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In this article, a reduced five-equation two-phase flow model is numerically investigated. The formula-
tion of the model is based on the conservation and energy exchange laws. The model is non-
conservative and the governing equations contain two equations for the mass conservation, one for
the over all momentum and one for the total energy. The fifth equation is the energy equation for one
of the two phases that includes a source term on the right hand side for incorporating energy exchange
between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontin-
uous Galerkin finite element method is applied to solve the model equations. The main attractive features
of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to han-
dle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the
solutions without producing spurious oscillations. The proposed method is robust and well suited for
large-scale time-dependent computational problems. Several case studies of two-phase flows are pre-
sented. For validation and comparison of the results, the same model equations are also solved by using
a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as
compared to the staggered central scheme.

� 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In two-phase flows, two fluids of different densities are sepa-
rated by a thin interface (see Fig. 1). The flow can be incompress-
ible or compressible. Phases are identified as ‘‘homogeneous”
parts of the fluid for which unique local state and transport prop-
erties can be defined. Generally, phases are considered as the state
of matter, e.g. gas/vapor, liquid, or solid. The flow of gas carrying
liquid droplets or solid particles or the flow of liquid carrying vapor
or flow of solid granular material and fluid or gas bubbles are the
typical examples of two-phase flows. Normally, in the case of
two-phase flows, we are not interested in a detailed description
of particle interaction, instead we want to describe the flow as a
whole. This is exactly the situation where the homogenized
approach comes into play. An important issue concerning the sys-
tems of governing equations for two-phase flow models is that
they are intrinsically non-conservative. The mathematical struc-
tures of the non-conservative systems are more complicated as
compared to conservation laws. Also, there is a lack of theory for
numerical methods to solve such systems. On the other hand, the
development of efficient numerical methods for the solution of
two-phase flows is of great importance. As the model equations
are intrinsically non-conservative, one has to provide non-
conservative methods for their solutions.

Two phase flows can be observed in nature very easily, such as
rainy or snowy winds, avalanches, debris flows, tornadoes,
typhoons, air and water pollution, volcanic activities, and so on.
They are also working processes in a variety of conventional and
nuclear power plants, combustion engines, propulsion systems,
oil and gas transport, chemical industry, biological industry, pro-
cess technology in the metallurgical industry or in food production,
blood flow, and etc. Due to their wide range applications, two-
phase flows require suitable mathematical models to predict their
physical behavior. However, modeling and simulation of such
flows are challenging tasks.

Methods of averaging have been in use since the mid-70s when
Ishii [1] presented the governing equations for the homogenized
flow in his classical book. Nowadays, the more or less established
basic model includes the two continuity, two momentum, and
two energy equations for both phases. The averaging of the single
phase equations results in additional terms, which describe the
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Fig. 1. Schematic diagram for two types of flows. (a) Flows separated by sharp interface. (b) Multiphase flows.
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interaction between the phases. These are the mass transfer terms
for the continuity equations, the momentum exchange terms for
the momentum equations, and the energy exchange terms for
the energy equations. The closure to the system of governing equa-
tions is usually achieved by adding an additional equation for the
fraction of one of the phases, and the equations of state for both
phases. Another approach is to use some simplifying assumptions,
like incompressibility of one phase, equality of pressures, and etc.

Several two-phase flow models exist in the literature for
describing the behavior of physical mixtures. For each fluid, they
contain separate pressures, velocities and densities. If a convection
equation for the interface motion is coupled with the conservation
laws, the models are called as seven-equation models. One of such
models for solid-gas two-phase flows was initially introduced by
Baer and Nunziato [2] and it was further investigated by Abgrall
and Saurel [3,4]. These seven equation models are considered as
the best and established two-phase flow models. However, they
have a number of numerical complexities. To resolve these difficul-
ties researchers have proposed reduced three to six-equation mod-
els [5–7].

Kapila deduced a five equation model [5] from Baer and Nunzi-
ato’s seven-equation model [2] and it is a well known reduced
model that has been successfully implemented to study interfacing
compressible fluids, barotropic and non-barotropic cavitating
flows. The Kapila’s five-equation model contains first four conser-
vative equations, two for the mass conservation of both fluids,
one for the total momentum conservation of the mixture and
one for the total energy conservation. The fifth equation is a non-
zero convection equation for the volume fraction of one of the
two phases.

Although, Kapila’s five equation model is simple, but it has a
number of serious difficulties. For example, the model is still
non-conservative and, thus, it is difficult to obtain a numerical
solution which converges to the physical solution. Another issue
is related to non-conservative behavior of the mixture sound speed
[8].

In order to make the Kapila’s five-equation model easier and to
remove the aforementioned difficulties, Kreeft and Koren [6] have
introduced a new formulation of the Kapila’s five equation model.
This new model is also non-conservative and it contains five equa-
tions [6]. The first two equations are for the conservation of mass,
one for the mixture momentum conservation and one for the total
energy conservation. The fifth equation is the energy equation for
one of the two phases which includes a source term on the right
hand side representing the energy exchange between two fluids
in the form of mechanical and thermo-dynamical work. The two-
phase flow models have already been solved by finite volume type
schemes, such as central upwind scheme, central NT scheme,
space-time CESE scheme and kinetic flux vector splitting (KFVS)
scheme [9–13]. Also, diffuse interface method and finite volume
WENO scheme have been used to solve the two-phase flow models
[14–16].

The discontinuous Galerkin (DG) finite element method was ini-
tially introduced by [17] for solving neutron transport equations.
Afterwards, various DG methods were developed and formulated
by Cockburn and Shu for nonlinear hyperbolic system in the series
of papers, see for example [18–20]. DG-methods are being applied
in the main stream of computational fluid dynamic models, see for
example [21–25]. The DG methods are versatile, flexible, and have
intrinsic stability making them suitable for convection dominated
problems. DG-methods can be efficiently applied to partial differ-
ential equations (PDEs) of all kind including equations whose type
changes within the computational domain.

DG-methods belong to the class of finite element method (FEM)
which have several advantages over finite difference methods
(FDMs) and finite volume methods (FVMs). For instance, they
inherit geometric flexibility of FVMs and FEMs, retain the conser-
vation properties of FVMs, and possess high-order properties of
FEMs. Therefore, DG-methods are locally conservative, stable, and
high order accurate. These methods satisfy the total variation
bounded (TVB) property that guarantees the positivity of the
schemes, see e.g. [18–20]. In contrast to high order FDMs and
FVMs, DG-methods require a simple treatment of the boundary
conditions in order to achieve high order accuracy uniformly.
Moreover, DG methods allow discontinuous approximations and
produce block-diagonal mass matrices that can be easily inverted
through algorithms of low computational cost. These methods
incorporate the idea of numerical fluxes and slope limiters in a
very natural way to avoid spurious oscillations (wiggles), which
usually occur due to shocks, discontinuities or sharp changes in
the solution.

In this paper, Runge-Kutta DG-scheme of order two is imple-
mented for solving the reduced five-equation model of Kreeft
and Koren [6,18–20]. The scheme employs a DG-method in the
space-coordinate that converts the given system of partial differ-
ential equations to a system of ordinary differential equations
(ODEs). The resulting ODE-system is then solved by using explicit
and nonlinearly stable high order Runge-Kutta method. To guaran-
tee the positivity of the numerical scheme an additional TVB prop-
erty of the proposed ODE-solver along with the RK-DG is used. The
numerical test problems of this manuscript verify the accuracy and
efficiency of the current DG-scheme for solving two-phase flow
models. For validation, the numerical results of the proposed
scheme are compared with those obtained from the staggered cen-
tral NT scheme [26].

The present article is organized as follows. Section ‘‘Compressi
ble two-phase flow model” is devoted to the introduction of one-
dimensional compressible two-phase flow model of Kreeft and
Koren [6]. The discontinuous Galerkin method is presented in Sec
tion ‘‘Discontinuous Galerkin method for compressible TPSF mod-
el”. Numerical case studies are carried out in Section ‘‘Numerical
test problems”. Finally, concluding remarks are given in
Section ‘‘Conclusions”.

Compressible two-phase flow model

In this section, the one-dimensional reduced two-phase flow
model of Kreeft and Koren [6] is presented. The considered model
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is the reformulation of original five-equation model of Kapila et al.
[5]. In this model, it is assumed that the mass of both fluids is con-
servative and both fluids have the same velocity and pressure on
either sides of the sharp interface. Moreover, the effects of heat
conduction and viscosity are not considered in this model. In the
current model, the first four equations are for the conservative
quantities: two for the mass, one for the over all momentum and
one for the total energy. The fifth one is the energy equation that
includes the source term on the right side describing energy
exchange between the two fluids in the form of mechanical and
thermodynamical work. The state vector q for the primitive vari-
ables has the form q ¼ ðq;u; p;aÞT , where the density of mixture
is denoted by q, the bulk velocities along each characteristic direc-
tion are u ¼ ðu;0;0Þ; p represents the bulk pressure and a denotes
the volume fraction of fluid 1. It shows that a part a of a small vol-
ume dV is filled with fluid 1 and a part ð1� aÞ with fluid 2.

For bulk quantities, such as mixture density q and mixture total
energy E, we assume that a is a volume fraction of fluid 1 and
ð1� aÞ of fluid 2. Using these conventions, we can define

q ¼ aq1 þ ð1� aÞq2; qE ¼ aq1E1 þ ð1� aÞq2E2 ð1Þ
and the total energies of each fluid as

E1 ¼ e1 þ 1
2
u2; E2 ¼ e2 þ 1

2
u2; ð2Þ

where e1 and e2 are the internal energies of fluid 1 and fluid 2,
respectively. The internal energies e1 and e2 are given in terms of
their respective densities and pressure through equations of state

e1 ¼ e1 q1; pð Þ; e2 ¼ e2 q2;pð Þ: ð3Þ
In the one dimensional form, the two-phase flow model can be

written as [6]

wt þ fðwÞx ¼ sðwÞ; ð4aÞ
where

w ¼ q;qu;qE;q1a;q1E1að ÞT ; ð4bÞ
fðwÞ ¼ qu;qu2 þ p;quEþ pu;q1ua;q1E1uaþ pua

� �T
; ð4cÞ

sðwÞ ¼ 0;0;0;0; s5ð ÞT : ð4dÞ
Here, w denotes the vector of conserved variables, f represents the
vector of fluxes, s is a vector of source terms with only last term as
non-zero. The last term of source vector s5 represents the total rate
of energy exchange per unit volume between fluid 1 and fluid 2 and
is equal to the sum of rates of mechanical sM5 and thermodynamic sT5
works [6], i.e. s5 ¼ sM5 þ sT5, with

sM5 ¼ uðpaÞx � bupx; ð5Þ
sT5 ¼ pað1� aÞ s2 � s1

s
ux: ð6Þ

The term b ¼ q1a
q denotes the mass fraction of fluid 1, while the

relations s1 ¼ 1
q1c

2
1
and s2 ¼ 1

q2c
2
2
denote the isentropic compressibil-

ities of fluid1 and fluid 2. Here, c1 and c2 are the sound speeds of
both fluids. The bulk isentropic compressibility is defined as

s ¼ as1 þ ð1� aÞs2: ð7Þ
Assume that the equations of state in Eq. (3) are the stiffened

equations of state [6]

qiei ¼
pþ pici
ci � 1

; i ¼ 1;2; ð8Þ

where ci;pi are the material specific quantities. The sound speeds in
each fluid are given as

ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ piÞci

qi

s
; i ¼ 1;2: ð9Þ
The expressions for the sound speeds are normally obtained
from the second law of thermodynamics. The total energies of flu-
ids 1 and 2 can be given as

q1E1a ¼ pþ p1c1
c1 � 1

aþ 1
2
q1au

2; ð10Þ

q2E2ð1� aÞ ¼ pþ p2c2
c2 � 1

ð1� aÞ þ 1
2
ðq� q1aÞu2: ð11Þ

Using Eqs. (4), (10) and (11), we obtained the primitive
variables as

q¼w1; u¼w2

w1
; ð12Þ

a¼
b1

b1þb2
; if p1 ¼ 0¼p2;

p2c2�p1c1�b1�b2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2c2�p1c1�b1�b2Þ2þ4b1ðp2c2�p1c1Þ

p
2ðp2c2�p1c1Þ ; otherwise;

8<
: ð13Þ

p¼ b1 þb2 �ap1c1 �ð1�aÞp2c2; ð14Þ

where

b1 ¼ ðc1 � 1Þ w5 �w4ðw2
2Þ

2w2
1

� �
; ð15Þ

b2 ¼ ðc2 � 1Þ w3 �w5 � ðw1 �w4Þðw2
2Þ

2w2
1

� �
: ð16Þ

Here, wi; i ¼ 1; . . . ;5, denote the components of w, the vector of
conserved variables. Furthermore, in Eqs. (12)–(14) the primitive
variables are expressed in terms of conserved variables. Eq. (13)
takes the upper positive sign when ðp2c2 � p1c1Þ > 0 and lower
negative sign otherwise. Using the values of c1 and c2 from Eq.
(9), we obtain the following expressions for s1 and s2.

s1 ¼ 1
q1c

2
1

¼ 1
ðpþ p1Þc1

; s2 ¼ 1
q2c

2
2

¼ 1
ðpþ p2Þc2

: ð17Þ
Eigen-values of the model

The quasi-linear form of the Eq. (4) is given by

@w
@t

þ AðwÞ @w
@x

¼ sðwÞ; ð18Þ

where A(w) is the Jacobian matrix for the system under investiga-
tion and is given by the following matrix

AðwÞ ¼

u q 0 0 0
0 u 1=q 0 0
0 qc2 u 0 0
0 0 0 u 0
0 W 0 0 u

0
BBBBBB@

1
CCCCCCA
: ð19Þ

where W is given by the following relation

W ¼ að1� aÞ s2 � s1
s

:

Moreover, s1, s2 and c1, c2 are given in Eq. (17) and Eq. (9),
respectively. We obtain three distinct eigen-values for the jacobian
matrix A(w). Hence, this 1D system is hyperbolic with wave speeds
given by

k1 ¼ u� c; k2;3;4 ¼ u; k5 ¼ uþ c: ð20Þ
A finite element which contains the both fluids, has a single

speed of sound c as the bulk speed of sound.



Fig. 2. Comparison of DG and central NT schemes for Sod’s Problem 1 at time t ¼ 0:15.

Table 1
Comparison of L1-errors for Problem 1.

N Density (q) Volume fraction (a) Pressure (p) Velocity (u)

DG Central DG Central DG Central DG Central

100 0.062 0.182 0.013 0.017 0.026 0.077 0.024 0.077
200 0.026 0.081 0.006 0.008 0.024 0.057 0.010 0.032
300 0.024 0.052 0.004 0.005 0.023 0.049 0.010 0.020
400 0.021 0.029 0.002 0.003 0.019 0.029 0.010 0.011
500 0.019 0.019 0.001 0.002 0.017 0.022 0.007 0.009
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Discontinuous Galerkin method for compressible TPSF model

In this section, the proposed DG-method is applied to the afore-
mentioned one-dimensional compressible two-fluid flowmodel. In
one space dimension, two-fluid flow model in Eq. (4) reduces to:

@w
@t

þ @fðwÞ
@x

¼ sðwÞ; ð21Þ

where

w ¼ q;qu;qE;q1a;q1E1að ÞT ; ð22Þ
fðwÞ ¼ qu;qu2 þ p;quEþ pu;q1ua;q1E1uaþ pua

� �T
; ð23Þ

sðwÞ ¼ 0;0;0;0; s5ð ÞT : ð24Þ
Here, the DG-scheme [18–20,27,28] is implemented for the dis-
cretization of space-coordinate only. The derivatives of time coordi-
nate are discretized by using the TVB Runge-Kutta method.

In order to discretize the spatial domain ½x0; xmax�, we proceed as
follows. For j ¼ 0;1;2; . . . :N, let xjþ1

2
be the cells partitions,

Ij ¼ xj�1
2
; xjþ1

2

� �
be the domain of cell j, Dxj ¼ xjþ1

2
� xj�1

2
be the width

of cell j, and I ¼ UIj be the union of partitions in the whole domain.
We seek an approximate solution whðt; xÞ to wðt; xÞ such that for
each time t 2 ½0; tmax�, whðt; xÞ belongs to the finite dimensional
space

Vh ¼ v 2 L1ðIÞ : vjIj 2 PkðIjÞ; j ¼ 0;1;2; . . . :N
n o

; ð25Þ



Fig. 3. Convergence study of DG and Central NT schemes for Problem 1. Comparison of L1-errors of both schemes at different grid points.
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where PkðIjÞ represents the space of polynomials in Ij of degree at
most k. Note that in Vh, the functions are allowed to have jumps
at the cell interface xjþ1

2
. To determine the approximate solution

whðt; xÞ, a weak formulation is needed which is usually obtained
by multiplying Eq. (21) with a smooth function vðxÞ and by inte-
grating over the interval Ij. After using integration by parts, the
weak formulation appears in the following formZ
Ij

@wðt;xÞ
@t

vðxÞdx¼
Z
Ij

fðwðt;xÞÞ @
@x
vðxÞdxþ

Z
Ij

sðwðt;xÞÞvðxÞdx

� f w t;xjþ1
2

� �� �
vðxjþ1

2
Þ� f w t;xj�1

2

� �� �
vðxj�1

2
Þ

h i
:

ð26Þ
One way to apply Eq. (25) is to choose Legendre polynomials,

PlðxÞ, of order l as local basis functions. In this approach, the L2-
orthogonality property of Legendre polynomials can be exploited
as expressed belowZ 1

�1
PlðsÞPl0 ðsÞds ¼

2
2lþ 1

� �
dll0 : ð27Þ

For each x 2 Ij, the solution wh can be expressed as
whðt; xÞ ¼
Xk

l¼0

wðlÞ
j ulðxÞ; ð28Þ

where

ulðxÞ ¼ Pl 2ðx� xjÞ=Dxj
� �

: ð29Þ
It can be easily proved that

1
2lþ 1

� �
wðlÞ

j ðtÞ ¼ 1
Dxj

Z
Ij

whðt; xÞulðxÞdx: ð30Þ

Since the above Legendre polynomials are used as local basis
functions, the smooth function vðxÞ can be replaced by the test
functionul 2 Vh and the exact solutionw by the approximate solu-

tion wh. Moreover, the function wjþ1
2
¼ w t; xjþ1

2

� �
is not known at

the cell interface xjþ1
2
. Therefore, the flux fðwðt; xÞÞ has to be

approximated by a numerical flux that depends on two values of
whðt; xÞ, i.e.,

f w t; xjþ1
2

� �� �
� hjþ1

2
¼ h w t; x�jþ1

2

� �
;w t; xþ

j�1
2

� �� �
: ð31Þ

Here,



Fig. 4. Comparison of DG and central NT schemes for Problem 2 at time t ¼ 0:012.
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w�
jþ1

2
¼ wh t; x�jþ1

2

� �
¼

Xk

l¼0

wðlÞ
j ul xjþ1

2

� �
; ð32Þ

wþ
j�1

2
¼ wh t; xþ

j�1
2

� �
¼

Xk

l¼0

wðlÞ
j ul xj�1

2

� �
: ð33Þ

Using the above definitions, the weak formulation in Eq. (26)
simplifies to
dwðlÞ
j ðtÞ
dt

¼ �2lþ 1
Dxj

hjþ1
2
ul xjþ1

2

� �
� hj�1

2
ul xj�1

2

� �� �
þ 2lþ 1

Dxj

�
Z
Ij

fðwhðt; xÞÞ dulðxÞ
dx

� �
dxþ 2lþ 1

Dxj

�
Z
Ij

sðwhðt; xÞÞulðxÞdx: ð34Þ

The first four terms of the source term are zero, while the inte-
gral for the fifth term containing sources of mechanical and ther-
modynamical works ðs5 ¼ sM5 þ sT5Þ are expressed after some
manipulation as
Z
Ij

s5ulðxÞdx ¼ �u ajþ1
2
pjþ1

2
ul xjþ1

2

� �
� aj�1

2
pj�1

2
ul xj�1

2

� �h i

� �u�b pjþ1
2
ul xjþ1

2

� �
� pj�1

2
ul xj�1

2

� �h i
þ �p�c�að1� �aÞ ujþ1

2
ul xjþ1

2

� �
� uj�1

2
ul xj�1

2

� �h i

þ �u
Z
Ij

ðbp� apÞ dulðxÞ
dx

� �
dx

� �p�c�að1� �aÞ
Z
Ij

uðt; xÞdulðxÞ
dx

� �
dx: ð35Þ

In the above equation, the bar terms represent the average val-
ues, for example for any �w, we have �w ¼ 1

2 ðwj þ wjþ1Þ.
It remains to choose the appropriate numerical flux function h.

The above equations define a monotone scheme if the numerical
flux function hða; bÞ is consistent, hðw;wÞ ¼ fðwÞ, and satisfies
the Lipschitz continuity condition, i.e., hða; bÞ is a non-decreasing
function of its first argument and non-increasing function of its
second argument [29,30]. The two following numerical flux func-
tions are used that satisfy the above properties [29,30].



Fig. 5. Comparison of DG and central NT schemes for Problem 3 at time t ¼ 0:02.

Table 2
Comparison of L1-errors for Problem 4.

N Density (q) Volume fraction (a) Pressure (p) Velocity (u)

DG Central DG Central DG Central DG Central

100 23.15 28.45 0.021 0.022 1:94� 107 2:40� 107 23.52 28.30

200 10.85 12.97 0.009 0.010 8:40� 106 1:03� 107 9.852 11.71

300 4.923 6.951 0.003 0.005 4:45� 106 6:65� 106 5.234 6.152

400 2.403 3.392 0.002 0.002 2:97� 106 4:57� 106 3.322 4.212

500 1.217 2.499 0.001 0.002 1:01� 106 2:01� 106 1.294 2.602
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(i) The Lax-Friedrichs flux:
hLFða; bÞ ¼ 1
2
½fðaÞ þ fðbÞ � Cðb� aÞ�; ð36Þ

C ¼ max
inf wð0ÞðxÞ6s6sup wð0ÞðxÞ

f 0ðsÞ		 		: ð37Þ
(ii) The Local Lax-Friedrichs flux:
hLLFða; bÞ ¼ 1
2
½fðaÞ þ fðbÞ � Cðb� aÞ�; ð38Þ

C ¼ max
min ða;bÞ6s6max ða;bÞ

f 0ðsÞ		 		: ð39Þ

The Gauss-Lobatto quadrature formula of 10th order was
used to numerically approximate the integral terms appear-
ing on the right side of Eq. (34).
To achieve local maximum principle with respect to the means,
some limiting procedure is needed. For that purpose, it is required
to modify the interfaces values w�

j�1
2
in Eqs. (31)–(33) by some local

projection limiter. At this end, Eqs. (32) and (33) can be written as
[18–20]

w�
jþ1

2
¼ wð0Þ

j þ ~wj; wþ
j�1

2
¼ wð0Þ

j � ŵj; ð40Þ

where

~wj ¼
Xk

l¼1

wðlÞ
j ul xjþ1

2

� �
; ŵj ¼ �

Xk

l¼1

wðlÞ
j ul xj�1

2

� �
: ð41Þ

Next, ~wj and ŵj can be modified as



Fig. 6. Convergence study of DG and Central NT schemes for Problem 4. Comparison of L1-errors of both schemes at different grid points.
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~wðmodÞ
j ¼ mm ~wj;Dþw

ð0Þ
j ;D�w

ð0Þ
j

� �
; ð42Þ

ŵðmodÞ
j ¼ mm ŵj;Dþw

ð0Þ
j ;D�w

ð0Þ
j

� �
; ð43Þ

where D�wj ¼ �ðwj�1 �wjÞ and mm is the usual minmod function
which is defined as

mmða1;a2;a3Þ ¼
s �min

16j63
jaij if signða1Þ ¼ signða2Þ ¼ signða3Þ ¼ s

0 otherwise:

(

ð44Þ
Then, Eq. (40) modifies to

w�ðmodÞ
jþ1

2
¼ wð0Þ

j þ ~wðmodÞ
j ; wþðmodÞ

j�1
2

¼ wð0Þ
j � ŵðmodÞ

j ; ð45Þ

and Eq. (31) is replaced by

hjþ1
2
¼ h w�ðmodÞ

jþ1
2

;wþðmodÞ
j�1

2

� �
: ð46Þ

This limiter corresponds to adding the minimum amount of
numerical diffusion while preserving the stability of the scheme.
The DG-method in addition to the above explained slope limiter
has been proved to be stable [31].

Here, we have implemented the WENO limiter [32] to eliminate
oscillations and enforce the stability. In this procedure, we firstly
identify ‘‘troubled cells”, namely those cells that need to be recon-
structed. A troubled cell is the one for which the minmod functions
given by Eqs. (42) and (43) gets active (i.e. returns other than the
first argument) and is marked for further reconstructions. For the
troubled cells, we would like to reconstruct the polynomial solu-
tion while retaining its cell average.

Finally, a Runge-Kutta method is implemented that maintains
the TVB property of the method is needed to solve the resulting
system of ODE. Let us rewrite Eq. (34) in a concise form as

dwh

dt
¼ Lhðt;whÞ: ð47Þ

Then, the r-order TVB Runge-Kutta method can be used to
approximate Eq. (47)

wðkÞ
h ¼

Xk�1

l¼0

aklw
ðlÞ
h þ bklDtLhðtn þ dlDt;w

ðlÞ
h Þ

h i
; k ¼ 1;2; . . . ; r; ð48Þ

were based on the boundary conditions

wð0Þ
h ¼ wn

h; wðrÞ
h ¼ wnþ1

h : ð49Þ
For the second order TVB Runge-Kutta method the coefficient

are given as [18]



Fig. 7. Comparison of DG and central NT schemes for Problem 4 at time t ¼ 200 ls.
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a10 ¼ b10 ¼ 1; a20 ¼ a21 ¼ b21 ¼ 1
2
; b20 ¼ 0; d0 ¼ 0; d1 ¼ 1:

ð50Þ
While, for the third order TVB Runge-Kutta method the coeffi-

cient are given as

a10 ¼ b10 ¼ 1; a20 ¼ 3
4
; b20 ¼ 0; a21 ¼ b21 ¼

1
4
; a30 ¼ 1

3
;

b30 ¼ a31 ¼ b31 ¼ 0; a32 ¼ b32 ¼
2
3
; d0 ¼ 0; d1 ¼ 1; d2 ¼ 1

2
: ð51Þ

In order to guarantee numerical convergence and stability of
the DG-scheme, the time step is taken according to the following
Courant-Friedrichs-Lewy (CFL) condition [18,29]

Dt 6 1
2kþ 1

� �
minðDxjÞ

kmax
; ð52Þ

where kmax is the maximum eigenvalue of the Jacobian matrix @fðwÞ
@w ,

and k ¼ 1;2 for the second and third order schemes, respectively.
This time step is adaptive which reduces for the case of large vari-
ations (large slopes) in the solution and increases otherwise.

Numerical test problems

In this section, six one-dimensional test problems are consid-
ered to verify the efficiency and accuracy of the proposed schemes.
Problem 1 (Sod’s problem). The Sod’s problem [6,33,34] is the well
known test problem in the single phase gas dynamics. In this
problem, gases are separated by a very thin membrane placed at
x ¼ 0:5 and are initially at rest. The left side gas has high density
and pressure as compared to right side gas. After removing the
membrane, the gases evolution in time take place. The initial data
for the problem are given as
ðq;u; p;aÞ ¼ ð10;0;10;1Þ; if x 6 0:5; ð53Þ
ðq;u; p;aÞ ¼ ð0:125;0;0:1;0Þ; if x > 0:5: ð54Þ

The ratio of specific heats for the left and right side gases are
taken as cL ¼ 1:4 and cR ¼ 1:6, respectively. In Fig. 3, the solutions
of discontinuous Galerkin and central NT schemes are compared at
100 mesh cells at t ¼ 0:15. The reference solution is obtained from
the discontinuous Galerkin scheme at 500 grid points. We can
observe a left-going rarefaction wave, a right-going shock wave
and a right-moving two-fluid interface in the solution. Both
schemes give correct location of the shocks and have comparable
accuracy. Moreover, no pressure oscillations are observed in the
solution. This problem is considered to check the accuracy of DG
and central NT schemes. The results for the errors in density and
volume fraction are computed and depicted in the form of plots
in Fig. 2. The L1-errors for both schemes are calculated and dis-
played in Table 1. From the table and plots one can easily observe



Fig. 8. Comparison of DG and central NT schemes for Problem 5 at time t ¼ 200 ls.
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that DG scheme produces less errors in density, volume fraction,
pressure and velocity as compared to the central NT scheme. The
L1-errors of both schemes are functions of number of grid points
that can be seen in the plots of Fig. 2 and Table 1.
Problem 2 (Two-fluid mixture problem). The initial data are given
as

ðq;u; p;aÞ ¼ ð2:0;0;1000;1Þ; if x 6 0:5; ð55Þ
ðq;u; p;aÞ ¼ ð1;0;0:01;0Þ; if x > 0:5: ð56Þ

Here, cL ¼ 1:4 and cR ¼ 1:2, PL ¼ 0 ¼ PR, and CFL = 0.5. This prob-
lem was also considered in [6,33,34]. It is a hard test problem for
a numerical scheme. From the solution we can see a left moving rar-
efaction wave, a contact discontinuity, and a right moving shock
wave. The right moving shock hits the interface at x ¼ 0:5. The
shock continues to move towards right and a rarefaction wave is
created which is moving towards left. The results of discontinuous
Galerkin method and central NT scheme are given on 100 mesh
cells and the final simulation time is taken as t ¼ 0:012. The numer-
ical solutions are presented in Fig. 4. Both of the schemes give com-
parable results. However, it can be noticed that discontinuous
Galerkin scheme gives better resolution of peaks and sharp discon-
tinuities. For the considered 200 grid points, the L1-errors of DG and
NT central schemes in the density are 0.083, 0.115, in the volume
fraction are 0.013, 0.0163, in the pressure are 4.727, 7.618, and in
the velocity are 0.163, 0.241, respectively. These errors further ver-
ify the better accuracy of our proposed numerical scheme.
Problem 3 (No-reflection problem). The initial data are given as
ðq;u;p;aÞ ¼ ð3:1748;9:435;100;1Þ; if x 6 0:5; ð57Þ
ðq;u;p;aÞ ¼ ð1;0;1;0Þ; if x > 0:5: ð58Þ

The ratios for the specific heats are considered as cL ¼ 1:667
and cR ¼ 1:2. Moreover, PL ¼ 0 ¼ PR and CFL = 0.4 are taken as.
We discretize the computational domain ½0;1� into 100 mesh cells
and the final simulation time is t ¼ 0:02. This is a hard test problem
for a numerical scheme due to large jumps in pressure at the inter-
face. The choice of pressure and velocity jump over the shock pre-
vents the creation of a reflection wave. Therefore, a shock wave
moves to the right. The results are depicted in Fig. 5. Wiggles can
be seen in the velocity and pressure plots of both schemes, repre-
senting small waves that are reflected to the left. However, unlike
real velocity and pressure oscillations, these wiggles reduces on
refined meshes. Similar type of wiggles are also reported in the
results of [6,33,34]. For the considered 200 grid points, the L1-
errors of DG and NT central schemes in the density are 0.046,
0.065, in the volume fraction are 0.015, 0.021, in the pressure are
0.741, 1.071, and in the velocity are 0.074, 0.108, respectively.



Fig. 9. Comparison of DG and central NT schemes for Problem 6 at time t ¼ 0:1.
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These errors further verify the better accuracy of our proposed
numerical scheme.
Problem 4 (Water-air mixture problem). This one-dimensional
problem corresponds to the water-air mixture [6,7,33,34]. The ini-
tial data are given as

ðq;u;p;aÞ ¼ ð525;0;109; 0:5Þ; if x 6 0:5; ð59Þ
ðq;u;p;aÞ ¼ ð525;0;105; 0:5Þ; if x > 0:5: ð60Þ

Here, cL ¼ 1:4, cR ¼ 4:4, PL ¼ 0, PR ¼ 6� 108 and CFL = 0.5. The
computational domain of the problem ½0;1� is divided into 100
mesh cells and the final simulation time is t ¼ 200 ls. The numer-
ical results are shown in Fig. 7. Although the initial composition
of the mixture is constant, it evolves in space and time. It can be
observed that both schemes give comparable results. Moreover,
our results are in good agreement with the results in [7]. The L1-
errors for both schemes are calculated and displayed in Table 2, also
the plots for the errors are drawn and depicted in Fig. 6. From the
table and plots one can easily observe that DG scheme produces less
errors in density, volume fraction, pressure and velocity as com-
pared to the central NT scheme with the increase in number of grid
points. In both schemes the L1-errors are functions of number of
grid points that can be seen from the graphs.
Problem 5 (Water-air mixture problem). Again a one-dimensional
water-air mixture problem [6,7,33,34] is considered. However, this
problem differs from the previous water-air problem by allowing
changes in the mixture composition. The initial data are given as

ðq;u; p;aÞ ¼ ð1;0;109;0:2Þ; if x 6 0:7; ð61Þ
ðq;u; p;aÞ ¼ ð103;0;105;0:8Þ; if x > 0:7: ð62Þ

Here, cL ¼ 1:4, cR ¼ 4:4, PL ¼ 0, PR ¼ 6� 108 and CFL ¼ 0:5. The
numerical results are obtained on 100 mesh cells and the final sim-
ulation time is t ¼ 200 ls. The numerical results are shown in Fig. 8.
In this figure it can be noted that discontinuous Galerkin method
gives comparable results to the central NT scheme. Moreover, the
numerical results are in good agreement with those published in
[7]. For the considered 200 grid points, the L1-errors of DG and NT
central schemes in the density are 609.8, 615.3, in the volume frac-
tion are 0.659, 0.660, in the pressure are 4:87� 108, 4:97� 108 and
in the velocity are 360.8, 366.5, respectively. These errors further
verify the better accuracy of our proposed numerical scheme.
Problem 6 (Translating two-fluid interface). The initial data for the
problem are given as

ðq;u; p;aÞ ¼ ð1000;1;1;1Þ; if x 6 0:25; ð63Þ
ðq;u; p;aÞ ¼ ð1;1;1;0Þ; if x > 0:25: ð64Þ
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The ratios for the specific heats are given as cL ¼ 1:4 and
cR ¼ 1:6. We have chosen 100 mesh cells for numerical solution
and the final simulation time is t ¼ 0:1. This problem is a contact
discontinuity of water-air density ratio. The numerical results are
shown in Fig. 9. The same problem was also considered in
[6,33,34]. In this problem, both pressure and velocity are the same.
Therefore, the interface is moving to the right with uniform speed
and pressure. The numerical results show that discontinuous
Galerkin method resolves the two-fluid interface very well as com-
pared to the central scheme. Moreover, both velocity and pressure
profiles are oscillation free. For the considered 200 grid points, the
L1-errors of DG and NT central schemes in the density are 7.013,
8.788, in the volume fraction are 0.007, 0.008, in the pressure are
0:0, 0:0, and in the velocity are 0.0, 0.0, respectively. These errors
further verify the better accuracy of our proposed numerical
scheme.
Conclusions

A TVB Runge-Kutta DG finite element method was extended to
solve the compressible two-phase five-equation model. It was
observed that the proposed scheme is capable to accurately cap-
ture sharp discontinuities and avoids excessive numerical diffusion
or spurious oscillations. To preserve the positivity of the scheme a
WENO limiter was used. To achieve the second order accuracy in
time a TVB Runge-Kutta method was utilized. The numerical
results obtained show that the considered five-equation model
capable to study dynamics of two-phase flows. For validation, the
results of proposed numerical scheme are compared qualitatively
and quantitatively with those of staggered central scheme and
those available in the literature. Good agreements were found in
the results of both schemes. However, it was found that DG-
method produces less errors in the solutions and better resolves
the sharp discontinuities in the solutions. The DG-method was
for the first time applied to successfully approximate the consid-
ered two-phase flow model containing the non-conservative
source term.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.rinp.2017.12.044.
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