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Person Recognition in Social Media Photos
Seong Joon Oh, Rodrigo Benenson, Mario Fritz, and Bernt Schiele

Abstract—People nowadays share large parts of their personal lives through social media. Being able to automatically recognise
people in personal photos may greatly enhance user convenience by easing photo album organisation. For human identification task,
however, traditional focus of computer vision has been face recognition and pedestrian re-identification. Person recognition in social
media photos sets new challenges for computer vision, including non-cooperative subjects (e.g. backward viewpoints, unusual poses)
and great changes in appearance. To tackle this problem, we build a simple person recognition framework that leverages convnet
features from multiple image regions (head, body, etc.). We propose new recognition scenarios that focus on the time and appearance
gap between training and testing samples. We present an in-depth analysis of the importance of different features according to time
and viewpoint generalisability. In the process, we verify that our simple approach achieves the state of the art result on the PIPA [1]
benchmark, arguably the largest social media based benchmark for person recognition to date with diverse poses, viewpoints, social
groups, and events.
Compared the conference version of the paper [2], this paper additionally presents (1) analysis of a face recogniser (DeepID2+ [3]), (2)
new method naeil2 that combines the conference version method naeil and DeepID2+ to achieve state of the art results even
compared to post-conference works, (3) discussion of related work since the conference version, (4) additional analysis including the
head viewpoint-wise breakdown of performance, and (5) results on the open-world setup.

Index Terms—Computer vision, person recognition, social media.
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1 INTRODUCTION

W ITH the advent of social media and the shift of image
capturing mode from digital cameras to smartphones and

life-logging devices, users share massive amounts of personal
photos online these days. Being able to recognise people in such
photos would benefit the users by easing photo album organisa-
tion. Recognising people in natural environments poses interesting
challenges; people may be focused on their activities with the face
not visible, or can change clothing or hairstyle. These challenges
are largely new – traditional focus of computer vision research
for human identification has been face recognition (frontal, fully
visible faces) or pedestrian re-identification (no clothing changes,
standing pose).

Intuitively, the ability to recognise faces in the wild [3], [4] is
still an important ingredient. However, when people are engaged
in an activity (i.e. not posing) their faces become only partially
visible (non-frontal, occluded) or simply fully invisible (back-
view). Therefore, additional information is required to reliably
recognize people. We explore other cues that include (1) body of a
person that contains information about the shape and appearance;
(2) human attributes such as gender and age; and (3) scene context.
See Figure 1 for a list of examples that require increasing number
of contextual cues for successful recognition.

This paper presents an in-depth analysis of the person recogni-
tion task in the social media type of photos: given a few annotated
training images per person, who is this person in the test image?
The main contributions of the paper are summerised as follows:
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Head ✔ ✘ ✘ ✘
Body ✔ ✔ ✘ ✘
Attributes ✔ ✔ ✔ ✘
All cues ✔ ✔ ✔ ✔

Fig. 1: In social media photos, depending on face occlusion or
pose, different cues may be effective. For example, the surfer in
the third column is not recognised using only head and body cues
due to unusual pose. However, she is successfully recognised when
additional attribute cues are considered.

• Propose realistic and challenging person recognition sce-
narios on the PIPA benchmark (§2).

• Provide a detailed analysis of the informativeness of
different cues, in particular of a face recognition module
DeepID2+ [3] (§3).

• Verify that our journal version final model naeil2
achieves the new state of the art performance on PIPA
(§4).

• Analyse the contribution of cues according to the amount
of appearance and viewpoint changes (§5).

• Discuss the performance of our methods under the open-
world recognition setup (§B, Appendix)

• Code and data are open source: available at https://goo.gl/
DKuhlY.
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1.1 Related work

Data type
The bulk of previous work on person recognition focuses on faces.
The Labeled Faces in the Wild (LFW) [4] has been a great testbed
for a host of works on the face identification and verification
outside the lab setting. The benchmark has nearly saturated in
the recent years, attributing to the deep features [3], [5], [6], [7],
[8], [9], [10] trained on large scale face databases that outperform
the traditional methods involving sophisticated classifiers based on
hand-crafted features and metric learning approaches [11], [12],
[13], [14]. However, LFW is not representative for the social
media photos: the data consists mainly of unoccluded frontal faces
(face detections) and has a bias towards public figures. Indeed,
more recent benchmarks have introduced more difficult types of
data. IARPA Janus Benchmark A (IJB-A) [15] includes faces with
profile viewpoints, but is still limited to public figures.

Not only face, but body has also been explored as a cue
for human identification. For example, pedestrian re-identification
(re-id) tackles the problem of matching pedestrian detections in
different camera views. Standard benchmarks include VIPeR [16],
CAVIAR [17], CUHK [18], and Caltech Roadside Pedestrians
[19], with active line of research that previously focused on
devising good hand-crafted features [20], [21], [22], and now
focusing more on developing effective convnet architectures [23],
[24], [25], [26], [27], [28], [29], [30]. However, typical re-id
benchmarks do not fully cover the social media setup in three
aspects: (1) subjects mostly appear in the standing pose, (2)
resolution is low, and (3) the matching is only evaluated across
a short time span.

Human identification in natural, everyday environment was
first covered by the “Gallagher collection person dataset” [31].
However, the dataset is small (∼ 600 images, 32 identities)
compared to the size of a typical social media account, and
again only the frontal faces are annotated. MegaFace [32], [33]
is perhaps the largest known open source face database over social
media photos. However, MegaFace does not contain any back-
view subject (pruned by a face detector) and the per-account
statistics (e.g. number of photos per account) is not preserved due
to data processing steps. We build our paper upon the PIPA dataset
[1], also crawled from Flickr and fairly large in scale (∼40k
images, ∼2k identities), with diverse appearances and subjects
with all viewpoints and occlusion levels. Heads are annotated with
bounding boxes each with an identity tag. We describe PIPA in
greater detail in §2.

Recognition tasks
There exist multiple tasks related to person recognition [34]
differing mainly in the amount of training and testing data. Face
and surveillance re-identification is most commonly done via ver-
ification: given one reference image (gallery) and one test image
(probe), do they show the same person? [4], [35]. In this paper,
we consider two recognition tasks. (1) closed world identification:
given a single test image (probe), who is this person among the
identities that are among the training identities (gallery set)? (2)
Open world recognition [32] (§B, Appendix): given a singe test
image (probe), is this person among the training identities (gallery
set)? If so, who?

Other related tasks are, face clustering [7], [36], finding
important people [37], or associating names in text to faces in
images [38], [39].

Prior work with the same data type and task

Since the introduction of the PIPA dataset [1], multiple works have
proposed different methods for solving the person recognition
problem in social media photos. Zhang et al. proposed the Pose
Invariant Person Recognition (PIPER) [1], obtaining promising
results by combining three ingredients: DeepFace [5] (face recog-
nition module trained on a large private dataset), poselets [40]
(pose estimation module trained with 2k images and 19 keypoint
annotations), and convnet features trained on detected poselets
[41], [42].

Oh et al. [2], the conference version of this paper, have
proposed a simple model naeil that extracts AlexNet cues from
multiple fixed image regions. In particular, it does not require data-
heavy DeepFace or time-costly poselets, while achieving a slightly
better recognition performance than PIPER.

There have been many follow-up works since then. Kumar et
al. [43] have improved the performance by normalising the body
pose using pose estimation. Li et al. [44] considered exploiting
people co-occurrence statistics. Liu et al. [45] have proposed to
train a person embedding in a metric space instead of training a
classifier on a fixed set of identities, thereby making the model
more adaptable to unseen identities. Some works have exploited
the photo-album metadata, allowing the model to reason over
different photos [46], [47].

In this journal version, we build naeil2 from naeil and
DeepID2+ [3] to achieve the state of the art result among the
published work on PIPA. We provide additional analysis of cues
according to time and viewpoint changes.

2 DATASET AND EXPERIMENTAL SETUP

Dataset

The PIPA dataset (“People In Photo Albums”) [1] is, to the best
of our knowledge, the first dataset to annotate people’s identities
even when they are pictured from the back. The annotators
labelled instances that can be considered hard even for humans
(see qualitative examples in figure 15, 16). PIPA features 37 107
Flickr personal photo album images (Creative Commons license),
with 63 188 head bounding boxes of 2 356 identities. The head
bounding boxes are tight around the skull, including the face
and hair; occluded heads are hallucinated by the annotators. The
dataset is partitioned into train, val, test, and leftover sets, with
rough ratio 45 : 15 : 20 : 20 percent of the annotated heads. The
leftover set is not used in this paper. Up to annotation errors,
neither identities nor photo albums by the same uploader are
shared among these sets.

Task

At test time, the system is given a photo and ground truth head
bounding box corresponding to the test instance (probe). The task
is to choose the identity of the test instance among a given set of
identities (gallery set, 200∼500 identities) each with ∼10 training
samples.

In Appendix §B, we evaluate the methods when the test in-
stance may be a background person (e.g. bystanders – no training
image given). The system is then also required to determine if the
given instance is among the seen identities (gallery set).
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Protocol
We follow the PIPA protocol in [1] for data utilisation and model
evaluation. The train set is used for convnet feature training.
The test set contains the examples for the test identities. For
each identity, the samples are divided into test0 and test1. For
evaluation, we perform a two-fold cross validation by training on
one of the splits and testing on the other. The val set is likewise
split into val0 and val1, and is used for exploring different models
and tuning hyperparameters.

Evaluation
We use the recognition rate (or accuracy), the rate of correct iden-
tity predictions among the test instances. For every experiment, we
average two recognition rates obtained from the (training, testing)
pairs (val0, val1) and (val1, val0) – analogously for test.

2.1 Splits
We consider four different ways of splitting the training and testing
samples (val0/1 and test0/1) for each identity, aiming to evaluate
different level of generalisation ability. The first one is from a
prior work, and we introduce three new ones. Refer to table 1 for
data statistics and figure 3 for visualisation.

Original split O [1]
The Original split shares many similar examples per identity
across the split – e.g. photos taken in a row. The Original split
is thus easy - even nearest neighbour on raw RGB pixels works
(§4.1). In order to evaluate the ability to generalise across long-
term appearance changes, we introduce three new splits below.

Album split A [2]
The Album split divides training and test samples for each identity
according to the photo album metadata. Each split takes the albums
while trying to match the number of samples per identity as well
as the total number of samples across the splits. A few albums are
shared between the splits in order to match the number of samples.
Since the Flickr albums are user-defined and do not always strictly
cluster events and occasions, the split may not be perfect.

Time split T [2]
The Time split divides the samples according to the time the photo
was taken. For each identity, the samples are sorted according
to their “photo-taken-date” metadata, and then divided according
to the newest versus oldest basis. The instances without time
metadata are distributed evenly. This split evaluates the temporal
generalisation of the recogniser. However, the “photo-taken-date”
metadata is very noisy with lots of missing data.

Day split D [2]
The Day split divides the instances via visual inspection to ensure
the firm “appearance change” across the splits. We define two
criteria for division: (1) a firm evidence of date change such as
{change of season, continent, event, co-occurring people} and/or
(2) visible changes in {hairstyle, make-up, head or body wear}.
We discard identities for whom such a division is not possible.
After division, for each identity we randomly discard samples
from the larger split until the sizes match. If the smaller split
has ≤ 4 instances, we discard the identity altogether. The Day
split enables clean experiments for evaluating the generalisation
performance across strong appearance and event changes.

Fig. 2: Face detections and head annotations in PIPA. The matches
are determined by overlap (intersection over union). For matched
faces (heads), the detector DPM component gives the orientation
information (frontal versus non-frontal).

val test
O A T D O A T D

sp
l.0 instance 4820 4859 4818 1076 6443 6497 6441 2484

identity 366 366 366 65 581 581 581 199

sp
l.1 instance 4820 4783 4824 1076 6443 6389 6445 2485

identity 366 366 366 65 581 581 581 199

TABLE 1: Split statistics for val and test sets. Total number of
instances and identites for each split is shown.

2.2 Face detection

Instances in PIPA are annotated by humans around their heads
(tight around skull). We additionally compute face detections over
PIPA for three purposes: (1) to compare the amount of identity
information in head versus face (§3), (2) to obtain head orientation
information for further analysis (§5), and (3) to simulate the
scenario without ground truth head box at test time (Appendix
§B). We use the open source DPM face detector [48].

Given a set of detected faces (above certain detection score
threshold) and the ground truth heads, the match is made according
to the overlap (intersection over union). For matched heads, the
corresponding face detections tell us which DPM component is
fired, thereby allowing us to infer the head orientation (frontal or
side view). See Appendix §A for further details.

Using the DPM component, we partition instances in PIPA
as follows: (1) detected and frontal (FR, 41.29%), (2) detected
and non-frontal (NFR, 27.10%), and (3) no face detected (NFD,
31.60%). We denote detections without matching ground truth
head as Background. See figure 2 for visualisation.

3 CUES FOR RECOGNITION

In this section, we investigate the cues for recognising people in
social media photos. We begin with an overview of our model.
Then, we experimentally answer the following questions: how
informative are fixed body regions (no pose estimation) (§3.4)?
How much does scene context help (§3.5)? Is it head or face (head
minus hair and background) that is more informative (§3.6)? And
how much do we gain by using extended data (§3.7 & §3.8)? How
effective is a specialised face recogniser (§3.10)? Studies in this
section are based exclusively on the val set.
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Fig. 3: Visualisation of Original, Album, Time and Day splits for three identities (rows 1-3). Greater appearance gap is observed from
Original to Day splits.

3.1 Model overview

Features
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Fig. 4: Regions considered
for feature extraction: face f,
head h, upper body u, full
body b, and scene s. More
than one cue can be extracted
per region (e.g. h1, h2 ).

At test time, given a ground truth
head bounding box, we estimate
five different regions depicted in
figure 4. Each region is fed into
one or more convnets to obtain
a set of cues. The cues are con-
catenated to form a feature vector
describing the instance. Through-
out the paper we write + to de-
note vector concatenation. Linear
SVM classifiers are trained over
this feature vector (one versus
the rest). In our final system, ex-
cept for DeepID2+ [3], all fea-
tures are computed using the sev-
enth layer (fc7) of AlexNet [41]
pre-trained for ImageNet clas-
sification. The cues only differ
amongst each other on the im-
age area and the fine-tuning used
(type of data or surrogate task) to
alter the AlexNet, except for the
DeepID2+ [3] feature.

3.2 Image regions used
We choose five different image regions based on the ground
truth head annotation (given at test time, see the protocol in §2).
The head rectangle h corresponds to the ground truth annota-
tion. The full body rectangle b is defined as (3×head width,
6×head height), with the head at the top centre of the full body.
The upper body rectangle u is the upper-half of b. The scene
region s is the whole image containing the head.

The face region f is obtained using the DPM face detector
discussed in §2.2. For head boxes with no matching detection (e.g.
back views and occluded faces), we regress the face area from the
head using the face-head displacement statistics on the train set.
Five respective image regions are illustrated in figure 4.

Note that the regions overlap with each other, and that de-
pending on the person’s pose they might be completely off. For
example, b for a lying person is likely to contain more background
than the actual body.

3.3 Fine-tuning and parameters
Unless specified otherwise AlexNet is fine-tuned using the PIPA
train set (∼ 30k instances, ∼ 1.5k identities), cropped at five
different image regions, with 300k mini-batch iterations (batch
size 50). We refer to the base cue thus obtained as f, h, u, b, or
s, depending on the cropped region. On the val set we found the
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Effect of fine-tunning on recognition accuracy
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Fig. 5: PIPA val set performance of different cues versus the SGD
iterations in fine-tuning.

Cue Accuracy
Chance level 1.04
Scene (§3.5) s 27.06
Body b 80.81
Upper body u 84.76
Head h 83.88
Face (§3.6) f 74.45
Zoom out f 74.45

f+h 84.80
f+h+u 90.65
f+h+u+b 91.14
f+h+u+b+s 91.16

Zoom in s 27.06
s+b 82.16
s+b+u 86.39
s+b+u+h 90.40
s+b+u+h+f 91.16

Head+body h+b 89.42
Full person P = f+h+u+b 91.14
Full image Ps = P+s 91.16

TABLE 2: PIPA val set accuracy of cues based on different image
regions and their concatenations (+ means concatenation).

fine-tuning to provide a systematic ∼10 percent points (pp) gain
over the non-fine-tuned AlexNet (figure 5). We use the seventh
layer (fc7) of AlexNet for each cue (4 096 dimensions).

We train for each identity a one-versus-all SVM classifier with
the regularisation parameter C = 1; it turned out to be an insensi-
tive parameter in our preliminary experiments. As an alternative,
the naive nearest neighbour classifier has also been considered.
However, on the val set the SVMs consistently outperforms the
NNs by a ∼10 pp margin.

3.4 How informative is each image region?

Table 2 shows the val set results of each region individually and in
combination. Head h and upper body u are the strongest individual
cues. Upper body is more reliable than the full body b because
the lower body is commonly occluded or cut out of the frame,
and thus is usually a distractor. Scene s is, unsurprisingly, the
weakest individual cue, but it still useful information for person
recognition (far above chance level). Importantly, we see that all
cues complement each other, despite overlapping pixels. Overall,
our features and combination strategy are effective.

3.5 Scene (s)

Other than a fine-tuned AlexNet we considered multiple fea-
ture types to encode the scene information. sgist: using the

Method Accuracy
Gist sgist 21.56
PlacesNet scores splaces 205 21.44
raw PlacesNet s0 places 27.37
PlacesNet fine-tuned s3 places 25.62
raw AlexNet s0 26.54
AlexNet fine-tuned s = s3 27.06

TABLE 3: PIPA val set accuracy of different scene cues. See
descriptions in §3.5.

Gist descriptor [49] (512 dimensions). s0 places: instead of
using AlexNet pre-trained on ImageNet, we consider an AlexNet
(PlacesNet) pre-trained on 205 scene categories of the “Places
Database” [50] (∼ 2.5 million images). splaces 205: Instead of
the 4 096 dimensions PlacesNet feature vector, we also consider
using the score vector for each scene category (205 dimensions).
s0,s3: finally we consider using AlexNet in the same way as
for body or head (with zero or 300k iterations of fine-tuning on
the PIPA person recognition training set). s3 places: s0 places

fine-tuned for person recognition.

Results

Table 3 compares the different alternatives on the val set. The
Gist descriptor sgist performs only slightly below the convnet
options (we also tried the 4 608 dimensional version of Gist,
obtaining worse results). Using the raw (and longer) feature
vector of s0 places is better than the class scores of splaces 205.
Interestingly, in this context pre-training for places classification
is better than pre-training for objects classification (s0 places

versus s0). After fine-tuning s3 reaches a similar performance
as s0 places.
Experiments trying different combinations indicate that there is
little complementarity between these features. Since there is not
a large difference between s0 places and s3, for the sake of
simplicity we use s3 as our scene cue s in all other experiments.

Conclusion

Scene s by itself, albeit weak, can obtain results far above the
chance level. After fine-tuning, scene recognition as pre-training
surrogate task [50] does not provide a clear gain over (ImageNet)
object recognition.

3.6 Head (h) or face (f)?

A large portion of work on face recognition focuses on the face
region specifically. In the context of photo albums, we aim to
quantify how much information is available in the head versus the
face region. As discussed in §2.2, we obtain the face regions f
from the DPM face detector [48].

Results

There is a large gap of ∼10 percent points performance between
f and h in table 2 highlighting the importance of including the
hair and background around the face.

Conclusion

Using h is more effective than f, but f result still shows a fair
performance. As with other body cues, there is a complementarity
between h and f; we suggest to use them together.
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Method Accuracy
More data (§3.7) h 83.88

h+ hcacd 84.88
h+ hcasia 86.08
h+ hcasia + hcacd 86.26

Attributes (§3.8) hpipa11m 74.63
hpipa11 81.74
h+ hpipa11 85.00
upeta5 77.50
u+ upeta5 85.18
A = hpipa11 + upeta5 86.17
h+ u 85.77
h+ u+ A 90.12

naeil (§3.9) naeil [2] 91.70

TABLE 4: PIPA val set accuracy of different cues based on
extended data. See §3.7, §3.8, and §3.9 for details.

3.7 Additional training data (hcacd,hcasia)
It is well known that deep learning architectures benefit from
additional data. DeepFace [5] used by PIPER [1] is trained over
4.4 · 106 faces of 4 · 103 persons (the private SFC dataset [5]).
In comparison our cues are trained over ImageNet and PIPA’s
29 · 103 faces over 1.4 · 103 persons. To measure the effect of
training on larger data we consider fine-tuning using two open
source face recognition datasets: CASIA-WebFace (CASIA) [51]
and the “Cross-Age Reference Coding Dataset” (CACD) [52].

CASIA contains 0.5 ·106 images of 10.5 ·103 persons (mainly
actors and public figures). When fine-tuning AlexNet over these
identities (using the head area h), we obtain the hcasia cue.

CACD contains 160 ·103 faces of 2 ·103 persons with varying
ages. Although smaller in total number of images than CASIA,
CACD features greater number of samples per identity (∼2×).
The hcacd cue is built via the same procedure as hcasia.

Results
See the top part of table 4 for the results. h+hcacd and h+hcasia
improve over h (1.0 and 2.2 pp, respectively). Extra convnet
training data seems to help. However, due to the mismatch in
data distribution, hcacd and hcasia on their own are about ∼5 pp
worse than h.

Conclusion
Extra convnet training data helps, even if they are from different
type of photos.

3.8 Attributes (hpipa11,upeta5)
Albeit overall appearance might change day to day, one could
expect that stable, long term attributes provide means for recogni-
tion. We build attribute cues by fine-tuning AlexNet features not
for the person recognition task (like for all other cues), but rather
for the attribute prediction surrogate task. We consider two sets
attributes, one on the head region and the other on the upper body
region.

We have annotated identities in the PIPA train and val sets
(1409 + 366 in total) with five long term attributes: age, gender,
glasses, hair colour, and hair length (see table 5 for details). We
build hpipa11 by fine-tuning AlexNet features for the task of head
attribute prediction.

For fine-tuning the attribute cue hpipa11, we consider two
approaches: training a single network for all attributes as a multi-
label classification problem with the sigmoid cross entropy loss,

Attribute Classes Criteria
Age Infant Not walking (due to young age)

Child Not fully grown body size
Young Adult Fully grown & Age < 45
Middle Age 45 ≤ Age ≤ 60
Senior Age≥ 60

Gender Female Female looking
Male Male looking

Glasses None No eyewear
Glasses Transparant glasses
Sunglasses Glasses with eye occlusion

Haircolour Black Black
White Any hint of whiteness
Others Neither of the above

Hairlength No hair Absolutely no hair on the scalp
Less hair Hairless for > 1

2
upper scalp

Short hair When straightened,< 10 cm
Med hair When straightened, <chin level
Long hair When straightened, >chin level

TABLE 5: PIPA attributes details.

or tuning one network per attribute separately and concatenating
the feature vectors. The results on the val set indicate the latter
(hpipa11) performs better than the former (hpipa11m).

For the upper body attribute features, we use the “PETA
pedestrian attribute dataset” [53]. The dataset originally has 105
attributes annotations for 19 · 103 full-body pedestrian images.
We chose the five long-term attributes for our study: gender, age
(young adult, adult), black hair, and short hair (details in table 5).
We choose to use the upper-body u rather than the full body b for
attribute prediction – the crops are much less noisy. We train the
AlexNet feature on upper body of PETA images with the attribute
prediction task to obtain the cue upeta5.

Results

See results in table 4. Both PIPA (hpipa11) and PETA (upeta5)
annotations behave similarly (∼ 1 pp gain over h and u), and show
complementary (∼5 pp gain over h+u). Amongst the attributes
considered, gender contributes the most to improve recognition
accuracy (for both attributes datasets).

Conclusion

Adding attribute information improves the performance.

3.9 Conference version final model (naeil) [2]

The final model in the conference version of this paper combines
five vanilla regional cues (Ps = P+s), two head cues trained with
extra data (hcacd,hcasia), and ten attribute cues (hpipa11, upeta5),
resulting in 17 cues in total. We name this method naeil [2]1.

Results

See table 4 for the results. naeil, by combining all the cues
considered naively, achieves the best result 91.70% on the val set.

Conclusion

Cues considered thus far are complementary, and the combined
model naeil is effective.

1. “naeil”,내일, means “tomorrow” and sounds like “nail”.
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3.10 DeepID2+ face recognition module (hdeepid) [3]
Face recognition performance have improved significantly in re-
cent years with better architectures and larger open source datasets
[3], [4], [5], [7], [8], [9], [10], [54], [55]. In this section, we
study how much face recognition helps in person recognition.
While DeepFace [5] used by the PIPER [1] would have enabled
more direct comparison against the PIPER, it is not publicly
available. We thus choose the DeepID2+ face recogniser [3]. Face
recognition technology is still improving quickly, and larger and
larger face datasets are being released – the analysis in this section
would be an underestimate of current and future face recognisers.

The DeepID2+ network is a siamese neural network that takes
25 different crops of head as input, with the joint verification-
identification loss. The training is based on large databases con-
sisting of CelebFaces+ [56], WDRef [57], and LFW [4] – totalling
2.9 · 105 faces of 1.2 · 104 persons. At test time, it ensembles the
predictions from the 25 crop regions obtained by facial landmark
detections. The resulting output is 1 024 dimensional head feature
that we denote as hdeepid.

Since the DeepID2+ pipeline begins with the facial landmark
detection, the DeepID2+ features are not available for instances
with e.g. occluded or backward orientation heads. As a result,
only 52 709 out of 63 188 instances (83.42%) have the DeepID2+
features available, and we use vectors of zeros as features for the
rest.

Results - Original split
See table 6 for the val set results for hdeepid and related com-
binations. hdeepid in itself is weak (68.46%) compared to the
vanilla head feature h, due to the missing features for the back-
views. However, when combined with h, the performance reaches
85.86% by exploiting information from strong DeepID2+ face
features and the viewpoint robust h features.

Since the feature dimensions are not homogeneous (4 096
versus 1 024), we try L2 normalisation of h and hdeepid before
concatenation (h ⊕ hdeepid). This gives a further 3% boost
(88.74%) – better than h+ hcacd + hcasia, previous best model
on the head region (86.26%).

Results - Album, Time and Day splits
Table 6 also shows results for the Album, Time, and Day splits on
the val set. While the general head cue h degrades significantly on
the Day split, hdeepid is a reliable cue with roughly the same level
of recognition in all four splits (60∼70%). This is not surprising,
since face is largely invariant over time, compared to hair, clothing,
and event.

On the other splits as well, the complementarity of h and
hdeepid is guaranteed only when they are L2 normalised before
concatenation. The L2 normalised concatenation h ⊕ hdeepid
envelops the performance of individual cues on all splits.

Conclusion
DeepID2+, with face-specific architecture/loss and massive
amount of training data, contributes highly useful information for
the person recognition task. However, being only able to recognise
face-visible instances, it needs to be combined with orientation-
robust h to ensure the best performance. Unsurprisingly, having a
specialised face recogniser helps more in the setup with larger
appearance gap between training and testing samples (Album,
Time, and Day splits). Better face recognisers will further improve
the results in the future.

Method Original Album Time Day
h 83.88 77.90 70.38 40.71
hdeepid 68.46 66.91 64.16 60.46
h+ hdeepid 85.86 80.54 73.31 47.86
h⊕ hdeepid 88.74 85.72 80.88 66.91
naeil [2] 91.70 86.37 80.66 49.21
naeil+ hdeepid 92.11 86.77 81.08 51.02
naeil2 93.42 89.95 85.87 70.58

TABLE 6: PIPA val set accuracy of methods involving hdeepid.
The optimal combination weights are λ? = [0.60 1.05 1.00 1.50]
for Original, Album, Time, and Day splits, respectively.
⊕ means L2 normalisation before concatenation.

3.11 Combining naeil with hdeepid (naeil2)

We build the final model of the journal version, namely the
naeil2 by combining naeil and hdeepid. As seen in §3.10,
naive concatenation is likely to fail due to even larger difference in
dimensionality (4 096× 17 = 69 632 versus 1 024). We consider
L2 normalisation of naeil and hdeepid, and then performing a
weighted concatenation.

naeil⊕λ hdeepid =
naeil

||naeil||2
+ λ · hdeepid

||hdeepid||2
, (1)

where, λ > 0 is a parameter and + denotes a concatenation.

Optimisation of λ on val set

λ determines how much relative weight to be given to hdeepid. As
we have seen in §3.10, the amount of additional contribution from
hdeepid is different for each split. In this section, we find λ?, the
optimal values for λ, for each split over the val set. The resulting
combination of naeil and hdeepid is our final method, naeil2.
λ? is searched on the equi-distanced points {0, 0.05, 0.1, · · · , 3}.

See figure 6 for the val set performance of naeil⊕λ hdeepid
with varying values of λ. The optimal weights are found at
λ? = [0.60 1.05 1.00 1.50] for Original, Album, Time, and Day
splits, respectively. The relative importance of hdeepid is greater
on splits with larger appearance changes. For each split, we denote
naeil2 as the combination naeil and hdeepid based on the
optimal weights.

Note that the performance curve is rather stable for λ ≥ 1.5
in all splits. In practice, when the expected amount of appearance
changes of subjects are unknown, our advice would be to choose
λ ≈ 1.5. Finally, we remark that the weighted sum can also be
done for the 17 cues in naeil; finding the optimal cue weights
is left as a future work.

Results

See table 6 for the results of combining naeil and hdeepid.
Naively concatenated, naeil + hdeepid performs worse than
hdeepid on the Day split (51.02% vs 60.46%). However, the
weighted combination naeil2 achieves the best performance on
all four splits.

Conclusion

When combining naeil and hdeepid, a weighted combination
is desirable, and the resulting final model naeil2 beats all the
previously considered models on all four splits.
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Special modules General features
Method Face rec. Pose est. Data Arch. Original Album Time Day
Chance level 7 7 − − 0.78 0.89 0.78 1.97

H
ea

d
hrgb 7 7 − − 33.77 27.19 16.91 6.78
h 7 7 I+P Alex 76.42 67.48 57.05 36.48
h+hcasia+hcacd 7 7 I+P+CC Alex 80.32 72.82 63.18 45.45
hdeepid DeepID2+ [3] 7 − − 68.06 65.49 60.69 61.49
h⊕ hdeepid DeepID2+ [3] 7 I+P Alex 85.94 81.95 75.85 66.00
DeepFace [1] DeepFace [5] 7 − − 46.66 − − −

B
od

y

b 7 7 I+P Alex 69.63 59.29 44.92 20.38
h+b 7 7 I+P Alex 83.36 73.97 63.03 38.15
P = f+h+u+b 7 7 I+P Alex 85.33 76.49 66.55 42.17
GlobalModel [1] 7 7 I+P Alex 67.60 − − −
PIPER [1] DeepFace [5] Poselets [40] I+P Alex 83.05 − − −
Pose [43] 7 Pose group I+P+V Alex 89.05 82.37 74.84 56.73
COCO [45] 7 Part det. [58] I+P Goog,Res 92.78 83.53 77.68 61.73

Im
ag

e Ps = P+s 7 7 I+P Alex 85.71 76.68 66.55 42.31
naeil = Ps+E [2] 7 7 I+P+E Alex 86.78 78.72 69.29 46.54
Contextual [47] DeepID [56] 7 I+P Alex 88.75 83.33 77.00 59.35
naeil2 (this paper) DeepID2+ [3] 7 I+P+E Alex 90.42 86.30 80.74 70.58

TABLE 7: PIPA test set accuracy (%) of the proposed method and prior arts on the four splits. For each method, we indicate any face
recognition or pose estimation module included, and the data and convnet architecture for other features.
Cues on extended data E = hcasia+hcacd+hpipa11+upeta5.
⊕ means concatenation after L2 normalisation.
In the data column, I indicates ImageNet [42] and P indicates PIPA train set. CC means CACD [52]+CASIA [51] and E means
CC+PETA [53]. V indicates the VGGFace dataset [8].
In the architecture column, (Alex,Goog,Res) refers to (AlexNet [41],GoogleNetv3 [59],ResNet50 [60]).

Fig. 6: PIPA val set accuracy of naeil ⊕λ hdeepid for varying
values of λ. Round dots denote the maximal val accuracy.

4 PIPA TEST SET RESULTS AND COMPARISON

In this section, we measure the performance of our final model and
key intermediate results on the PIPA test set, and compare against
the prior arts. See table 7 for a summary.

4.1 Baselines
We consider two baselines for measuring the inherent difficulty of
the task. First baseline is the “chance level” classifier, which does
not see the image content and simply picks the most commonly
occurring class. It provides the lower bound for any recognition
method, and gives a sense of how large the gallery set is.

Our second baseline is the raw RGB nearest neighbour classi-
fier hrgb. It uses the raw downsized (40×40 pixels) and blurred
RGB head crop as the feature. The identity of the Euclidean
distance nearest neighbour training image is predicted at test time.
By design, hrgb is only able to recognize near identical head crops
across the test0/1 splits.

Results

See results for “chance level” and hrgb in table 7. While the
“chance level” performance is low (≤ 2% in all splits), we
observe that hrgb performs unreasonably well on the Original
split (33.77%). This shows that the Original splits share many
nearly identical person instances across the split, and the task is
very easy. On the harder splits, we see that the hrgb performance
diminishes, reaching only 6.78% on the Day split. Recognition on
the Day split is thus far less trivial – simply taking advantage of
pixel value similarity would not work.

Conclusion

Although the gallery set is large enough, the task can be made
arbitrarily easy by sharing many similar instances across the splits
(Original split). We have remedied the issue by introducing three
more challenging splits (Album, Time, and Day) on which the
naive RGB baseline (hrgb) no longer works (§2.1).

4.2 Methods based on head

We consider our four intermediate models (h, h+hcasia+hcacd,
hdeepid, h⊕ hdeepid) and a prior work DeepFace [1], [5].

We observe the same trend as described in the previous
sections on the val set (§3.6, 3.10). Here, we focus on the
comparison against DeepFace [5]. Even without a specialised
face module, h already performs better than DeepFace (76.42%
versus 46.66%, Original split). We believe this is for two reasons:
(1) DeepFace only takes face regions as input, leaving out
valuable hair and background information (§3.6), (2) DeepFace
only makes predictions on 52% of the instances where the face
can be registered. Note that hdeepid also do not always make
prediction due to the failure to estimate the pose (17% failure
on PIPA), but performs better than DeepFace in the considered
scenario (68.06% versus 46.66%, Original split).
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4.3 Methods based on body
We consider three of our intermediate models (b, h+b, P =
f+h+u+b) and four prior arts (GlobalModel [1], PIPER
[1], Pose [43], COCO [45]). Pose [43] and COCO [45] methods
appeared after the publication of the conference version of this
paper [2]. See table 7 for the results.

Our body cue b and Zhang et al.’s GlobalModel [1] are the
same methods implemented independently. Unsurprisingly, they
perform similarly (69.63% versus 67.60%, Original split).

Our h+b method is the minimal system matching Zhang et al.’s
PIPER [1] (83.36% versus 83.05%, Original split). The feature
vector of h+b is about 50 times smaller than PIPER, and do not
make use of face recogniser or pose estimator.

In fact, PIPER captures the head region via one of its
poselets. Thus, h+b extracts cues from a subset of PIPER’s
“GlobalModel+Poselets” [1], but performs better (83.36%
versus 78.79%, Original split).

Methods since the conference version [2]
Pose by Kumar et al. [43] uses extra keypoint annotations on
the PIPA train set to generate pose clusters, and train separate
models for each pose cluster (PSM, pose-specific models). By
performing a form of pose normalisation they have improved the
results significantly: 2.27 pp and 10.19 pp over naeil on Original
and Day splits, respectively.

COCO by Liu et al. [45] proposes a novel metric learning
loss for the person recognition task. Metric learning gives an
edge over classifier-based methods by enabling recognition of
unseen identities without re-training. They further use Faster-
RCNN detectors [58] to localise face and body more accurately.
The final performance is arguably good in all four splits, compared
to Pose [43] or naeil [2]. However, one should note that the
face, body, upper body, and full body features in COCO are based
on GoogleNetv3 [59] and ResNet50 [60] – the numbers are not
fully comparable to all the other methods that are largely based on
AlexNet.

4.4 Methods based on full image
We consider our two intermediate models (Ps = P+s, naeil =
Ps+E) and Contextual [47], a method which appeared after
the conference version of this paper [2].

Our naeil performs better than PIPER [1] (86.78% versus
83.05%, Original split), while having a 6 times smaller feature
vector and not relying on face recogniser or pose estimator.

Methods since the conference version [2]
Contextual by Li et al. [47] makes use of person co-occurrence
statistics to improve the results. It performs 1.97 pp and 12.81
pp better than naeil on Original and Day splits, respectively.
However, one should note that Contextual employs a face
recogniser DeepID [56]. We have found that a specialised face
recogniser improves the recognition quality greatly on the Day
split (§3.10).

4.5 Our final model naeil2
naeil2 is a weighted combination of naeil and hdeepid (see
§3.11 for details). Observe that by attaching a face recogniser
module on naeil, we achieve the best performance on Album,
Time, and Day splits. In particular, on the Day split, naeil2

Fig. 7: PIPA test set relative accuracy of various methods in the
four splits, against the final system naeil2.

makes a 8.85 pp boost over the second best method COCO [45]
(table 7). On the Original split, COCO performs better (2.36 pp
gap), but note that COCO uses more advanced feature representa-
tions (GoogleNet and ResNet).

Since naeil2 and COCO focus on orthogonal techniques,
they can be combined to yield even better performances.

4.6 Computational cost
We report computational times for some pipelines in our method.
The feature training takes 2-3 days on a single GPU machine.
The SVM training takes 42 seconds for h (4 096 dim) and 1 118
seconds for naeil on the Original split (581 classes, 6 443
samples). Note that this corresponds to a realistic user scenario
in a photo sharing service where ∼ 500 identities are known to
the user and the average number of photos per identity is ∼10.

5 ANALYSIS

In this section, we provide a deeper analysis of individual cues
towards the final performance. In particular, we measure how
contributions from individual cues (e.g. face and scene) change
when either the system has to generalise across time or head
viewpoint. We study the performance as a function of the number
of training samples per identity, and examine the distribution of
identities according to their recognisability.

5.1 Contribution of individual cues
We measure the contribution of individual cues towards the final
system naeil2 (§3.11) by dividing the accuracy for each inter-
mediate method by the performance of naeil2. We report results
in the four splits in order to determine which cues contribute
more when there are larger time gap between training and testing
samples and vice versa.

Results
See figure 7 for the relative performances in four splits. The cues
based more on context (e.g. b and s) see greater drop from the
Original to Day split, whereas cues focused on face f and head
h regions tend to drop less. Intuitively, this is due to the greater
changes in clothing and events in the Day split.
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On the other hand, hdeepid increases in its relative contribution
from Original to Day split, nearly explaining 90% of naeil2 in
the Day split. hdeepid provides valuable invariant face feature es-
pecially when the time gap is great. However, on the Original split
hdeepid only reaches about 75% of naeil2. Head orientation
robust naeil should be added to attain the best performance.

Conclusion

Cues involving context are stronger in the Original split; cues
around face, especially the hdeepid, are robust in the Day split.
Combining both types of cues yields the best performance over all
considered time/appearance changes.

5.2 Performance by viewpoint

We study the impact of test instance viewpoint on the proposed
systems. Cues relying on face are less likely to be robust to
occluded faces, while body or context cues will be robust against
viewpoint changes. We measure the performance of models on the
head orientation partitions defined by a DPM head detector (see
§2.2): frontal FR, non-frontal NFR, and no face detected NFD. NFD
subset is a proxy for back-view and occluded-face instances.

Results

Figure 8 shows the accuracy of methods on the three head orien-
tation subsets for the Original and Day splits. All the considered
methods show worse performance from frontal FR to non-frontal
NFR and no face detected NFD subsets. However, in the Original
split, naeil2 still robustly predicts the identities even for the
NFD subset (∼ 80% accuracy). On the Day split, naeil2 also
do struggle on the NFD subset (∼20% accuracy). Recognition of
NFD instances under the Day split constitutes the main remaining
challenge of person recognition.

In order to measure contributions from individual cues in
different head orientation subsets, we report the relative perfor-
mance against the final model naeil2 in figure 9. The results
are reported on the Original and Day splits. Generally, cues based
on more context (e.g. b and s) are more robust when face is not
visible than the face specific cues (e.g. f and h). Note that hdeepid
performance drops significantly in NDET, while naeil generally
improves its relative performance in harder viewpoints. naeil2
envelops the performance of the individual cues in all orientation
subsets.

Conclusion

naeil is more viewpoint robust than hdeepid, making a con-
trast to the time-robustness analysis (§5.1). The combined model
naeil2 takes the best of both worlds. The remaining challenge
for person recognition lies on the no face detected NFD instances
under the Day split. Perhaps image or social media metadata could
be utilised (e.g. camera statistics, time and GPS location, social
media friendship graph).

5.3 Generalisation across viewpoints

Here, we investigate the viewpoint generalisability of our models.
For example, we challenge the system to identify a person from
the back, having only shown frontal face samples.

Fig. 8: PIPA test set accuracy of methods on the frontal (FR), non-
frontal (NFR), and no face detected (NFD) subsets. Left: Original
split, right: Day split.

Fig. 9: PIPA test set relative accuracy of frontal (FR), non-frontal
(NFR), and non-detection (NDET) head orientations, relative to the
final model naeil2. Left: Original split, right: Day split.

Results

Figure 10 shows the accuracies of the methods, when they are
trained either only on the frontal subset FR (left plot) or only
on the no face detected subset NFD (right plot). When trained on
FR, naeil2 has difficulties generalising to the NFD subset (FR
versus NFD performance is ∼95% to ∼40% in Original; ∼85%
to ∼35% in Day). However, the absolute performance is still far
above the random chance (see §4.1), indicating that the learned
identity representations are to a certain degree generalisable. The
naeil features are more robust in this case than hdeepid, with
less dramatic drop from FR to NFD.

When no face is given during training (training on NFD sub-
set), identities are much harder to learn in general. The recognition
performance is low even for no-generalisation case: ∼60% and
∼ 30% for Original and Day, respectively, when trained and tested
on NFD.

Conclusion

naeil2 does generalise marginally across viewpoints, largely
attributing to the naeil features. It seems quite hard to learn
identity specific features (either generalisable or not) from back-
views or occluded faces (NFD).



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ??, ?? 20?? 11

Fig. 10: PIPA test set performance when the identity classifier (SVM) is only trained on either frontal (FR, left) or no face detected
(NFD, right) subset. Related scenario: a robot has only seen frontal views of people; who is this person shown from the back view?

Fig. 11: Train the feature h with different mixtures of frontal FR
and non-frontal NFR heads. The viewpoint wise performance is
shown for the Original (left) and Day (right) splits.

5.4 Viewpoint distribution does not matter for feature
training

We examine the effect of the ratio of head orientations in the
feature training set on the quality of the head feature h. We fix the
number of training examples that consists only of frontal FR and
non-frontal faces NFR, while varying their ratio.

One would hypothesize that the maximal viewpoint robustness
of the feature is achieved at a balanced mixture of FR and NFR for
each person; also that h trained with FR (NFR) subset is relatively
strong at predicting FR (NFR) subset (respectively).

Results

Figure 11 shows the performance of h trained with various FR
to NFR ratios on FR, NFR, and NFD subsets. Contrary to the
hypothesis, changing the distribution of head orientations in the
feature training has < 3% effect on their performances across all
viewpoint subsets in both Original and Day splits.

Conclusion

No extra care is needed to control the distribution of head orien-
tations in the feature training set to improve the head feature h.
Features on larger image regions (e.g. u and b) are expected to be
even less affected by the viewpoint distribution.

Fig. 12: PIPA test set accuracy of systems at different levels of
input resolution. Resolution is measured in terms of the head
height (pixels).

5.5 Input resolution
This section provides analysis on the impact of input resolution.
We aim to identify methods that are robust in different range of
resolutions.

Results
Figure 12 shows the performance with respect to the input reso-
lution (head height in pixels). The final model naeil2 is robust
against low input resolutions, reaching ∼80% even for instances
with< 50 pixel heads on Original split. On the day split, naeil2
is less robust on low resolution examples (∼55%).

Component-wise, note that naeil performance is nearly
invariant to the resolution level. naeil tends to be more robust
for low resolution input than the hdeepid as it is based on body
and context features and do not need high resolution faces.

Conclusion
For low resolution input naeil should be exploited, while for
high resolution input hdeepid should be exploited. If unsure,
naeil2 is a good choice – it envelops the performance of both
in all resolution levels.

5.6 Number of training samples
We are interested in two questions: (1) if we had more samples
per identity, would person recognition be solved with the current
method? (2) how many examples per identity are enough to
gather substantial amount of information about a person? To
investigate the questions, we measure the performance of methods
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Fig. 13: Recognition accuracy at different number of training
samples per identity. Error bars indicate ±1 standard deviation
from the mean.

at different number of training samples per identity. We perform
10 independent runs per data point with fixed number of training
examples per identity (subset is uniformly sampled at each run).

Results

Figure 13 shows the trend of recognition performances of methods
with respect to different levels of training sample size. naeil2
saturates after 10 ∼ 15 training examples per person in Original
and Day splits, reaching ∼ 92% and ∼ 83%, respectively, at
25 examples per identity. At the lower end, we observe that 1
example per identity is already enough to recognise a person far
above the chance level (∼67% and ∼35% on Original and Day,
respectively).

Conclusion

Adding a few times more examples per person will not push the
performance to 100%. Methodological advances are required to
fully solve the problem. On the other hand, the methods already
collect substantial amount of identity information only from single
sample per person (far above chance level).

5.7 Distribution of per-identity accuracy

Finally, we study how much proportion of the identities are
easy to recognise and how many are hopeless. We study this
by computing the distribution of identities according to their per-
identity recognition accuracies.

Results

Figure 14 shows the per identity accuracy for each identity in a
descending order for each considered method. On the Original
split, naeil2 gives 100% accuracy for 185 out of the 581
test identities, whereas there was only one identity where the
method totally fails. On the other hand, on the Day split there
are 11 out of the 199 test identities for whom naeil2 achieves
100% accuracy and 12 identities with zero accuracy. In particular,
naeil2 greatly improves the per-identity accuracy distribution
over naeil, which gives zero prediction for 40 identities.

Fig. 14: Per identity accuracy of on the Original and Day splits.
The identities are sorted according to the per identity accuracy for
each method separately.

Conclusion
In the Original split, naeil2 is doing well on many of the
identities already. In the Day split, the hdeepid feature has greatly
improved the per-identity performances, but naeil2 still misses
some identities. It is left as future work to focus on the hard
identities.

6 CONCLUSION

We have analysed the problem of person recognition in social
media photos where people may appear with occluded faces, in
diverse poses, and in various social events. We have investigated
efficacy of various cues, including the face recogniser DeepID2+
[3], and their time and head viewpoint generalisability. For better
analysis, we have contributed additional splits on PIPA [1] that
simulate different amount of time gap between training and testing
samples.

We have made four major conclusions. (1) Cues based on face
and head are robust across time (§5.1). (2) Cues based on context
are robust across head viewpoints (§5.2). (3) The final model
naeil2, a combination of face and context cues, is robust across
both time and viewpoint and achieves a ∼9 pp improvement over
a recent state of the art on the challenging Day split (§4.5). (4)
Better convnet architectures and face recognisers will improve the
performance of the naeil and naeil2 frameworks in the future
§4.5).

The remaining challenges are mainly the large time gap and
occluded face scenarios (§5.2). One possible direction is to exploit
non-visual cues like GPS and time metadata, camera parameters,
or social media album/friendship graphs. Code and data are
publicly available at https://goo.gl/DKuhlY.
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Fig. 15: Success and failure cases on the Original split. Single images: test examples. Arrows point to the training samples for the
predicted identities. Green and red crosses indicate correct and wrong predictions.
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Fig. 16: Failure cases of naeil2 and PIPER on the Original split. Single images: test examples. Arrows point to the training samples
for the predicted identities. Green and red crosses indicate correct and wrong predictions. Typical hard cases are: 1) uniform clothing
(top left), 2) babies (top right), 3) children (bottom left), and 4) annotation errors (bottom right).
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APPENDIX A
FACE DETECTION

For face detection we use the DPM detector from Mathias et al.
[48]. This detector is trained on ∼ 15k faces from the AFLW
database, and is composed of 6 components which give a rough
indication of face orientation: ±0° (frontal), ±45° (diagonal left
and right), and ±90° (side views). Figure 19 shows example face
detections on the PIPA dataset. It shows detections, the estimated
orientation, the regressed head bounding box, the corresponding
ground truth head box, and some failure modes. Faces correspond-
ing to ±0° are considered frontal (FR), and all others (±45°,
±90°) are considered non-frontal (NFR). No ground truth is
available to evaluate the face orientation estimation; except a few
mistakes, the ±0° components seems a rather reliable estimators
(while more confusion is observed between ±45°/±90°).

APPENDIX B
OPEN-WORLD RECOGNITION

In the main paper, we have focused on the scenario where the
test instances are always from a closed world of gallery identities.
However, for example when person detectors are used to localise
instances, as opposed to head box annotations, the detected person
may not be one of the gallery set. One may wonder how our
person recognisers would perform when the test instance could be
an unseen identity.

In this section, we study the task of “open-world person
recognition”. The test identity may be either from a gallery set
(training identities) or from a background set (unseen identities).
We consider the scenario where test instances are given by a
face detector [48] while the training instance locations have been
annotated by humans.

Key challenge for our recognition system is to tell apart gallery
identities from background faces, while simultaneously classifying
the gallery identities. Obtained from a detector, the background
faces may contain any person in the crowd or even non-faces. We
will introduce a simple modification of our recognition systems’
test time algorithm to let them further make the gallery versus
background prediction. We will then discuss the relevant metrics
for our systems’ open-world performances.

B.1 Method
At test time, body part crops are inferred from the detected face
region (f). First, h is regressed from f, using the PIPA train set
statistics on the scaling and displacement transformation from f
to h. All the other regions (u, b, s) are computed based on h in
the same way as in §3.2 of main paper.

To measure if the inferred head region h is sound and compat-
ible with the models trained on h (as well as u and b), we train the
head model h on head annotations and test on the heads inferred
from face detections. The recognition performance is 87.74%,
while when trained and tested on the head annotations, the
performance is 89.85%. We see a small drop, but not significant
– the inferred regions to be largely compatible.

The gallery-background identity detection is done by thresh-
olding the final SVM score output. Given a recognition system
and test instance x, let Sk (x) be the SVM score for identity
k. Then, we apply a thresholding parameter τ > 0 to predict
background if max

k
Sk (x) < τ , and predict the argmax gallery

identity otherwise.

Fig. 17: Diagram of various subsets generated by a person recog-
nition system in an open world setting (cf. Figure 2 of main paper).
TPs: sound true positive, TPu: unsound true positive, FP : false
positive, FN : false negative. See text for the definitions.

B.2 Evaluation metric
The evaluation metric should measure two aspects simultane-
ously: (1) ability to tell apart background identities, (2) ability
to classify gallery identities. We first introduce a few terms to
help defining the metrics. Refer to figure 17 for a visualisation.
We say a detected test instance x is a “foreground prediction” if
max
k
Sk (x) ≥ τ . A foreground prediction is either a true positive

(TP ) or a false positive (FP ), depending on whether x is a gallery
identity or not. If x is a TP , it is either a sound true positive TPs
or an unsound true positive TPu, depending on the classification
result argmax

k
Sk (x). A false negative (FN ) is incurred if a

gallery identity is predicted as background.
We first measure the system’s ability to screen background

identities while at the same time classifying the gallery identities.
The recognition recall (RR) at threshold τ is defined as follows

RR(τ) =
|TPs|

|face det. ∩ head anno.|
=

|TPs|
|TP ∪ FN |

. (2)

To factor out the performance of face detection, we constrain our
evaluation to the intersection between face detections and head
annotations (the denominator TP ∪ FN ). Note that the metric is
a decreasing function of τ , and when τ → −∞ the corresponding
system is operating under the closed world assumption.

The system enjoys high RR when τ is decreased, but the
system then predicts many background cases as foreground (FP ).
To quantify the trade-off we introduce a second metric: false
positive per image (FPPI). Given a threshold τ > 0, FPPI is
defined as

FPPI(τ) =
|FPtype1|
|images|

, (3)

measuring how many wrong foreground predictions the system
makes per image. It is also a decreasing function of τ . When
τ →∞, the FPPI attains zero.

B.3 Results
Figure 18 shows the recognition rate (RR) versus false positive
per image (FPPI) curves parametrised by τ . As τ → ∞, RR(τ)
approaches the close world performance on the face detected
subset (FR ∪ NFR): 87.74% (Original) and 46.67% (Day) for
naeil. In the open-world case, for example when the system
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Fig. 18: Recognition recall (RR) versus false positive per image (FPPI) of our recognition systems in the open world setting. Curves
are parametrised by τ – see text for details.

(a) −90° (b) +90°

(c) −45° (d) +45°

(e) ±0° (f) Missing detections

detected face

missed ground truth head

matched ground truth head

head estimated from face

(g) Legend (h) Detected heads, but wrong orientation estimate

Fig. 19: Example results from the face detector (PIPA val set), and estimated head boxes.

makes one FPPI, the recognition recall for naeil is 76.25%
(Original) and 25.29% (Day). Transitioning from the open world
to close world, we see quite some drop, but one should note that
the set of background face detections is more than 7× greater than
the foreground faces.

Note that the DeepID2+ [3] is not a public method, and so we
cannot compute hdeepid features ourselves; we have not included
the hdeepid or naeil2 results in this section.

B.4 Conclusion
Although performance is not ideal, a simple SVM score thresh-
olding scheme can make our systems work in the open world
recognition scenario.
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