
our results show that the time required for the adaptive simulations employing the ideal gas
stays nearly constant for the different box sizes. The reason for it is that the simulation time is
dictated by the interactions in the AT and HY subdomains, whose size does not change.

2.5. Conclusions

In tackling a wide spectrum of challenging problems in soft matter physics, dual resolution
simulation methods can represent an advantageous simulation strategy. In fact, they allow
us to provide a relatively small system, described with a highly detailed but computationally
intensive model, with an accurate thermodynamical environment at a limited cost in terms
of simulation resources. In particular, when the focus is concentrated on the high resolution
subsystem, and the realistic modeling of the coarse-grained domain is of no interest, it is natural
to push the simplification of the latter to the maximum.

With this goal in mind, we carried out the present work in order to study if an ideal gas
can be employed as a highly coarse-grained model for water in an adaptive resolution setup.
Our results, obtained from different simulation schemes, show that the basic requirements
are indeed satisfied: in the force-based as well as in the energy-based case, the properties of
the system in the AT domain are compatible with those that one would measure in a similar
subregion cut from a fully atomistic simulation.
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adaptive H-AdResS simulations, also the time required for the drift term calculation
is considered. Inset: speedup of the adaptive over the atomistic simulations. The
lines are a guide to the eye.

The equation of state of an ideal gas substantially differs from that of a liquid at the same
temperature and density. In order to attenuate the deviations from the reference densities
observed in both setups we introduce compensating external fields, namely the TF and FEC
terms. These fields level out thermodynamical differences between the atomistic water model
and the ideal gas, thereby maintaining the density of the fluid at the reference value.

Two-body correlations and relative fluctuations in the number of particles, as measured
in the AT domain, perfectly reproduce those measured in a fully atomistic simulation. The
diffusion profiles as well indicate that the dynamics in the high resolution region is not affected
by the presence of a super-coarse-grained reservoir. These results are obtained at a very small
computational cost compared to a fully atomistic simulation of a system having equal size.
Additionally, the computational gain does not only come from the shorter time required to
perform an integration step compared to a fully atomistic simulation. In fact, a faster diffusion
of the solvent accelerates the configurational sampling. Consequently, the simulation duration
necessary to equilibrate time independent physical observables is reduced.

Last but not least, the major advancement allowed by the coupling of an ideal gas to a
molecular fluid is given by the freedom to “tune” the physics in the low resolution region. The
absence of any interaction in the latter enables one to easily insert and delete particles, making
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it possible to regulate thermodynamical quantities such as pressure and chemical potential, and
employ smaller simulation boxes without introducing finite size effects.

Some issues, however, still remain open. For example, the mean field character of the FEC
obtained through Kirkwood TI makes it insufficient, in the H-AdResS simulations, to completely
remove a small but noticeable deviation from the reference density at the HY/CG interface.
This difficulty might prove to be particularly challenging when the focus moves towards more
complex systems, such as solvent/cosolvent mixtures. Specifically for this case, in fact, it might
be worth employing more accurate, iterative algorithms to construct an external field which
counteracts the average drift force exactly, as suggested in Ref. [184]. A further possibility could
be to combine different methods, namely the FEC and the TF.
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Abstract

Adaptive resolution schemes enable Molecular Dynamics simulations of liquids and soft matter
employing two different resolution levels concurrently in the same setup. These methods
are based on a position-dependent interpolation of either forces or potential energy functions.
While force-based methods generally lead to non-conservative forces, energy-based ones include
undesired force terms proportional to the gradient of the interpolation function. In this work
we establish a so far missing bridge between these formalisms making use of the General-
ized Langevin Equation, thereby providing a unifying framework to traditionally juxtaposed
approaches to adaptive simulations.

3.1. Letter

Simulation methods in which two different descriptions of the same system (all atom/coarse
grained, quantum mechanical/classical...) are concurrently employed have been developed and
applied since the early times of computational science [156, 158–160, 166–168, 170, 175–183, 195–
208, 212, 272, 273]. In these schemes only a small region of the simulation domain is treated
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with an accurate, computationally expensive model (e.g. an atomistic model), while for the rest
a simpler and more efficient representation (e.g. coarse-grained) is employed. In most methods
the description of a molecule is fixed for the whole duration of the simulation. Approaches
in which the molecules resolution changes ‘on the fly’ according to its position in space, e.g.
due to diffusion, are dubbed adaptive resolution methods. In the present work we focus on
the latter, which enable the simulation of soft matter, and specifically of liquids. Furthermore,
we concentrate only on classical systems, and do not address Quantum Mechanics-Molecular
Mechanics models.

Concerning particle-based, classical simulations, two main classes of adaptive resolution
simulation schemes can be identified: force-based and energy-based. The first ones [176,
178, 182] share the common feature that the two models employed are merged via a position-
dependent interpolation of the force acting between molecule pairs; in the second case [179–
181, 183] this interpolation is performed at the level of potentials. The direct interpolation of
forces enables the instantaneous preservation of Newton’s Third Law [176], often desired in
Molecular Dynamics simulations to correctly describe hydrodynamics [241]. This comes at the
price of having an intrinsically non-conservative force-field which requires a local thermostat to
enforce thermodynamic equilibrium and stability [219, 223].

Energy-based schemes are conservative and Hamiltonian by construction, allowing an explicit,
partition function-based theoretical treatment as well as energy-conserving MD simulations or
Monte Carlo simulations [181, 183]. On the other hand, the forces obtained differentiating these
energy functions contain terms proportional to the gradient of the position-dependent function
employed to interpolate between the models. Such terms cannot be written as a sum of pairwise
antisymmetric terms; therefore, they break Newton’s Third Law and momentum conservation,
and are generally seen as an undesired complication. However, they are only present where the
gradient of the position-dependent interpolation function does not disappear, i.e. only in the
interpolation region, hence leaving Newton’s Third Law in the bulk high- and low-resolution
regions valid. Removing these terms would effectively transform an energy-based approach
into a force-based one.

Exact momentum conservation and energy conservation cannot be simultaneously achieved
in an adaptive resolution simulation [219]. This fundamental limitation has hampered the
widespread application of adaptive resolution methods in soft matter. Advantages and limita-
tions of force-based and energy-based dual-resolution schemes have been largely investigated
[181–183, 219, 223, 228]. Nonetheless, it is still necessary to set a unified framework that would
encompass the two classes of methods and contextualize connections and differences between
them. In the present work we pursue this goal by establishing a formal relation between an
energy-based method, the Hamiltonian adaptive resolution simulation scheme (H-AdResS
[181, 183]), and a force-based scheme derived from it.

We begin by considering two Hamiltonians, both having the same number of molecules:

Hr = K+ ∑
α

Vr
α , r = 0, 1 (3.1)
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where K = ∑α p2
α/2mα is the total kinetic energy. Without loss of generality we assume the

molecules to be point-like particles; the extension to multi-atomic molecules is straightforward.

The single-molecule potentials Vr
α are the sums of all intermolecular potentials acting on

molecule α, properly normalized so that double counting is avoided [181, 183]. In most of the
applications [175, 187] a fully atomistic (r = 1) and a coarse-grained (r = 0) potential are used.
In the following, though, no assumption is made on the form of these interactions other than
finite range.

These Hamiltonians are interpolated, in the H-AdResS scheme [181], with a resolution
function λα = λ(Rα), varying monotonically between 1 and 0 as a function of the position of
the molecule Rα. This Hamiltonian Hmix and the force Fα acting on molecule α are:

Hmix = K+ ∑
α

{
λαV1

α + (1− λα)V0
α

}
(3.2)

Fα = FN
α + Fdr

α (3.3)

with

FN
α = ∑

β

{
λα + λβ

2
F1

α|β +
(

1− λα + λβ

2

)
F0

α|β

}
(3.4)

Fdr
α = −[V1

α −V0
α ]∇λα (3.5)

where we introduced the total force Fr
α|β acting on molecule α due to the interaction Vr with

molecule β. Without loss of generality for our following derivation, we have explicitly written
the forces for the case of pairwise interactions [181, 183]. The term FN

α contains all the derivatives
of the potential energy functions Vr

α with respect to the position of molecule α; the superscript
N indicates that if the V0 and V1 potentials separately satisfy Newton’s Third Law, then so
does the force FN

α [181]. The second term, the drift force Fdr
α , is the contribution coming from

differentiating the resolution function. We note here that, in general, the two models have
different virial pressure for the same state point, which in turn determines a non-uniform
density in the system. This effect can be compensated by adding a conservative external field,
acting only in the hybrid region, i.e. in the region where 0 < λ < 1. This methodology, aimed
at preserving the appropriate thermodynamic conditions in each subdomain, has been applied
in both force-based [182] and energy-based [181, 183] approaches.

A further source of thermodynamic imbalance is given by the last force of Eq. 3.3, dubbed
drift force. This term is specific to the energy-based schemes and represents the main difference
with respect to force-based approaches to adaptive resolution simulations. Therefore, it is on
this quantity that we now focus our attention. Specifically, we define two different models,
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named E and F , with the following equations of motions:

model E : mαẍα = FN
α + Fdr

α (3.6)

model F : mαẍα = FN
α (3.7)

In the first case the equations of motion are integrated including all the contributions obtained
differentiating the mixed Hamiltonian Hmix; in the second case the drift force is removed, e.g.
as it is done in [178], and the resulting model is a representative of the class of force-based
approaches to dual resolution simulations. Our goal is now to understand what is the difference
between these two models, and specifically under what conditions one can be considered
approximately close or equivalent to the other.

As a first step we remove the average of the drift force from the total force of Eq. 3.6 acting
on molecule α. This can be done, as demonstrated in refs. [181, 183], by adding to the mixed
Hamiltonian an external field f (λ) depending only on the resolution of the molecule:

Ĥmix = Hmix −
N

∑
α=1

f (λα) (3.8)

F̂dr
α = Fdr

α + f ′(λα)∇λα (3.9)

Employing for f (λ) the Helmholtz free energy per particle as computed in a Kirkwood
thermodynamic integration [230], the drift force is on average removed, i.e. 〈F̂dr

α 〉 = 0. This Free
Energy Compensation (FEC) method demonstrates [181, 183] that, in the H-AdResS framework,
a seamless coupling between two arbitrary models of the same system is obtained by removing
the difference in chemical potential. This result not only provides a deeper understanding of
the fundamental physics of these approaches, but also enables us to operate with them in a
computationally efficient manner.

The force F̂dr
α averages to zero by construction; therefore, the conservative force field orig-

inating from the Hamiltonian in Eq. 3.8 is equal to that of model F , with the exception of
a fluctuating term. The absence of the latter from model F causes its force-field to be non-
conservative. It has been empirically observed [181, 223, 228] that if a symplectic, i.e. energy
and phase space volume conserving integrator is employed to evolve the equations of motion
of a force-based dual resolution scheme, the kinetic energy of the system steadily increases. To
remove this “excess heat” produced by molecules crossing the hybrid region, a local thermostat,
such as Langevin’s, is required. Provided that the coupling is sufficiently strong, this procedure
maintains the system in a steady state and avoids energy drift [176, 182].

In order to better understand the role played by the fluctuations of the drift force we
performed a microcanonical H-AdResS simulation. We chose as a test system a liquid of 1596
molecules in a box of dimensions 73.69σ× 15σ× 15σ. The molecules are composed of four
atoms connected by anharmonic bonds. In the low-resolution region each molecule is described
as a single sphere. The interactions between atoms of different molecules is provided by a
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purely repulsive Weeks Chandler Andersen (WCA) potential [274]:

V1 =

 4ε
[(

σ
r
)12 −

(
σ
r
)6

+ 1
4

]
if r ≤ 21/6σ

0 if r > 21/6σ
(3.10)

where r = |rα,i − rβ,j|. The coarse-grained molecules interact via a hard-sphere potential:

V0 = 4ε

(
1.7σ

r− 0.05σ

)12
(3.11)

Given these potential energy functions, we define the characteristic time scale of the system as
τ = σ

√
m/ε, where the mass is m = 1. In the following, the quantities dimensioned as time

will be expressed in units of τ.
Finally, the intra-molecular interaction is given by a quartic bond potential:

Vint(rint) =
1
4

k(r2
int − b2)2 (3.12)

with rint = |rα,i − rα,j|2 being the distance between atoms within the same molecule α. Fur-
thermore, we chose b = σ and k = 7500ε/σ2. In the simulations, the molecules change their
resolution along the X direction with the center of the atomistic, high-resolution region being
fixed at the center of the box. The total size of the atomistic region is dat = 20σ and the thickness
of the hybrid region is dhy = 10σ; the rest of the system is treated with the coarse-grained model.
To assign to a molecule its position-dependent resolution λ, its distance from the boundary
between the atomistic and the hybrid region is computed, i.e. |Rx| − dat/2, where Rx denotes
the X coordinate of the molecule’s center of mass in a coordinate system with origin at the
center of the simulation box. This quantity is then inserted into the resolution function λ(x),
which is given as:

λ(x) =


1 : x ≤ 0

1− 30
d5

hy
( 1

5 x5 − dhy
2 x4 +

d2
hy
3 x3) : 0 < x < dhy

0 : x ≥ dhy

(3.13)

This system is the same as in Ref. [181], except for the box size along the X direction, which
has been doubled; the simulations have been performed with the ESPResSo++ [1] package. To
maintain the same density in both regions and remove, on average, the drift force, a FEC has
been applied. The equations of motion for a molecule in this setup read:

mαẍα = FN
α + F̂dr

α (3.14)

The second step is to compute the autocorrelation function of the average-subtracted drift
force F̂dr. This quantity, reported in Fig. 3.1 (top panel, thicker line), provides interesting
information about the statistical properties of the drift force. Specifically, we observe that its
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normalized autocorrelation function decays with a finite characteristic time, which we estimate
' 0.15τ by a simple exponential fit. This autocorrelation is obtained averaging over various
particles in different parts of the hybrid region. To obtain a more detailed description of
the dynamics of the system we compute the autocorrelation function of the drift force for
a specific value of λ. To this end, we performed 10 simulations of our system employing a
mixed-resolution Hamiltonian in which the resolution λ is the same for all molecules:

Hλ = K+ λU1 + (1− λ)U0 (3.15)

where Ur = ∑α Vr
α and λ = 0.1n + 0.05, n = 0, 1, · · · 9. From these simulations we computed,

for a given molecule, ∆V(t) = V1(t)− V0(t)− 〈V1 − V0〉 as a function of time at different
λ values; the autocorrelation of these quantities is then measured and related to the force
autocorrelation by:

〈F̂dr(t)F̂dr(0)〉 = (∇λ)2〈∆V(t)∆V(0)〉 (3.16)

where we made use of (see also Eq. 3.5 and Eq. 3.9):

F̂dr(t) = −∇λ
(

V1(t)−V0(t)− 〈V1 −V0〉
)

(3.17)

Also the autocorrelations so measured are reported in Fig. 3.1 (top panel, thinner lines): their
decay times increase with increasing value of the resolution. The origin of this behavior lies in
the longer time required to molecules interacting via the atomistic potential V1 to rearrange
their internal structure; this, in turn, determines slower changes in the drift force acting on
a molecule with high resolution. All the autocorrelations, though, decay to negligible values
within 1 reduced time unit.

It is instructive to measure the change of resolution that a molecule in the hybrid region
undergoes by diffusing. In Fig. 3.1 (bottom panel) we show the average resolution change
∆λ = 〈|λ(x − δx/2) − λ(x + δx/2)|〉 of a molecule which moves from the position x by a
distance δx =

√
2Dλτλ; the latter quantity makes use of the diffusion constant Dλ and the drift

force autocorrelation decay time τλ as measured in the aforementioned simulations performed
at uniform resolution. What we observe is that in the time it takes to the autocorrelation to
decay to negligible values, the resolution of the molecules changes at most by 4%, a change
which occurs mainly in the center of the hybrid region where the gradient of λ is particularly
steep.

The results in Fig. 3.1 imply that the drift force decorrelates before a molecule substantially
changes its resolution, i.e. the λ parameter, by diffusing. This observation is not expected a
priori to hold for every system; however, the necessary conditions to obtain this behavior can
always be achieved by appropriately choosing the size of the hybrid region as a function of the
diffusivity. In general, a system-specific choice of the setup parameters enables the successful
simulation of more complicated systems than our test model [186, 187, 209, 210].

We now want to employ this information about the drift force fluctuations to eliminate them
without disrupting thermal equilibrium. Specifically, we observe that the drift force F̂dr is a
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Figure 3.1.: Top: Autocorrelation of the drift force computed for different λ’s. The arrow on the
plot indicates the direction of increasing λ. The thicker black line is the autocorrela-
tion of the drift force of a particle in the hybrid region. Inset: autocorrelation of the
drift force at t = 0, as a function of λ. Bottom: average change of resolution due to
a molecule’s displacement during the characteristic decay time of the corresponding
drift force autocorrelation.

zero-average fluctuating force with a finite autocorrelation time: we can therefore apply to the
system a colored noise with memory kλ

α such that it instantaneously and exactly cancels the
drift force, i.e. kλ

α = −F̂dr
α . This model has the following equations of motion:

mαẍα = FN
α + F̂dr

α + kλ
α = FN

α (3.18)

In Eq. 3.18 the colored noise is explicitly dependent on the instantaneous resolution of the
molecule, as indicated by the superscript λ. The resulting system, rightmost term in Eq. 3.18, is
a force-based model F . This interpretation manifestly explains the previously mentioned fact
that a force-based dual-resolution simulation scheme undergoes a systematic kinetic energy
increase when integrated without a local thermostat [181, 223, 228]: the absence of the drift
force can be equated with the introduction of an autocorrelated random noise in a Hamiltonian,
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energy-conserving scheme.

To enforce thermal and mechanical equilibrium, the autocorrelated random noise must be
balanced by a history-dependent friction term according to the fluctuation-dissipation theorem.
The application of the colored noise and the friction with memory amounts to thermostat a
model E by means of a Generalized Langevin Equation (GLE) [275–280]:

mαẍα = FN
α + F̂dr

α (3.19)

−
∫ t

−∞
Kλ(t− t′)vα(t′)dt′ + kλ

α

Kλ(t− t′) = β〈F̂dr(t)F̂dr(t′)〉λ

where the subscript in the average indicates that only those molecules whose resolution is λ are
considered. Our definition of the friction kernel relies on the assumption that the molecule’s
resolution can be considered approximately constant throughout the integration time when
Kλ 6= 0; such assumption is justified by the previous observation that the force autocorrelation
time decays to negligible values before the molecule can substantially change its resolution
(see Fig. 3.1). Assuming, as previously done, that the noise cancels the drift force exactly, the
equations of motion reduce to:

mαẍα = FN
α −

∫ t

−∞
Kλ(t− t′)vα(t′)dt′ (3.20)

Eq. 3.20 describes a Hamiltonian scheme thermostatted with a GLE and, at the same time,
a force-based model F with a history-dependent friction term. We thus conclude that the
removal of the drift force from the Hamiltonian force-field introduces a non-Markovian behavior
whether the system is in thermal equilibrium, as in Eq. 3.20, or not, Eq. 3.18. Incidentally,
we observe a relation between the history-dependent friction term and previously developed
adaptive resolution simulation methods [178]: in this case, a conceptually similar ad hoc term
was introduced together with a local thermostat to enforce thermodynamical stability.

To numerically validate Eq. 3.20 we performed a simulation in which the GLE friction
kernel Kλ(t− t′) has been approximated in terms of the drift force autocorrelation functions
Cλ(t) = 〈F̂dr(t)F̂dr(0)〉 reported in Fig. 3.1. The autocorrelations have been fitted with simple
decaying exponentials; the decay time and the initial value Cλ(0) for intermediate values
of λ have been obtained by interpolating the measured quantities with cubic splines. The
numerical implementation of the GLE has been performed following the extended variable
method as described in ref. [278]. Here we made use of the property of the system that the
force autocorrelation functions decay before the molecules significantly change their position
and therefore their resolution λ. In the integration, i.e. throughout the time during which the
exponentially decaying kernel is nonzero, λ can in fact be considered constant.

The results of this simulation are reported in Fig. 3.2: specifically, in panel a) the energy of
the system is shown as a function of the simulated time for the case of model F with GLE
friction; for comparison, the same quantity has been measured in absence of the friction. In this
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Figure 3.2.: Panel a: energy of the model F normalized to its initial value as a function of time,
in absence of any friction, with GLE friction, and with simple friction proportional
to the instantaneous velocity. Panel b: density profiles of the simulations with GLE
friction and with simple friction. The average density has been computed over the
last 4/5 of the simulations (the noisy profile being a consequence of little statistics).
Note that the system is effectively out of equilibrium as the energy is not constant.

second case the energy increases steadily with a rate of Ė = 1.86 · 10−4ε/τ per particle, which
in the first case drops to Ė = 3.88 · 10−5ε/τ per particle; the non perfect conservation of the
energy can be attributed to the approximation that has been employed to fit and model the
memory kernel. It is nonetheless worth noting that the energy increase at the end of this fairly
long simulation is of the order of 2% for the model with GLE friction, which was obtained by
approximating the kernel with no free parameters.

For comparison we introduced in model F a standard friction term −γv acting only in the
hybrid region. We then fine-tuned its value so to obtain an energy increase rate as close as
possible to the one measured in the simulation with the GLE. This procedure led us to a friction
γ = 5 · 10−5 m/τ, corresponding to a rate Ė = 3.63 · 10−5ε/τ per particle, not far from what
was observed in the GLE friction case. The difference between the two methods lies in the fact
that the GLE friction approach is based on a fundamental understanding of the physics of the
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system which is intrinsically non-Markovian; the simple friction approach, on the other hand,
is just a one-parameter fit obtained by trial and error. It must be observed, though, that by all
practical criteria the two lead to identical results: comparing the density profiles of the liquid in
the two cases, Fig. 3.2b, we observe no relevant difference.

In summary, we have demonstrated that the energy-based H-AdResS scheme, thermostatted
by means of a GLE, is formally equivalent to the force-based approach obtained from it by
removal of the drift force and complemented with a history-dependent friction. A numerical
verification of the formalism has been carried out within the boundaries of an approximate fit
for the memory kernel, which largely reduces the energy drift. Because of the short decay time
of the friction kernel, and the weakness of a standard friction term providing equivalent results,
the memory effects introduced by eliminating the drift force from a Hamiltonian scheme would
be strongly suppressed by a conventional Langevin thermostat. This would be especially the
case when the low-resolution model is parametrized to match the thermodynamic properties of
the high-resolution model. This result justifies the use of the thermostatted force-based scheme
obtained from the H-AdResS method, and possibly also of other, similar approaches.

The interpretation of the drift force as a colored noise enables us to establish a formal, bottom-
up connection between energy-based and force-based adaptive resolution simulation approaches.
This unified framework provides novel insight in the theoretical foundation of a simulation
paradigm whose main actors, force-based and energy-based approaches, are traditionally
presented as alternative though complementary strategies. A deeper comprehension of the
relation between them can thus provide a solid basis for better understood and more efficient
computer simulation strategies.
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Abstract

Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter
systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields.
In such simulations, two regions with different resolutions are coupled with each other via
a hybrid transition region, and particles change their description on the fly when crossing
this boundary. Here we show that the relative entropy, which provides a fundamental basis
for many approaches in systematic coarse-graining, is also an effective instrument for the
understanding of adaptive resolution simulation methodologies. We demonstrate that the use
of coarse-grained potentials which minimize the relative entropy with respect to the atomistic
system can help achieve a smoother transition between the different regions within the adaptive
setup. Furthermore, we derive a quantitative relation between the width of the hybrid region
and the seamlessness of the coupling. Our results do not only shed light on the what and how
of adaptive resolution techniques but will also help setting up such simulations in an optimal
manner.
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4.1. Introduction

Coarse-grained (CG) models are an effective tool for simulations of physical phenomena that
occur on time and length scales that would be too demanding to study using high-resolution
atomistic descriptions [97–101]. For example, CG methods have been applied to study a variety
of complex systems including proteins [99, 112–119], membranes [15, 120–123], polymeric
materials [124–135] and liquids [103, 104, 136–141]. The schemes for obtaining CG models are
typically divided into two classes, bottom-up and top-down approaches [101]. While in top-
down coarse-graining the CG model is usually fitted to reproduce macroscopic target properties
or experimental data, bottom-up coarse-graining employs higher-resolution, e.g. atomistic
reference data to derive the CG model’s potential parameters in a systematic way. Well-known
systematic coarse-graining strategies include, for example, iterative Boltzmann inversion [106]
(IBI) and inverse Monte Carlo (IMC) [105, 281], which preserve the reference pair correlation
functions, and force matching (FM), which aims at reproducing the multi-body potential of
mean force (PMF) [102–104]. A fundamental basis for many approaches in systematic coarse-
graining is provided by the concept of relative entropy, Srel. It turns out that both IBI and IMC
can be interpreted as relative entropy minimization procedures, and also the FM method is
closely related to the relative entropy approach to coarse-graining [101, 108, 109, 282–284].

Sometimes, however, CG models alone are not sufficient. In many soft matter problems short
and long time scale and length scale phenomena are inherently coupled. Therefore, adaptive
resolution approaches have been developed that use low-resolution CG and high-resolution
atomistic models concurrently within the same simulation setup [176, 178–181, 285]. In the
adaptive resolution simulation scheme (AdResS) [144, 176, 181], a small but relevant part of the
system is typically modeled with an atomistic description while another, usually significantly
larger part is treated at a computationally more efficient CG level. Particles cross the boundary
between the two domains without experiencing any barrier and adapt their resolution on the
fly. In this approach, computational resources can be concentrated on the high-resolution
region, while nevertheless an overall large simulation box can be used to minimize finite size
effects. The atomistic subsystem then behaves as if embedded in a completely high-resolution
environment [155, 176, 181, 209–216, 286]. This technique has been used, for example, to study
proteins and DNA while treating solvent molecules far away from the solute molecule on a
CG level [155, 188, 189]. In a similar fashion, AdResS has been applied to simulate solvated
fullerenes [185, 187], and to run efficient semi-grand canonical simulations [174, 175, 211, 228].
It can also be employed to couple path integral based, quantum models with classical models
[177, 212, 216, 240], or systems like liquid water with an ideal gas of non-interacting particles
[286].

In general, adaptive resolution techniques fall into two categories. In force-based (FB)
approaches, different force fields are interpolated directly on the level of forces [144, 176, 178,
182], while energy-based (EB) techniques interpolate potential energies [179–181, 183, 184].
Both methodologies have advantages and disadvantages. The FB AdResS technique preserves
Newton’s third law, but it does not allow a Hamiltonian description of the system [219]. Hence,
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it is not energy conserving and leads to an energy drift; therefore, in practice, it requires
thermostatting [218–223]. On the other hand, the EB Hamiltonian adaptive resolution scheme
(H-AdResS) [181, 183] is, as its name suggests, based on a Hamiltonian formulation and
therefore allows energy-conserving and Monte Carlo simulations. However, this comes at the
cost of an additional force term, called drift force, in the hybrid coupling region, which does not
satisfy Newton’s third law and must be corrected. It has been shown that the two techniques are
closely related, since the FB method can be derived from a fundamental Hamiltonian framework
[266], which we will review in detail in section 4.2.1.

In this work, we introduce the concept of relative entropy into this unifying formalism, and
show that Srel is a powerful tool not only in the theory of coarse-graining, but also to understand
adaptive resolution simulation methods. We demonstrate that the behavior of particles in the
hybrid region can be described using a relative entropy based approach. In particular, the
lower Srel between the models used in the high- and low-resolution regions, the smoother the
coupling between the two. In fact, the energy drift in the FB AdResS version can be reduced by
minimizing Srel, while in H-AdResS the amplitude of the fluctuations of the undesired drift
force can similarly be decreased. Furthermore, we derive a measure that directly relates the
energy drift in FB AdResS and the strength of the drift force in H-AdResS to the width of the
hybrid interpolation region. The formalism is validated by adaptive resolution simulations of
liquid water coupled to various CG models, ranging from IBI- and FM-based descriptions to
an ideal gas of non-interacting particles. The results provide insight into adaptive resolution
simulation methodologies as well as practical guidance for setting up such simulations in an
optimal way.

The paper is structured as follows: In section 4.2.1, we recap the adaptive resolution simulation
approach and set the basis for sections 4.2.2, 4.2.3 and 4.2.4, in which we derive a relative
entropy based framework for such methods. The details of the simulations used to validate this
formalism are presented in section 4.3 and the results are discussed in part 4.4. We conclude in
section 4.5.

4.2. Methodology

4.2.1. Adaptive resolution simulations

In this section we review the FB (AdResS) and the EB (H-AdResS) adaptive resolution simulation
methodologies and the formalism to bridge the gap between them [266].

In H-AdResS [181, 183, 184], the global Hamiltonian of the system is defined as

H = K+ Vint + ∑
α

{
λαVAT

α + (1− λα)VCG
α

}
, (4.1)

where

K = ∑
α

∑
i∈α

p2
α,i

2mα,i
(4.2)
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denotes the kinetic energy and mα,i and pα,i are, respectively, the mass and the momentum of
atom i of molecule α. The sums run over all molecules α and, for each of them, over all atoms i
within the molecule. Vint represents all intramolecular interactions, such as bond and angle
potentials, which are not subject to the interpolation. The single-molecule potentials VAT

α and
VCG

α are the sums of all non-bonded intermolecular interaction potentials corresponding to
the AT and the CG model acting on molecule α (here two-body interactions are considered for
simplicity, but many-body potentials are also possible):

VAT
α =

1
2 ∑

β 6=α
∑
i∈α
j∈β

VAT(|rα,i − rβ,j|), (4.3)

VCG
α =

1
2 ∑

β 6=α

VCG(|Rα − Rβ|), (4.4)

where β runs over all molecules except α, and i and j correspond to the atoms within the
molecules α and β, respectively. rα,i denotes the position of atom i of molecule α, while Rα is
the center of mass of molecule α. The parameter λα = λ(Rα) is a position dependent resolution
function that takes values between 0 and 1. This resolution parameter is associated with
each molecule α and is evaluated at the center of mass of the molecules. It defines the high-
and the low-resolution regions of the system: where it is 1—the atomistic (AT) region—the
particles interact only according to the potential VAT

α , and where it is 0—the coarse-grained
(CG) region—according to VCG

α . In between these two domains λ switches smoothly from 1
to 0. In this transition region, the different force fields are interpolated and the description of
the system smoothly changes. This area is called the hybrid (HY) region. In general, the two
potentials can be any short-ranged interactions, although usually VAT defines an AT force field,
while VCG is a CG model typically evaluated at the molecular center of mass, as is the case in
Eq. 4.4.

The λ-function is shown in Fig. 4.1 for a schematic setup in which an AT water model is
coupled to a 1-site per molecule CG model. In the presented case, the resolution changes

Figure 4.1.: Schematic of the resolution function λ interpolating between a 3-site atomistic and
a 1-site coarse-grained water model.
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along the x-direction and the AT region is of cuboid form. In general, other geometries for
the high-resolution region are possible: for example, it can also take a spherical or cylindrical
shape.

The force acting on a molecule α coming from differentiating the non-bonded part of the
potential energy in the Hamiltonian in Eq. 4.1 is

Fα = FN
α + Fdr

α (4.5)

with

FN
α = ∑

β

{
λα + λβ

2
FAT

α|β +
(

1− λα + λβ

2

)
FCG

α|β

}
, (4.6)

Fdr
α = −[VAT

α −VCG
α ]∇λα, (4.7)

where FN
α incorporates all forces resulting from directly differentiating VAT and VCG in the

Hamiltonian. The force FAT
α|β belongs to the potential VAT and FCG

α|β to VCG. The term FN
α satisfies

Newton’s third law, provided that the corresponding potentials VAT,CG do. Furthermore, FAT
α|β is

the sum over all atomistic forces between the atoms of the molecules α and β. The term Fdr
α

is obtained by applying the derivative on the position-dependent resolution function. This
contribution to the forces, dubbed drift force, acts only within the HY region. It does not satisfy
Newton’s third law [181] and artificially pushes particles from one region to the other, thus
inducing a density imbalance in the system. Therefore, it is an undesired quantity which needs
to be corrected.

We note in passing that the drift force is not the only force which can lead to an inhomoge-
neous density in the system. In fact, the different models typically have different equations
of state, and thus pressures, for a given state point (T, V). To cancel the pressure gradients
the system thus equilibrates to a state where different subdomains feature different densities.
Appropriate methods have been devised that effectively correct for this effect [181, 182]. How-
ever, their detailed description lies outside of the scope of the present discussion, and, in the
following, we assume that such a strategy has been applied to enforce a uniform density across
the system.

Instead of interpolating the force fields on the level of potential energies, as in Eq. 4.1, we can
also directly interpolate the forces corresponding to the different interaction potentials. In this
case, we have only forces according to Eq. 4.6 without the undesired drift term. However, it
can be shown that no Hamiltonian exists corresponding to the forces FN

α only [219]. In such
force interpolation approaches excess heat is produced in the HY region, which leads to an
energy drift, and a local thermostat needs to be employed to enforce thermal equilibrium
[218–223]. Nevertheless, this force interpolation scheme has been widely and successfully
employed [155, 174, 175, 177, 185, 187–189, 211, 212, 216, 228, 240, 286].

The crucial difference between the energy-based potential interpolation method, the EB
approach, and the force-based technique, the FB approach, is the existence of the drift term,
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Eq. 4.7. Hence, omitting the intramolecular contribution to the forces, we can write for the
equations of motion of the molecules1

EB approach : mαR̈α = FN
α + Fdr

α , (4.8)

FB approach : mαR̈α = FN
α . (4.9)

Since the drift force in the EB approach leads to an inhomogeneous density, a free energy
correction (FEC) is usually applied to counteract it. One approach is to use the approximation
that the average behavior of molecules within the HY region at a particular distance, Rα, from
the center of the AT region and with resolution λ(Rα) can be described by particles within a
setup in which the whole system has uniform (hybrid) resolution λ ≡ λ(Rα), i.e.,

〈∆V〉Rα ≈ 〈∆V〉λ≡λ(Rα), (4.10)

where ∆V = VAT − VCG and VAT and VCG denote potential energies of single molecules in
the system, omitting the molecule index α to lighten the notation. Furthermore, 〈· · · 〉λ is the
ensemble average in the uniform resolution system described by the Hamiltonian

Hλ = K+ Vint + λ ∑
α

VAT
α + (1− λ)∑

α

VCG
α . (4.11)

Note that, depending on the geometry of the high resolution region, the distance Rα is
computed from a single point (spherical AT region), a plane (cuboid geometry as in Fig. 4.1), or
a line (cylindrical AT region).

Using the approach above, the FEC is given by the Helmholtz free energy difference per
particle f (λ) between a complete system with fixed resolution λ and the CG system (λ = 0). It
can be derived via thermodynamic integration [181, 183, 230] as

f (λ) =
∫ λ

0
dλ′〈∆V〉λ′ , (4.12)

∂ f (λ)
∂λ

= 〈∆V〉λ. (4.13)

The FEC is then implemented as a static field within the HY region. Using the Helmholtz free
energy difference per particle f (λ), the FEC is, with the assumption made in Eq. 4.10, for each
distinct value of λ(Rα) as strong as the corresponding average drift force, thereby counteracting

1In practice, the way the force fields are interpolated in the force-based model can vary: for example, instead of using
the average of the resolution values λ of two molecules, as in Eq. 4.1, one can use the product [144, 176, 182]. These
different schemes behave similar though. Therefore, we use the FB approach here as a representative of the class of
force-based schemes in general.
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it [181, 183]. The Hamiltonian and the drift force including the FEC can be expressed as

Ĥ = H −
N

∑
α=1

f (λα), (4.14)

F̂dr
α = Fdr

α + f ′(λα)∇λα. (4.15)

The approximation above, Eq. 4.10, holds for sufficiently large hybrid regions, where the
values of the resolution λ of neighboring molecules are sufficiently similar to each other. This is
the basis of the FEC protocol and has been shown to work well for realistic systems [181, 183],
while in more complex cases an on-the-fly strategy can be employed to parametrize the FEC
accurately [184]. However, as already pointed out, it only removes the average of the drift force
for a given value of λ within the hybrid region. The remaining average-corrected drift force
then behaves as a noise term in the hybrid region.

It is essentially this “noise” that makes the EB approach energy-conserving, in contrast to
the FB approach that lacks this term [266]. Writing the corrected drift force for an individual
molecule as

F̂dr(t) = −∇λ
(

VAT(t)−VCG(t)− 〈VAT −VCG〉
)

, (4.16)

we can calculate its autocorrelation function for different positions in the HY region, i.e. for
different λ:

〈F̂dr(t)F̂dr(0)〉λ = 〈F̂dr(0)F̂dr(0)〉λC̃λ(t), (4.17)

〈F̂dr(0)F̂dr(0)〉λ = ∇λ∇λ
[
〈∆V2〉λ − 〈∆V〉2λ

]
, (4.18)

where C̃λ(t) denotes the normalized autocorrelation function and we again used the approxi-
mation in Eq. 4.10. Because of the noise-like behavior of the corrected drift force we can now
define a friction kernel with memory according to the fluctuation-dissipation theorem as

Kλ(t) = β〈F̂dr(t)F̂dr(0)〉λ
= β∇λ∇λ

[
〈∆V2〉λ − 〈∆V〉2λ

]
C̃λ(t)

(4.19)

with β = 1/kBT. It was shown that it is precisely this friction that is required to exactly cancel
the energy drift in the corresponding FB simulation model [266]. Hence, the amplitude of
Kλ(t), that is

β〈F̂dr(0)F̂dr(0)〉λ = β∇λ∇λ
[
〈∆V2〉λ − 〈∆V〉2λ

]
, (4.20)

provides a measure for the energy drift resulting in FB adaptive resolution simulations. At the
same time, by definition it also quantifies the magnitude of the fluctuations of the undesired drift
force in the corresponding EB approach. Therefore, this expression establishes a quantitative
link between the two methodologies.
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4.2.2. A relative entropy based framework

The relative entropy Srel has been shown to be a powerful tool in the theory of systematic
coarse-graining. It provides a fundamental basis for different techniques, such as IBI and
inverse Monte Carlo, and it is also closely related to the FM method [101, 108, 109, 283, 284].
Inspired by its success in systematic coarse-graining, we now introduce Srel in the framework
of adaptive resolution simulations.

We consider the relative entropy per molecule between a target (T) system with mixed but
uniform resolution λ, described by the Hamiltonian Hλ in Eq. 4.11, and, as reference (R), the
fully CG system with H0:

Srel(λ) =
1
N ∑
I
PT(I) ln

(PT(I)
PR(I)

)
, (4.21)

where PT is the target system’s equilibrium probability distribution, PR is the one of the
reference system, the sum runs over the microstates I , and N is the number of molecules in
the system. Since we work in the canonical ensemble, we can replace PT and PR with the
corresponding Boltzmann weights, i.e.

PT =
e−βHλ

Zλ
, PR =

e−βH0

Z0
, (4.22)

where Zλ and Z0 are the systems’ partition functions.

We want to point out that both the CG and the AT system have the same degrees of freedom.
In the adaptive resolution approach, Eq. 4.1, no degrees of freedom are truly removed, but only
an intermolecular coarse-grained interaction is introduced in the CG region that substitutes
the atomistic non-bonded interaction and acts at the molecular center of mass. As pointed out
earlier, the intramolecular interactions are not subject to any interpolation procedure. Hence,
the accessible microstates I in Eq. 4.21 are the same for both the AT and the CG system and
for all values of resolution λ. Furthermore, for λ = 1 Eq. 4.21 corresponds to the expression
for the relative entropy between the fully atomistic and the fully coarse-grained system, which
was used in the seminal work by Shell, who has shown the important role of Srel in systematic
coarse-graining [108].

The Helmholtz free energy per particle of the system at resolution λ can be expressed either
as a thermodynamic integration, Eqs. 4.12 and 4.13, or in terms of the partition function as

f (λ) = − 1
Nβ

ln(Zλ). (4.23)

Furthermore, we have

Hλ − H0 = λ

(
∑
α

VAT
α −∑

α

VCG
α

)
. (4.24)

We now insert the probability distributions PT and PR, Eq. 4.22, into Eq. 4.21 and make use of



4.2. Methodology 61

Eqs. 4.13, 4.23 and 4.24 to transform the result into

Srel(λ) = β f (λ)− β

N
〈Hλ − H0〉λ

= β

(
f (λ)− λ

∂ f
∂λ

)
,

(4.25)

where we have also assumed that the zero of the system’s potential energy has been shifted so
that f (0) = 0. Taking the gradient of Srel with respect to the resolution we obtain

∂Srel
∂λ

= −βλ
∂2 f
∂λ2 (4.26)

= β2λ
[
〈∆V2〉λ − 〈∆V〉2λ

]
≥ 0.

Finally, making use of Eqs. 4.18 and 4.26 we have

β〈F̂dr(0)F̂dr(0)〉λ = ∇λ∇λ
1

βλ

∂Srel
∂λ

∣∣∣∣
λ

. (4.27)

Eq. 4.27 relates the amplitude of the drift force fluctuations, Eq. 4.20, to the gradient of the
relative entropy. The connection to the friction kernel is then given by

Kλ(t) = ∇λ∇λ
1

βλ

∂Srel
∂λ

C̃λ(t). (4.28)

This result is particularly interesting because it reveals, within the boundaries of our ap-
proximations, under which conditions the FB approach can be considered equivalent to the
EB approach. In fact, by definition we have that Srel(0) = 0, and from Eq. 4.26 we learn
that ∂Srel/∂λ ≥ 0, i.e. the relative entropy cannot decrease as a function of the resolution
parameter λ. This suggests that by minimizing the relative entropy between the models used
in the different regions of the adaptive resolution setup, the amplitude β〈F̂dr(0)F̂dr(0)〉λ is
also minimized. This would reduce the energy drift in FB adaptive simulations, and, as a
consequence, it would allow one to decrease the strength of the thermostat required to absorb
the excess heat produced. Alternatively, by definition, it would decrease the undesired drift
force fluctuations in the EB approach. Furthermore, the lower the relative entropy between the
AT and the CG interactions, the more similar are the FB and the EB approaches to each other.

This finding indicates that an appropriate choice for the CG potential could be one obtained
via a direct relative entropy minimization procedure as introduced by Chaimovich and cowork-
ers [108, 282–284, 287]. This would then also minimize the amplitude of Kλ with it. Similarly,
being equivalent to the aforementioned approach, the IBI or the IMC method could be used
[106].
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4.2.3. The width of the hybrid region

The previous result, Eqs. 4.27 and 4.28, is dependent on the precise form of the resolution
function λ. However, in most applications λ is defined in a similar fashion, trying to establish a
smooth coupling between the AT and CG regions. The most common choice is a squared cosine
function, defined as

λ(Rα) = cos2

(
(Rα − rat)π

2dhy

)
(4.29)

for molecules within the HY region, that is rat < Rα < rat + dhy, where rat denotes the radius of
the atomistic region, this is the distance from the center of the AT region to the boundary of the
HY region measured along the direction of resolution change. The quantity dhy is the width of
the HY region and Rα is the distance between the molecule α and the center of the atomistic
region. For molecules within the CG region the resolution is 0, while for molecules in the AT
region it is 1. The derivative of λ is then

λ′(Rα) = −
π

dhy
cos

(
(Rα − rat)π

2dhy

)
sin

(
(Rα − rat)π

2dhy

)
(4.30)

and it is strictly 0 outside of the HY region. Since the drift force is only present in the HY
region (EB approach) and the excess energy is also produced only there (FB approach), it is the
only part of the system which is relevant for our discussion. In the HY region λ is a bijective
function. Hence, for rat < Rα < rat + dhy we can express λ′ as a function of the resolution λ

itself:
λ′ = − π

dHY

√
λ
√

1− λ. (4.31)

Then, we can write Eq. 4.27 as

β〈F̂dr(0)F̂dr(0)〉λ =
π2

d2
hyβ

(1− λ)
∂Srel(λ)

∂λ
. (4.32)

This expression shows that the excess heat produced by an individual particle in the hybrid
region of a FB adaptive resolution simulation depends on the width of the hybrid region, dhy, as
1/d2

hy. This means, for example, that if one wants to reduce the strength of the thermostat used
to absorb this heat by a factor of 2, it will be sufficient to increase the width of the HY region by√

2. Similarly, when doubling the size of the hybrid region, the excess energy produced by an
individual particle decreases by 3/4. It is worth pointing out that the above equation, Eq. 4.32,
describes the behavior of particles in the HY region independent of the overall geometry chosen
in the adaptive setup. It is valid regardless of whether the AT region has a cuboid, spherical or
any other shape.
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4.2.4. Integrating the hybrid region

As Eq. 4.32 describes the behavior of single molecules in the HY region, we expect to obtain a
more precise measure for the overall energy drift in the FB approach when integrating over the
whole HY subdomain. To perform this integration we have to assume a certain geometrical
arrangement of the different regions. As an example, we choose a cuboid setup, like in Fig.
4.1, in which the resolution changes along the x-direction. Note that in alternative adaptive
resolution simulation setups the high-resolution region can have another shape, for example
a spherical or cylindrical one. Nevertheless, the HY region locally resembles the form of a
cuboid also in such a case, provided that the HY region is sufficiently thin compared to the
AT one. This is often the case, e.g. when the HY region is chosen as thin as possible while the
AT region needs to be large enough to fit an object of interest inside, such as a macromolecule
[155, 185, 187–189].

Integrating Eq. 4.32 over the whole hybrid region in a slab setup as in Fig. 4.1 yields

Kslab =
2π2ρ0LyLz

d2
hyβ

∫ dhy

0
dx (1− λ(x))

∂Srel(λ(x))
∂λ

=
2πρ0LyLz

dhyβ

∫ 1

0
dλ

√
1− λ

λ

∂Srel(λ)

∂λ
,

(4.33)

where Ly and Lz are the box lengths in y- and z-direction and ρ0 is the system’s equilibrium
density. The factor 2 is due to the fact that we have two symmetric HY regions in the setup on
both sides of the central AT region, see Fig. 4.1. Furthermore, we assumed here that the sum of
particles in the HY region can be modeled as a continuum distribution weighted by the density.
The second line in Eq. 4.33 has been obtained by substituting the integration in space by an
integration in resolution λ using Eqs. 4.30 and 4.31.

The quantity Kslab can be interpreted as a precise measure for the total energy drift obtained
in FB AdResS simulations. In other words, the energy drift can be expected to be proportional
to Kslab. We can write it in a more compact form as

Kslab =
1
β

π

dhy
GslabMslab (4.34)

with

Gslab = 2ρ0LyLz, (4.35)

Mslab =
∫ 1

0
dλ

√
1− λ

λ

∂Srel(λ)

∂λ
(4.36)

and see that Kslab is composed of three parts: The prefactor Gslab comes from the overall
geometric shape of the HY region and is specific for the setup we have chosen to derive
the equation; Mslab is the contribution of the different potentials in the AT and CG regions.
Minimizing the latter with a careful choice of the CG potential, a minimal energy-drift for a
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given width of the HY region can be obtained in the FB approach. Finally, the term 1/dhy is the
effect of the width of the HY region. While on the particle level the excess heat produced is
dependent on the width of the HY region with 1/d2

hy, on the macroscopic level a larger width
of the HY region also increases the number of particles in it linearly, hence the overall 1/dhy

behavior. Therefore, if one is interested in the total energy drift in a FB simulation to guide
the size of the hybrid region, 1/dhy needs to be considered. On the other hand, when the
thermostat that needs to be applied to cancel the drift is analyzed, 1/d2

hy is the quantity to look
at, as typical thermostats act on the single-particle level.

At the same time, Kslab can by definition also be interpreted as a measure for the total,
integrated noise in the hybrid region produced by the drift force in an EB adaptive simulation.

When normalizing Kslab with respect to the total number of particles in the hybrid region,

Nhy
slab = 2ρ0LyLzdhy, (4.37)

we obtain

Kslab

Nhy
slab

=
1
β

π

d2
hy

∫ 1

0
dλ

√
1− λ

λ

∂Srel(λ)

∂λ
(4.38)

=
1
β

π

d2
hy
Mslab. (4.39)

This quantity represents the average energy drift per particle and is, by construction, indepen-
dent of Gslab; additionally, it is also again proportional to 1/d2

hy, as Eq. 4.32.

As briefly explained above, we expect systems with other geometries for the regions in the
adaptive setup to behave qualitatively similar to the cuboid scenario discussed here, as long as
the HY region is sufficiently thin compared to the high-resolution one. Otherwise, considering
for example the case with a spherical geometry, the number of particles in the HY region would
increase superlinearly with dhy. For the total energy drift this would lead to a proportionality
∼ dν

hy with ν > −1, an expression decaying slower than 1/dhy.

4.3. Numerical validation

To verify the validity of the equations derived above, we performed adaptive resolution
simulations using liquid water as the atomistic system in the high-resolution region. We
coupled it to various distinct CG potentials, used different widths of the HY region, and
computed both the relative entropies and the derived measures Kslab andMslab.

4.3.1. Model systems

Atomistic water was described by the SPC/E model [270] using the reaction field method [217]
with a dielectric constant ε = 67.5998 [174] to treat electrostatics. All interactions were cut
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off at 1.0 nm and all potential energies were shifted to be zero at the cutoff [288]. The bond
constraints were enforced using the SETTLE algorithm [55], the temperature was T = 300 K
and the density ρ0 = 33.117 molecules/nm3.

We parametrized 7 different CG potentials, all of which are short-ranged pair-potentials and
approximate water molecules as single beads positioned at the molecular center of mass. The
employed CG potentials are:

• A potential obtained via iterative Boltzmann inversion (IBI) [106].

• A potential obtained via the force matching (FM) methodology [102–104].

• A potential minimizing the relative entropy between the CG system and the AT reference
system directly (RE potential) using the Newton-Raphson framework [108, 282–284, 287].

• A Weeks-Chandler-Anderson (WCA) potential with ε = 1 kBT and σ = 0.25 nm [274].

• A WCA potential with ε = 1 kBT and σ = 0.2 nm.

• A WCA potential with ε = 1 kBT and σ = 0.1 nm.

• An ideal gas of non-interacting particles [286]. In this case, there is no pair interaction
potential between the beads in the CG region.

For the IBI, FM and RE potential, the coarse-graining procedures were carried out using the
VOTCA package together with GROMACS [271, 287, 289]. The cutoffs for all CG potentials
were, like for the atomistic water model, 1.0 nm with the exception of the RE potential. The
method implemented in VOTCA for deriving the RE potential not only shifts it to be zero at
the cutoff, but it also makes the force fade out smoothly. Thereby, the actual desired behavior
of the RE potential is lost within the last 0.05 nm. Thus, the potential cutoff was extended to
1.05 nm for the RE method. All potentials are shown in Fig. 4.2.

The short-range interactions in the SPC/E model were capped to avoid diverging forces when
overlapping molecules enter the hybrid region in adaptive resolution simulations. Specifically,
the oxygen-oxygen Lennard-Jones interaction was truncated at the force corresponding to
an interparticle distance of 0.2 nm and the electrostatic reaction field interaction at the force
corresponding to a distance of 0.1 nm. Truncations like this have no effect on the properties of
the atomistic water itself but only prevent technical problems at the HY/CG boundary.

The chosen methods, IBI, FM, and RE, for deriving the different CG potentials cover the
most important and well-established techniques for systematic coarse-graining of molecular
liquids [101]. They are carefully parametrized to reproduce certain properties of the atomistic
reference system. By construction, the IBI and the RE potentials yield the center of mass RDF’s
of the atomistic model. This can be particularly important when simulating more complex CG
molecular liquids or, for example, polymer systems [126, 132, 133]. The FM potential attempts
to optimally approximate the net force on the molecular center of mass from the atomistic
reference. An advantage of the FM method is that one can easily include also higher order
terms, such as 3-body interactions. This is useful, for example, when creating a CG model of
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Figure 4.2.: The pair-potentials that were employed to model the water molecules in the coarse-
grained region of the adaptive resolution simulations.

water which reproduces its tetrahedral ordering [290]. On the other hand, we consider an ideal
gas of non-interacting particles as an extreme case of coarse-graining [286]. Coupling to an
ideal gas has particular advantages: for example, it allows the free insertion of particles in the
CG region, which can be useful for simulations at constant chemical potential. In between the
latter approaches are the different WCA potentials, which are simple hard-sphere models and
are not parametrized on any properties of the reference system. However, WCA potentials are
frequently employed to model repulsive interactions [65, 274, 291–293] and because of their
simplicity they are also well-suited to test our results.

4.3.2. Simulations

Calculation of RDF’s. We first ran simulations of the atomistic water system and each of the
different coarse-grained systems to calculate the corresponding molecular radial distribution
functions (RDF’s). The simulations were 1.5 ns long with a 2 fs time step and the simulation box
was cubic with length 4.038 nm. We applied here, and also in all other simulations, periodic
boundary conditions in each direction. The simulations were carried out in the canonical (NVT)
ensemble using ESPResSo++[1] with a Langevin thermostat with friction constant γ = 5.0 ps−1.

Calculation of Srel andMslab. To calculate the relative entropies between the SPC/E water
model and the different CG potentials, we ran 1 ns long simulations using the same box
dimensions and the same time step as before. For each CG potential we performed simulations
in different ensembles of mixed but uniform resolution λ and measured 〈∆V2〉λ − 〈∆V〉2λ.
Specifically, depending on the CG potential, we sampled between 21 and 28 λ-values within the
range from 0 to 1. For each λ and CG potential we ran 5 different, independent simulations
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to obtain an error estimate. We then calculated the relative entropies between the atomistic
water system and the CG models via Eq. 4.26 and integration. Similarly, we calculatedMslab

according to Eq. 4.36.
Energy drift in force-based adaptive resolution simulations. Next, we ran adaptive reso-

lution simulations in a box of dimensions 16.086 nm× 3.5 nm× 3.5 nm using the FB adaptive
resolution methodology of Eq. 4.9. The atomistic high-resolution model was in each simulation
the SPC/E water, while in the CG region we used the different CG descriptions. The resolution
changed along the x-direction (as in Fig. 4.1) using rat = 1.0 nm and dhy = 5.0 nm. To obtain
flat density profiles along the direction of resolution change, the force arising from the pressure
difference between the models pushing molecules from one region to the other needed to
be canceled. For that purpose, we applied a correction derived from the pressure function
obtained during Kirkwood thermodynamic integration [230] between the AT and the different
CG systems (for further details see Potestio et al. [181]). The thermodynamic integration was
performed in the same box and under the same conditions as the previous simulations for the
RDF and Srel calculation and carried out using the GROMACS package [187, 289].

Using the derived correction, the adaptive simulations were then performed in the micro-
canonical (NVE) ensemble without a thermostat. Hence, as we used the force-interpolation
scheme, excess heat was produced in the hybrid region, which led to a drift in the total energy.
The energy was calculated as the sum of all energies corresponding to the Newtonian forces in
Eq. 4.9 plus the kinetic energy, the energy of the intramolecular interactions, and the energy
corresponding to the correction force. For each setup, we performed 80 short, independent
simulations of length 20 ps each, starting from different equilibrated configurations. In this
case, we used a shorter time step of 0.5 fs to avoid any significant artifacts in the energy arising
from the finite length of the time steps. Again we employed the ESPResSo++ [1] package for
carrying out the simulations. As the energy drift drives the simulation towards a different state
point, i.e. it slowly increases the temperature, we performed many short simulations instead of
few long ones in order to stay close to the state point for which the compensation was derived.

Various hybrid region widths. Finally, we investigated the effect of the width of the hybrid
region on the energy drift using the previously described setup with the FM potential in the
CG region and with 5 different values for dhy ranging from 1.0 nm to 5.0 nm. For this part of
the study, we opted for the FM potential as it showed both a small energy drift and also only
relatively small fluctuations in the energy compared to the other potentials (see section 4.4.2,
Fig. 4.4).

4.4. Results

4.4.1. Relative entropies and RDF’s

To characterize the different CG potentials, we first measured their molecular RDF’s (Fig. 4.3)
and calculated the relative entropies with respect to the atomistic water system (Tab. 4.1). Both
the IBI and the RE potential match the atomistic reference RDF within line thickness and they
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Figure 4.3.: Molecular radial distribution functions generated by the different coarse-grained
pair-potentials used to model the water molecules in the CG region.

Potential Srel(λ = 1) Mslab

RE 5.76± 0.04 7.33± 0.05

IBI 5.76± 0.02 7.32± 0.02

FM 5.89± 0.06 7.09± 0.06

WCA (σ = 0.25 nm) 6.23± 0.07 7.65± 0.04

WCA (σ = 0.2 nm) 7.34± 0.06 13.72± 0.08

WCA (σ = 0.1 nm) 8.51± 0.05 31.96± 0.28

Ideal Gas 8.68± 0.09 36.35± 0.46

Table 4.1.: Relative entropy per molecule Srel(λ = 1) and the measure Mslab calculated with
respect to the atomistic water model for the different coarse-grained potentials. The
errors correspond to the standard deviation.

also both yield the same relative entropy. This can be expected, as both methods are designed to
reproduce the RDF, and, therefore, they also yield the same value for Srel. Additionally, the RE
technique by construction generates the potential with the lowest relative entropy with respect
to the atomistic reference system [108]. Hence, unsurprisingly, the IBI and the RE potentials
have the lowest relative entropy among the set of chosen CG potentials. It is interesting to point
out that, although the two potentials yield the same Srel and RDF’s, they look quite different
(see Fig. 4.2). According to Henderson’s theorem, to a given RDF uniquely corresponds a
specific pair-potential up to a constant [294]. In practice, however, RDF’s that are not the same
but extremely close can be generated by significantly different potentials [126, 295]. This is in
line with our observations.
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The FM method aims at approximating the multi-body PMF by projecting it in an optimal
way onto a simpler potential, a pair-wise one in this case. Therefore, as we see in Fig 4.3, it
still reproduces the first peak of the atomistic center of mass RDF relatively well, but shows a
divergent behavior for larger distances. This discrepancy could be fixed by adding a 3-body
interaction [290]. Regarding the relative entropy, however, it is still close to the minimum
provided by the RE and IBI potentials.

The WCA potentials do not match the RDF from atomistic simulations. Furthermore, larger
deviations from the reference RDF yield an increase in relative entropy. This confirms the
intuitive expectation that the less two systems match structurally, the larger is the distance
between them in terms of relative entropy. However, the WCA potential with σ = 0.25 nm, still
roughly reproducing the excluded volume of the reference system, results in an only slightly
higher relative entropy than the optimum. This is a similar behavior as observed for the FM
potential.

Finally and expectedly, the ideal gas does not yield any structure, and also has the largest
Srel value.

We point out that in the case of two-body CG potentials a relative entropy value close to the
optimum can be obtained by a simple potential which only reproduces the excluded volume of
the reference model. The more detailed structure of the CG model, this is the RDF for larger
distances, seems to play a negligible role for the value of the relative entropy. This becomes
particularly clear when considering the FM potential: while it perfectly reproduces the position
of the first peak of the reference RDF, and hence the excluded volume, it shows significant
deviations from the reference system for larger distances. Nevertheless, its relative entropy
value is close to the optimum provided by the IBI and the RE potentials.

4.4.2. Energy drift vs. Srel

Next, we performed adaptive resolution simulations with the FB approach, Eq. 4.9, using in
the AT region the SPC/E water and in the CG domain the different CG potentials. We did
not apply any thermostat to absorb the excess heat produced in the HY region, instead we
measured the total energy drifts (Fig. 4.4). Over the short run time the energy of the individual
simulations fluctuates strongly. However, as we ran a large set of simulations, we were able to
calculate well-defined averages and energy increase rates for the different setups. The ideal gas
results in the highest energy drift, while the potentials whose RDF’s best match the reference
structure result in the lowest drifts.

Plotting the energy drifts against the different relative entropies of the CG potentials (Fig.
4.5), we observe a clear trend. Indeed, as we argued in section 4.2.2, the larger the relative
entropy between the models, the higher the energy drift in the corresponding FB adaptive
resolution simulation. This confirms that minimizing the relative entropy of the CG model
relative to the AT one is a recipe for reducing the energy drift in FB adaptive simulations. As
this energy drift can be interpreted as an “error” introduced by the CG model, our result is in
line with the findings of Chaimovich and Shell, who have shown that the relative entropy can
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Figure 4.4.: Energy drifts in AdResS simulations with the FB approach using an atomistic water
model in the AT region and 7 different CG potentials in the CG region. For each
case, 80 simulations were performed (thin lines), which were used to calculate
average energy increase rates (thick lines).

serve as a universal metric for multiscale errors introduced by coarse-graining [283, 284].

4.4.3. Energy drift vs. Mslab

Although there seems to be a clear dependence of the energy drift on the relative entropy, a
precise measure for the energy drift is only provided by Mslab, Eq. 4.36. We calculated the
latter quantity for all CG potentials (Tab. 4.1) and plotted the energy drifts against it (Fig. 4.6).
Within the standard deviation, the data fall on a straight line. We conclude that the energy
drifts are indeed proportional toMslab, which validates its derivation.

It is worth to point out that, although the relative entropy Srel itself is minimized by the RE
and IBI potentials, the FM potential is the one with minimalMslab. For practical applications,
however, this seems to be irrelevant. The RE, IBI and FM potentials all lead to very similar
energy drifts with a wide range of fluctuations within individual simulations. Even the simple
WCA potential with σ = 0.25 nm does not yield a significantly higher energy increase rate. This
suggests that, as long as the CG potential reproduces the first peak of the RDF relatively well,
the energy drift in the FB approach, or the drift force fluctuations in the EB approach, will be
close to the minimum. Hence, in practice it may be sufficient to aim just for roughly matching
RDF’s and to reproduce the excluded volume of the reference system, as already argued in
section 4.4.1.

At this point, we want to make a clarification for the reader to avoid possible confusion and
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Figure 4.5.: Energy drift in force-based adaptive resolution simulations vs. relative entropy
for different CG potentials and using atomistic water as reference system for the
Srel(λ = 1) calculation and as system in the AT domain of the adaptive simulations.
The error bars correspond to the standard deviation of the measured quantities.

clearly distinguish between the RE potential, which is based on a relative entropy minimization
procedure, and the concept of relative entropy as a distance measure between probability
distributions in general. The RE potential may be parametrized in an overly accurate way,
as also simpler potentials can yield a nearly optimal relative entropy with respect to the AT
reference. However, the overall concept of relative entropy, Srel, plays an important role in the
understanding of adaptive resolution simulations, as shown in sections 4.2.2–4.2.4.

4.4.4. Energy drift vs. width of the hybrid region dhy

As the last step to validate the results derived in sections 4.2.2–4.2.4, we investigated the energy
drift in the FB approach for different widths of the hybrid region using the FM potential in the
CG region. The results are presented in Fig. 4.7. The obtained drifts are proportional to 1/dhy

and plotting them as a function of the measure Kslab(dhy), which depends on the HY region
width with 1/dhy, they fall perfectly on a straight line. This confirms that the total energy drift,
given a cuboid geometry for the adaptive setup, is indeed proportional to 1/dhy. As we have
linearly increased the number of particles in the HY region with growing width, this result also
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Figure 4.6.: Energy drift in force-based adaptive resolution simulations vs. Mslab for different
CG potentials with atomistic water as reference system for the Srel(λ) calculation
and as system in the AT domain of the adaptive simulations. The error bars
correspond to the standard deviation. The dashed line is a guide to the eye.

validates that the contribution of the individual particles to the overall energy drift grows with
1/d2

hy.

4.5. Conclusions

In summary, we have provided a framework based on the concept of relative entropy that
closely connects force-based and energy-based adaptive resolution simulation methods. We
have shown that by minimizing Srel of the potential used in the CG region with respect to the
atomistic reference system the excess heat produced in the HY region of adaptive simulations
with the FB approach can be minimized and, equivalently, the noise generated by the drift
term in simulations with the EB approach can be reduced. This also means that the FB and
the EB approaches are more similar, the smaller the relative entropy of the CG model with
respect to the atomistic one is. This result can help guide the choice of the potential used in
the CG region of adaptive simulations in order to achieve a smooth coupling between the two
domains. Naturally, systematic coarse-graining methods such as the approaches used in this
work (IBI, FM, RE) are therefore well-suited for deriving CG potentials applicable in AdResS
and H-AdResS simulations. However, as we have seen, for practical purposes and in particular
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Figure 4.7.: Energy drifts in force-based adaptive simulations with atomistic water in the AT
region and the FM potential in the CG region vs. width of the hybrid region dhy.
(a) Directly plotted against dhy. (b) Plotted against the corresponding values for the
measure Kslab(dhy). The dashed line is a fit proportional to 1/dhy and the error
bars correspond to the standard deviation.

when treating the CG region just as a particle reservoir, it may be sufficient to employ a much
simpler model that only roughly reproduces the excluded volume of the reference system, like
an accordingly parametrized WCA potential. In terms of the quality of the coupling in the HY
region, this potential would behave in a similar way to the advanced models, while it is at the
same time significantly easier to derive, and it also leads, due to its short interaction range, to a
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computational advantage.
Additionally, we have introduced a measure Kslab that is exactly proportional to the excess

heat produced in the HY region, FB approach, and the amplitude of the colored noise cor-
responding to the drift force, EB approach. This measure describes the impact of the width
dhy of the HY region on the performance of the adaptive simulations. We have shown that
the excess energy (FB approach) and the strength of the drift force (EB approach) are, on the
level of single particles in the HY region, proportional to 1/d2

hy. This information can help
adjusting the thermostat required to absorb the excess heat produced in force-based adaptive
simulations. Furthermore, considering the total energy drift in the force-based approach in
non-thermostated simulations, we could show that this depends on the width of the HY region
with 1/dhy, provided the HY region has, locally, a cuboid shape, which is often the case in
many practical applications.

In adaptive resolution simulation methods, the hybrid coupling region, where the interpola-
tion between the different force fields takes place, is the most complicated part of the simulation
setup, leading to technical and practical challenges. Here we have provided a framework
for a deeper understanding of the HY region and of the behavior of particles in it, both for
simulations using the EB approach for interpolating the force fields as well as the FB one.
We have demonstrated that the relative entropy is not only a powerful tool in the theory of
coarse-graining but also for the understanding of adaptive resolution simulation methodologies.
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Abstract

In adaptive resolution simulations, different regions of a simulation box are modeled with
different levels of detail. Particles change their resolution on-the-fly when traveling from one
subregion to the other. This method is particularly useful for studying multiscale systems in
which effects on a broad range of length and time scales play a role. Until now, the geometry
of the high-resolution region has been limited to simple geometries of spherical, cuboid,
or cylindrical form, whose shape does not change during the simulation. However, many
phenomena involve changes in size and shape of system components, for example, protein
folding, polymer collapse, nucleation, and crystallization. In this work, we develop a scheme
that uses a series of overlapping spheres to allow for an arbitrary division of space into domains
of different levels of resolution. Furthermore, the geometry is automatically adjusted on-the-fly
during the simulation according to changes in size and shape of, for example, a solvated
macromolecule within the high-resolution region. The proposed approach is validated on liquid
water. We then simulate the folding of an atomistically detailed polypeptide solvated in a shell
of atomistic water that changes shape as the peptide conformation changes. We demonstrate
that the peptide folding process is unperturbed by the use of our methodology.

75
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5.1. Introduction

Concurrent multiresolution simulation methods involve the simultaneous use of high- and
low-resolution computational models. They are used to study phenomena that are inherently
multiscale in nature, meaning that a range of length scales are at play in the same system [144–
146]. A typical example is that of macromolecules in solution, where computationally expensive,
atomistic-resolution models are needed to capture local physical and chemical phenomena
within a macromolecule and at the solute/solvent interface but where more efficient coarse-
grained models may be used to capture larger-scale effects of the rest of the solvent [155, 175].
This means defining a region containing the macromolecule and its solvation shell in which
interactions are described using atomistic models. To allow free diffusion of solvent particles
between this atomistic region and a coarse-grained particle reservoir, one can use the Adaptive
Resolution Simulation (AdResS) approach [144, 176], in which particles smoothly change their
resolution during the simulation as they cross back and forth between the atomistic and
coarse-grained regions via an intermediate transition or hybrid region. This is achieved by
an interpolation of atomistic and coarse-grained forces within the transition region [176]. To
compensate for the thermodynamic imbalance between atomistic and coarse-grained potentials,
an additional compensating force is applied [182].

The adaptive resolution methodology has been widely applied for multiscale problems in
soft matter. For example, it has been used to simulate atomistic proteins solvated in a sphere of
atomistic water [155, 188], DNA strands in a cylinder [189], and fullerenes in spheres of atomistic
solvent [185, 187]. It has also been employed for the efficient implementation of a semi-grand
canonical simulation setup [174, 175, 211, 228], and in the context of path integral simulations
interpolating between quantum and classical models [177, 212, 216, 224, 240]. The methodology
can even couple systems as different as liquid water and an ideal gas of noninteracting particles
[286].

All these works have used simple geometries for the atomistic region such as spheres, cuboid
slabs, and cylinders. In practice, however, the domain within the simulation box where an
atomistic description is needed could have any arbitrary shape, and could change in size
and shape during the simulation. In order to study phenomena like protein folding [296]
or the collapse and swelling of smart polymers like poly(N-isopropylacrylamide) [297] with
maximum computational efficiency, one needs an atomistic region which matches the shape
of the atomistic-resolution macromolecular solute, and which adapts its shape as the solute
undergoes large-scale conformational change.

Here, we extend the AdResS methodology in order to implement such an atomistic region.
Using multiple overlapping spheres to create a region of any arbitrary shape, we show how a
smooth resolution change can be achieved and how the necessary compensating thermodynamic
force can be dealt with. We then take the example of a polyalanine molecule in aqueous solution
and construct an atomistic region which contains the peptide and its hydration shell. This
region adapts to the conformational transitions of the peptide during folding (see Fig. 5.1). We
show that the folding process is unperturbed in the AdResS simulations.
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Figure 5.1.: Two snapshots from the self-adjusting peptide folding simulations. At the beginning
of the simulation (top), the peptide is extended. When it folds (bottom), the water
region around it which is modeled in atomistic resolution adapts accordingly.

The AdResS approach is one of several concurrent multiresolution simulation techniques
[179–181, 298, 299]. In particular, Szklarczyk et al. [298] have proposed a methodology for
simulating a biomolecular solute with a surface layer of atomistic solvent whose shape and
particle number adapt to biomolecular conformational changes; however this involves the use of
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restraining potentials, thereby perturbing particle fluctuations and diffusion. The AdResS-based
scheme presented here is unique in simultaneously allowing solvent particle diffusion, a fully
flexible and self-adjusting atomistic region and an automatic adaptation of the number of
atomistic water molecules as the solvent exposed surface area changes.

The paper is structured as follows: In section 5.2.1 we recap the existing AdResS approach and
in section 5.2.2 a scheme is derived enabling adaptive resolution simulations with an atomistic
region of any given desired geometry. The simulation details are presented in section 5.3 and
the results are discussed in part 5.4: The sections 5.4.1 and 5.4.2 present validation simulations
of liquid water and a peptide with fixed conformation, while in section 5.4.3 we demonstrate by
means of peptide folding simulations that our approach also allows for on-the-fly self-adjusting
geometries. In section 5.5 we discuss implementation details and possible extensions to the
methodology. We conclude in section 5.6.

5.2. Methodology

5.2.1. The AdResS scheme for a single spherical atomistic region

The AdResS method is a technique to smoothly couple two different models, typically of differ-
ent resolutions, while still allowing particles to freely diffuse between the regions associated
with each model, with particle resolution changing on the fly as they cross the resolution bound-
ary. Usually a predefined atomistic region of spherical, cuboid or cylindrical shape is embedded
in a significantly larger system modeled on a numerically more efficient, coarse-grained level.
This allows the concentration of the computational resources on the expensive but small atom-
istic part of the simulation, without compromising on the required overall simulation box size.
The structural and dynamic properties of the atomistic region have been shown to be equivalent
to those of a much larger fully atomistic system [155, 176, 188, 189, 209–211, 213–216, 286].

In order to outline the details of the AdResS methodology, we begin with the case where the
atomistic (AT) region is a sphere of radius rat centered on a point rcentr, which can be either a
fixed point in space or the instantaneous position of a designated particle. The hybrid (HY) or
transition region is a spherical shell of thickness dhy across which the resolution change occurs,
and the coarse-grained (CG) region occupies the remainder of the simulation box. The smooth
resolution change is established by associating a resolution parameter λ with each molecule α,
which can be defined as

λ(rα) =


1 : rα ≤ rat

cos2
(
(rα−rat)π

2dhy

)
: rat < rα < rat + dhy

0 : rα ≥ rat + dhy

(5.1)

where rα = |rα − rcentr| and rα is the center of mass position of molecule α [176]. A value of 1
for λ corresponds to the atomistic force field, a value of 0 to the coarse-grained force field, and
the squared cosine function provides a smooth transition between the two. This is illustrated in
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Fig. 5.2. Note that other choices for the resolution function are possible.[266, 286]

Figure 5.2.: Illustration of the resolution function λ(rα) used to smoothly interpolate between
the AT and CG force fields in the AdResS methodology for the case of water
described by a one-particle-per-molecule model in the CG region.

The forces of the atomistic and coarse-grained force fields are then interpolated as

Fαβ = λ(rα)λ(rβ)FAT
αβ +

(
1− λ(rα)λ(rβ)

)
FCG

αβ (5.2)

with
FAT

αβ = ∑
i∈α

∑
j∈β

FAT
ij , (5.3)

where Fαβ is the total force between two molecules α and β and FAT
αβ is the contribution of the

atomistic force field which is decomposed into forces FAT
ij between the individual atoms i and

j of the molecules α and β. Finally, FCG
αβ is the coarse-grained force between the molecules,

typically evaluated between their centers of mass [176]. For a pair of particles both within
the AT region, the above scheme simplifies to an interaction via the AT force field, and the
equivalent argument holds for a pair of particles both within the CG region. Otherwise, the
force interpolation is used.

The scheme of Eq. 5.2 satisfies Newton’s third law, but it is not compatible with a Hamiltonian
description [219].1 This leads to the production of excess heat in the HY region, which
needs to be removed by a thermostat based on the fluctuation-dissipation theorem to enforce
thermodynamic equilibrium [218–223]. It is sufficient, however, to apply the thermostat only
in the CG and HY regions, thereby leaving the dynamics in the AT region unperturbed
[155, 210, 216].

At a given temperature and reference density, coarse-grained potentials typically have a

1We note that a Hamiltonian-based version of AdResS also exists in which the energies are interpolated [181]. It is
energy- but not momentum-conserving. The scheme leads to an additional term in the forces, which would in turn
result in additional complications in the implementation of a self-adjusting atomistic region scheme as presented
here for the force-interpolation version of AdResS.
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Figure 5.3.: Top: Normalized density profiles with and without thermodynamic force correction
for an AdResS setup where the atomistic region is a simple sphere. Bottom: Percent-
age deviation from a flat reference density profile for the case with thermodynamic
force shown in the top panel.

different virial pressure than the atomistic reference system [225–227]. Therefore, coupling two
such different models with each other using Eq. 5.2 will result in an inhomogeneous density
profile along the direction in which the resolution changes (see example in Fig. 5.3). A well
established method to correct for this thermodynamic imbalance between the two subsystems
is provided by a compensating force known as the thermodynamic force (TF) [182], which acts
on the centers of mass of solvent molecules, and has a nonzero value only within the HY region
or in its immediate vicinity. It is applied along the vector

eα =
rα − rcentr

|rα − rcentr|
. (5.4)

between the center of mass of a molecule α and the center of the atomistic region, i.e. the vector
along which the resolution changes.

To remove the density gradient between the two regions, the TF needs to be parametrized
such that its integral equates the pressure difference ∆p between the two potentials:

∆p =
ρ0

M

∫ rTF
at +dTF

hy

rTF
at

FTF(r)dr (5.5)

where M is the mass of a coarse-grained molecule, ρ0 is the system’s reference density and
FTF(r) is the scalar value of the thermodynamic force FTF(rα) = FTF(rα) eα of molecule α at
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distance r from the center of the atomistic region [182]. Furthermore, it has proven useful to
extend the region in which the TF is applied by a short distance dext 6 0.1 nm on either side
of the HY region, such that the width of the region within which the TF is actually applied
(referred to as the correction region) is dTF

hy = dhy + 2 dext. We define rTF
at = rat − dext, the AT

region radius reduced by dext.
Usually, the TF is derived in an iterative fashion starting from the inhomogeneous density

profile obtained when no compensating force is used, as

FTF
i+1(r) = FTF

i (r)− M
ρ2

0κT

∂

∂r
ρi(r) (5.6)

where κT is the isothermal compressibility at temperature T, ρi(r) is the density profile at
iteration i. The protocol of Eq. 5.6 converges by construction once a sufficiently flat density is
reached and has been used extensively in the context of AdResS simulations [155, 174, 175, 187–
189, 211, 213–216, 228, 286]. In practice, the value of the prefactor in front of the density gradient
can be varied to aid convergence.

5.2.2. A method allowing for general geometries

We now outline a scheme that allows for AdResS simulations where the high-resolution region
can have any arbitrary shape. Such a general geometry can be achieved by constructing the
atomistic region as a combination of multiple overlapping spheres with centers rcentr,i. The
centers of these spheres can be either fixed in space (see sections 5.4.1 and 5.4.2), or associated
with particles that move in space (see section 5.4.3), enabling the high-resolution region to
change its shape during the simulation as the particles defining the region move. We define
all spheres here to have the same radius rat and hybrid region thickness dhy. The resolution
parameter λ(rα) of a molecule α is then defined as in Eq. 5.1 above, but based on the distance
rmin between the molecule’s center of mass rα and the closest sphere center rcentr,i out of all the
multiple overlapping spheres.

In this picture, we can define surfaces with the same value of rmin (see for example the red
and blue lines in Fig. 5.4), which we call iso-resolution surfaces in the following. Particles on
such a surface all have the same resolution λ(rα) and the change in resolution within the hybrid
region takes place along the perpendicular direction to the iso-resolution surface on which the
molecule is located. The additional force arising from the pressure difference between atomistic
and coarse-grained models can be supposed to also act perpendicularly to these surfaces, i.e.
along the direction of resolution change, as we will indeed later show.

The difficulty now lies in the appropriate application of the TF correction required to
compensate for the density gradient arising from this pressure difference. We recall that in
the case where the atomistic region is one single sphere, the TF has a value FTF(rα) derived
using the iterative scheme in Eq. 5.6 and is applied along the vector of resolution change, i.e.
the vector eα between the single sphere center and the molecule on which the TF is applied.
Similarly, in the case of multiple overlapping spheres, both the magnitude and direction of
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Figure 5.4.: Two-dimensional visualization of the three-dimensional thermodynamic force cal-
culation procedure in the case of an atomistic region composed of two overlapping
spheres. The center of mass positions of two molecules are shown as examples
and the curved red and blue lines indicate the iso-resolution surfaces on which the
molecules reside. The green dotted line shows where the closest center to a molecule
changes. The black arrows at the molecular positions denote the thermodynamic
force. As molecule 1 is only in the hybrid region with respect to center 1, its thermo-
dynamic force is exactly perpendicular to its iso-resolution surface. Molecule 2 is
in the hybrid regions with respect to both centers 1 and 2. Therefore, the direction
along which the thermodynamic force on this molecule acts is interpolated between
the two vectors toward the centers.

application of the TF correction must be chosen. The value FTF(rmin) can be determined based
on the distance rmin to the closest sphere center, and can be derived via Eq. 5.6 in a setup
with a single spherical region. Thus, Eq. 5.5 still holds along the resolution change direction.
We now turn to the more complex question of the direction of the vector. As in the single
sphere case, for multiple spheres one could suppose that the TF needs to be applied everywhere
in a perpendicular direction to the iso-resolution surface to cancel the imbalance induced by
the pressure gradient. However, this would lead to the following two complications: (i) the
perpendicular direction to the iso-resolution surface changes abruptly along the line where the
closest center changes (green dotted line in Fig. 5.4), leading to undesired abrupt changes in the
correction forces, and (ii) on this line, the perpendicular direction is not defined. Therefore, we
apply the TF along a direction defined as the linear combination of all normalized unit vectors
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ei
α from each sphere center rcentr,i toward the position of the molecule α, rα:

vTF
α = ∑

i
wi

αei
α (5.7)

where the weights wi
α are defined as follows.

wi
α =


0 : ri

α ≤ rTF
at(

1− ri
α−rTF

at
dTF

hy

)ν

: rTF
at < ri

α < rTF
at + dTF

hy

0 : ri
α ≥ rTF

at + dTF
hy

(5.8)

with ν an integer greater than 0 (discussed in detail later) and ri
α = |rα − rcentr,i|. This means

that the weight wi
α is 0 if the molecule is outside the correction region with respect to center

i. On the other hand, if the molecule is within this area, the weight changes from 1 closest to
center i to 0 furthest from center i. Thereby, stronger weight is given to vectors toward closer
sphere centers. Note that these weights are used only for determining the direction and not the
magnitude of the TF, therefore the abrupt change of the weight from 0 to 1 at the close edge of
the correction region does not lead to any abrupt changes in the TF.

If vTF
α = 0, the molecule α is not in the correction region with respect to any center, and no

correction force is applied. Otherwise, if vTF
α 6= 0 we calculate the unit vector of vTF

α ,

ẽTF
α =

vTF
α

|vTF
α |

, (5.9)

and apply the thermodynamic force for molecule α along ẽTF
α . This can be expressed as

FTF(rα) = FTF(rmin)ẽTF
α . (5.10)

The outlined protocol generates a TF correction that acts only in the extended hybrid
(correction) region. If the molecule is within the correction region with respect to only one
center, the TF is applied precisely as in the case of a simulation box containing a single sphere,
perpendicularly to the iso-resolution surface. If the molecule is located where the correction
regions of two or more spheres overlap (referred to as the overlap region), an interpolation takes
place that can be tuned with the parameter ν. We note that the procedure can lead to nonzero ẽα

within the combined atomistic region of all individual spheres. However, as the magnitude of
the TF correction FTF(rmin), which is calculated independently just based on the iso-resolution
surfaces, is zero there, no force is applied in this case. The scheme naturally reduces to the
regular, well-established approach for single spherical regions [182]. The calculation procedure
is visualized with examples in Fig. 5.4.

Finally, we discuss the variable ν, which controls the functional form of the relationship
between the weight of a vector ei

α in the sum in Eq. 5.7 and the distance of molecule α from
center i. If ν = 1, the weight varies linearly with the distance. This leads to a situation in
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Figure 5.5.: Two-dimensional projections of the thermodynamic force using the scheme pro-
posed in section 5.2.2 with ν = 1 (left) and ν = 20 (right), in a setup with a
high-resolution region composed of two overlapping spheres. The centers of the
spheres are separated by 1.3 nm. The thin black lines indicate the hybrid region
within which the resolution changes, while the thicker black lines denote the slightly
extended area in which the thermodynamic correction is applied. The two heavy
black dots represent the centers of the spheres. The length of the arrows is pro-
portional to the absolute values of the forces as follows: The absolute values have
been normalized by 1.0 kJ/(mol nm) to make them unitless, shifted by 1.0 and then
converted to a logarithmic scale (base 100).

which ẽα, the direction of the TF application vector, changes smoothly throughout the correction
region (see Fig. 5.5, left). Within most of the overlap region, the direction of ẽα deviates strongly
from perpendicularity to the iso-resolution surfaces. Larger values for ν (for example ν = 20 in
Fig. 5.5, right) give stronger weight in the sum in Eq. 5.7 to smaller values of ri

α − rTF
at in Eq. 5.8,

i.e. to the vectors toward closer sphere centers. This leads to a situation where the vector ẽα

is nearly perpendicular to the iso-resolution surfaces everywhere except very close to the line
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along which the closest center to a molecule changes (see green line in Fig. 5.4). The choice of ν

has implications for the resulting solvent density throughout the simulation box, as is shown
below.
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Figure 5.6.: Two-dimensional projections of the thermodynamic force for two different setups.
Left: Two spherical high-resolution regions whose hybrid regions overlap. The
centers are separated by 3.0 nm. Right: 21 spheres are placed so as to form a
U-shaped high-resolution region. In both cases the interpolation parameter ν is 20.
As in Fig. 5.5 the heavy black dots represent the centers of the spheres, the thin
black lines indicate the hybrid region within which the resolution changes and the
thicker black lines denote the slightly extended area in which the thermodynamic
correction is applied. Also the same arrow scaling as in Fig. 5.5 is applied.

5.3. Simulation details

To validate the protocol described above we considered several different simulation setups. First,
we studied a series of pure liquid water boxes each containing a differently shaped atomistic
region constructed from overlapping spheres, positioned to represent various critical geometrical
arrangements. In this case, the centers did not change position during the simulation. This
allowed us to explore the effectiveness of the protocol for multiple spheres without taking
into account their relative movement. We subsequently studied a peptide in aqueous solution
around which we constructed an atomistic region by placing a sphere center on each protein
atom. We considered first the frozen case, and finally the case in which the peptide undergoes
folding and the atomistic region adapts its shape to correspond to the conformational change.

5.3.1. Liquid water

For the atomistic water we used the SPC/E model [270]. In the CG region, water molecules
were modeled by single beads on the center of mass, interacting via a pair potential obtained
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via iterative Boltzmann inversion (IBI) without pressure correction [106], which reproduces
the water’s molecular radial distribution function. Because IBI-based potentials are also
simple to calculate they are popular and widely applied. However, coarse-graining typically
yields potentials with significantly different thermodynamic properties. In particular, our IBI
potential leads to a pressure ≈ 6000 times higher than the water model’s reference pressure.
To compensate for this pressure imbalance between the IBI potential and the atomistic water,
we derived a TF using the iterative procedure described in Eq. 5.6, using a single spherical
atomistic region with dimensions rat = 1 nm and dhy = 1 nm. To assess the quality of the
resulting TF, we ran simulations of a cubic box (dimension 6.00216 nm) of water containing a
spherical atomistic region with dimensions as above (system 1). The total simulation time for
the production runs was 7.5 ns, with 20 ps equilibration.

To test the proposed method for adaptive resolution simulations with arbitrary geometries,
we considered three particularly critical test cases, using again rat = 1 nm and dhy = 1 nm:

• System 2: a system with a high-resolution region composed of two spheres whose
centers are separated by 1.3 nm along the x-axis, at z = 3.0 nm, in a box of dimensions
6.93 nm× 6.0 nm× 6.0 nm. We ran three sets of simulations for this setup, one without
TF correction and two with TF and interpolation parameters ν = 1 and ν = 20. The
two-dimensional projection of the TF onto the plane at z = 3.0 nm of this arrangement is
visualized in Fig. 5.5

• System 3: a system where only the hybrid but not the atomistic regions of two neighboring
high-resolution regions overlap. Two sphere centers were placed separated by 3.0 nm
along the x-axis, at z = 3.0 nm, in a box of dimensions 7.95 nm× 6.0 nm× 6.0 nm (see Fig.
5.6, left). Simulations were run with TF using an interpolation with ν = 20.

• System 4: a larger, strongly deformed high-resolution region. We placed 21 sphere
centers, at z = 3.0 nm, in a box of dimensions 9.40 nm× 9.0 nm× 6.0 nm to form a U-
shaped high-resolution region (see Fig. 5.6, right). Also in this case, we used the TF with
ν = 20.

In each case, the total simulation time for production runs was 6 ns, with an initial equilibration
of 20 ps.

All simulations were run at 300 K at a density of ρ0 = 33.117 molecules/nm3. The electrostat-
ics were treated with the reaction field [217] method using a dielectric constant ε = 67.5998
[174]. The cutoff for all interactions was 1 nm. Bond constraints were enforced using the
SETTLE algorithm [55]. The time step was 2 fs, production simulations were performed in the
NVT ensemble with a Langevin thermostat with a friction constant γ = 5.0 ps−1. For system
4, the U-shaped high-resolution region, we additionally performed a set of short simulations
during which we apply a Langevin thermostat with friction constant γ = 30 ps−1 only in the
CG and HY regions. This leaves the dynamics in the AT region unperturbed [155]. Here, the
total production run time was 100 ps.
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The coarse-grained potential and the TF were obtained using the VOTCA package [271]
together with GROMACS [187, 289]. All other simulations were carried out using the open
source ESPResSo++ package [1] in which we implemented the scheme derived in section 5.2.2.

For all systems where fully atomistic reference simulations are referred to, these were
performed with identical force field and simulation parameters to the corresponding AdResS
simulations, at the reference density of ρ0 = 33.117 molecules/nm3.

5.3.2. Polyalanine peptide

The peptide system studied was a polyalanine-9 molecule in aqueous solution. In order to
achieve peptide folding on a relatively short time scale, we used the Amber99 force field [300],
which has the well-known property of overfavorizing α-helix formation [301]. We note that in
this work we are not interested in elucidating the precise details of polyalanine folding, some-
thing which has already been explored in detail elsewhere [301–303]. Rather, we are interested
in studying the performance of our methodology in the case of an example macromolecular
system which rapidly and consistently undergoes realistic large-scale conformational change,
hence the force field choice.

For the AdResS peptide simulations, an atomistic region was constructed from multiple
overlapping spheres by placing one sphere center on each protein atom. As before, each of
these regions had a radius rat of 1 nm and a hybrid region width dhy also of 1 nm. Thereby, the
peptide was modeled on the fully atomistic level at all times and was enveloped in a 1 nm thick
layer of atomistic water. Previous work showed this to be the minimum necessary distance
for protein and hydration shell properties to be preserved [155]. Surrounding this layer of
atomistic water was the hybrid region in which the solvent smoothly changes resolution, and
this was embedded in the CG region which was the remainder of the simulation box. The
interpolation parameter for the TF was ν = 20 in all AdResS peptide simulations. For all
peptide simulations, the time step was 1 fs, consistent with the highest frequency motion in
the system, the vibrations of bonds containing hydrogen. Where a barostat was used in fully
atomistic equilibration simulations, this was the Parrinello–Rahman barostat with coupling
time 2.0 ps. All other simulation parameters and interaction potentials were as given for the
pure water simulations in section 5.3.1.

We generated a fully extended polyalanine conformation using the Avogadro package [304],
and solvated it in 10178 water molecules. The cubic simulation box had sides of length
6.73 nm. The peptide was in zwitterionic form with charged termini. When the polypeptide
is fully stretched, the distance between the end Cα atoms is 2.8 nm. During 100 ps NPT and
2 ns NVT equilibration with the fully atomistic approach, we applied a harmonic constraint
with its minimum at 2.6 nm to this distance to produce equilibrated but extended structures.
Fourteen such configurations were generated, sampled at intervals of 100 ps. The constraint
was then removed to allow the peptide to fold, and 20 folding trajectories of length 8 ns each
were produced with the fully atomistic and AdResS approaches, as well as eight additional
trajectories of length 5 ns to increase sampling of the folding pathways.
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We also performed simulations in which the conformation of the peptide was frozen, using
an equilibrated extended conformation produced as described above. Here, a further 20 ps
equilibration were performed followed by 5 ns total production. As in the pure water case
above, we also ran 2.5 ns with the thermostat (γ = 30 ps−1 in this case) acting only in the CG
and HY regions in order to leave the dynamics of the AT region completely unperturbed.

5.4. Results and Discussion

5.4.1. Liquid water

System 1: Single spherical atomistic region. While the TF has been shown to work very well
in counteracting the density gradient caused by the pressure difference between atomistic and
coarse-grained force fields [155, 174, 175, 187–189, 211, 213–216, 228, 286], fluctuations on the
order of 1% still tend to occur in the density profile even with the compensating force. We
therefore first tested the quality of the thermodynamic force used in this work in order to be
able to distinguish between two effects: (i) inherent density fluctuation effects which occur
even in the case of a simple spherical atomistic region and the well-established existing TF
protocol and (ii) potential additional effects arising from the use of multiple overlapping spheres
and the TF application procedure outlined in section 5.2.2. We therefore calculated density
profiles along the direction of resolution change in AdResS simulations using a single spherical
atomistic region. These have already been presented in Fig. 5.3. Without TF the pressure
difference between the AT and CG regions leads to an increased density in the AT regions
by about 20% compared to a flat profile. Using the TF compensation, however, we obtain a
virtually flat profile. Only small deviations up to 1% in the AT and HY regions remain.

System 2: Atomistic region composed of two overlapping spheres. We now turn to the
setup with two overlapping spheres (see Fig. 5.5). The chosen geometry results in a pronounced
kink in the iso-resolution surfaces, along the circumference of the circle where the closest
sphere center changes for a particle on that surface (intersection of the spheres forming the
iso-resolution surface, on the green line in Fig. 5.4). Therefore, this scenario provides a good
test of the performance of the correction protocol outlined in section 5.2.2.

We ran simulations with TF (interpolation parameters ν = 1 and ν = 20) and without TF
and calculated the density on a three-dimensional grid in cubic boxes of dimension 0.3 nm. We
visualize this as projections of the density onto two-dimensional planes at a selection of values
of z along the z-axis of the simulation box. The density maps obtained without TF are shown
in Fig. 5.7. As we have already seen in the previous case of a single spherical high-resolution
region, the pressure gradient between the subregions leads to an approximately 20% higher
density in the AT region.

Using the TF correction and applying it according to Eqs. 5.7–5.10, we obtained the density
maps shown in Fig. 5.8. An interpolation parameter ν = 1 results in strong density distortions
in the region where the closest center for a particle on an iso-resolution surface changes. In most
of this region, the TF is applied in a direction which is not perpendicular to the iso-resolution
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Figure 5.7.: Two-dimensional density maps calculated at a selection of z-planes for an adaptive
resolution simulation of liquid water (system 2), with no TF correction applied.
They are normalized to the reference density such that the ideal value is 1. The thick
black lines indicate the intersections of the z-planes with the boundary between AT
and HY regions. Similarly, the thick blue lines represent the intersections with the
HY/CG boundary. As the total box length in the z-dimension is Lz = 6.0 nm, the
setup is symmetric with respect to the z = 3.0 nm plane. Therefore, we only show
results for z ≥ 3.0 nm.

surfaces (Fig. 5.5). This perpendicular direction, however, is the direction along which we
expect the pressure gradient to push particles from the CG to the AT region. Hence, the TF
does not appropriately cancel this.

This problem can be solved by using a larger value for ν. This significantly increases the
domain where the TF is applied perpendicularly to the iso-resolution surfaces, i.e., interpolation
is performed only directly adjacent to the point where the closest center changes. We explored
different values of ν in the range between 1 and 50 and found that with ν = 20 the approach for
applying the TF works well (see Fig. 5.8 (b)). The previous distortions are resolved and a nearly
flat density map is obtained. The remaining small deviations are of the order 1%–2%. In Fig.
5.9 we show an equivalent density map for a fully atomistic reference system. The fluctuations
in the density are also ∼1%–2%, due to the finite length (6 ns) of the simulations. We note
that the average distance traveled by a water molecule in this time is about 4 nm, based on the
diffusion constant of SPC/E water [305]. Comparison of Figs. 5.9 and 5.8 (b) makes it clear
that most of the observed density fluctuations in the latter figure are due to finite averaging.
Nevertheless, there seems to be a small (not larger than ∼1%) systematic deviation toward
lower densities within the center of the AT region (bluish color in the center for z = 3.0, z = 3.3,
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Figure 5.8.: Two-dimensional density maps calculated at a selection of z-planes for an adaptive
resolution simulation of liquid water (system 2). They are normalized to the
reference density such that the ideal value is 1. The protocol derived in section
5.2.2 is applied using (a) ν = 1 and (b) ν = 20. The thick black lines indicate the
intersections of the z-planes with the boundary of the AT region. Similarly, the thick
blue lines represent the intersections with the outer boundary of the HY region.

and z = 3.6 nm). This is in line with the observations for the spherical case (see Fig. 5.3), where
the density is also about 0.5%–1.0% lower than the reference. Hence, we suppose that the small
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Figure 5.9.: Two-dimensional density map calculated at the z = 3.0 nm plane for a fully atomistic
reference simulation of liquid water using the same box dimensions as previously
for system 2. They are normalized to the reference density such that the ideal value
is 1.

systematic deviation in this case is rather a feature of the parametrized TF itself than an effect
from the protocol outlined in Sec. 5.2.2.

Larger values for ν did not lead to any further improvements; hence, we chose ν = 20 for all
subsequent work.

System 3: Two spherical atomistic regions, overlapping hybrid regions. Next, we consider
the case in which only the hybrid regions of two neighboring high-resolution regions overlap.
The setup we used is shown in Fig. 5.6 (left).

We again performed simulations with ν = 20 and measured two dimensional density maps
for different z-planes. They are shown in Fig. 5.10 (a). No significant distortions are visible.

System 4: U-shaped atomistic region. Finally, we consider a U-shaped AT region which is
assembled from 21 overlapping spheres arranged as visualized in Fig. 5.6 (right). This resembles
a scenario that could occur, for example, when a long polymer or peptide folds over into a
loop. Figure 5.10 (b) shows the density maps obtained from simulations with an interpolation
parameter ν = 20. We also measured the density as a function of distance with respect to the
closest AT region center (Fig. 5.11 (a)).

The density in the atomistic region is systematically 1%–2% lower than the reference. Con-
sidering the previous (Fig. 5.8 (b)) or the simple spherical case (Fig. 5.3), density fluctuations
of around 1% are to be expected. However, in this case there is an additional minor effect
arising from the use of multiple overlapping spheres. We therefore quantified to what extent
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Figure 5.10.: Two-dimensional density maps calculated at different z-planes for two different
adaptive resolution simulations of liquid water. They are normalized to the
reference density such that the ideal value is 1. (a) Two spherical high-resolution
regions overlap only with their hybrid regions (system 3). (b) U-shaped high-
resolution region assembled from 21 overlapping small spheres (system 4). In
both cases, we used ν = 20. The thick black lines indicate the intersections of the
z-planes with the boundary of the AT region, while the thick blue lines represent
the intersections with the outer boundary of the HY region.
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Figure 5.11.: (a) Density as function of distance with respect to the closest sphere center for
the U-shaped high-resolution region setup (system 4, Figs. 5.6 (right) and 5.10
(b)). (b) and (c) Radial distribution functions (oxygen–oxygen, oxygen–hydrogen,
hydrogen–hydrogen) and tetrahedral order parameter qtet measured within the AT
region of the U-shaped setup and for all-atom reference simulations.

the structural and dynamical properties of the AT region may be perturbed with respect to a
fully atomistic reference system. For that purpose, we calculated the water radial distribution
functions (RDFs) as well as the tetrahedral order parameter qtet within the AT region. For a
molecule i, the parameter qtet is defined as

qtet = 1− 3
8

3

∑
j=1

4

∑
k=j+1

(
cos(θj,k) +

1
3

)2
(5.11)

where j and k run over i’s four nearest neighbor molecules. The angle θj,k is formed by the
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oxygen atoms of molecules i, j and k with i in the center. This results in qtet = 1 when the
molecule forms a perfect tetrahedron with its four nearest neighbors and it is on average 0 in
an ideal gas. The results are shown in Fig. 5.11 (b) and (c). Both the RDFs and qtet match the
all-atom reference quantitatively. Considering that the density within in the atomistic region
is slightly lower than the reference we would expect small deviations in the RDFs. However,
the density mismatch is small enough that the differences in the RDFs are insignificant at this
level of resolution. Hence, the structural properties are well preserved in the AT region of the
adaptive simulation.

To check for any possible perturbation of the water dynamics in the AT region we analyzed
simulations where the thermostat was only applied within the CG and HY regions. We
measured the water’s oxygen and hydrogen velocity autocorrelation functions 〈v(t0)v(t0 +

t)〉/〈v(t0)v(t0)〉 (VACF) and again compared to an all-atom reference. The measurements
were performed within the inner part of the AT region considering only atoms further than
0.5 nm away from the AT/HY interface. As is visible in Fig. 5.12, the obtained VACFs from
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Figure 5.12.: Oxygen and hydrogen velocity autocorrelation functions measured within the
AT region of the U-shaped adaptive setup (system 2) and for all-atom reference
simulations.

the adaptive and the reference simulations match within line thickness. Therefore, also the
dynamical properties within the AT region of the adaptive setup are unperturbed. The observed
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small density deviations are too small to have a significant measurable effect on the observed
structural and dynamical quantities in the AT region.

We can conclude that when choosing a sufficiently high value for the interpolation parameter
ν the proposed approach for applying the TF in cases of irregular geometries for the AT region
works well. The precise value of ν needed will depend on the AT and CG potentials and, in
particular, on the difference in thermodynamic properties between the two models. In our case,
choosing ν = 20 achieves a smooth density across the system and also leaves the behavior of
the water in the AT region unperturbed. This confirms that the additional force arising from
the pressure difference between the models is indeed acting perpendicular to the iso-resolution
surfaces, and this is the direction along which the thermodynamic force must be applied. When
ν is too small, however, the area where the TF is applied in a inappropriate direction is too
large. Nevertheless, for many other systems, a smaller value of ν than that used here could be
sufficient, for example, when the different models have a smaller pressure difference. On the
other hand, the computational cost of increasing ν is negligible; therefore, a value of ν = 20 can
be seen as a “safe choice” for most realistic applications, where the difference in thermodynamic
properties will be similar to or less than that of the two models used here. Further testing
would be recommended in systems coupling atomistic and coarse-grained models that are
thermodynamically even more different than the case studied here.

The three test cases explored here are representative of situations occurring in practical
simulation applications. Whenever an atomistic region is composed of spheres associated with
atoms or molecules arranged in an irregular geometrical pattern, such overlaps can occur. One
can think, for example, of the case of a fully atomistic macromolecule inside a high-resolution
region composed of spheres associated with each of its atoms. Moreover, side chain rotations,
loop motions, and other large-scale conformational fluctuations will lead to a variety of different
overlaps occurring during the simulations. Other examples include rough crystallization fronts
and aggregation of molecules that each have their own associated high-resolution region.

5.4.2. Static peptide

Next, we turn to one such more complex system, a polyalanine-9 peptide, fixed in space; i.e., all
of its atoms have fixed positions (for the case of a freely moving and folding peptide, see section
5.4.3). We associate a sphere with each of the peptide’s 93 atoms, thereby forming a shell of
atomistic water around the molecule. The water molecules then gradually change from their
atomtistic description to the coarse-grained model as the distance from the peptide increases
(Fig. 5.1, top). As the peptide atoms are fixed, the high-resolution region does not change
its geometry during the simulation. Again, we employ the previously proposed scheme for
applying the TF with ν = 20.

To assess the performance of the TF in this case, we measured the water density as a function
of distance with respect to the closest peptide atom for each water molecule. The resulting
density profile is shown in Fig. 5.13 (a). Overall, we obtain a smooth profile but with a density
in the AT region lower by about 1%–2% than the reference. This is consistent with the previous
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Figure 5.13.: Results for the simulations of the static extended peptide. (a) Density as a function
of distance with respect to the closest protein atom. (b) Radial distribution functions
between the water’s oxygen atoms Ow and the oxygen Op and hydrogen Hp atoms
in the peptide’s backbone amide bonds. (c) Second order reorientational time
correlation function of the O–H bonds in water molecules in the first hydration
shell of the peptide. Inset: Same as main plot but with y-axis in logarithmic scale.

observations for the density maps for the U-shaped atomistic region (Fig. 5.11 (a)).

To test whether the small density deviations affect the dynamics and structure of the water
around the protein, we measured the radial distribution functions between the peptide’s amide
hydrogen and oxygen atoms and the water as well as the water dynamics in the peptide’s
hydration shell. For the latter, we analyzed the second-order reorientational time correlation
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function of the O–H bonds in water molecules in the first hydration shell. It is defined as

C2(t) = 〈P2[u(0) · u(t)]〉 , (5.12)

where u is the vector along the water O–H bond and P2 is the second Legendre polynomial. It
is related to experimental quantities accessible via ultrafast infrared spectroscopy and NMR
spectroscopy [306]. For this measurement we applied the thermostat only in the CG and the HY
regions. The results are presented in Fig. 5.13 (b) and (c). Both the radial distribution functions
and the second order reorientational time correlation function match their all-atom references
closely. Hence, we infer that the slightly too low density has no significant effect on the water’s
structural and dynamical properties within the peptide’s hydration shell. We conclude that the
method for applying the TF also works well in realistic scenarios in which the AT region is
constructed by a large number of overlapping spheres.

Finally, we want to stress that even though this does not seem to be necessary in this and the
previous setup with the U-shaped atomistic region in pure water, in principle, an even more
accurate TF could be derived with the protocol in Eq. 5.6 that achieves a yet smoother density
profile [182]. The geometry of the high-resolution regions in system 4 and the frozen peptide
setup resemble, locally, a cylinder more closely than a sphere. For those specific cases, therefore,
one option to improve the quality of the TF could be to derive it also in a cylindrical setup, as
opposed to the spherical setup we used here.

We also note that, in fact, what we learn from the study of arbitrarily shaped but static
atomistic regions is also directly applicable to the case of an arbitrarily shaped dynamically
changing atomistic region, if the changes in shape of the region during the simulation are
significantly slower than the time scale for solvent rearrangement.

5.4.3. Peptide folding in a self-adjusting AdResS setup

Finally, we turn to the case in which the spheres forming the atomistic region can move relative
to each other. Using the polyalanine system investigated in the previous section, we now study
its folding process using the same simulation setup as before, i.e., an atomistic peptide with
an atomistic hydration shell, but without fixing the peptide in space. As the peptide folds, the
high-resolution region folds with it since the overlapping spheres forming the AT region are
associated with the peptide’s moving atoms. Therefore, the high-resolution region automatically
adapts itself when the peptide changes its conformation.

Alanine has a strong propensity to form helices [303], and the folding of short polyalanine
peptides has already been extensively studied [301, 303]. Here, we use it as a paradigm system
undergoing a realistic spontaneous large-scale conformational change.

We follow the process of peptide folding (shown in Fig. 5.1) via the radius of gyration, Rg,
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Figure 5.14.: Radius of gyration during peptide folding for the AdResS and the fully atomistic
simulations (14 trajectories for each case). The average folding time in the atomistic
reference simulations is 1.6± 0.5 ns, while the average folding time corresponding
to the AdResS trajectories is 1.2± 0.7 ns.

and a measure of helicity, Qhel , defined as [307]

Qhel =
1
N ∑

i−j=3
exp [− (Rij − R0)

2

2σ2 ] (5.13)

where the sum is over all pairs of Cα atoms separated by a shift of three residues along the
backbone, N is the number of such 1–4 pairs, Rij is the distance between Cα atoms i and j,
R0 =0.5 nm and σ2 =0.02 nm2 [307]. These measures were calculated as a function of time
in multiple independent trajectories with AdResS and fully atomistic methodologies, using
for both approaches the same set of equilibrated initial configurations in which the peptide is
extended. The radius of gyration over time is shown in Fig. 5.14. The peptide rapidly collapses
to the native state in a downhill folding process. We defined a folding time scale as the first
passage time from the initial extended conformation to the state defined by Rg < 0.52 nm
and Qhel > 0.5, these being the average folded values. This gave a folding time of 1.6± 0.5 ns
averaged over the fully atomistic trajectories and 1.2± 0.7 ns over the AdResS trajectories.
The standard deviations are high, pointing to a large ensemble of folding pathways, and
the difference between the two methodologies is less than the spread of times for a given
methodology. The average time scale in the AdResS simulations is somewhat faster, which is
most likely an indirect effect of the strongly increased diffusivity of the solvent model used
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in the CG region [269]. The slight decrease in the folding time scale is not unexpected, since
the inaccurate dynamics of CG models is a well-known phenomenon [129]. In order to better
reproduce the folding time scale, the diffusion constant of the CG model could be tuned.

We note that the time scale for peptide folding is highly force field dependent, and the values
given here should not be taken as a measure of the true folding time scale for polyalanine-9,
but only as a quantitative comparison between atomistic and AdResS simulations.

We visualized the ensemble of folding pathways via the probability density function as a
function of radius of gyration and helicity. This was calculated for each trajectory until the
first folding time, and Fig 5.15 presents its negative logarithm averaged over all trajectories,
showing that peptide molecules in AdResS and fully atomistic trajectories sample the same
energy landscape while collapsing to the equilibrium state.

We now turn to the properties of the folded peptide. Typically, small peptides are not fully
stable as helices in solution and contain a mixture of random coil and helical regions [303, 308].
In order to demonstrate that the peptide has folded to the same region of conformational space
in the AdResS as in the fully atomistic simulations, we present in Fig. 5.16 logarithmic-scale
Ramachandran plots calculated for the folded peptide (time since simulation start > 3 ns) in the
fully atomistic and AdResS setups. Ramachandran plots show the two-dimensional probability
density function (PDF) of the backbone dihedral angles φ and ψ (about the bonds N–Cα and
Cα–C respectively). Here, we calculate the PDF averaged in time and over all angles and
trajectories for each simulation methodology. With both AdResS and fully atomistic approaches,
the peptide clearly forms predominantly α-helix-like structures, which occur in the broadly
defined region −180◦ < φ < 0◦, −100◦ < ψ < 45◦ [309]. Some torsional angles also occupy the
region (here, around φ = ψ = 50◦) sometimes referred to as the left-handed α helix region but
which mostly contains structures more correctly labeled turns [309]. Finally, we also observe
angles with values typical of a random coil with β conformation, (here ψ > 45◦) although of
course there is no formation of a β-sheet here. We note that atomistic force fields, including
that used here, are known to have Ramachandran plots which do not perfectly correspond with
experimental observations from crystal structures [310]. In Fig. 5.16, the folded peptide in both
cases clearly occupies the same region of conformational space.

Finally, we probe the local water structure in the hydration shell of the folded peptide. For
this we calculate the distribution of tetrahedral order parameters for water molecules in the
hydration shell. The tetrahedral order parameter is as defined in Eq. 5.11, including both water
oxygen atoms and protein heavy atoms as potential nearest neighbors. The hydration shell
is defined as all water molecules H-bonded to the peptide or whose oxygen atom is within
0.45 nm of a peptide carbon atom. Fig. 5.17 shows that the distributions of qtet values in the
AdResS and the fully atomistic system perfectly match. The structure of the hydration shell is
fully preserved in the AdResS system.

The folding process and the conformational properties of the folded peptide depend critically
on the aqueous solvent and its electrostatic and hydrogen-bonding properties [311], for which
an atomistic-resolution model is necessary. Our methodology allows the simulation of both the
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Figure 5.15.: Energy landscape sampled during folding as a function of the helicity Qhel and
the radius of gyration Rg. The color map is the negative of the logarithm of the
probability density function. (a) Fully atomistic reference simulations. (b) AdResS
simulations.

peptide and its hydration shell at the atomistic level, without in itself perturbing the folding
process and while concentrating computational resources only on those parts of the system
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Figure 5.16.: Ramachandran plots for the folded peptide. The color map is the negative of
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where atomistic accuracy is necessary. Additionally, the structural and dynamical properties of
the hydration shell are unperturbed despite the presence of the dynamic boundary at which
the solvent changes resolution. This is thanks to the properties of the AdResS methodology,
which allows realistic molecular fluctuations and free exchange of particles across the resolution
boundary. By extension, we expect the results presented here to be applicable to other cases of
solvated macromolecules undergoing large-scale conformational change.
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Figure 5.17.: Tetrahedral order parameter qtet in the hydration shell of the folded peptide for
AdResS and fully atomistic simulations.

5.5. Implementation and methodological extensions

We first want to point out that the scheme proposed here may not be the only technique to
facilitate adaptive resolution simulations with several overlapping spherical atomistic regions.
However, using a linear combination of the vectors with respect to the different sphere centers
(Eq. 5.7) to derive the direction in which the TF acts is a simple, general, and intuitive solution
to the problem. Although one possible variation of the scheme would be to change the way
the weights within the linear combination are calculated (Eq. 5.8), we anticipate that simply
changing the value of ν should be sufficient to accommodate almost all possible systems of
interest.

The implementation of the method that we proposed in this paper is straightforward and
did not lead to any significant additional computational overhead in our simulations. For the
specific peptide system studied, the adaptive resolution simulations were twice as fast as the
atomistic ones. This value was obtained on a single CPU to exclude additional effects due to
parallelization. For parallel simulations, the computational speedup depends on the employed
parallelization protocol and the load balancing scheme. Furthermore, the actual computational
speedup achievable in practice is also strongly dependent on system size and the volume ratio
of the atomistic and coarse-grained regions [286]. In future applications where the ratio of
coarse-grained to atomistic region size is even larger, the speedup will be correspondingly
greater than here. Such a situation could, for example, occur when choosing an overall box size
so large that the AT subregion behaves as in the grand canonical ensemble. Then, contrary to
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the test scenarios considered throughout this work, the CG region would be significantly larger
than the AT region. Other cases, where a significantly larger speedup could be expected are
those in which the CG model is even coarser. In our case, only three water atoms are coarse
grained into one CG interaction site, but for liquids composed of larger molecules, such as
toluene [187], there would be more atoms per CG bead. Likewise, a significant reduction of
the number of interactions also occurs when interpolating classical and path integral based
force fields [177, 212, 216, 224, 240]. Finally, the AdResS scheme is more advantageous the less
computationally expensive CG interaction itself is. One could think, for example, of a basic,
very short-ranged interaction like a Weeks–Chandler–Anderson potential on the coarse-grained
level [274]. An even more drastic approach would be to use no potential at all in the CG
region and let the molecules evolve as in an ideal gas [286]. In particular in solvent mixtures,
coupling to an ideal gas provides a powerful method for controlling the cosolvent concentration,
since particles can more easily be inserted into the gas of noninteracting particles than into
a dense liquid. Thereby, combined with the methodology presented in this work, one could,
for example, study protein folding and unfolding or smart polymer swelling and collapse as a
function of changes in the concentration of cosolvent/denaturants.

We want to point out several possible variations and improvements of the proposed method-
ology. In the previously described simulations of the folding peptide system, a spherical
high-resolution region was associated with each peptide atom. The geometry of the overall
atomistic region was updated during each simulation step as the peptide atoms moved. How-
ever, it may be sufficient to associate AT regions only with some of the peptide atoms, for
example, only the heavy atoms or only the alpha carbons. Furthermore, the values of rcentr,i

do not necessarily need to be updated during every integration time step. For example, it
could be sufficient to update them only when also the neighbor list is rebuilt. These variations
in the implementation would significantly reduce the interprocess communication in parallel
simulations required to inform all threads about the current shape of the AT region.

Finally, in future applications, it could be useful to construct atomistic regions from differently
sized spheres. The methodology presented here can trivially be generalized to the case where
different spheres have different values of rat.

5.6. Conclusions

We have proposed and validated a scheme which allows the simulation of an arbitrarily shaped
atomistic high-resolution region with a reservoir of coarse-grained particles. The particles can
freely travel between the two regions, changing their resolution on-the-fly (adaptive resolution).
As we have shown for the example of a folding peptide, the geometry of the high-resolution
region can also adapt during the simulation to follow, for example, conformational changes
of a solvated macromolecule, without perturbing structural and dynamical properties or
the conformational transition itself. The method includes an appropriate application of the
compensating force that is needed to cancel the thermodynamic imbalance that occurs when



104 Chapter 5. Adaptive Resolution Simulations with Self-Adjusting High-Resolution Regions

the models used in the two subregions have different pressures. In conclusion, the approach
generalizes the AdResS methodology and allows fully flexible and self-adjusting adaptive
resolution simulations.

The use of the scheme will be advantageous in any system in which the region where a high-
resolution model is required has a nonstandard changing geometry. This includes, for example,
DNA strands, rugged surfaces during crystallization, fluctuating interfaces and membranes as
well as aggregation processes.
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Abstract

Quantum delocalization of atomic nuclei affects the physical properties of many hydrogen-rich
liquids and biological systems even at room temperature. In computer simulations, quantum
nuclei can be modeled via the path-integral formulation of quantum statistical mechanics,
which implies a substantial increase in computational overhead. By restricting the quantum
description to a small spatial region, this cost can be significantly reduced. Herein, we derive a
bottom-up, rigorous, Hamiltonian-based scheme that allows molecules to change from quantum
to classical and vice versa on the fly as they diffuse through the system, both reducing overhead
and making quantum grand-canonical simulations possible. The method is validated via
simulations of low-temperature parahydrogen. Our adaptive resolution approach paves the
way to efficient quantum simulations of biomolecules, membranes, and interfaces.

6.1. Introduction

Nuclear quantum delocalization plays a crucial role in low temperature systems, e.g. helium or
hydrogen [76, 77, 85–87], which can undergo a superfluid transition, and it affects in nontrivial
ways a large variety of processes at more standard thermodynamic conditions. This is the
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case for proton transfer in biomolecules and membranes and in DNA oxidation [312–318],
the thermodynamics of ice [319], the structure of water adlayers on catalysts [320, 321], the
structure and dynamics of bulk water at room temperature [78, 88–90], and aqueous proton
and hydroxide transport [80, 92–96].

In order to account for these effects in computer simulations, Feynman’s path integral (PI)
formulation of quantum statistical mechanics [52, 68, 85] can be employed, which enables an
accurate description of quantum delocalization via Monte Carlo (MC) or Molecular Dynamics
(MD) simulations [52, 85] albeit at an increased computational cost. A strategy to overcome this
limitation is to restrict the PI description of the atoms to a (small) spatial region where quantum
effects are important, and to model the remaining atoms as classical particles interacting via an
appropriately chosen effective potential. Molecules diffusing across the boundary separating
these two regions change their representation “on the fly” from classical to quantum and
vice versa. This approach, which is obviously viable only for sufficiently short De Broglie
wavelength, is beneficial particularly when the region that needs to be modeled quantum
mechanically is small compared to the size of the full system. Examples of such systems include
liquid-solid or liquid-liquid interfaces [322–324], aqueous solutions [80, 92–96], and proteins
[81, 325, 326]. The simplified model in the classical region also allows the number of molecules
in the system to change during the simulation [175, 228], thereby generating a grand-canonical
distribution. More generally, an approach in which a classical and a PI model are concurrently
used would allow a substantial computational gain and enable the simulation of larger systems
for significantly longer sampling times.

A first step in this direction was taken in the framework of the Adaptive Resolution Simulation
(AdResS) scheme [144, 176, 182] by merging quantum and classical effective forces [177, 212,
216, 240]. These works and subsequent advancements [224, 327] demonstrated the possibility of
investigating the properties of a system of light particles by explicitly considering their quantum
nature locally without affecting the overall thermodynamic balance between the quantum and
classical regions. The AdResS scheme, however, is based on an interpolation of forces that
does not admit a Hamiltonian structure [219]; the PI formulation, on the contrary, relies on
a configurational potential energy. Hence, a theoretically rigorous formulation of a hybrid
quantum-classical system should be based on a Hamiltonian function defined everywhere in
the simulation domain.

In this paper, we provide a quantum-classical coupling protocol via a global Hamiltonian,
allowing us to treat a system of particles quantum mechanically only in a restricted region
of space and classically everywhere else. Additionally, the particles can freely diffuse across
the simulation domain and switch the nature of their interactions according to their position
in space. The validation of the proposed approach is carried out by means of Monte Carlo
simulations.

We have organized the paper as follows: In Sec. 6.2, we review the classical Hamiltonian
version of AdResS, denoted H–AdResS, and show how to extend it to a quantum system with
variable mass. The quantization of such a system leads to a condition on the minimal size of
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the hybrid region. In Sec. 6.3, we provide details of our validation studies, including system
setup, free-energy compensation terms, a Monte Carlo algorithm for sampling the path-integral
H–AdResS distribution, and specific simulations that demonstrate the performance of the
method. In Sec. 6.4, we discuss the speedup of the new approach over a full path-integral
calculation. In Sec. 6.5, we place the path-integral H–AdResS scheme in the context of, and
compare it to, other methods designed to reduce the cost of path-integral calculations. Finally,
in Sec. 6.6, we present a brief summary and conclude.

Figure 6.1.: Illustration of the simulation setup for the quantum–classical simulations. Red
(resp. blue) color corresponds to a larger (resp. smaller) radius of gyration. The
green line shows the interpolation function λ, smoothly changing from 0 in the
classical region to 1 in the quantum region. The smooth transition from extended
to collapsed molecules demonstrates the transition from quantum mechanical to
classical behavior. The particles freely move between the regions and change their
descriptions accordingly.

6.2. Methodology

Here we make use of the Hamiltonian AdResS (H–AdResS) method [181, 183, 266], which was
developed to perform adaptive resolution MD/MC simulations based on a global Hamiltonian
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and is thus the most suitable framework to correctly model each subsystem with the appropriate
interactions. A typical H–AdResS system is partitioned in two regions connected via a hybrid
buffer region. The resolution of a particle depends on the value of a representative coordinate R
and is parametrized by a continuous function λ(R) smoothly switching from 0 to 1 in the hybrid
region (see Fig. 1). The total potential energy of each molecule is obtained by interpolating
between the two resolutions. The H-AdResS Hamiltonian H of a system of point-like particles
reads

H = K+
N

∑
α=1

[
λαV1

α + (1− λα)V0
α − ∆H(Rα)

]
(6.1)

where K is the kinetic energy, α indexes the N particles, and λα = λ(Rα). The single-particle
potentials VRes

α (with Res = 0, 1) are the sums of all intermolecular potentials acting on particle
α, properly normalized so that double counting is avoided [181, 183]. The term ∆H, referred
to as the Free Energy Compensation (FEC) [181, 183], is an external field acting in the hybrid
transition region to eliminate the density imbalance that naturally occurs in such dual-resolution
systems. In fact, different models of the same physical system exhibit a free energy difference
that needs to be neutralized in order to enforce identical thermodynamical and/or structural
properties (e.g. density) everywhere in the simulation domain. The FEC, whose calculation is
described in section 6.3.2, aptly compensates for these free energy imbalances.

The incorporation of the H–AdResS Hamiltonian in the PI formalism is straightforward. The
effective potential energy obtained from the PI quantization of the Hamiltonian in Eq. 6.1,
assuming Boltzmann statistics, describes a set of N ring polymers, each containing P points
or “beads” connected by harmonic springs of frequency ωP =

√
P/βh̄, where β = 1/kBT. The

exact quantum behavior is recovered only for P→ ∞; however, sufficiently accurate results are
recovered with finite values of P, which typically range from 16 to 48 beads for standard PI
simulations [78, 317, 328–332]. Due to the H–AdResS setup, the interaction between the ring
polymers changes adaptively in space according to the potential energy interpolation in Eq. 6.1.
The quantum behavior, dictated by the strength of the springs connecting the beads of each
ring, is nevertheless the same everywhere.

A strategy for switching between quantum and classical descriptions is to modify the masses
of the atoms, as larger masses correspond to stiffer springs with constant mω2

P; a large mass
causes the ring polymers to collapse, and the particles approach their classical limit. We thus
define m→ µ(λ) = λm + (1− λ)M, where µ(λ) smoothly switches from a mass µ(0) = M to
a mass µ(1) = m� M and λ = λ(Rα) with Rα being the particle positions. When µ = m, the
physical mass, the particles are light, and the quantum zero-point motion becomes important.
The mass M should be chosen large enough that the particles become essentially classical.

Assigning the masses in this way, which causes them to become position dependent, intro-
duces the problem of quantizing a system with coordinate-dependent masses, and we turn to
this problem now (as a reference, for the regular approach for constant-mass particles see, for
example, Tuckerman [52]). Consider first the Hamiltonian operator for a particle of mass µ(x)
in one dimension subject to a potential V(x). The approach easily generalizes to N Boltzmann
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particles in any number of dimensions. When the mass depends on x, we have the problem of
representing the Hamiltonian as a Hermitian operator, which we can obtain by writing it in the
following form:

Ĥ =
1
2

p̂µ−1(x̂) p̂ + V(x̂) (6.2)

where µ−1(x̂) is the inverse mass operator, and p̂ is the momentum operator. Using this
Hamiltonian, we seek to formulate the partition function Q = Tr[exp{−βĤ}] as a path inte-
gral. Introducing the usual set of P− 1 resolutions of the identity operator and the Trotter
factorization of the Boltzmann operator, we can write the trace in the coordinate basis as

Q = lim
P→∞

∫
dx1 · · · dxP

P

∏
k=1
〈xk| exp

(
− β

P
V(x̂)

)
exp

(
− β

2P
p̂µ−1(x̂) p̂

)
|xk+1〉

∣∣∣∣
xP+1=x1

= lim
P→∞

∫
dx1 · · · dxP

P

∏
k=1

exp
(
− β

P
V(xk)

)
〈xk| exp

(
− β

2P
p̂µ−1(x̂) p̂

)
|xk+1〉

∣∣∣∣
xP+1=x1

(6.3)

To derive the matrix elements in Eq. 6.3, we introduce the momentum identity resolution:

〈xk| exp
(
− β

2P
p̂µ−1(x̂) p̂

)
|xk+1〉 =

∫ ∞

−∞
dp 〈xk|p〉 〈p| exp

(
− β

2P
p̂µ−1(x̂) p̂

)
|xk+1〉 (6.4)

Given that the limit P→ ∞ is ultimately taken, we can work with an infinitesimal version of
the exponential operators by expanding the exponential to first order. Thus, we obtain

〈p| exp
(
− β

2P
p̂µ−1(x̂) p̂

)
|x〉 ≈ 〈p|

(
1− β

2P
p̂µ−1(x̂) p̂

)
|x〉 (6.5)

Now, we introduce the commutator [µ−1(x̂), p̂] and write

µ−1(x̂) p̂ = p̂µ−1(x̂) + [µ−1(x̂), p̂]

= p̂µ−1(x̂) + ih̄
dµ−1

dx̂

(6.6)

Substituting Eq. 6.6 into Eq. 6.5 yields

〈p|
(

1− β

2P
p̂2µ−1(x̂)− ih̄β

2P
p̂

dµ−1

dx̂

)
|x〉 = 〈p|x〉

(
1− βp2

2P
µ−1(x)− ih̄β

2P
p

dµ−1

dx

)
≈ 〈p|x〉 exp

[
− β

2P

(
p2µ−1(x) + ih̄p

dµ−1

dx

)] (6.7)

where the operators are now replaced by the corresponding eigenvalues. Substituting Eq. 6.7
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into Eq. 6.4 gives

〈xk| exp
(
− β

2P
p̂µ−1(x̂) p̂

)
|xk+1〉

=
∫ ∞

−∞
dp 〈xk|p〉 〈p|xk+1〉 exp

[
− β

2P

(
p2µ−1(xk+1) + ih̄p

dµ−1

dx

∣∣∣∣
xk+1

)]

=

(
µ(xk+1)P

2πβh̄2

) 1
2

exp

{
− βµ(xk+1)P

2(βh̄)2

[
(xk − xk+1)−

βh̄2

2P
dµ−1

dx

∣∣∣∣
xk+1

]2
}

(6.8)

for the matrix elements in Eq. 6.3, where the last equality has been obtained by introducing
the matrix elements 〈x|p〉 = exp(ipx/h̄)/

√
2πh̄ and performing the momentum integration by

completing the square.

From Eq. 6.8, we see that the inverse mass derivative term can be neglected if the following
condition holds: ∣∣∣∣∣

(
dµ−1

dx

)
xk+1

∣∣∣∣∣� 2P∆xk,k+1

βh̄2 (6.9)

where we defined ∆xk,k+1 = |xk − xk+1|. Since,∣∣∣∣∣
(

dµ−1

dx

)
xk+1

∣∣∣∣∣ =
∣∣∣∣∣ 1
µ2(xk+1)

(
dµ

dx

)
xk+1

∣∣∣∣∣ (6.10)

the condition becomes ∣∣∣∣∣
(

dµ

dx

)
xk+1

∣∣∣∣∣� 2∆xk,k+1

Λ2
µ(xk+1)

µ(xk+1) (6.11)

using the definition Λµ(x) ≡
√

βh̄2/(Pµ(x)). Since

〈∆x〉 ≡

√√√√〈 1
P

P

∑
l=1

∆x2
l,l+1〉 = Λµ

√
(P− 1)/P ≈ Λµ (6.12)

for a free ring of constant mass µ and typical values of P, we can approximate ∆xk,k+1 ≈
Λµ(xk+1) and write ∣∣∣∣dµ(x)

dx

∣∣∣∣� 2µ(x)
Λµ(x)

(6.13)

for an arbitrary position x.

The inequality in Eq. 6.13 places a lower bound on the width of the hybrid region (where
λ(x) 6= const): the interpolation must be sufficiently smooth so that the mass derivative can be
safely neglected.

The derivation and the criterion generalize to an arbitrary number N of interacting particles
in three dimensions. In fact, typical potentials do not significantly change the radius of gyration
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of the ring polymers; additionally, it is necessary to consider only the components of the
bead-bead distances parallel to the direction in which the mass changes. The size of the
hybrid region compatible with Eq. 6.13 is still generally small (1-2 nm in our simulations for
parahydrogen at 20 K, even smaller at room temperature), thus having no significant impact on
the computational overhead.

Concluding, introducing the H–AdResS potential energy we obtain the following partition
function for N interacting Boltzmann particles in three dimensions:

Q = lim
P→∞

 P

∏
k=1

N

∏
α=1

(
mP

2πβh̄2

) 3
2 ∫

drα,k

 e−βVµ
P (6.14)

with

Vµ
P =

P

∑
k=1

N

∑
α=1

{
µα,k ω2

P
2
|rα,k − rα,k+1|2 −

3
2β

log
µα,k

m

+
1
P

[
λα,kV1

α,k + (1− λα,k)V0
α,k − ∆H(rα,k)

]}
(6.15)

and µα,l = µ(rα,l), where the representative coordinates Rα,k in the functions λα,k are the beads
positions rα,k. In Eq. 6.15, the position-dependent prefactor has been explicitly introduced
in the potential Vµ

P as a logarithmic function of the bead masses, so that it can be treated as
a conventional energy term and fully removed from the Hamiltonian by means of the FEC
function ∆H in Eq. 6.1 [333]. The light mass m has been used as the reference mass scale. The
ring polymers described by the energy function Vµ

P (Eq. 6.15) are expanded in the region where
the mass is small and collapse to nearly classical point-like particles in the large-mass region.

6.3. Validation

To validate the proposed quantum-to-classical coupling scheme, adaptive path integral MC
simulations of liquid parahydrogen at 20 K with P = 16 are performed. Liquid hydrogen
between 14 K and 25 K exhibits pronounced quantum behavior [76, 77, 334], thus it constitutes
a probing test case. A Trotter number of P = 16 is likely not large enough for full convergence
of physical observables in this system under the aforementioned conditions, however, our focus
is less on the exact properties of parahydrogen and more on the validation of the proposed
path-integral H–AdResS approach.

6.3.1. System setup

We consider a system composed of 1458 hydrogen molecules in a slab of dimensions 11.0 nm×
2.5 nm× 2.5 nm (molecular density 28.4 cm3/mol) with periodic boundary conditions in all
directions. The width of the low-mass quantum region is set to dQM = 3.0 nm and the thickness
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of each hybrid transition region is dHY = 2.0 nm. In order to assign to a bead its position-
dependent resolution λ, its distance from the boundary between the quantum and the hybrid
region is computed, i.e., δxα,k = |xα,k| − dQM/2, where xα,k denotes the X coordinate of the bead
in a coordinate system with its origin at the center of the simulation box. This quantity is then
employed in the resolution function λ(δxα,k). This function is given generically by

λ(x) =


1 : x ≤ 0

cos2
(

π
2

x
dHY

)
: 0 < x < dHY

0 : x ≥ dHY

(6.16)

The mass m is set to the molecular hydrogen mass mH2 = 2.001 au. In the classical region
the increased mass is chosen as M = 100 mH2 . In the quantum (QM) region we employ the
Silvera-Goldman potential [335, 336] with a cutoff at 0.9 nm for the intermolecular interaction
potential V1, while in the classical (CL) region we make use of a shifted, purely repulsive
Weeks-Chandler-Andersen (WCA) potential [274]:

V0(r) =

 4ε
[(

σ
r−r0

)12
−
(

σ
r−r0

)6
+ 1

4

]
: r ≤ Rc

0 : r > Rc

(6.17)

where r = |rα,k − rβ,k|, (α 6= β) denotes the distance between beads of the same imaginary time
slice k in different molecules α and β. Furthermore, we choose ε = 1.0 kJ/mol, σ = 0.14 nm, and
r0 = 0.15 nm. The cutoff is given by Rc = 2

1
6 σ + r0. The two potentials are graphically presented

in Fig. 6.2. The WCA potential in the classical region is not interpreted as a classical model for
low-temperature parahydrogen. Rather, it is parametrized only to reproduce approximately the
hard-core radius of the reference quantum particles and to serve as a crude model of particles
occupying a reservoir with which the quantum region can exchange matter. We purposely
avoid fitting the classical potential to the structure of the reference to demonstrate the generality
of the protocol: indeed, the potential could be chosen arbitrarily, thereby allowing various
options and applications. One could, for example, focus on reproducing specific properties in
the classical region, and/or employ a computationally advantageous model such as an ideal
gas of non-interacting particles [286].

The mass of the particles in the CL region is 100 times larger than that of the molecules
in the QM region and the chosen set of parameters also satisfies Eq. 6.13. Finally, we stress
that in the CL region the WCA interaction between ring polymers is computed only using the
center of mass of the ring, thus gaining an effective reduction of the computational cost. This
simplification is allowed by the essentially point-like structure of the rings in the CL regions, as
can be seen from the radius of gyration profile (Fig. 6.3). The number of computations per pair
of molecule is reduced from P = 16 to one. A snapshot of the simulations is shown in Fig. 6.1
which shows the gradual change in size of the ring polymers indicating the transition between
classical and quantum mechanical behavior.
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Figure 6.2.: Non-bonded intermolecular interaction potentials used in the adaptive quantum–
classical simulations. The red curve is the Silvera Goldman potential, which is
employed in the low-mass quantum region. The blue curve shows the shifted WCA
potential, which is used in the high-mass classical region.

6.3.2. Free energy compensation

To modulate the thermodynamic imbalance between the classical high-mass and the low-mass
quantum subsystems, a FEC is applied [181, 183]. First, we compute the compensation term
∆HKTI(λ) by Kirkwood thermodynamic integration (KTI) [230] of a smaller system of 360
molecules in a box with dimensions 2.570 nm× 2.570 nm× 2.570 nm. However, using only the
correction term derived by KTI is insufficient to reach a flat density profile (see Fig. 6.4). The
interpolation between subsystems with very different masses and intermolecular interaction
potentials leads to large thermodynamic imbalances and strong forces pushing molecules from
one region to the other. The KTI-based FEC alone is incapable of sufficiently correcting these
imbalances between the classical and the quantum domains because it only provides a mean
field estimate of the necessary compensation. This becomes especially clear when comparing
the density profile obtained when applying only the KTI-based FEC with the radius of gyration
profiles (see Fig. 6.3). Indeed, the density profile is mostly distorted in the area where the radius
of gyration of the ring polymers changes more steeply, that is, where the local environment of
molecules changes sharply. Therefore, in order to remove also the remaining fluctuations in the
obtained density profile after applying the KTI-based FEC, an iterative approach similar to the
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Figure 6.3.: Top: Radius of gyration rg and the normalized density ρ profiles. Blue corresponds
to the radius of gyration of molecules in a fully quantum reference simulation.
Bottom: Ring polymers’ center of mass (CoM) and bead-bead RDF’s of the quantum-
to-classical simulation calculated in the quantum region and of a fully quantum
reference simulation. The black curve is the RDF of a fully classical (P = 1) system
of particles interacting via the Silvera-Goldman potential.

one devised by Fritsch et al. is employed [182]. The scheme reads

∆Hi+1(x) = ∆Hi(x)− ∆hi(x) (6.18)

with ∆H0(x) = ∆HKTI(x), the initial correction term obtained by Kirkwood thermodynamic
integration converted from a function of resolution into a function of position.
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Figure 6.4.: Normalized density profiles obtained when applying a correction field in the
hybrid region based on Kirkwood thermodynamic integration only (blue) and when
applying the iterative protocol described in the text (red).

Furthermore,

∆hi(x) =



− 1
β ln{ρi(x0)} : x ≤ x0

− 1
β ln{ρi(x)} : x0 < x < x1

− 1
β ln{ρi(x1)} : x ≥ x1

(6.19)

where

x0 =
dQM

2
− 0.5 nm (6.20)

x1 =
dQM

2
+ dHY + 0.5 nm (6.21)

and x is measured as the absolute distance from the center of the simulation box. ρi(x) denotes
the density profile obtained when applying the FEC ∆Hi(x) of iteration i (therefore, ρ0(x) =
ρKTI(x), where ρKTI(x) corresponds to the initial density profile obtained from simulations in
which only the KTI-based FEC term is applied). The term ∆hi(x) acts in an extended hybrid
region, defined as the regular hybrid region plus additional 0.5 nm both within the quantum
and the classical region. As we have two hybrid transition regions in the presented simulation
setup above, averages over both regions are used to derive one consistent and symmetric
correction, which is applied in the same way in both regions.

The protocol converges by construction when a flat density profile is achieved. However, to
speed up the convergence, on top of the iterative density based correction, we also add a linear
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ramp term

∆hi
ramp(x) =



0 : x ≤ x0

−(ai/β)× (x− x0)/(x1 − x0) : x0 < x < x1

−(ai/β) : x ≥ x1

(6.22)

for some of the later iterations when the overall density difference between the two region has
become small. Note that this additional term is not strictly required but can help to speed up
the iterative procedure. The values of the coefficients ai that have been employed here to favor
convergence are reported in the following section.

The protocol is executed in an iterative fashion until a sufficiently flat density profile is
obtained (see Fig. 6.4). Note that the converged profile is also significantly smoother and more
uniform than the ones obtained with a related approach by Agarwal and Delle Site [216].

6.3.3. Monte Carlo sampling

To sample the system’s configurational space we employ a standard Metropolis Monte Carlo
algorithm [52]. For the Kirkwood TI of the small system we run 16 simulations with 105 sweeps
each. The λ parameter increases linearly every sweep by 10−5. The results are averaged after
the simulations. Employing the Kirkwood TI FEC term thus obtained we then run 14 iterations
of simulations applying the protocol set out above to refine the density profile. The parameters
ai for the ramp term in the correction protocol are chosen as a7 = 0.06, a8 = 0.04, a9 = 0.05,
a10 = 0.05, a11 = 0.02, a12 = 0.03 and a14 = 0.02. For all other iterations no ramp term is added,
i.e., ai = 0. Each iteration consists of 32 parallel simulations, each of these running 1.5 · 104

equilibration sweeps and another 7.5 · 103 sweeps during which the density profile is measured.
Also here, after each iteration the results are averaged. Having reached a sufficiently smooth
density profile, we then utilize the FEC from the Kirkwood TI and the iterative protocol to
perform the main production simulations. For these we perform 32 simulations in parallel, each
running 1.5 · 104 sweeps after another 1.5 · 104 equilibration sweeps. Afterwards, the results (i.e.,
the radial distribution functions (RDF’s), the density profiles, the radius of gyration profiles as
well as the particle number histograms) are once again averaged over all simulations.

Each sweep is constituted by N × P attempted Monte Carlo moves on randomly chosen
molecules, with N being the total number of molecules and P the Trotter number (N = 1458
and P = 16 in the production run simulations). Three different kinds of moves are randomly
performed:

Whole molecule displacements: The chosen molecule is displaced as a whole by moving its
center of mass. The direction is chosen randomly from a uniform spherical distribution and the
distance is drawn from a Gaussian distribution with zero mean and width σCoM.

Molecule rotations: The chosen molecule is rotated as a whole around a randomly oriented
axis passing through its center of mass. The angle is chosen randomly from a Gaussian
distribution with zero mean and width σrot.
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Individual Trotter-bead moves: An individual bead of the molecule is randomly chosen and
displaced. The direction is chosen randomly from a uniform spherical distribution and the
distance is drawn from a Gaussian distribution with zero mean and width σbead.

The different values for the σi’s of all simulations are presented in Tab. 6.1. In the adaptive
resolution simulation, they are chosen such that they result in adequate acceptance ratios for
the moves both in the classical high-mass as well as in the quantum low-mass region. When
picking a molecule for a Monte Carlo move the probabilities for performing whole molecule
displacements or molecule rotations are 1

13 each while the probability for Trotter-bead moves is
11
13 . This choice leads to a convenient balance between whole molecule motions and Trotter-bead
fluctuations.

Simulation σCoM σrot σbead

Kirkwood TI 0.1 nm 0.5 rad 0.03 nm

Adaptive Simulation 0.1 nm 0.5 rad 0.03 nm

QM Reference 0.1 nm 0.5 rad 0.07 nm

Classical Reference 0.1 nm - -

Table 6.1.: Widths of the Gaussian distributions employed to draw the random displacements
and rotations from for the Kirkwood Thermodynamic Integration, for the reference
simulations as well as for the adaptive quantum-classical simulations.

6.3.4. Reference simulations

In order to evaluate the results of the adaptive quantum-classical simulations, we perform full-
quantum as well as full-classical reference simulations of liquid parahydrogen for comparison.
The same setup is used for the adaptive simulations, and likewise the temperature is set to
T = 20 K and the Silvera-Goldman potential is employed. For the full-quantum simulations
we choose P = 16 as in the adaptive simulations while the classical simulations are performed
with P = 1. In both cases, 32 simulations are run in parallel, each one for 1.5 · 104 equilibration
sweeps and another 1.5 · 104 production sweeps during which measurements are performed.
Afterwards the results are averaged.

The values used for the σi’s in the reference simulations are presented in Tab. 6.1. In the
classical simulations, all moves are as described above with the obvious exception of bead and
rotating moves, which do not exist for individual classical particles.

The calculations of the particle number fluctuations in the QM simulations are performed in
exactly the same fashion and using the same area as for the adaptive simulations. The RDF’s of
the classical and QM reference simulations are calculated in the complete simulation domains.
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6.3.5. Results

The radius of gyration of the ring polymers in the quantum region, shown in Fig. 6.3, perfectly
reproduces that of a corresponding full quantum simulation, while in the CL region it drops
by ≈ 90%, indicating nearly classical behavior. At the same time, the FEC enforces a uniform
density profile everywhere in the system. A quantitative measure of the fluid structure is
provided by the ring center of mass and bead-bead (intermolecular bead pairs with the same
Trotter index) RDF’s. In spite of the remarkable differences between the quantum fluid and
the classical model, the RDF’s measured in the QM region perfectly match those from the full
quantum reference simulation.

Furthermore, the particle number fluctuations in the inner quantum region (the subdomain
of the QM region where particles are 1.0 nm far from the hybrid region, that is, a distance larger
than the 0.9 nm cutoff) are calculated and compared to the same quantity in the full quantum
simulations (see Fig. 6.5). The fluctuations in the adaptive simulation match the reference
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Figure 6.5.: Particle number probability distribution of the inner part of the QM region in
the adaptive simulation (blue crosses) and of the same volume in a reference full
quantum simulation (red points) including a Gaussian fit on the latter (black curve,
µ = 132.4, σ = 4.383).

closely. This means that the quantum subdomain exchanges particles with its surrounding in
the same fashion as it would if embedded in a full quantum system. Therefore, by coupling to
a sufficiently large particle reservoir, the scheme can be employed to reliably and rigorously
simulate the quantum grand-canonical ensemble with only little additional computational cost
due to the numerically efficient classical particle reservoir.
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6.4. Speedup over full-quantum simulations

As mentioned earlier, in the proposed quantum-to-classical coupling scheme, interactions in
the classical region do not need to be calculated P times (with P being the Trotter number).
Rather, because of the collapse of the polymer rings they are computed only once between the
centers of mass of the (quasi point-like) rings. Additionally, a numerically simpler potential
with a shorter cutoff can be used in the classical region. In general, the overall speedup of
the simulations strongly depends on the details of the implementation of the algorithm and is
therefore platform dependent. For example, if there is a high overhead in the code, the overall
computational gain by more efficient potential energy calculations will be small. If the program
spends most of its time with these calculations, a significant improvement is possible.

The expected speedup S for the energy calculations of short range intermolecular potentials,
compared to full quantum simulations, can be estimated as

S ∼ PN
P〈NQM〉+ cCLpot〈NCL〉

(6.23)

where N is the total number of particles in the system, 〈NQM〉 is the average number of particles
in the QM and hybrid regions, 〈NCL〉 is the average number of particles in the CL and hybrid
regions and cCLpot is a constant depending on the molecular interaction potential in the CL
region. If the same potentials are used in the QM and CL subsystems, cCLpot = 1, while a
computationally cheaper potential in the CL region would result in a smaller cCLpot with the
extreme being a non-interacting ideal gas, in which case cCLpot = 0. Hence, the speedup would
approach Smax = N/〈NQM〉, its upper bound, in a good implementation of the scheme with
a simple interaction in the classical region. Therefore, in simulation setups featuring a small
quantum-to-total volume ratio, e.g. employing a small spherical quantum region in a large,
three-dimensional box, the computational gain could be close to Smax. Such a situation could,
for example, occur in studies of proton transfer reactions in membranes, where only a small
part of the membrane needs to be described quantum mechanically, while the remainder of
the system could be treated via a simpler classical model. Similarly, in simulations of enzymes,
it is likely sufficient to treat a large region of the molecule classically in a computationally
efficient manner, while quantum nuclear effects can be taken into account at the active site
where they play a significant role [81]. The method also enables efficient sampling of a quantum
grand-canonical ensemble by embedding a QM subsystem in a particle reservoir, which could
be significantly larger than the QM domain in order to allow for realistic particle fluctuations in
the latter. At the same time, the structure and dynamics of the reservoir, being unimportant,
could be described by a much coarser and numerically more efficient classical model. In all
such cases, an adaptive quantum-classical coupling scheme, as proposed in this work, would
provide a significant advantage.

To demonstrate the improved computational efficiency we perform 4 sets of simulations for
different box sizes with each set consisting of a full-quantum and an adaptive simulation in
which the quantum region as well as both hybrid regions have a width of 2.0 nm each. The total
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box sizes as well as the corresponding molecule numbers for the simulations are presented
in Tab. 6.2. The temperature and density are the same as before. In all cases but the first the
classical regions are significantly larger than the quantum ones. For each setup, we perform
8 simulations and average the results. Furthermore, the simulations are run for 500 sweeps,
and in the case of the adaptive simulations the previously derived FEC is applied. The set of
Monte Carlo moves is chosen for both the quantum and the adaptive simulations to be the one
previously used for the adaptive simulations.

Number of molecules Lx Ly Lz

1325 10.0 nm 2.5 nm 2.5 nm

3974 30.0 nm 2.5 nm 2.5 nm

6623 50.0 nm 2.5 nm 2.5 nm

9272 70.0 nm 2.5 nm 2.5 nm

Table 6.2.: Number of molecules and box geometries for the different sets of simulations for
the calculation of the computational gain of adaptive quantum-classical over full-
quantum simulations.

In order to obtain platform-independent results, we only measure the time our code spends
with potential energy calculations. These times are plotted in Fig. 6.6. Additionally, the corre-
sponding speedups, defined as Tquantum/Tadaptive with Tadaptive (Tquantum) being the time spent
for the energy calculations in the adaptive (quantum) simulations, are presented. Furthermore,
we plot Vtotal/VQM, the ratio of the total box volume and the volume of the quantum plus the
hybrid regions. In the latter part, all quantum mechanical energy calculations associated with
the ring polymers are performed explicitly. This quantity is essentially the speedup derived
above since Vtotal/VQM ≈ N/〈NQM〉.

It can be seen that the adaptive simulations are significantly faster than their corresponding
fully quantum counterparts. For the largest box, the energy calculations in the adaptive
quantum-classical simulations are faster by a factor of ≈ 9 than the full-quantum simulations.
Furthermore, it can be seen that the time required for the adaptive simulations stays nearly
constant for the different box sizes. The reason for this is that the computational cost of the
interactions between classical molecules is negligible compared to the time required for the
computation of the potential energies in the quantum region. Therefore, as shown in the graph,
the speedup in our simulations is indeed close to its upper bound.

6.5. Relation to other path integral methods

In this section, we describe the present methodology in the context of, and in relation to, other
established techniques that also reduce the computational effort of traditional path integral
simulations.

As a first observation we recall from the Introduction that the first attempts to couple a
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Figure 6.6.: Main figure: Simulation times required for the potential energy calculations in
quantum and adaptive simulations for slab systems of four different box lengths Lx.
Inset: Speedup of the adaptive quantum-classical simulations as well as the upper
bound on the speedup. The linear increase in the speedup follows the increase in
size of the full box (at constant QM region size). If all box sides are varied in a
setup where the QM region is spherical, one would expect a cubic curve. The lines
are a guide to the eye.

PI and a classical model of a liquid were performed in the framework of the force-based,
non-Hamiltonian AdResS method [177, 212, 216, 240]. This scheme, which is introduced after
the system has already been quantized, provides a pragmatic coupling of the two descriptions.
The methodology presented here represents an advance in the classical/path integral hybrid
methodology as it stems from a unique Hamiltonian function that governs the entire system and
couples the different models before quantization is performed. This enables a more fundamental
description of the setup and a more consistent treatment of the various parts of the system.
Furthermore, the scheme presented can be seamlessly employed in tandem with other methods
specifically developed to reduce the computational cost of path integral simulations, as will be
highlighted below.

Consider, first, the ring polymer contraction scheme by Markland and Manolopoulos [337,
338]. This approach leads to a significant decrease in numerical complexity by contracting
low-frequency non-bonded and long-range interactions to only a few imaginary time slices or
even a single time slice. For example, long-range interactions in PI simulations can be safely
evaluated only on the ring polymer centroids, while still yielding highly accurate results [338].
Since in our methodology the centroid is well defined in both the classical and quantum regions,
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the computation of long-range forces could then be seamlessly carried out at the cost of a
classical simulation on the whole system. More recently, it was shown that the ring polymer
contraction scheme can also be extended to ab initio density functional theory simulations
[339, 340]. We note that reactive systems often require the use of electronic structure methods
in the reactive region, and these can be combined with path integral approaches, as was done
by Wang et al. [81]. Combining path integral H–AdResS with such an approach would require
an ab initio version of the scheme, which has not yet been developed but is the subject of future
work. We, therefore, defer the discussion of QM/MM approaches within H–AdResS for such a
future publication.

A closely related method to the ring polymer contraction scheme is the mixed time slicing
approach [341], in which different degrees of freedom, i.e. particles, are modeled with a
different number of Trotter beads in order to incorporate nuclear quantum effects only for
the relevant light atoms. This technique could also be combined with our work resulting, for
example, in a scheme where different Trotter bead numbers are used for different atoms in the
QM region while in the CL domain all path integrals would collapse and behave completely
classically.

Another method for performing efficient path integral simulations was introduced by Ceriotti
et al., who showed that carefully parametrized colored noise thermostats can speed up the
convergence in path integral simulations by alowing the use of significantly fewer required
beads, thus reducing the overall computational cost [342–345]. This scheme is compatible with
our approach as well and could be utilized to reduce the computational complexity further
within the quantum subregion. Finally, we mention higher order Trotter factorizations, [346]
either directly sampled via Monte Carlo [347], or combined with a posteriori reweighting of
averages [348, 349] or a cumulant expansion [350] within path integral molecular dynamics.
When a fourth order factorization scheme is employed, P can be generally reduced by a factor of
four while maintaining the same level of accuracy. It is important to note, however, that in dual
resolution simulation approaches, this computational speedup would add to the advantage of
allowing short-range or even no interactions in the low-resolution (the CL or, more generally,
the coarse-grained) region, which, by itself, leads to substantial savings.

A feature that differentiates our method from those mentioned here is that it is local, in that it
gains its overall speedup by restricting the expensive quantum treatment to a limited region in
space. The other approaches, on the other hand, are global in the sense that they reduce the
computational cost associated with the path integral computations themselves in a full path
integral simulation setup. Therefore, the proposed method can be regarded as complementary
to these techniques since any of the schemes that we discussed in this section can be used to
treat the path-integral region in the path integral H–AdResS approach. This would reduce the
overall computational complexity even further, which could prove especially useful for large
simulations where only a very limited subregion requires a path integral treatment.

Finally, although we use a Monte Carlo approach to validate our scheme, it is worth pointing
out that the approach can be also applied in the framework of regular path integral molecular
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dynamics as well as centroid and ring polymer molecular dynamics [82–84], techniques to
calculate approximate quantum dynamical properties and time-correlation functions. This is
the focus of an ongoing study.

6.6. Conclusions

In conclusion, we have derived a protocol for concurrent multi-scale path integral simulations
based on a rigorous, bottom-up, Hamiltonian formulation. Due to the reduced computational
complexity in the classical subdomain, our method enables a computationally more efficient
sampling of configurations compared to a full quantum simulation. This, in turn, allows an
extension of the accessible time and length scales. Additionally, the possibility to spatially
switch off and on the quantum treatment of the system makes this scheme a powerful tool to
investigate the role played by nuclear delocalization in soft matter [155, 185, 187]. Furthermore,
the technique is compatible with other approaches alleviating the computational complexity
of path integral simulations. Future applications of the proposed approach are diverse and
include, for example, simulations of the quantum grand-canonical ensemble as well as adaptive
quantum-classical simulations of interface systems and biologically relevant systems such as
membranes and proteins.
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Abstract

Path integral-based simulation methodologies play a crucial role for the investigation of nuclear
quantum effects by means of computer simulations. However, these techniques are significantly
more demanding than corresponding classical simulations. To reduce this numerical effort,
we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts
the quantum modeling to a small but relevant spatial region within a larger reservoir where
particles are treated classically. In this work, we extend this idea and show how it can be
implemented along with state-of-the-art path integral simulation techniques, such as ring
polymer and centroid molecular dynamics, which allow the approximate calculation of both
quantum statistical and quantum dynamical properties. To this end, we derive a new integration
algorithm which also makes use of multiple time-stepping. The scheme is validated via adaptive
classical–path-integral simulations of liquid water. Potential applications of the proposed
multiresolution method are diverse and include efficient quantum simulations of interfaces as
well as complex biomolecular systems such as membranes and proteins.
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7.1. Introduction

Quantum delocalization of light atomic nuclei plays an important role in many soft matter
systems, ranging from low temperature helium or hydrogen [76, 77, 85–87] to complex biological
systems at room temperature. Examples include proton transfer in biomolecules and membranes
[312–318], thermodynamics of ice [319], water adlayers on catalysts [153, 321], aqueous proton
and hydroxide transport [80, 92–96], and even the structure and dynamics of bulk water
[78, 88–90].

In computer simulations, nuclear quantum effects are typically modeled using Feynman’s
path integral (PI) formulation of quantum statistical mechanics [52, 68, 85]. The atomic nuclei
are mapped onto classical ring polymers, whose beads correspond to the imaginary time
slices of the PI. Based on this approach, various techniques have been developed to compute
approximate quantum mechanical properties. Path integral molecular dynamics (PIMD) [52, 69–
74] and path integral Monte Carlo (PIMC) [52, 73, 75] directly sample the Hamiltonian obtained
after path integral quantization and can be employed to calculate time-independent quantum
statistical properties. Centroid molecular dynamics (CMD) [82, 83, 351–360], following the
dynamics of the ring polymers’ centroids, and ring polymer molecular dynamics (RPMD)
[84, 358, 359, 361–363], which is based on the evolution of the individual PI beads, additionally
enable the calculation of approximate quantum dynamical properties.

However, PI-based methods are significantly more expensive than corresponding classical
simulations. To overcome this, different techniques have been proposed. For example, ring
polymer contraction (RPC) [337–340] makes use of the fact that long-ranged and non-bonded
interactions typically do not need to be evaluated on as many PI beads as bonded interac-
tions. A related technique is the mixed time slicing scheme [341], in which different particles
are described with a different number of imaginary time slices. Other approaches include
higher-order Trotter factorization [346–350] and advanced thermostating procedures based on
generalized Langevin equations (GLE) [342–345]. Additionally, multiple time-stepping (MTS)
techniques are frequently employed in PI simulations to decouple the computation of the
expensive but slowly varying non-bonded forces and the high frequency internal motion of the
ring polymers [73, 74, 364].

Most of these methods correspond to a modification of the path integral computation itself. A
different approach is provided by adaptive resolution methods, which restrict the PI description
to a small subregion within the simulation box and couple it with a classical model. The
available computational resources can then be concentrated on the quantum (QM) subregion
leading to an overall speedup compared with full QM simulations. This strategy is useful when
only a small part of the overall large system actually needs to be described taking into account
quantum delocalization effects, which can be the case, for example, in simulations of surfaces,
membranes or the active site of a protein. One such method, based on the adaptive resolution
simulation scheme (AdResS) [144, 176, 182], is the direct spatial interpolation of a classical force
field with the PI-based forces obtained after quantization [177, 212, 216, 224, 240]. This method
is, however, not compatible with an overall Hamiltonian description and, thus, inconsistent
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with the PI formalism [219]. Nevertheless, it can in principle be used, for example, to simulate
open quantum systems [228, 327].

We have recently proposed a related multiresolution quantum–classical method that, instead
of interpolating forces, directly changes the “quantumness” of the particles themselves [365].
In the QM region, the ring polymers are defined as usual, while in the classical region they
collapse to point-like particles, thereby effectively behaving classically. When diffusing between
the different regions, the particles change their resolution on the fly. Furthermore, the number
of particles in the QM region is not fixed but allowed to fluctuate. Hence, the scheme can, for
example, be used to efficiently simulate a quantum grand canonical ensemble. The approach is
derived in a rigorous fashion from the bottom up and is also compatible with a Hamiltonian
description. When restricting the QM part to a small but relevant region in space, the scheme
leads to a significant computational speedup. In our example in the previous paper, a liquid
parahydrogen system, the calculation of the particle pair interactions was accelerated by a factor
of up to ≈ 10. Furthermore, the approach can be combined with the previously mentioned
methods for efficient PI simulations, such as RPC or GLE thermostating. Therefore, approaching
the problem from a different perspective and reducing the number of PI-based interactions
in the system, our method is complementary to techniques which make the PI computations
themselves more efficient.

In our previous paper [365] we proposed the general Hamiltonian adaptive quantum–classical
scheme, performed a simple validation of the method using a Monte Carlo algorithm to sample
the hybrid Hamiltonian, and demonstrated that the approach can speed up PI-based simulations.
In this follow-up article, we show how the method can be extended to perform Hamiltonian
multiresolution quantum–classical CMD and RPMD simulations. To this end, we derive an
MTS integration protocol suited for the proposed methodology and validate the method by
adaptive quantum–classical simulations of liquid water.

Our scheme enables efficient simulations of complex systems by locally taking into account
QM delocalization effects. This can be useful, for example, for interface systems and in
simulations of biological objects such as membranes or proteins. Additionally, it allows an
efficient implementation of the QM grand canonical ensemble and can, in principle, also be
combined with quantum mechanics/molecular mechanics (QM/MM) approaches, in particular
those which are based on a similar Hamiltonian interpolation scheme [169].

The paper is organized as follows: In section 7.2, we review the adaptive quantum–classical
scheme proposed in our previous work and in section 7.3 we present its implementation in
PIMD. In section 7.4, we discuss how to use the methodology to calculate approximate quantum
dynamical quantities in the context of adaptive RPMD and CMD simulations. We describe
the details of the simulations we performed for validation in section 7.5 and the results are
discussed in section 7.6. In section 7.7, we summarize the article and conclude.
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7.2. Quantum–classical path integrals

In quantum statistical mechanics, the partition function of a system of N interacting particles
with indices α, momenta p̂α, masses mα, kinetic energy K̂ = ∑N

α=1 p̂2
α/2mα and potential

energy V̂ is Q = Tr[exp (−βĤ)] with the inverse temperature β = 1/kbT and the Hamiltonian
Ĥ = K̂+ V̂ . When performing PI quantization using P imaginary time slices (Trotter number
P), the kinetic energy term gives rise to a configurational energy that is equivalent to the one of
a classical ring polymer with P beads, which are coupled via harmonic springs (for a detailed
derivation see, for example, Tuckerman [52]). This mapping from a quantum particle onto a
classical polymer ring is exact in the limit P→ ∞. In practice, however, well converged results
can be obtained for finite values of P, which typically range from 16 to 48 beads for standard PI
simulations [78, 317, 328–332].

The strength of the spring constants between the beads of the ring polymers is mω2
P with

ωP =
√

P/βh̄. It is proportional to the temperature as well as the particles’ masses. In other
words, the rings are more collapsed the higher the temperature and the heavier the particles.
The extension of the ring polymers can be interpreted as a measure of the “quantumness” of the
QM particles, with classical behavior corresponding to fully collapsed and therefore localized
ring polymers.

The previously proposed method for quantum–classical adaptive resolution simulations
[365] is based on precisely this observation: In a PI-based formulation of quantum statistical
mechanics the only role of a particle’s mass is that of a spring constant. It determines how
much “quantum mechanically” the particle behaves. The scheme is as follows: For each particle
α we define a resolution parameter λα = λ(r̂α) that is a function of the particle’s position r̂α. It
smoothly changes from 1 in a spatially predefined QM region to 0 in a classical (CL) region via
an intermediate hybrid (HY) transition region (see Fig. 7.1). Based on this resolution function,
we then define a variable mass of particle α as mα → µα(λα) = λαmα + (1− λα)Mα. Therefore,
in the QM region µα(1) = mα where mα is the real mass of the particles while in the CL region
µα(0) = Mα � mα. The mass Mα has to be chosen large enough so that the particles with
µα(0) = Mα behave essentially classically (in our previous work, we used Mα = 100 mα). In
this way, particles in the QM region exhibit proper QM behavior, while in the CL region the
polymer rings are forced to collapse to nearly point-like particles and behave classically.

In addition to variable masses, we also use the Hamiltonian adaptive resolution simulation
(H-AdResS) formalism [181, 183, 184, 266], which can be employed to couple different force
fields via interpolation of potential energies. A classical H-AdResS Hamiltonian H of a system
of N interacting molecules reads

H = K+
N

∑
α=1

[
λαV1

α + (1− λα)V0
α + Vint

α − ∆H(Rα)
]

(7.1)

where K is the kinetic energy, α indexes the N particles, and λα = λ(Rα) is the previously
defined resolution function (when assigning single resolution values λα to whole molecules one
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Figure 7.1.: Simulation snapshots from the adaptive quantum–classical simulations. (a) A
complete box of quantum–classical water: The blue line shows the resolution
function λ switching smoothly from 1 in the QM region to 0 in the CL region. In the
QM region, the ring polymers, which correspond to the water atoms, are extended,
modeling their quantum mechanical delocalization. In the CL region, they are
collapsed to points. (b) Interacting atoms in the CL and QM regions: In the QM
region, interactions between different atoms are given as the average over the P
time-slices. In the CL region, in contrast, only a single calculation is required for the
interaction between a pair of atoms due to the point-like structure of the particles.
This alleviates the numerical effort and reproduces normal classical computational
efficiency in the CL subsystem.

typically uses the molecular center of mass Rα as reference coordinate to determine λα). The
single-particle potentials VRes

α (with Res = 0, 1) are the sums of all intermolecular potentials
acting on particle α, properly normalized so that double counting is avoided. The term Vint

α

represents all intramolecular interactions, such as bond and angle potentials, which are not
subject to interpolation. The term ∆H, referred to as the Free Energy Compensation (FEC)
[181, 183], is an external field acting in the HY transition region to eliminate the density
imbalance that naturally occurs in such dual-resolution systems. Different models of the
same physical system exhibit a free energy difference that needs to be neutralized in order to
enforce identical thermodynamical and/or structural properties (e.g. density) everywhere in
the simulation domain. The FEC levels off these free energy imbalances. H-AdResS has been
used mainly to couple atomistic and coarse-grained two-body force fields [181, 183, 286, 366].
In general, however, the potentials can refer to any non-bonded interaction VRes

α .
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We have combined the mass-based quantum–classical interpolation with the H-AdResS
scheme in order to be able to use different force fields within the QM and the CL regions.
This can be advantageous, for example, when the CL region’s only role is that of a particle
reservoir. Then, one can use a simpler force-field in the CL region. On the other hand, when,
for example, simulating a protein and only a small part of it needs to be modeled including
nuclear quantum effects, one would probably resort to the same force-field everywhere in the
system and just “add” the nuclear quantum effects in the relevant region with the presently
discussed quantum–classical multiresolution scheme.

Combining the quantum–classical mass interpolation and the H-AdResS scheme, we can
write the Hamiltonian operator of N interacting Boltzmann particles in three dimensions as
[365]

Ĥ =
N

∑
α=1

(
1
2

p̂αµ−1(r̂α)p̂α + VH-AdResS(r̂α)

)
(7.2)

where µ−1(r̂α) is the inverse mass operator. The potential energy term VH-AdResS(r̂α) corre-
sponds to the interpolated H-AdResS potential energy, i.e. the term within the sum in Eq. 7.1.
We have shown that PI quantization then leads to the following expression for the partition
function [365]:

Q = lim
P→∞

 P

∏
k=1

N

∏
α=1

∫
drα,k

(
µα,kP

2πβh̄2

) 3
2
 e−βVµ

P (7.3)

with

Vµ
P =

P

∑
k=1

N

∑
α=1

{
µα,k ω2

P
2
|rα,k − rα,k+1|2

+
1
P

[
λα,kVQM

α,k + (1− λα,k)VCL
α,k + Vint

α,k − ∆H(rα,k)
]} (7.4)

where α indexes the different particles and k the individual Trotter beads for each of them.
A resolution value λα,k is associated with each bead. We have renamed V0,1

α,k to VCL,QM
α,k to

emphasize that VCL
α,k (VQM

α,k ) is the intermolecular potential acting in the CL (QM) region. Note
that the normalization term in Eq. 7.3 depends on the position of the particles via µα,k. To
obtain a constant normalization factor, one can transform this position dependent term to a
potential energy in Vµ

P , as done in our previous article [365], and then treat it as a constant field
in the hybrid region. In this work, however, we will deal with it in a different way, which we
will discuss in detail later.

The above expression, Eqs. 7.3 and 7.4, is consistent with a rigorous PI quantization if∣∣∣∣dµ(x)
dx

∣∣∣∣� 2µ(x)
Λµ(x)

(7.5)

with Λµ(x) ≡
√

βh̄2/(Pµ(x)). This criterion means that the interpolation between the QM and
the CL parts of the system must be sufficiently smooth such that the mass difference between
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two neighboring beads on a ring polymer in the HY region is negligible. This requirement
can always be satisfied by choosing a sufficiently large HY region. Note, however, that even
if Eq. 7.5 is not fulfilled, the expression in Eqs. 7.3 and 7.4 corresponds to a well-defined
quantum–classical simulation protocol.

The ring polymers described by the energy function Vµ
P (Eq. 7.4) are expanded in the region

where the mass is small, and collapse to nearly classical point-like particles in the large-mass
region. Therefore, in the CL region the interactions between different ring polymers do not
need to be computed as an average over the P bead pairs as done in the QM region. Instead,
due to their point-like structure, one can use only the centroid with negligible error (see Fig.
7.1). In this fashion, classical computational efficiency is regained in the CL region.

7.3. Quantum–classical path integral molecular dynamics

In our previous paper [365], we have validated the scheme introduced above via simulations
of liquid parahydrogen using a basic Monte Carlo algorithm to directly sample the phase
space defined by Vµ

P . A more state-of-the-art approach to the numerical evaluation of PIs is
provided by PIMD, in which a thermostated dynamics is generated in phase space to sample
the quantum canonical ensemble [52, 69–74]. PIMD is more easily parallelizable compared to
Monte Carlo methods and therefore significantly more efficient for typical simulation setups
and on multicore computer architectures. In the following, we show how the proposed
quantum–classical multiresolution method can be implemented in PIMD as well as CMD and
RPMD.

7.3.1. Evaluation of the adaptive mass and the resolution function on the
centroids

In order to decouple the modes of the cyclic ring polymers from each other, PIMD is typically
performed using staging variables [73, 75] or, more popularly, normal modes [73, 352]. In
our case, we cannot transform smoothly into normal mode space, because the beads of the
individual ring polymers have different masses µα,k within the HY region. For typical systems
like liquid water at room temperature, however, this mass difference is small as the extension of
the ring polymers, measured by the root-mean-square radius of gyration rg, is short, even in
the QM region. This suggests to associate a single resolution value λα and a single adaptive
mass value µα with each atomic or molecular particle α instead of with every single bead k. λα

and µα can then be determined using the rings’ centroid positions.

Although this corresponds only to a minor modification in Eq. 7.4, we can ask to what extent
the configurational energy Vµ

P is then still compatible with formal PI quantization. To this end,
we first consider the adaptive mass µα,k of an individual Trotter bead within the HY region
which we can approximate as

µα,k ≈ µc
α + δxα,k

dµ(xc
α)

dx
, (7.6)
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where xc
α is the centroid coordinate along the direction of resolution change of the ring polymer

α. For a setup where the resolution changes along the x-direction, this would be the centroid’s
x-coordinate and for a system where the QM region is spherical and the resolution changes
radially, this would be the radial distance from the center. µc

α is the mass function evaluated at
the centroid xc

α and δxα,k is the distance along the direction of resolution change between the

k-th bead of ring α and its centroid xc
α. We have δxα,k . rg(xc

α), where rg(x) =
√

βh̄2/(4µ(x)) ·
√

1− 1/P2 ≈
√

βh̄2/(4µ(x)) is the radius of gyration of a free ring with mass µ(x) for large P.
Hence, we can approximate µα,k ≈ µc

α if∣∣∣∣dµ(xc
α)

dx

∣∣∣∣� µc
α

rg(xc
α)

, (7.7)

or simply ∣∣∣∣dµ(x)
dx

∣∣∣∣� µ(x)
rg(x)

. (7.8)

for general x. Here, we used the free ring radius of gyration. However, for the ring polymers in
typical systems the average radius of gyration differs only slightly from the free ring radius.

Eq. 7.8 is a slightly stronger criterion than the one in Eq. 7.5. This makes sense, since Eq. 7.5
essentially provides the condition under which the mass can be considered as constant between
two neighboring beads, while the new criterion, Eq. 7.8, gives the condition for treating the
mass constant over a whole ring. For liquid water at room temperature, Eq. 7.8 is satisfied by
a hybrid region wider than ≈ 1 nm. An even smaller hybrid region would not be desirable
anyway, since the interaction cutoffs of typical interaction potentials are also of the order
≈ 1 nm.

Next, we consider the resolution λ itself, which we would also like to treat as constant over a
whole ring and let it depend only on the position of the centroid. On the one hand, λ varies
between 0 and 1 and changes most steeply in the center of the HY region (see Fig. 7.1). On the
other hand, an upper bound on the extension of the ring polymers is provided by the radius of
gyration of the rings in the QM region, which will be denoted as rg

QM. Therefore, if the change
in λ, corresponding to its gradient in the center of the HY region, over a distance rg

QM is much
smaller than ≈ 1, we can approximate λα,k ≈ λc

α everywhere (as for the adaptive mass before,
λc

α denotes the resolution function of ring α evaluated at its centroid xc
α). This corresponds to∣∣∣∣∣

(
dλ(x)

dx

∣∣∣∣
x=dHY/2

)∣∣∣∣∣ rg
QM � 1, (7.9)

where dλ(x)/dx|x=dHY/2 denotes the gradient of λ in the center of the HY region and dHY the
width of the HY region. The criterion in eq. 7.9 can be easily fulfilled for typical systems such
as water at room temperature, with a HY region of width dHY ≈ 1 nm.

Concluding, in the following we will treat both the mass and the resolution as a constant over
entire rings and write for simplicity µα,k(x)→ µα(x) and λα,k(x)→ λα(x), where we assume
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that the mass and the resolution functions for an atom α have been evaluated using its centroid
coordinate xc

α and that the resulting parameters have been assigned to all beads belonging to
ring α. Then we can write the partition function as

Q = lim
P→∞

 P

∏
k=1

N

∏
α=1

∫
drα,k

(
µαP

2πβh̄2

) 3
2
 e−βṼµ

P (7.10)

with

Ṽµ
P =

P

∑
k=1

N

∑
α=1

{
µα ω2

P
2
|rα,k − rα,k+1|2

+
1
P

[
λαVQM

α,k + (1− λα)VCL
α,k + Vint

α,k − ∆H(rc
α)
]}

, (7.11)

where rc
α denotes the centroid of ring polymer α. Note that the FEC is now also applied at the

single-atom, i.e., centroid level. The criteria in Eqs. 7.8 and 7.9 quantify to what degree this
partition function is still compatible with a formal, bottom-up PI quantization. The inequalities
can always be fulfilled by choosing a sufficiently wide hybrid region. However, even if they
are not met, the final partition function, Eqs. 7.10 and 7.11, still represents a well-defined
Hamiltonian multiresolution quantum–classical simulation scheme.

7.3.2. Introducing normal modes

Now that the different beads of each ring polymer α all have the same adaptive mass µα, we
can proceed with transforming the Cartesian coordinates into normal modes uα,k via

uα,k =
P

∑
j=1

rα,jCjk, (7.12)

where, for even P, the orthogonal transformation matrix is [343]

Cjk =



√
1/P if k = 1√
2/P cos(2π jk/P) if 2 ≤ k ≤ P/2√
1/P (−1)j if k = P/2 + 1√
2/P sin(2π jk/P) if P/2 + 2 ≤ k ≤ P

(7.13)

such that for a given ring polymer at position x:

µα(x)
P

∑
k=1
|rα,k − rα,k+1|2 = µα(x)

P

∑
l=1

ξku2
α,k (7.14)

with
ξk = 4 sin2

(
(k− 1)π

P

)
. (7.15)
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In normal mode representation, the centroid of a ring polymer α is given by the rescaled first
mode coordinate, this is

rc
α =

1
P

P

∑
k=1

rα,k =
1√
P

uα,1. (7.16)

Therefore, the adaptive mass µα and the resolution function λα, being evaluated at the centroids,
are functions of the first mode only, i.e. µα(rc

α) = µα(1/
√

P uα,1) and λα(rc
α) = λα(1/

√
P uα,1).

To lighten the notation, though, we will drop the 1/
√

P factor and write simply µα = µα(uα,1)

and λα = λα(uα,1).

We then obtain the following partition function

Q = lim
P→∞

 P

∏
k=1

N

∏
α=1

∫
duα,k

(
µα(uα,1)P

2πβh̄2

) 3
2
 e−βṼµ

P (7.17)

with

Ṽµ
P =

P

∑
k=1

N

∑
α=1

{
1
2

να,k(uα,1)ω
2
Pu2

α,k +
1
P

[
λα(uα,1)V

QM
α,k (u)+

+ (1− λα(uα,1))VCL
α,k (u) + Vint

α,k (u)− ∆H(uα,1)
]} (7.18)

and the rescaled adaptive mass να,k(uα,1) = µα(uα,1) ξk. For the centroid, i.e. k = 1, we have
να,k(uα,1) = 0. In Eqs. 7.17 and 7.18, we have explicitly indicated the dependencies of the
different terms on the normal modes. The notation u without any indices is a shorthand for the
compound set of all coordinates uα,k.

7.3.3. Introducing momenta

In PIMD, one usually recasts the prefactor of the partition function as Gaussian integrals over a
set of variables that can be interpreted as momenta conjugate to the coordinates uα,k [52]. The
energy term in the exponential can then be interpreted as a classical Hamiltonian and sampled
via thermostated molecular dynamics. In our case, however, the prefactor is position dependent
and, therefore, we have different options to proceed.

(a) Constant kinetic masses. As done in our previous article [365], we can write

(
µα(uα,1)P

2πβh̄2

) 3
2

=

(
m̃P

2πβh̄2

) 3
2

exp
{
−β

(
− 3

2β
log
(

µα(uα,1)

m̃

))}
(7.19)

where we used an arbitrary mass m̃ as the reference mass scale. Then we can pull the term
−(3/2β) log (µα/m̃) into Ṽµ

P as an external field in the HY region and use the now constant
prefactor to introduce a set of momenta via rephrasing the prefactor as Gaussian integrals. This
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yields

Q = lim
P→∞

[
P

∏
k=1

N

∏
α=1

∫
duα,k

∫
dpα,k

]
e−βHckm

P (7.20)

with the Hamiltonian

Hckm
P =

P

∑
k=1

N

∑
α=1

{
p2

α,k

2m′α,k
+

1
2

να,kω2
Pu2

α,k −
3

2Pβ
log

µα(uα,1)

m̃
+

+
1
P

[
λα(uα,1)V

QM
α,k (u) + (1− λα(uα,1))VCL

α,k (u) + Vint
α,k (u)− ∆H (uα,1)

]}
.

(7.21)

As the additional logarithmic term only acts as an external field in the HY region, it can be
exactly removed via the FEC function ∆H. We will denote the fictitious masses m′α,k in the
following as “kinetic” masses in contrast to να,k, which we will refer to as spring masses. In
principle, the set of m′α,k can be chosen freely, as their rescaling does not affect thermodynamic
averages [52].

Hckm
P in Eq. 7.21 defines a classical Hamiltonian system composed of ring polymers repre-

senting the delocalized atoms. In the QM region where λα = 1 and µα = m, the ring polymers
are extended and the regular quantum mechanical behaviour is recovered. In the CL region
where λα = 0 and µα = M the rings are collapsed to essentially point-like particles, thereby
reproducing classical mechanics. The Hamiltonian gives rise to regular equations of motion
that can be integrated by a symplectic integrator such as the velocity Verlet algorithm [52], with
the possibility of employing multiple time-stepping.

However, let us take a closer look at the different masses in the system. While the spring
masses να,k change between the CL and QM subregions of the system, the kinetic masses m′α,k
do not. We choose m′α,k = mα/P with mα being the real mass of atom α, since this corresponds
to a realistic bead-wise approximate quantum dynamical behavior in the QM region similar to
RPMD (in RPMD one usually chooses m′α,k = mα without 1/P, but rescales the potential energy
terms by P and runs the simulation at a P-times higher temperature [84, 358, 359, 361–363].
Here, the factor of 1/P in the mass is equivalent to this procedure, as we perform the simulations
at the actual temperature and use a Hamiltonian, Eq. 7.21, without rescaling potential energies).
Therefore, in the QM region, the modes oscillate with vibration frequencies ωP

√
ξkP. In the

CL region, however, where να,k is significantly larger than in the QM subsystem the modes
oscillate faster than in the QM region by a factor of

√
Mα/mα. For the case of Mα = 100 mα,

this results in 10 times higher frequencies. This would require a 10 times smaller time step
in the integration algorithm compared to a normal quantum simulation or compared to what
would be required in the QM subregion. Although this poses no fundamental hurdle, it may
slow down the simulations notably.

(b) Adaptive kinetic masses. The previous observation suggests an alternative approach:
We can also directly recast the prefactor as a Gaussian integral, which includes the position
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dependent mass µα,

(
µα(uα,1)P

2πβh̄2

) 3
2

=

(
P2

4π2h̄2

) 3
2 ∫

dpα,k exp

{
−βP

p2
α,k

2µα(uα,1)

}
. (7.22)

In this way, we can introduce a kinetic energy term which has adaptive kinetic masses. This
leads to the construction of a Hamiltonian in which both the spring and the kinetic masses vary
in the same fashion, such that the modes oscillate with the same frequencies everywhere in the
quantum–classical adaptive resolution setup.

Specifically, we propose the following: Overall, we have N × P prefactors of the form

(
µα(uα,1)P

2πβh̄2

) 3
2

, (7.23)

one for each atom and mode. For all higher modes with k > 1, we transform the prefactors
according to Eq. 7.22 and introduce the momentum terms in the Hamiltonian with a variable
mass in the denominator. The remaining N prefactors are then treated via Eq. 7.19, and the
kinetic masses for the centroid modes, which are not associated with springs since να,1 = 0, are
chosen constant. We then obtain

Q = lim
P→∞

[
P

∏
k=1

N

∏
α=1

∫
duα,k

∫
dpα,k

]
e−βHakm

P (7.24)

with the Hamiltonian

Hakm
P =

P

∑
k=1

N

∑
α=1

{
p2

α,k

2ν′α,k(uα,1)
+

1
2

να,kω2
Pu2

α,k −
3

2Pβ
log

µα(uα,1)

m̃
+

+
1
P

[
λα(uα,1)V

QM
α,k (u) + (1− λα(uα,1))VCL

α,k (u) + Vint
α,k (u)− ∆H (uα,1)

]}
,

(7.25)

where ν′α,k is the kinetic mass of bead k of atom α. Note that a 1/P factor appears in front of
the logarithmic term in Hakm

P because the term still appears in the sum over all P, although we
obtain the logarithmic term only for the centroid modes. Choosing appropriate prefactors, the
parameters ν′α,k are

ν′α,1 = mα/P, k = 1, centroid mode, (7.26)

ν′α,k = ν̃α = µα/P, k > 1, higher modes. (7.27)

Since the kinetic masses for the higher modes are all equal, we introduced a new abbreviation,
ν̃α, for them without the index k. We choose a factor 1/P to ensure that the approximate
quantum dynamical time evolution of the centroids proceeds on the real timescale, this is, the
same as in corresponding classical Newtonian dynamics. As already pointed out, this choice
is equivalent to the temperature rescaling often done in ring polymer molecular dynamics
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[84, 358, 359, 361–363], which we do not perform here. A further rescaling of the kinetic masses
would be allowed when sampling only canonical averages [52, 73].

We can interpret the choice of the kinetic masses in the following way: While traveling from
the QM to the CL via the HY region, the spring constants of the higher modes become stronger
and the ring polymers collapse. Simultaneously, however, these higher modes become heavier
such that they do not vibrate faster in the CL region than in the QM region, despite the stiffer
springs. Their oscillation frequencies are the same everywhere in the system such that their
configurations can be sampled efficiently throughout the whole system with the same time step.
The centroid modes do not undergo such oscillations, as they represent only the displacements
of the whole rings. Hence, their masses do not need to change across the transition from the
QM to the CL part of the system and, therefore, they are chosen to be the real masses.

In fact, this approach is in line with what one would intuitively expect from a rigorous
PI-based quantum–classical adaptive resolution scheme. On the one hand, considering a single
atom, all higher modes, which represent the delocalization or the “quantumness” of the atom,
collapse in the classical region and therefore localize the atom to a classical point particle there.
On the other hand, the centroid mode, which does not correspond to any quantum properties
of the atom and only represents the average position of the atom, is not changed throughout
the whole system. In other words, we only adapt the internal ring behavior, i.e. the quantum
properties of the atoms, while leaving its classical, more macroscopic behavior, determined via
the centroid, untouched. It is only indirectly affected by the quantum–classical transition of the
higher modes.

In the following we will refer to the constant kinetic mass (CKM) approach, defined by the
Hamiltonian Hckm

P in Eq. 7.21, as the CKM approach and to the adaptive kinetic mass (AKM)
scheme, defined by the Hamiltonian Hakm

P in Eq. 7.25, as the AKM approach.

7.3.4. Equations of motion

We will not discuss the equations of motion obtained in the CKM approach, as they resemble a
regular structure which can be integrated, for example, by a regular velocity Verlet algorithm
[52]. Instead, we focus on the AKM scheme, from which the CKM approach can be obtained as
a special case.

In the following, we will assume that the logarithmic term in the Hamiltonian in Eq. 7.25 has
been exactly canceled by an appropriately chosen FEC function ∆H(λ) and therefore omit it to
lighten the notation.

Then, the equations of motion are as follows:

u̇α,1 =
pα,1

ν′α,1(uα,1)
= P

pα,1

mα
, k = 1, centroid mode, (7.28)

u̇α,k =
pα,k

ν̃α(uα,1)
= P

pα,k

µα(uα,1)
, k > 1, higher modes, (7.29)
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ṗα,1 = FH-AdResS
α,1 (u)

− 1
P

[
P

∑
i=1

{
VQM

α,i (u)−VCL
α,i (u)

}]
∇uα,1 λ(uα,1) (Fdrift

1 )

−
[

P

∑
i=2

1
2
(Mα −mα)

Pν̃α(uα,1)2 p2
α,i

]
∇uα,1 λ(uα,1) (Fdrift

2 )

−
[

P

∑
i=2

1
2

ξi(mα −Mα)ω
2
Pu2

α,i

]
∇uα,1 λ(uα,1) (Fdrift

3 )

+∇uα,1 ∆H(uα,1),

k = 1, centroid mode,

(7.30)

ṗα,k = −να,k(uα,1)ω
2
Puα,k + FH-AdResS

α,k (u), k > 1, higher modes, (7.31)

where

FH-AdResS
α,k (u) = − 1

P

P

∑
j=1

N

∑
β=1

[
λβ∇uα,k VQM

β,j (u) +
(
1− λβ

)
∇uα,k VCL

β,j (u) +∇uα,k Vint
β,j (u)

]
. (7.32)

The terms in lines 2-5 in Eq. 7.30 stem from the application of the derivative on the position
dependent resolution function. The terms Fdrift

i are undesired forces that act only in the hybrid
region, can lead to thermodynamic imbalances in the system, and, for example, artificially
push particles from one subregion of the system to the other. In accordance with earlier works
using the H-AdResS scheme, we will refer to these forces as drift forces [181]. They need to be
compensated, which can be established via the FEC, line 5 in Eq. 7.30. In fact, the latter is
typically constructed to cancel their average effect [181, 183, 184].

The drift force Fdrift
1 comes from the potential energy interpolation and would not be present if

we changed only the masses of the atoms but not the force field. Fdrift
2 is a result of choosing the

kinetic masses of the higher modes to be adaptive and would be absent in the CKM approach.
Finally, Fdrift

3 corresponds to the adaptive spring masses. As the resolution λα and the adaptive
mass µα depend only on the centroid positions of the ring polymers, drift forces only occur
in the equations of motion for the centroid. Therefore, the internal motion of the rings is not
disturbed by any drift forces and can smoothly change from quantum to classical and vice
versa when the atoms travel through the system. Only the translation of the rings is affected by
drift forces, which can be corrected via the FEC. Note that the sums in Fdrift

2 and Fdrift
3 only run

over higher modes and exclude the first one, because the centroid mode neither appears in the
spring constant term in the Hamiltonian, nor is it associated with a variable mass in the kinetic
energy onto which the position derivative could act.

7.3.5. Integration

To devise a suitable integration scheme for the equations of motion, Eqs. 7.28-7.31, we use the
Liouville operator formalism. To lighten the notation, in the following we will drop the atom
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index α, as the Liouville operators for different atoms, i.e. rings, commute and do not require
further discussion.

The Liouville operator iL can be written as

iL = iL(1) + iL(2), (7.33)

where iL(1) propagates positions and iL(2) momenta. We further decompose

iL(1) = iL(1)
1 + iL(1)

k , (7.34)

iL(2) = iL(2)
1 + iL(2)

k , (7.35)

where operators iL(i)
1 propagate the first mode and iL(i)

k act only on the higher order modes
k > 1. They are

iL(1)
1 = P

p1

m
∂

∂u1
, (7.36)

iL(1)
k =

pk
ν̃(u1)

∂

∂uk
, (7.37)

iL(2)
1 =

(
F1(u) + η(u1)

P

∑
k=2

p2
k

)
∂

∂p1
, (7.38)

iL(2)
k = Fk(u)

∂

∂pk
, (7.39)

with

F1(u) = FH-AdResS
1 (u)

− 1
P

[
P

∑
i=1

{
VQM

i (u)−VCL
i (u)

}]
∇u1 λ(u1)

−
[

P

∑
i=2

1
2

ξi(m−M)ω2
Pu2

i

]
∇u1 λ(u1)

+∇u1 ∆H(u1),

(7.40)

and

Fk(u) = −νk(u1)ω
2
Puk + FH-AdResS

k (u), (7.41)

η(u1) = −1
2
(M−m)

Pν̃(u1)2 ∇u1 λ(u1). (7.42)

The vector notation denotes that each Liouville operator in Eqs. 7.36-7.39 represents a set of
three operators for each direction, which commute and can therefore be applied in arbitrary
order.
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In the first step we decompose the classical propagator exp{iLt} as

eiLt = eiL(1)t+iL(2)t = lim
M→∞

(
eiL(2) t

2M eiL(1) t
M eiL(2) t

2M

)M
(7.43)

using the symmetric Trotter theorem [367, 368]. Defining the time step ∆t = t/M this yields
the velocity Verlet integrator

eiL∆t ≈ eiL(2) ∆t
2 eiL(1)∆teiL(2) ∆t

2 . (7.44)

However, recalling the definitions of iL(1) and iL(2) we recognize that their constituents iL(1)
1

and iL(1)
k as well as iL(2)

1 and iL(2)
k do not commute. Therefore, using again the Trotter theorem,

we decompose each of the propagators in Eq. 7.44 further to

eiL∆t ≈ eiL(2) ∆t
2 eiL(1)∆teiL(2) ∆t

2

≈
(

eiL(2)
k

∆t
4 eiL(2)

1
∆t
2 eiL(2)

k
∆t
4

)(
eiL(1)

1
∆t
2 eiL(1)

k ∆teiL(1)
1

∆t
2

)(
eiL(2)

k
∆t
4 eiL(2)

1
∆t
2 eiL(2)

k
∆t
4

)
,

(7.45)

which is correct up to second order in ∆t and is suited for the integration of the system’s
equations of motion. Note that for the CKM approach, the adaptive mass ν′k(u1) in iL(1)

k , Eq.

7.37, would be constant and also the p2
k term in iL(2)

1 , Eq. 7.38, would be missing. Therefore, no
second decomposition level would be required and we could stick to the velocity Verlet.

The interpretation of the integration scheme in Eq. 7.45 is straightforward. The first and
the last term in brackets (· · · ) correspond to the propagation of momenta, while the term in
the middle propagates coordinates. The next decomposition level tells us how to precisely
update the momenta and the coordinates. The momenta are integrated in the following way:
We first propagate all higher mode momenta by a quarter step, then we update the p2

k term
in iL(2)

1 using these new momenta and propagate the first mode’s momentum by a half step.
Next, we perform the other quarter step for the higher modes. To get the full time step, the
procedure is repeated after the position update in the center of the scheme. The coordinates
are updated as follows: We first propagate the first mode by a half step using iL(1)

1 . Then we
update the adaptive masses in the Liouville operator iL(1)

k and propagate the higher modes
by a full step. Finally, we integrate the first mode by another half step. The scheme requires
little additional computational overhead compared to a regular velocity Verlet scheme. The
number of additional operations scales only linearly with the number of particles, and the
force computation, usually the numerically most demanding part of a simulation, has to be
performed as usual only once after all coordinates are fully propagated.

Finally, we want to address the symplecticity of the new integrator. The Hamiltonian Hakm
P ,

Eq. 7.25, is not trivially separable into two parts, one depending only on coordinates and one
containing only momenta. However, it has no term in which both the momentum and the
corresponding conjugate coordinate of the same mode appear together. This is a result of our
choice of the adaptive masses: The higher mode masses are position dependent, but they do
not depend on their own mode coordinates but only on the centroid coordinate. However,
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the centroid itself, which determines the resolution and the masses of the rings, is associated
with a constant mass. Therefore, the Hamiltonian Hakm

P and the corresponding equations of
motion still define a symplectic structure. As a consequence, also the integration scheme in Eq.
7.45 is symplectic, as it is constructed in a rigorous fashion from Hakm

P ’s equations of motion
using the Liouville operator formalism. This can also be understood considering the Liouville
operators themselves: The operator iL(1)

k , Eq. 7.37, which propagates the higher mode coordinates
uk does have an additional position dependence but only on the centroid mode. Hence, it can be
applied as usual in a well-defined manner. Similarly, the operator iL(2)

1 , Eq. 7.38, propagating
the momentum of the centroid mode has an additional dependence on momenta, but only on
the higher mode momenta. Consequently, the determinant J of the time evolution matrix is 1.
This can be derived easily by considering the time evolution matrices corresponding to each
Liouville operator. The determinant of each of these matrices is 1. Therefore, the determinant
of the overall time evolution matrix, equal to the product of the individual determinants, is also
1. The symplecticity has the practical advantage that we are able to derive an energy conserving
integrator, which, in our case, is exact up to second order in time, similar to a regular velocity
Verlet.

It is worth pointing out that the previous observation is in contrast with earlier works using
adaptive masses [333, 369]. There, both momenta and the corresponding conjugate coordinates
appear together in the same terms in the Hamiltonian. Hence, in those cases, Liouville’s
theorem no longer holds, the Liouville operator formalism breaks down, and symplecticity is
lost.

7.3.6. Multiple time-stepping

In typical complex soft matter systems, non-bonded interactions as well as bonds, angles and
dihedrals generate motion on different time scales. In PIMD, we have additionally the springs
between the beads of the ring polymers onto which the quantum particles are mapped. If
the kinetic masses for the higher modes are small, they vibrate strongly, which requires a
small integration time step. When only sampling statistical averages, the kinetic masses can be
chosen freely, for example, such that all higher modes vibrate with the same frequency. When
calculating approximate quantum dynamical quantities, however, the kinetic mode masses
must either correspond to the real ones, as in RPMD, or must be significantly decreased, as
in CMD. This leads to an internal ring polymer dynamics which is significantly faster than
the motion due to typical interatomic non-bonded or bonded potentials. Furthermore, in the
CKM approach, the modes’ oscillation frequencies are increased in the CL region, as the kinetic
mass will be small there compared to the increased spring mass. This strongly motivates the
introduction of multiple time-stepping into our integrator.

We employ the RESPA scheme [364] and decompose the force computation into three parts:
one for non-bonded forces, a second for the bonds, and a third for the internal ring polymer
motion. The first drift term, Fdrift

1 , depends only on the energies associated with the non-bonded
potentials and is therefore evaluated together with rest of the non-bonded forces. The second
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and the third drift terms Fdrift
2 and Fdrift

3 , however, depend directly on the motion of the higher
modes and therefore need to be evaluated together with them. Hence, we define

iL(1)
1 = P

p1

m
∂

∂u1
, (7.46)

iL(1)
k =

pk
ν̃(u1)

∂

∂uk
, (7.47)

iL(2)
1 =

(
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1 (u) + η(u1)
P

∑
k=2

p2
k

)
∂

∂p1
, (7.48)

iL(2)
k = Fmode

k (u)
∂

∂pk
, (7.49)

iL(3)
q = Fint

q (u)
∂

∂pq
, (7.50)

iL(4)
q = Fnb

q (u)
∂

∂pq
, (7.51)

with

Fmode
1 (u) = −

[
P

∑
i=2

1
2

ξi(m−M)ω2
Pu2

i

]
∇u1 λ(u1), (7.52)

Fmode
k (u) = −νk(u1)ω

2
Puk, (7.53)

Fint
q (u) = − 1

P

P

∑
j=1

N

∑
β=1

∇uq Vint
β,j (u), (7.54)

Fnb
q (u) = − 1

P

P

∑
j=1

N

∑
β=1

[
λβ∇uq VQM

β,j (u) +
(
1− λβ

)
∇uq VCL

β,j (u)
]

(7.55)

− 1
P

[
P

∑
i=1

{
VQM

i (u)−VCL
i (u)

}]
∇uq λ(u1)

+∇uq ∆H(u1).

Note that the Liouville operators iL(3)
q and iL(4)

q do not need to be split into centroid and higher
terms, as these commute in this case. Hence, for the sake of brevity, we have subsumed both
parts and changed to the index q, which includes all 1 ≤ q ≤ P. Finally, we obtain the following
RESPA multiple time-stepping scheme:

eiL∆t ≈ eiL(4) ∆t
2

{
eiL(3) δt

2

[(
eiL(2)

k
dt
4 eiL(2)

1
dt
2 eiL(2)

k
dt
4

)(
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1
dt
2 eiL(1)

k dteiL(1)
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)
×

×
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eiL(2)
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dt
4 eiL(2)
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2 eiL(2)
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4

)]n

eiL(3) δt
2

}N

eiL(4) ∆t
2 ,

(7.56)

where ∆t = N · δt = N · n · dt. The internal ring vibrations as well as the drift terms depending
on these higher ring modes are integrated with the shortest time step dt. The intramolecular
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but interatomic bonds and angles are integrated with a distinct, medium time step δt, and the
intermolecular non-bonded interactions as well as the corresponding drift terms are integrated
with the largest time step ∆t. The whole integration may be carried out in normal mode space,
although in practice the interatomic forces are computed in real space and then transformed
into mode space.

7.3.7. Langevin thermostating

To generate a canonical ensemble we need to couple the system to a thermostat. We resort
to a Langevin thermostat, as Langevin equation-based frameworks have been shown to be
favorable in PIMD and RPMD simulations and can be used to optimize sampling efficiency
[342–345]. As the focus of this work is not advanced thermostating, however, we use a simple
white noise Langevin thermostat without memory instead of, for example, a GLE approach.
The implementation follows the BAOAB method by Leimkuhler and Matthews [370], which
provides high configurational sampling accuracy. Within the proposed multiple time-stepping
scheme this yields

eiL∆t ≈ eiL(4) ∆t
2

{
eiL(3) δt

2

[(
eiL(2)

k
dt
4 eiL(2)

1
dt
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)]n
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eiL(4) ∆t
2 ,

(7.57)

with the action of the Langevin Liouville operator iLLangevin on mode i

eiLLangevindt ui = ui, (7.58)

eiLLangevindt pi = pi e−γdt +
√

ν′i (u1)kbT(1− e−2γdt)R(t). (7.59)

γ is the friction parameter, T the temperature, kB Boltzmann’s constant, and R(t) are inde-
pendent and identically distributed normal random numbers with mean 0, variance 1, and
〈R(t)R(t′)〉 = δ(t− t′). This thermostating method can also be adapted such that each mode is
thermostated with a different optimized friction constant, as done in the path integral Langevin
equation (PILE) scheme by Ceriotti et al. [343, 363].

Using the integration scheme of Eq. 7.57, we can perform efficient adaptive quantum–classical
PIMD simulations with either the AKM or the CKM approach. It is derived in a rigorous
fashion from a symplectic Hamiltonian and is also consistent with PI quantization, provided
that the criteria in Eqs. 7.8 and 7.9 are satisfied. It is computationally advantageous over
full-quantum simulations, because in the CL region all forces between interacting ring polymers
can be approximated by a single calculation between the centroids. Furthermore, because the
ring polymers are collapsed in the CL region and interact classically, the integration of the
internal motion, i.e. of the higher modes, can be stopped and the rings can be frozen in this
part of the system. In the CKM case or for full-quantum systems, the algorithm reduces to a
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regular velocity Verlet scheme with multiple time-stepping and Langevin thermostating.
The derived quantum–classical multiresolution scheme can be combined with other opti-

mization techniques for PI simulations. For example, the non-bonded forces could also in the
QM region be evaluated based on fewer than P beads, using the RPC scheme by Markland
and Manolopoulos [337, 338]. Alternatively, instead of white noise Langevin thermostating, we
could make use of a colored noise thermostat. It was shown by Ceriotti et al. that a carefully
parametrized PI GLE can lower the number of Trotter beads required for converged quantum
behavior [342–345]. As our approach reduces the overall computational effort of a PI simulation
by restricting the QM region of the system, it is complementary to these methods, which reduce
the numerical complexity of the PI interactions themselves.

7.4. Approximate quantum dynamics

In PIMD, we only measure quantum statistical properties. In the following, we will discuss
how our integration scheme can be extended to allow for multiresolution quantum–classical
CMD and RPMD with only minor changes.

7.4.1. Quantum–classical centroid molecular dynamics

Centroid molecular dynamics (CMD) is a method for the calculation of real-time quantum
correlation functions in the short-time limit [82, 83, 351–360]. It is based on the notion that
approximate quantum dynamical properties can be calculated from the time evolution of the
centroid subject to the potential of mean force generated by the ring polymer. Formally, this
potential is obtained by integration over all possible ring configurations with constrained
centroid position. This would be not just computationally expensive but practically intractable.
The idea of CMD is to adiabatically decouple the internal fluctuations of the ring polymers from
the centroid motion. By rescaling the higher mode kinetic masses (k > 1) with a sufficiently
small adiabadicity parameter 0 < γ2

CMD < 1, such that ν′k → γ2
CMDν′k, the higher modes can be

forced to evolve significantly faster than the centroid. Thereby, the centroid potential of mean
force of the ring polymer is generated “on the fly” during the simulation. It has been shown,
however, that in practice a partial adiabatic decoupling is sufficient for most applications [358].
In addition to the mass rescaling, the higher modes alone are coupled to thermostats such that
the centroid dynamics remains Newtonian.

The previously described implementation of CMD, i.e. the removal of the thermostat from
the centroid and the kinetic mass rescaling, can also be done easily in our quantum–classical
multiresolution scheme. In practice, one would typically be interested in the quantum dynamics
only in the QM region. Hence, it suffices to only remove the centroid thermostat in this region.
Then we could measure approximate quantum dynamical properties in the QM region while
the classical part would still behave as in the canonical ensemble and could serve, for example,
as a particle reservoir for the QM region. Another relevant scenario is the simulation of a
complex biomolecule like a protein. In this case, an overall large simulation box would be
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required to preserve the structure and the solvating environment of the system, although we
may want to probe the dynamics only in a specific subregion, such as near the protein’s active
site.

7.4.2. Quantum–classical ring polymer molecular dynamics

An alternative approach to the calculation of approximate quantum dynamics is provided
by ring polymer molecular dynamics (RPMD) [84, 358, 359, 361, 362]. In the normal RPMD
approach, the kinetic masses are chosen to be the real physical masses (as we did above also
for PIMD) and no thermostats are used, such that the ring polymer evolution is completely
Newtonian. In comparison to CMD, RPMD uses the whole chain to approximate quantum
time correlation functions. However, the internal ring fluctuations can lead to artifacts when
measuring, for example, vibrational spectra [371]. To overcome this deficiency, Rossi et al.
recently proposed a thermostated ring polymer molecular dynamics (TRPMD) approach [363]
that can be interpreted as an intermediate method between normal RPMD and CMD. In
TRPMD, the kinetic masses are also chosen to be the real physical masses and measurements
are performed based on the whole chain. However, as in CMD, Langevin thermostats are
attached to all higher modes k > 1. Provided the thermostats are adjusted carefully, TRPMD
avoids both the spurious resonances in the vibrational spectra and also the curvature problem of
CMD [371], while retaining the appealing properties of RPMD. An ideal choice for the Langevin
friction parameters in TRPMD is given by the PILE scheme [343, 363]. In the PILE method, each
higher mode k > 1 is thermostated with a different optimized coupling constant γk based on
the mode vibration frequency as γk = ωP

√
ξkP.

Just as with CMD, TRPMD simulations can be easily run with our quantum–classical PI
scheme and the corresponding integrator, Eq. 7.57. We only need to adapt the thermostats on
the different modes accordingly and remove the thermostat on the centroid.

Note that in the AKM approach the kinetic masses will change in the CL region. However, in
this part of the simulation box the spring masses also have different values and we are typically
not interested in the dynamics anyway. Thus, one may also reintroduce the centroid thermostat
in this outer region.

7.5. Simulations

To validate the proposed adaptive resolution PIMD approach, we implement it in the ESPResSo++
molecular simulation package [1] and perform adaptive resolution simulations of liquid water.
Nuclear quantum effects in liquid water have been thoroughly investigated and shown to be
important for an accurate description of its structure and dynamics [78, 88–90]. Hence, water is
an ideal test case for the method.
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7.5.1. Water system

We consider a system of 918 water molecules in a slab-shaped box with dimensions Lx =

6.92 nm, Ly = Lz = 2.0 nm (33.168 molecules/nm3), and periodic boundary conditions in all
directions. The resolution changes along the X-direction, the full width of the QM region is set
to dQM = 2.0 nm, and the width of the adjacent HY regions to dHY = 1.5 nm. The resolution
function is given by a squared cosine, commonly used in adaptive resolution simulations
[155, 184, 193, 212, 365, 366, 372]. We perform the simulations at a temperature of 300 K and
use a Trotter number P = 32, as this has been shown to provide well-converged results for most
dynamical and structural water properties [78, 88, 89]. A simulation snapshot of the system is
presented in Fig. 7.1 (a).

To model the water, we use a force field that was recently developed by Fritsch et al.
specifically for PI simulations of bulk liquid water [78]. It is parametrized from ab initio density
functional theory calculations using the force matching [102–104] and iterative Boltzmann
inversion methods [106]. All interactions are mapped onto a set of short-ranged tabulated
potentials and no explicit charges are present. Separate potentials are provided for the non-
bonded O-O, O-H, H-H interactions, for the O-H bond, and for the H-O-H angle. An additional
bonded potential is applied between the two H-atoms of the same molecule. This force field
describes the structural and dynamical properties of liquid water at 300 K and at a density of 1.1
g/cm2 very well. Furthermore, it is very efficient in simulations, since it is purely short-ranged
with an interaction cutoff of 7.8 Å. We have chosen this potential for its numerical efficiency and
its suitability for PI simulations, and we note that the derived adaptive resolution methodology
can also be applied for analytic potentials as well as those that include charges.

In order to collapse the ring polymers in the CL region, we choose Mα = 100 mα for all
particles α. Because of their point-like structure we only use the centroids to calculate non-
bonded and bonded interactions between atoms in the CL region (see Fig. 7.1 (b)). Furthermore,
we stop the integration of the higher modes in the CL region, i.e., we freeze the internal degrees
of freedom of the ring polymers. Note that the setup satisfies the criteria in Eqs. 7.8 and 7.9
and can therefore be considered to be consistent with formal path integral quantization.

We run simulations using both the AKM and CKM approaches, although we focus on the
AKM method, for which we have derived a non-standard integrator and which allows larger
time steps. In all simulations, the kinetic mass of the centroids is given by Eq. 7.26, which
corresponds to using the real mass. For the AKM simulations, we choose the kinetic masses
of the higher modes according to Eq. 7.27. As argued already, this corresponds to using the
real masses in the QM region, which facilitates a realistic ring polymer time evolution and
therefore allows the calculation of approximate quantum dynamical properties from RPMD
simulations. In the CL region, the higher mode masses are increased as explained previously.
For the CKM simulations, we choose the masses in a similar way, although they remain constant
over all simulation domains. For CMD simulations, we introduce an additional rescaling of the
higher modes’ kinetic masses with an adiabadicity parameter γ2

CMD = 0.05. Note that we do
not rescale the kinetic masses of the higher modes with the eigenvalues of the normal mode
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transformation, as it is often done in CMD [358]. We also keep the additional 1/P factor in
the kinetic masses, which we introduced earlier to ensure dynamics on the correct time scale.

Therefore, the ring polymers’ higher modes vibrate with frequencies ωP

√
ξkP/γ2

CMD.
To enforce the correct temperature, we couple all modes to white noise Langevin thermostats.

The centroid mode is thermostated with a friction constant γ = 2.0 ps−1, except in CMD
and TRPMD simulations, where no thermostat is applied on it. For the higher modes k, we
employed the PILE scheme by Ceriotti et al. [343, 363] and used frictions γk = ωP

√
ξkP

that are proportional to the modes’ vibration frequencies (for CMD simulations, we used

γk = ωP

√
ξkP/γ2

CMD). The PILE method leads to optimized sampling and can also be applied
in the context of TRPMD simulations.

The derived adaptive quantum–classical simulation method allows to not only change the
“quantumness” of the particles, but also their non-bonded interaction potentials. This has
been demonstrated in our previous paper in simulations of liquid parahydrogen [365]. Here,
we perform the majority of the validation simulations changing only the quantumness of the
particles, using the same interaction potential in both the QM and the CL region. Nevertheless,
we also test the scheme using a different potential in the CL region, a purely repulsive Weeks-
Chandler-Andersen (WCA) potential [274] of the form

VCL(r) =

 4ε
[(

σ
r
)12 −

(
σ
r
)6

+ 1
4

]
: r ≤ Rc

0 : r > Rc
(7.60)

with ε = kBT, σ = 0.25 nm, and Rc = 2
1
6 σ = 0.28 nm. The potential acts only between the

oxygen atoms. Note that the intramolecular bonded interactions are kept in the CL region to
prevent the molecules from disintegrating.

7.5.2. Setups

We perform simulations employing the following setups:

• Setup 1: We use adaptive kinetic masses and the same interaction potentials in both
regions. Applying thermostats to all modes, we calculate various structural properties of
the water in the QM region. Additionally, we remove the thermostat from the centroid
and use TRPMD to calculate several dynamical quantities.

• Setup 2: The same as setup 1, except the kinetic masses of the higher modes are rescaled
with the adiabadicity parameter γ2

CMD. Then, we calculate the dynamical properties via
CMD.

• Setup 3: The AKM method is applied as in setup 1, but the WCA potential is employed
to model intermolecular interactions in the CL region. In this scenario, we only validate
the coupling by calculating density profiles as well as profiles of the atomistic radii of
gyration.
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• Setup 4: We switch to constant kinetic masses and employ the same interaction potentials
in both regions. As in setup 3, we only validate the coupling and calculate density profiles
as well as profiles of the atomistic radii of gyration.

Additionally, we perform full-quantum and full-classical (P = 1) reference simulations with-
out any interpolation between different particle masses or interaction potentials. All simulation
parameters, including the box dimensions, are the same as for the adaptive simulations. The
only exception is the friction constant of the Langevin thermostat, which is set to 10.0 ps−1 in
the full-classical simulations.

The time steps used in the simulation setups are presented in Tab. 7.1. For the full-classical

Setup ∆t δt dt

#1: AKM method, same potentials, TRPMD 2.0 fs 0.5 fs 0.05 fs

#2: AKM method, same potentials, CMD 0.4 fs 0.1 fs 0.01 fs

#3: AKM method, WCA potential in CL region, TRPMD 2.0 fs 0.5 fs 0.05 fs

#4: CKM method, same potentials, TRPMD 1.0 fs 0.1 fs 0.00625 fs

Table 7.1.: Time steps for the quantum–classical adaptive resolution PIMD, RPMD and CMD
simulations and for the reference calculations.

and the full-quantum reference simulations we use the same time steps as in the corresponding
adaptive resolution setups. The time steps in the table refer to the ones used in equilibration
simulations, during the derivation of the free energy correction and the thermodynamic force
(see next section), as well as during all other simulations sampling statistical averages. For
the calculation of dynamic quantities in setup 1 we reduce all time steps to the same ones
as used in the CMD simulations in setup 2. We do this for two reasons: On the one hand,
our implementation of the integration scheme allows one to print out positions or velocities
only after a full step ∆t. Hence, this large time step needs to be short enough to allow a fine
sampling when calculating, for example, velocity autocorrelation functions. On the other hand,
we want to avoid artifacts resulting from the use of different time steps when comparing CMD
to TRPMD. Note, however, that only few and very short simulations need to be run with this
modification. The majority of simulations use the time steps in Tab. 7.1.

In general, all time steps are chosen to be as large as possible but still sufficiently small
to accurately sample phase space, retain an acceptable level of energy-conservation in micro-
canonical test simulations, and generate the correct temperature in simulations in the canonical
ensemble. The time steps we find to work well seem reasonable: In classical simulations,
updating the regular non-bonded forces every 1-2 fs is a frequent choice [270, 366, 372–375],
while the vibration frequency for the bonds and angles in water demands a time step of around
0.5 fs [78, 376]. The vibration frequency of the springs between the PI beads is yet higher,
requiring an even smaller time step. Furthermore, CMD simulations are known to require
particularly small time steps, as the internal ring polymer motion is strongly accelerated. A
similar effect is observed in simulations with the CKM approach. In this case, the internal
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motion of collapsed rings is also significantly enhanced (we mentioned that in the CL region,
the rings are frozen. However, the rings are already strongly collapsed at the outer parts of the
HY region, where a full integration of the internal motion is still necessary to accommodate the
gradual collapse and extension of the rings). Therefore, already at this point it becomes clear
that the AKM scheme is better suited for the proposed adaptive quantum–classical simulation
protocol than the naive CKM method. We want to stress, however, that finding optimal time
steps is not the primary goal of this work and that there is certainly room for further fine-tuning.

For the calculation of all structural quantities and statistical averages we run simulations of
duration 200 ps, if not otherwise indicated. Additionally, we perform short 2 ps runs during
which we calculate velocity autocorrelation functions and vibrational spectra. We also measure
hydrogen bond population fluctuations, which is done in simulations of duration 32 ps. In all
cases we start from equilibrated configurations, run 10 independent simulations, and average
the results.

7.5.3. Free energy corrections

To correct for the thermodynamic imbalance between the low-mass QM and the high-mass CL
region, we apply a free energy correction (FEC) ∆H [181, 183, 184, 266, 365, 366]. We derive the
FEC via Kirkwood thermodynamic integration (KTI) between the fully CL (λ = 0) and the fully
QM (λ = 1) system and we calculate the averages
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as well as the pressure p(λ) for a set of 101 λ’s along the integration path from λ = 0 to λ = 1.
The KTI is run in a smaller box of dimensions Lx = Ly = Lz = 3.0 nm. All other simulation
parameters are as explained above, except for the thermostat friction of the centroid mode,
which was set to 10 ps−1 to achieve rapid equilibration after changing λ. We start the KTI from
an equilibrated system at λ = 0 and we perform for each λ a short 0.3 ps equilibration run (for
setup 2 only 0.12 ps due to the short time step) and another 1.5 ps run (for setup 2 only 0.6 ps)
during which we take measurements. From these results we construct the FEC ∆H to cancel
the averages of the drift forces, Eq. 7.30, and the pressure difference between the subsystems.
Since calculating the FEC via KTI is an approximate method to correct for the thermodynamic
imbalance, we refine the FEC using the thermodynamic force (TF) scheme [182, 365]. The TF
is an iterative approach that directly constructs a correction force in the HY region from the
distorted density profile along the direction of resolution change in order to flatten the density
throughout the system. Each TF iteration consists of a 50 ps equilibration run (10 ps for setup
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2 and 15 ps for setup 4) and a 150 ps production run (30 ps for setup 2 and 20 ps for setup 4)
during which we sample the density. We perform 20 iterations for each setup.

Although we calculate the quantities in Eqs. 7.61-7.63 separately for the oxygen and hydrogen
atoms, we determine global molecular pressures instead of species-wise partial pressures. After
constructing the correction force from the pressure p(λ), we distribute it between oxygen and
hydrogens proportionally to their masses. Finally, the FEC is applied on the atomistic level
based on the atom’s centroid positions.

Both the derivation of the FEC via KTI and the iterative correction are well-established
methods for achieving a smooth coupling in adaptive resolution simulations. See, for example,
Refs. [181–184, 266, 365, 366] for further technical details.

7.6. Results

7.6.1. Structure

We first investigate the structural properties of the adaptive quantum–classical water systems.
Fig. 7.2 shows the density profiles along the x-direction of the four setups without correcting
for the thermodynamic imbalance (green curves), with FEC but without iterative refinement
(blue curves), and with FEC including the iterative refinement via TF (red curves). Without
any corrections the density is strongly distorted. Applying the non-iterative FEC significantly
improves the coupling between the regions, although the density in the QM region is still
slightly too low for setups 1-3 and much too low for setup 4. This can be expected, as the
non-iterative FEC is an approximate method and since statistical inaccuracies can occur during
its derivation via KTI. Refining the FEC with the iterative TF technique, we obtain flat density
profiles for all setups, except setup 4, for which significant deviations in the HY region remain.
Note that for setup 4, which uses the CKM scheme, we were not able to run stable simulations
without any compensation. In this case, the drift forces are so strong that all molecules are
immediately pushed to one subregion. In comparison, the AKM approach works much better
and requires a more moderate FEC.

The derivation of the FEC via KTI and several iterations of TF may seem cumbersome.
However, both the KTI as well as the TF iterations can be run using simulation setups that
are much smaller than the actual system. For large applications this step will likely take
significantly less time than the simulation of the complete system. Additionally, more advanced
approaches have recently been developed that efficiently calculate the FEC on the fly during the
simulation of the full system or a representative smaller one [231]. Note that a FEC or a similar
compensation force is required in all adaptive resolution methods that allow a free exchange
of particles between subregions that feature different thermodynamics [181–183, 216, 224, 231].
All results reported below are calculated in setups in which the refined FEC is applied.

Fig. 7.3 presents the radii of gyration of the ring polymers corresponding to the water’s
oxygen and hydrogen atoms as a function of their position along the x-direction. In the QM
region, the radii of gyration perfectly match with those from full-quantum reference simulations,
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Figure 7.2.: Normalized density profiles ρ in the quantum–classical adaptive resolution sim-
ulations of liquid water for the four different setups without FEC (green), with
KTI-based FEC but without iterative refinement (blue), and with FEC including iter-
ative refinement via TF (red). For setup 4, we are not able to run stable simulations
without any FEC (setup 1: AKM, same potentials, TRPMD. Setup 2: AKM, same
potentials, CMD. Setup 3: AKM, WCA potential in CL region, TRPMD. Setup 4:
CKM, same potentials, TRPMD).

while in the CL region they drop by ≈ 90% (also see Fig. 7.1). Therefore, the molecules exhibit
their full-blown “quantumness” in the QM region, while in the CL region the ring polymers
shrink to nearly point-like particles and behave classically. To collapse the ring polymers even
further, one would simply need to choose a heavier particle mass Mα in the CL region. The
radius of gyration in the CL region is approximately proportional to 1/

√
Mα. Note that the
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Figure 7.3.: Radii of gyration of the ring polymers corresponding to oxygen and hydrogen
atoms as a function of the rings’ position along the x-direction. The magenta and
cyan lines correspond to the radii of gyration of atoms in full-quantum reference
simulations.

data in Fig. 7.3 correspond to system 1 and that the other setups show the exact same behavior.

Using setup 1, we also calculate the water’s radial distribution functions (RDFs) and the
tetrahedral order parameter qtet within the QM region (Fig. 7.4). We left a small buffer of
0.25 nm at the interface to the HY region and considered the inner 1.5 nm of the QM region in
order to avoid artifacts by molecules at the outer edges of the QM region that interact strongly
with molecules in the HY region. For a molecule i, qtet is given by

qtet = 1− 3
8

3

∑
j=1

4

∑
k=j+1

(
cos(θj,k) +

1
3

)2
. (7.64)

The indices j and k run over i’s four nearest neighbor molecules and the angle θj,k is formed
by the oxygen atoms of molecules i, j, and k with i in the center. The order parameter qtet is
defined such that it is 1 when the molecule forms a perfect tetrahedron with its four nearest
neighbors and on average 0 for an ideal gas. The RDFs and qtet in the QM region of the adaptive
quantum–classical water systems perfectly match the results from full-quantum reference
simulations. Consistent with previous work [78], we do not find any quantum effects for the
tetrahedral order parameter qtet. We conclude that the PI-based water structure in the QM
region is undisturbed by the coupling to the CL particle reservoir.
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Figure 7.4.: (a) (Bead-bead) RDFs of the quantum–classical adaptive resolution simulations
calculated in the QM region, and of full-quantum and full-classical (P = 1) reference
simulations. (b) Same for the tetrahedral order parameter qtet.

7.6.2. Dynamics

We also probe the dynamics in the inner QM region of the adaptive quantum–classical water
systems. First, we calculate the vibrational spectrum from the water molecules’ velocity
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autocorrelation function. We do this both via TRPMD (setup 1) and CMD (setup 2) and
compare the results to full-quantum and full-classical (P = 1) reference simulations (Fig. 7.5).
The vibrational dynamics in the QM region perfectly reproduces the full-quantum reference
data, both for CMD and TRPMD. While CMD and TRPMD give similar results, the classical
system shows blue shifts in the H-O-H bending and O-H stretching modes. The spectra also
agree with the results from Fritsch et al. [78].
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Figure 7.5.: Vibrational density of states in the QM region of the quantum–classical adaptive res-
olution simulations of liquid water and in full-quantum and full-classical reference
simulations, calculated using TRPMD and CMD. The dashed vertical lines indicate
the diffusion mode, the H-O-H bending mode, and the O-H stretching mode.

As hydrogen bonds play a critical role in the behavior of water [377–379], we additionally
assess the hydrogen bonding kinetics of water in the QM region. The breaking and forming of
hydrogen bonds can be characterized by the correlation function

C(t) =
〈h(0)h(t)〉
〈h〉 , (7.65)

which measures fluctuations in the hydrogen bond populations throughout the system [380, 381].
The hydrogen bond population operator h(t) is 1, if a particular pair of molecules is hydrogen
bonded and 0 otherwise (〈h〉 denotes the average of h(t)). We consider two molecules to be
hydrogen bonded if the distance between their oxygen atoms is < 3.5 Å and the angle between
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the O-O axis and one of the O-H bonds is < 30◦. Based on Eq. 7.65, we can determine the
hydrogen bond relaxation rate k(t) as

k(t) = −dC(t)
dt

. (7.66)

The quantity −k(t) can be interpreted as the average rate of change of hydrogen bonds that
are broken at time t later. It has been widely used in studies of the hydrogen bond kinetics in
liquid water [380–385].

Since C(t) is defined to be either strictly 1 or 0, it cannot be simply averaged over the ring
polymers’ beads. Therefore, we employ the centroids for measuring the hydrogen bonds and
calculate C(t) via CMD using setup 2. We also perform full-quantum and full-classical reference
simulations. The results are shown in Fig. 7.6. The hydrogen bonding kinetics in the QM region
of the adaptive system reproduces the full-quantum reference within the statistical error. We
conclude that the hydrogen bond kinetics in the QM region of the adaptive simulations is well
preserved. Furthermore, we observe no quantum effects. The classical and the quantum system
behave the same in their hydrogen bonding dynamics.
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Figure 7.6.: Hydrogen bond population fluctuations characterized via the correlation function
C(t) in the QM region of the quantum–classical adaptive resolution simulations
and in full-quantum and full-classical reference simulations. The shaded regions
indicate the standard deviations of the data corresponding to the full-quantum
and adaptive simulations. Inset: average hydrogen bond relaxation rates k(t) in a
semi-log plot.

We conclude that not only the water structure but also the PI-based dynamics in the QM
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region is unaffected by the coupling to the CL domain. Importantly, we have shown that
one can apply both CMD and TRPMD in the proposed quantum–classical adaptive resolution
simulation scheme.

7.6.3. Particle fluctuations

It is important that the proposed method allows for a free flow of particles through the HY
region without any barriers. The QM region must behave as if embedded in an overall QM
environment. To test this, we label all molecules that reside at the beginning of a simulation
in the inner QM region, leaving a buffer of 0.25 nm. We then track how many of the labeled
particles remain in the inner QM region after time t, and compare this to a full-quantum
reference simulation in which we label and track all molecules in a similar subregion of the
system. Note that we keep the thermostat on the ring polymers’ centroid modes for these
simulations. The results are presented in Fig. 7.7 (a) and show that the particles diffuse out of
the QM region in the adaptive setup in a similar fashion as in the full-quantum system.

Additionally, we measure the particle number fluctuations in the inner QM region (Fig. 7.7
(b)). The fluctuations match the full-quantum reference nearly perfectly. Note that the data for
the adaptive system in Fig. 7.7 correspond to setup 1. All other setups show similar behavior.

The results indicate that the HY region allows a free exchange of molecules between the
CL and QM regions and that the QM region exchanges particles with its environment as if
embedded in a full-quantum environment. Considering the complexity of the setup, the appli-
cation of a correction force in the HY region, and the different structure and thermodynamics
in the CL and QM subsystems, this is non-trivial. Because of the free flow of particles and the
correct particle number fluctuations in the QM region, the scheme can, for example, be used for
efficient simulations of open quantum systems.

7.7. Discussion and conclusions

We have proposed and validated a concurrent multiscale method for Hamiltonian adaptive
resolution molecular dynamics simulations using the PI formalism. The scheme is based on a
position-dependent particle mass, which controls the extension and collapse of the polymer
rings. In the QM region, where the particles have their real masses, the ring polymers are
extended, while in the CL region, where the mass is increased, the ring polymers collapse
to point-like particles. Therefore, the interaction becomes classical and the dynamics obeys
classical Newtonian mechanics in the CL region. The particles freely diffuse between the two
regions and change their description on the fly. The method allows a more efficient evaluation of
forces and energies in the CL domain, which leads to a speedup compared to full PI simulations.
Importantly, we provide criteria that quantify to what extent such an adaptive PI setup is
consistent with a bottom-up PI quantization. We want to point out that this differentiates our
approach from related methodologies which are based on a direct interpolation of the forces
corresponding to a classical and a PI system [177, 212, 216, 224, 240]. These techniques do not
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Figure 7.7.: (a) Fraction of molecules that resided at the beginning of the simulation in the inner
quantum region and still stay there after time t for an adaptive system (setup 1)
and for a full-quantum reference system, considering the same subregion. The
thick lines denote the average from 10 simulations (thin lines). (b) Particle number
probability distribution of the inner part of the quantum region in the adaptive
simulations and of the same volume in a reference full-quantum simulation. The
black curve is a Gaussian fit to the latter (µ = 199.2, σ = 3.4). The error bars denote
the standard deviation of the adaptive simulation data. The statistical error of the
full-quantum data is similar.

allow a Hamiltonian description of the system [219], which, however, is the basis for a bottom-
up PI treatment in the first place. Our scheme aims at overcoming this limitation. It allows both
adaptive PIMD simulations sampling quantum statistical averages as well as quantum–classical
RPMD and CMD, which enable us to calculate approximate quantum dynamical quantities
and time correlation functions. Finally, the method allows one not only to selectively turn
on and off nuclear quantum effects in different regions but also to change the intermolecular
interaction potential. In this way, one can use a more efficient, possibly coarse-grained model
in the CL region. This would be useful, for example, when the CL domain only serves as a
particle reservoir.

To implement our methodology in a molecular dynamics framework, a kinetic energy term
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needs to be introduced into the configurational energy obtained from PI quantization. At this
point, our approach can be implemented in two different ways: The kinetic masses in this
kinetic energy term can be chosen to be either constant throughout the whole system (CKM)
or they can vary in a way similar to the particle masses that control the springs between the
PI beads (AKM). The CKM approach results in a simpler scheme that can be integrated with
a standard velocity Verlet integrator. However, it leads to strong thermodynamic imbalances
between the CL and the QM regions and requires very small time steps due to the accelerated
vibrations of the ring polymers in the CL region. On the other hand, the AKM method requires
a more sophisticated integration scheme due to the position-dependent kinetic masses. We
derived an integrator which is tailored to the problem, employs multiple time-stepping, and
allows a symplectic integration of the equations of motion. This scheme also facilitates time
steps which are much larger than in the CKM protocol and which are similar to those used in
normal PI simulations. The AKM method also enables a smoother connection of the CL and
QM systems, requiring a milder correction force in the HY coupling region.

The new integrator may appear complicated, but requires little additional overhead in
practice. In molecular dynamics simulations, most time is typically spent for non-bonded
force calculations and for inter-processor communication. However, these two tasks do not
need to be performed more often than in a standard velocity Verlet integrator. In its essence,
our methodology elegantly decouples the change of the particles’ “quantumness”, which is
connected only to the higher modes and requires an additional decomposition step in the
inner loop of the integrator, from the interatomic and intermolecular interactions, which are
related to the more expensive bonded and non-bonded force calculations. In fact, it is only
the masses of the higher modes that are position-dependent, while the masses of the centroid
modes are constant. In our implementation the integration is performed in normal mode space.
Only before the calculation of the bonded and non-bonded forces, the particles’ real positions
are updated and the force calculation is performed in real space. Afterwards, the forces are
transformed back to normal modes. Therefore, the innermost loop of our integrator, in which
the additional decomposition step occurs, does not require any inter-processor communication.
When applying the methodology on systems in which only a very small part of the simulation
domain is modeled quantum mechanically the additional overhead will be negligible compared
to the gain in computational efficiency over a similar full QM system. We did not perform a
detailed study of the speedup, though, as this depends in practice on a large number of factors,
such as the system at hand, the scheme’s implementation, the parallelization methodology,
and the load balancing protocol (in highly parallelized simulations that employ many CPUs
a suitable load balancing method that allows to concentrate computational resources in the
QM region is crucial). Nonetheless, we have shown already in our previous paper that the
speedup can be significant [365]. Provided the QM subsystem is small, the interatomic force
computations can be accelerated by a factor of 10 or more. Note that the presented adaptive
resolution method can of course also be used in setups with different geometrical arrangements
of the QM and CL regions compared to the one in this article. A typical example would be
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a small spherical QM domain positioned at an area of particular interest within a large CL
system.

The proposed adaptive PI simulation scheme gains its efficiency by restricting the QM region
to a small but relevant region in space and treating the rest of the system with a more efficient
classical model. This is in contrast to other approaches that aim to alleviate the computational
cost of PI simulations by modifying the PI calculations themselves, such as RPC [337, 338],
higher order Trotter factorizations [346], or advanced thermostating techniques [342–345]. Our
method is complementary to these approaches and could be combined with them. For example,
one could apply RPC to further reduce the numerical effort in the QM region or use a colored
noise instead of a white-noise Langevin thermostat, which would allow one to employ less
Trotter beads. One could also further improve the multiple time-stepping and tailor it to the
investigated systems.

The applications of the proposed methodology are diverse. The scheme is useful whenever
only a small subdomain of an overall large system needs to be described including PIs. This
can be the case, for example, in biomolecular systems, in which the study of nuclear quantum
effects has gained significant interest [80, 81, 92–96, 312–319]. Biological systems are often
complicated and quantum delocalization plays an important role usually only in a small part
of the system, such as the active site of proteins [81]. Our multiscale method could be used
to describe the active site quantum mechanically and an efficient classical model could be
employed for the rest of the system, in the same spirit of QM/MM approaches but at a different
level of “quantumness”. This would allow an extension of the accessible length and time scales
compared to full path integral simulations. Similar applications of the scheme are simulations
of interfaces or membranes. The possibility to selectively switch on and off the nuclear quantum
effects in different regions also allows one to investigate the locality of quantum properties.
One can ask, for example, how much quantum mechanically modeled environment is required
to support the quantum mechanical features in a certain subregion [185, 187, 374, 386]. This
would not be possible in bulk PI simulations in a straightforward way. Furthermore, the method
enables an efficient simulation of a quantum grand canonical ensemble: a QM region can be
coupled to a large particle reservoir, which itself is described classically. Yet another interesting
possible application of our methodology is its combination with the aforementioned QM/MM
techniques, which concurrently couple ab initio and classical empirical force fields. Recently,
Boereboom et al. [169] proposed an adaptive QM/MM method based on the Hamiltonian
adaptive resolution scheme. The latter is also used in the PI-based adaptive resolution scheme
presented in this article. In fact, although the interatomic potentials employed in this work
are empirical force fields, the forces and energies could also come from ab initio calculations.
Therefore, one could combine our approach with the one from Boereboom et al. and construct
a Hamiltonian adaptive QM/MM scheme that also incorporates a multiscale treatment of PIs.

Finally, we would like to point out that the derived concurrent multiscale PI simulation
methodology has been implemented in the ESPResSo++ package [1] and is publicly available.
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Conclusions

In this chapter, we conclude the thesis. In section 8.1, we present a brief summary of the main
results, and in section 8.2 we provide an outlook and describe ongoing work as well as possible
directions for future research on adaptive resolution simulations and their applications.

8.1. Summary

While the introductory part of this thesis, chapter 1, provided an overview over relevant
molecular simulation methodologies and introduced the adaptive resolution simulation scheme,
the chapters 2-7 contain the scientific findings established in this work.

Chapter 2—Coupling to an ideal gas

In chapter 2, we coupled liquid water to an ideal gas of non-interacting particles and showed
that it is possible to connect two dynamically and structurally very different systems with each
other without significantly affecting the accuracy of the high-resolution region. We found that
great care needs to be taken when deriving the correction forces acting in the coupling region.
Since an ideal gas does not require any pair-force calculations, we expect a great speedup in
adaptive ideal gas–water simulations compared to all-atom systems. We ran adaptive resolution
simulations with different ratios of AT to CG region volumes and demonstrated that for large
systems, the force computation can be accelerated by a factor of 3 or higher. Coupling a
high-resolution region to an ideal gas, as demonstrated here, may also find useful applications
as an alternative to standard grand-canonical simulations [387, 388], since particle insertion
in the ideal gas region is trivial. For example, Mukherji and Kremer showed that an efficient
particle exchange in the CG domain allows one to control the chemical potential in adaptive
resolution simulations of mixtures [175]. Note, however, that they employed a CG potential
based on iterative Boltzmann inversion [106] instead of an ideal gas.

Chapter 3—Unifying force-based and energy-based AdResS

In chapter 3, we derived a unified framework for force-based and energy-based AdResS simula-
tions. Starting from the H–AdResS Hamiltonian, we demonstrated that the drift force, when its
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average is removed by the free energy correction, is equivalent to a non-Markovian noise. There-
fore, it is exactly this “noise” that guarantees the energy conservation in energy-based AdResS
compared to force-based AdResS. We also constructed the corresponding memory-dependent
friction kernel from the drift force’s autocorrelation function and defined a generalized Langevin
thermostat with memory. Applying this Langevin scheme on the H–AdResS Hamiltonian such
that the thermostat’s noise term and the drift force cancel out, we obtained the corresponding
force-based AdResS approach with a non-Markovian friction that exactly removes the excess
heat generated in the hybrid region. These findings demonstrate that the force-based AdResS
approach can be directly derived from H–AdResS by applying a colored noise thermostat that
is based on the drift force.

Chapter 4—Adaptive resolution simulations and the relative entropy

In chapter 4, we built on the results from chapter 3, showing that the amplitude of the drift
force’s autocorrelation function at mixed resolution λ is proportional to the derivative of the
relative entropy between the Boltzmann distributions of the system at resolution λ and the CG
system. This suggests that minimizing the relative entropy between the AT and CG potentials
helps reduce both the drift force in H–AdResS as well as the energy drift in AdResS. We
validated that this is the case, using liquid water as a model system. Additionally, we derived
expressions that demonstrate that the excess heat produced by individual particles in the hybrid
region in force-based AdResS scales with the width of the hybrid region dHY with 1/d2

HY while
the overall energy drift scales with 1/dHY. This was also validated by numerical simulations.
The findings do not only provide a clearer picture of the inner workings of adaptive resolution
simulations but they also provide a framework for setting up AdResS simulations in an optimal
fashion. On the one hand, one can, for example, use the relative entropy based coarse-graining
method by Shell and coworkers to derive CG potentials that perform well in adaptive settings
[108, 282–284]. On the other hand, the results provide a guide on how to tune the width of the
hybrid region to reduce the undesired drift force in H–AdResS or the energy drift in force-based
AdResS.

Chapter 5—Towards arbitrary and self-adjusting geometries

In chapter 5, we devised a scheme to overcome the previous geometrical constraints in adaptive
resolution simulations. Associating overlapping and moving spherical high-resolution regions
with several particles in the system, we constructed atomistic regions with arbitrary geometry.
This, however, complicates the application of correction forces in the HY region, which may
attain complex shapes. We focused on the force-based approach and derived a robust method
that enables the successful application of the thermodynamic force even in scenarios with
highly distorted AT and HY regions. The scheme even allows to freely adapt the geometry
during the simulation to follow, for example, conformational transitions of macromolecules.
The technique was validated by simulations of a folding peptide and it was shown that any
introduced disturbances are negligible. Additionally, it was made available to the public and
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implemented in the ESPResSo++ software package [1]. In conclusion, the new methodology
represents a significant improvement to the AdResS framework, allowing efficient simulations
with complex and adaptive high-resolution region geometries.

Chapter 6—Rigorous classical/path integral adaptive resolution simulations

In chapter 6, we derived a path integral-based adaptive resolution method that allows a clean
coupling of classical force fields and path integral-based models. The scheme is derived
from the bottom up, is Hamiltonian by construction, and is, opposed to previous work,
consistent with a formal path integral quantization procedure. The central idea is to force
the ring polymers to collapse to point-like particles in the classical region by introducing a
position-dependent mass, allowing for an efficient evaluation of pair forces and energies. We
validated the proposed approach by quantum–classical adaptive resolution simulations of liquid
parahydrogen, sampling the adaptive Hamiltonian with a Markov chain Monte Carlo algorithm.
Most importantly, we demonstrated that the technique leads to a significant speedup compared
to all-quantum simulations. Finally, our method is also compatible with other protocols, such as
ring polymer contraction [337, 338], colored-noise thermostats [342–345], or higher order Trotter
factorizations [346], to further speed up path integral simulations. Its applications include
quantum–classical adaptive resolution simulations of biological or chemical systems as well as
the efficient simulation of quantum grand canonical ensembles.

Chapter 7—Hamiltonian adaptive resolution path integral molecular dynamics

Chapter 7 is based on the results of the previous chapter. We demonstrated how the proposed
path integral-based quantum–classical adaptive resolution method can be implemented in a
molecular dynamics framework and introduced a kinetic energy term into the configurational
energy obtained from path integral quantization. Additionally, we switched to a description
of the system in terms of normal modes. In this picture, the higher modes correspond to the
vibrations and the extension of the ring polymers and hence determine the “quantumness” of the
particles, while the centroid mode is associated with the displacement of the ring polymers as a
whole. Denoting the masses in the kinetic energy term as kinetic masses, we choose the kinetic
masses of the higher modes to be similarly adaptive as the masses associated with the spring
constants between the beads of the ring polymers. The centroid mode’s kinetic mass, however,
is kept constant throughout the system. In this way, only the particles’ “quantumness” changes,
while their macroscopic behavior is the same everywhere. We then derived a tailored multiple
time-stepping integrator which allows a symplectic integration of the resulting equations of
motion. We validated the method on adaptive resolution simulations of liquid water and we
showed that it is also possible to perform ring polymer and centroid molecular dynamics,
which allow the calculation of approximate quantum dynamics and quantum time correlation
functions, in this framework. The methodology was implemented in the ESPResSo++ package
[1] and is available to the public.
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8.2. Outlook

In this thesis, we investigated the what and how of adaptive resolution simulations and provided
insights into the connection of AdResS and H–AdResS. We also devised strategies for setting
them up in an optimal fashion. Additionally, we developed algorithms that enhance the current
AdResS methodology. Although many challenges remain, our results pave the way for novel
applications of the AdResS framework, while also clarifying directions for further technical
developments.

Simulations of biological macromolecules, i.e., proteins, have received considerable attention
as a particularly useful application of the AdResS scheme [155, 188, 190]. Among other reasons,
a large portion of the computational cost of these simulations is due to solvent molecules which
may have little impact on the properties of interest when residing far away from the protein. In
this thesis, we have developed tools geared towards such applications, including a method for
flexible and self-adjusting geometries of the high-resolution region. The scheme is particularly
suited for the simulation of complex biological systems that undergo conformational transitions,
such a proteins. Our work enables efficient AdResS simulations of larger and geometrically
complex proteins that do not fit well in simple spherical or cylindrical atomistic regions.
Importantly, our method allows efficient protein folding studies in adaptive resolution setups.
A variety of other systems, such as fluctuating membranes and interfaces as well as aggregating
particles, could also benefit from a geometrically flexible adaptive modeling. Expanding upon
this idea, the method may even be combined with other recent technical developments in
AdResS and not only the solvent molecules could be modeled with an adaptive resolution
and in a geometrically flexible fashion but also the protein itself. In fact, the work by Fogarty
et al. [190], which employs two different protein models within a single adaptive resolution
framework, is the first step into the direction of AdResS simulations using a dual-resolution
description also for the protein itself. However, the parts of the protein that are described
differently are fixed throughout the simulation while only the surrounding water is modeled in
an adaptive fashion. This indicates another challenge: To date, AdResS has mostly been used for
the interpolation of non-bonded force fields mapping individual solvent molecules like water
onto single CG beads. In order to more flexibly simulate proteins in adaptive resolution it would
be advantageous to be able to smoothly interpolate also different bonded (and angular, etc.)
interactions. In related adaptive resolution methods [389, 390], this issue has been addressed
with advanced backmappings from the CG to the AT level. In AdResS, it was recently shown
that four grouped water molecules can be described as CG supramolecules which consist of
three bonded CG beads [215]. This aspect needs to be investigated in more detail to enable the
interpolation of more complex AT and CG force fields.

Most work on biological systems with AdResS consists of validating the preservation of
basic structural and dynamic quantities in the atomistic region. But what about properties
that are not as simple to measure? For example, can we also perform free energy calculations
using the AdResS method? A next step will be to combine AdResS with techniques such as
thermodynamic integration.
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Another area for future research is the application of the derived quantum–classical coupling
scheme in more complicated situations and on more complex systems. For example, one could
describe only the active site of a protein including quantum effects, while treating the rest
atomistically. One could even attempt to couple a third resolution by representing the solvent
far from the protein with a CG description. This could be particularly useful when studying,
for example, protein–ligand binding. Using the methodology derived in chapter 7, we could
even calculate approximate quantum dynamical properties at the active site, at which nuclear
quantum effects have been shown to play an important role [81]. One could also combine the
adaptive quantum–classical simulation method with adaptive QM/MM schemes. This may lead
to a clean adaptive QM/MM methodology that allows an efficient inclusion of path integrals.
An adaptive QM/MM technique that would be particularly suited for this is one that was
recently proposed by Boereboom et al. [169], which is also based on H–AdResS. In the long
term, such technical advancements could pave the way to efficient multi-resolution simulations
of large biological systems spanning several levels of resolution.

In chapter 2, we studied the adaptive coupling of liquid water with an ideal gas of non-
interacting particles and found that it is possible to smoothly connect these very different
systems. Building on the work by Mukherji and Kremer [174, 175], one could exploit these
findings and use an ideal gas as CG model in adaptive resolution simulations of liquid mixtures.
The trivial insertion and deletion of particles in the ideal gas region would allow an exact
control of the concentration and the chemical potential in the system. This could be useful in
the context of free energy calculations in a semi-grand canonical ensemble.

There are several more technical questions in adaptive resolution simulations that are still
open. For example, we have mentioned already that, in principle, AdResS and H–AdResS
could be generalized to also allow the interpolation of non-bonded 3-body force-fields or even
higher order interactions. This needs to be investigated and tested in practice. Furthermore,
the adaptive resolution methodology has been mainly developed with the idea to gain a
computational speedup from the reduced number of non-bonded interaction sites in the
CG region. This neglects another key aspect of CG models. Their computational efficiency
compared to atomistic systems not only stems from the reduced number of degrees of freedom.
Additionally, the CG energy landscape is usually strongly smoothened out which leads to
much softer interactions. In AdResS, ongoing work is attempting to exploit this by using
multiple time-stepping algorithms that evaluate CG forces significantly less often than the AT
interactions, in order to gain additional computational speedup.

Even the most elaborate and advanced molecular simulation algorithm is useless without
an efficient implementation in an optimized software package. This is particularly true for
adaptive resolution methods whose main purpose is to run fast simulations and that, if not
programmed correctly, may lead to a significant numerical overhead. For example, the idea of
AdResS relies on the possibility to flexibly shift and distribute computational resources between
different parts of the simulation box and to concentrate them in the high-resolution region. This
is only possible with advanced schemes for domain decomposition and load balancing. There
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currently exists no simulation package that has implemented all available adaptive resolution
methods and algorithms and that also offers the kind of optimized environment that makes
them run efficiently. An important step into the direction of an optimal implementation of the
complete AdResS methodology is its implementation in the ESPResSo++ package [1], although
also in ESPResSo++ there is still room for improvement in terms of speed and computational
efficiency. This is possibly one of the most pressing open challenges in the context of AdResS
and H–AdResS. If these hurdles are overcome, however, adaptive resolution techniques have the
potential to open the door to molecular simulations of complex multiscale systems, in particular
in the biological and chemical area, that are otherwise impossible and they may provide new
insights into important open questions in biology and chemistry.



Appendix A.

Contributions

The chapters 2–6 have been published as scientific research papers and chapter 7 is a draft for
another paper soon to be submitted for publication. These works are the results of fruitful
collaborations with colleagues from the Max Planck Institute for Polymer Research, New York
University, and the University of California, Davis. Here, we lay out in detail the individual
contributions.

Chapter 2

The simulation setups were conceived by Aoife Fogarty, Karsten Kreis, and Raffaello Potestio.
Karsten Kreis implemented the energy-based H–AdResS approach into ESPResSo++ and ran
all H–AdResS simulations, while Aoife Fogarty performed the simulations of the force-based
AdResS systems. The data analysis was conducted by Aoife Fogarty and Karsten Kreis and
the paper was written by Karsten Kreis, Aoife Fogarty and Raffaello Potestio. Kurt Kremer
contributed important ideas and support.

Chapter 3

Davide Donadio and Raffaello Potestio initiated the project. Karsten Kreis, Davide Donadio and
Raffaello Potestio jointly derived the theory and designed the simulation setups. Karsten Kreis
implemented the non-Markovian generalized Langevin friction into ESPResSo++, performed
all simulations and evaluated, together with Raffaello Potestio, the results. The paper was
written by Raffaello Potestio and Karsten Kreis with critical support from Davide Donadio.
Kurt Kremer pushed the project with ideas and discussions.

Chapter 4

Raffaello Potestio had the initial idea of introducing the relative entropy in the adaptive
resolution scheme. Karsten Kreis and Raffaello Potestio jointly derived the final theoretical
framework. The simulations were designed, run and evaluated by Karsten Kreis. Also the
paper was written by Karsten Kreis, incorporating critical comments from Raffaello Potestio.
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Chapter 5

Karsten Kreis initiated the project and derived the algorithm to interpolate the thermodynamic
force and to construct arbitrarily shaped high-resolution regions formed by different overlapping
spheres. Karsten Kreis also implemented the methodology into ESPResSo++. The simulation
setups were designed, run, and evaluated jointly by Aoife Fogarty and Karsten Kreis. More
specifically, Karsten Kreis focused on the water systems, while Aoife Fogarty provided important
expertise on the peptide system. Also the paper was written jointly by Aoife Fogarty and Karsten
Kreis. Raffaello Potestio and Kurt Kremer supported the work with ideas and discussions as
well as critical feedback.

Chapter 6

The methodology was derived jointly by Karsten Kreis, Mark Tuckerman and Raffaello Potestio.
The simulation setups were conceived by Karsten Kreis and Raffaello Potestio. Karsten Kreis
and Raffaello Potestio also developed the Monte Carlo code. More precisely, Raffaello Potestio
provided a simple version of the code, which was used for another project before, and Karsten
Kreis extended it for the quantum–classical adaptive Monte Carlo simulations. All simulations
were run and evaluated by Karsten Kreis. The paper was written by Karsten Kreis, Raffaello
Potestio and Mark Tuckerman with critical feedback from Davide Donadio. Kurt Kremer and
Davide Donadio provided insightful ideas and help.

Chapter 7

The methodology and the integration scheme was derived by Karsten Kreis with crucial help
from Mark Tuckerman, who supervised the first part of the project. The implementation of the
approach was done by Karsten Kreis and also the simulation setups were conceived, run, and
evaluated by Karsten Kreis. The draft was written by Karsten Kreis with critical feedback from
Raffaello Potestio, who also supported the work with ideas and discussions. A crucial part
of the project was performed during a research at New York University in the group of Mark
Tuckerman. The contact with Mark Tuckerman was initiated by Kurt Kremer.
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Abbreviations

Throughout this thesis several abbreviations are used for the sake of appropriate readability.
Here is an overview, sorted alphabetically.

Abbreviation Meaning

AdResS Adaptive resolution simulation scheme
AKM Adaptive kinetic mass
AT Atomistic
CG Coarse-grained
CKM Constant kinetic mass
CL Classical
CMD Centroid molecular dynamics
DFT Density functional theory
EB Energy-based
FB Force-based
FEC Free energy compensation / free energy correction
FM Forcematching
GLE Generalized Langevin equation
H–AdResS Hamiltonian adaptive resolution simulation scheme
HY Hybrid
IBI Iterative Boltzmann inversion
IMC Inverse Monte Carlo
KTI Kirkwood thermodynamic integration
MC Monte Carlo
MD Molecular dynamics
MTS Multiple time-stepping
NVE Microcanonical ensemble
NVT Canonical ensemble
PDF Probability density function
PI Path integral
PILE Path integral Langevin equation
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Abbreviation Meaning

PIMC Path integral Monte Carlo
PIMD Path integral molecular dynamics
PMF Potential of mean force
QM Quantum
QM/MM Quantum mechanics/molecular mechanics
RDF Radial distribution function
RE Relative entropy
RPC Ring polymer contraction
RPMD Ring polymer molecular dynamics
TF Thermodynamic force
TRPMD Thermostated ring polymer molecular dynamics
VACF Velocity autocorrelation function
WCA Weeks-Chandler-Anderson
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