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Abstract

The GRILLIX code is presented with which plasma turbulence/transport in various geometries can be simulated in 3D. The distin-
guishing feature of the code is that it is based on the flux-coordinate independent approach (FCI) [1, 2]. Cylindrical or Cartesian
grids are used on which perpendicular operators are discretised via standard finite difference methods and parallel operators via a
field line tracing and interpolation procedure (field line map). This offers a very high flexibility with respect to geometry, especially
a separatrix with X-point(s) or a magnetic axis can be treated easily in contrast to approaches which are based on field aligned coor-
dinates and suffer from coordinate singularities. Aiming finally for simulation of edge and scrape-off layer turbulence, an isothermal
electrostatic drift-reduced Braginskii model [3] has been implemented in GRILLIX. We present the numerical approach, which is
based on a toroidally staggered formulation of the FCI, we show verification of the code with the method of manufactured solu-
tions (MMS) and show a benchmark based on a TORPEX blob experiment, previously performed by several edge/SOL codes [4].
Examples for slab, circular, limiter and diverted geometry are presented. Finally, the results show that the FCI approach in general

and GRILLIX in particular are viable approaches in order to tackle simulation of edge/SOL turbulence in diverted geometry.

Keywords: Flux-coordinate independent (FCI), X-point, separatrix, turbulence, edge, scrape-off layer (SOL), Method of
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1. Introduction

The edge and scrape-off layer (SOL) of magnetic fusion de-
vices play a crucial role for the achievement of a sustainable
fusion energy source. Many core parameters are often largely
set by edge/SOL conditions [5, 6] and especially the problem
of heat exhaust is one of the major challenges for large toka-
maks like ITER or DEMO [7]. However, the modelling of
this region exhibits many difficulties, and several code projects,
like HESEL [8], GBS [9, 10], HERMES (BOUT++) [11] and
TOKAM3X [12], are therefore devoted to simulation and pre-
diction of turbulent transport in the edge/SOL region. A par-
ticular challenge at modelling of the edge/SOL arises due to its
complex geometry. Tokamaks are nowadays mostly based on
the divertor concept, where in between the edge with toroidally
nested flux surfaces and the SOL with open magnetic field lines
intersecting divertor plates, there is a magnetic separatrix with
X-point. In order to exploit the fact that turbulent structures
are usually strongly elongated along magnetic field lines, it
would be very convenient from the theoretical, from the nu-
merical and from the computational point of view to employ
field/flux aligned coordinates [13]. However, field/flux aligned
coordinates become singular on the separatrix/X-point, which
justifies and motivates the use of a flux-coordinate independent
approach.

In the flux-coordinate independent approach (FCI) [1, 2, 14]
the simulation domain of e.g. a tokamak is spanned with a cylin-
drical grid, which is toroidally sparse in order to exploit the
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flute mode character of structures (k; > k). The discretisation
of perpendicular (w.r.t. magnetic field) operators is straight for-
ward as their stencil remains within Cartesian poloidal planes,
and parallel operators are discretised according to a finite differ-
ence along magnetic field lines by means of a field line tracing
and interpolation procedure (field line map). The basic feasibil-
ity of the FCI was shown recently mainly with the codes FENI-
CIA [1, 15, 16] and GRILLIX during its development. Solu-
tions to critical numerical issues, like numerical perpendicular
diffusion, map distortion and the treatment of boundary condi-
tions were found and are discussed in [1, 2, 15, 17, 18, 19, 20].

As a proof of concept the FCI has been adopted in the past
only to pure advection/diffusion problems and simple models
like drift wave turbulence and ion temperature gradient driven
turbulence in magnetic island geometry [1, 21, 16, 22, 23]. In
this paper we present for the first time the application of the
FCI to a physically relevant fluid model for the edge/SOL, i.e. a
drift reduced Braginskii model [3, 24] with sheath boundary
conditions at the target plates. This model is implemented in
the MPI+OpenMP parallelised code GRILLIX. In section 2 we
present the physical model with the employed boundary condi-
tions and discuss its conservation properties. In section 3 we
present the numerical approach in detail, i.e. how the model
is discretised within the FCI approach and how the boundary
conditions are treated, a subtle but critical issue. Details on
implementation and parallelisation are given, too. After this
follows section 4 on verification and validation of GRILLIX.
We employ the Method of Manufactured Solutions (MMS) [25]
for verification of the implementation, and validate against an
experiment at the TORPEX device, an exercise that had been
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performed previously by many other edge/SOL codes [4]. In
order to show the high geometric flexibility of GRILLIX we
give examples in section 5 in various magnetic configurations.
Concluding statements and an outlook are given in section 6.

2. Physical model

2.1. Equations

Firstly, we assume that the conditions for a fluid description
of the plasma, like the Braginskii equations [24], are satisfied,
i.e. the mean free path is short against the characteristic scale
length of the system (/lm p < Ro). This assumption is usually
only fulfilled at low temperatures, and might therefore become
especially in the edge region questionable. Secondly, we apply
the drift reduction based on the assumption that frequencies of
interest are small compared to the ion-gyro frequency w < €Q;,
yielding the model described in [3].

Further simplifying assumptions are isothermal elec-
trons (T, = const.) , cold ions (T;/T, < 1), no electron
inertia (m./m; < 1) and neglect of magnetic induction
(,Be = d4np,/B* < 1). Moreover we will apply the Boussinesq
approximation in the vorticity equation and neglect the polari-
sation velocity in the advective derivative. The latter approxi-
mations are commonly made in the community [8, 11, 12] and
have subtle effects on the energy theorem, which is clarified
in section 2.2. Although these assumptions might appear too
strong for typical edge/SOL conditions, the resulting model re-
tains a physical relevance for the edge/SOL as it still contains
the main driving instabilities, i.e. drift-waves and ballooning
modes. Moreover, as discussed in more detail in the outlook
(section 6), an extension of the code which relaxes these as-
sumptions does not pose any problems of principle to the code
or the FCI approach in general and will be pursued in the future.

For purpose of normalisation we introduce a reference den-
sity ng, a reference magnetic field By, a reference drift scale
ps = c\VT.m;/(eBy) and a parallel scale length Ry, being typi-
cally the major radius. This fixes the dimensionless parameter
0 := Ro/ps. Perpendicular scales are normalised with respect
to ps, parallel scales with respect to Ry and time is measured in
units of Ry/c, with the sound speed c; = VT,./m;. Velocities are
normalized with respect to the sound speed and the electrostatic
potential ¢ against e/T,.

Under the given assumptions the velocity of the ion/electron
fluid is described via a perpendicular drift motion and a parallel
streaming:

u’ =ug + u,, + ujb. €]
u =ug +u, + (”fl - ﬁ)b )
n

with b := B/B the unit vector of the magnetic field and j the
parallel current. The normalised E X B drift velocity ug, the
electron diamagnetic drift velocity u. and the polarisation drift
u,,; are defined respectively as:

1 1 4B
ug :ZEB x V¢, u,:=- @B X Vn, upy =0 I X 7

with the ion advective derivative:
1

% = g + [6uE + u"lb] V. )
We note that we have neglected here the advection with the po-
larisation velocity, and the effect of this on the energy theorem
is clarified in section 2.2. Effects arising from magnetic inho-
mogeneity are respected and enter the model via the curvature
operator:

c(f) :=—6V-(%fo), )

and we define the following operators in order to add perpen-
dicular/parallel dissipation:

D.(f) =V - vV (V2VF)], ©6)
Dy(f) =V - (/Y f), (7)

i.e. for N > 0 hyper viscosity is applied in the perpendicular
direction. Dissipation is mainly needed for numerical reasons,
or the dissipation coefficients vy, can also be chosen such
that GRILLIX is run as transport code.

Finally, the physical model consists of the continuity equa-
tion:

C,%n +oug-Vn+V- (nu""b) =-C(n)+nC(p)+V-(bj)
+S, + D, (n) + Dy(n), (8)

where we have added a particle source S ,,. The equation for the
ion parallel velocity is:

i

S| . .
==V, logn- T” + D, () + Dy(uy) ®

7Sl
and Ohm’s law:
Ji=0oV)(logn-¢), (10)
H .—— Cy M; 1 . . ..
with o = e me 031, the dimensionless conductivity. The

quasi-neutrality condition V - (nui - nue) = 0 yields (w/o dissi-
pation):

— 11
B2 dt an

to which we apply the Boussinesq approximation. The Boussi-
nesq approximation modifies the energy theorem and an ener-
getic consistent form is [11]:

di
v ( - _VLQS) = V- (bjj) - C(n),

V. ( n d VL¢) 50047 Gu). (12)

B? dt ot
with the vorticity Q := V- (V 10/ Bz). The Boussinesq approxi-
mation is routinely applied in the community since it simplifies
the computational treatment significantly (see section 3.5), but
a priori there is no justification for it as large fluctuations are
generally present in the edge/SOL [26]. A multigrid solver is
currently under development in order to relax the Boussinesq
approximation within GRILLIX. Finally the vorticity equation
implemented in GRILLIX is:

(%Q +ug - VQ = V- (bjy) + QC4) — C(n) + D.(Q). (13)



2.2. Energy theorem

The perpendicular respectively parallel kinetic energy densi-
ties are defined as:

1 .
€ :=Enu|’|2. (14)

Note that the density does not enter the definition of the per-
pendicular kinetic energy due to the Boussinesq approximation.
The time-evolution of the energy densities are easily obtained
as:

0
EEJ_+V' [¢)j+nuE] = j||V||¢+I/lV'llE +Dq’ (15)
0 n Wpor € i
EE‘H—V . [6” (6115 + u b+ p )] —Upy; V(;) = —uHV”n + DEH’

(16)

where the term under the divergence are transport terms. In D,
and D, terms arising from dissipation and sources are summa-
rized, for which explicit expressions can be found in Appendix
A. The other terms on the right hand side would represent trans-
fer terms to the magnetic respectively thermal energy within a
more complete model [3, 27], i.e. in our electrostatic/isothermal
model these terms appear as sources/sinks with a well defined
physical interpretation. The division of the parallel kinetic en-
ergy by n in terms with u,,; is a consequence of the Boussinesq
approximation. Finally, the term u,, - V(¢;/n) is a spurious
term, which arises since we have neglected the polarisation ve-
locity in the ion advective derivative. However, this term is
expected to be small as the polarisation velocity is of higher
order.

2.3. Boundary conditions

In general the simulation domain in GRILLIX is limited by
an outer flux surface ¥,,,, and in order to save computational
resources optionally by an inner magnetic flux surface ;. If
the outer limiting flux surface is outside the separatrix (,qx >
) additional boundaries at the divertor or limiter plates are
present (see fig. 1).

We want to avoid fluxes of particles and energy through the
inner limiting flux surface if present [11, 28], which implies
according to equations (15) and (16) that ug must be tangential
to flux surfaces at the boundary.

Ay, =0, (17)
ey - Vi =05 (18)
ey Vuy|, =0, (19)
Qly,,, =0, (20)

The same conditions are applied at the outer limiting flux sur-
face if open magnetic field lines are present. For simulations
with purely closed magnetic field line, i.e. Y, < ¥, a particle
sink is introduced via:

1y, <y, = C, (1)

with a constant C > 0. Additionally buffer zones close to the
limiting flux surfaces are present, where a strong perpendicular
diffusion to all quantities is applied (see section 5).

At the target plates sheath boundary conditions are applied,
where the parallel ion velocity is set according to the Chodura
criterion [29, 30] and the condition on the electron velocity
is used in linearised form. Via Ohm’s law (equation (10))
we obtain a condition for the electrostatic potential, which is
measured with respect to the sheath floating potential A =
% log (2211 ) Finally, outflow conditions for the density and vor-
ticity are set.

uf||X >+, (22)
Jily = =g, (23)
n
Vig + —¢‘ =V logn (24)
g lx
V{ lognl,, =0, (25)
VIII(Q|X =0, (26)

where the upper/lower sign applies if the magnetic field is di-
rected towards/away from the target plate. K is an integer which
specifies the order of extrapolation of the outflow boundary
condition, and due to technical reasons (see section 3) we set
the outflow condition on log n instead of n. For the sake of ro-
busteness the employed boundary conditions are kept relatively
simple. A detailed discussion on boundary conditions for fluid
SOL turbulence codes can be found in [31], and the implemen-
tation of the therein given boundary conditions, which also take
into account an inclination of the magnetic field with respect to
the material plates, is considered for future work.

3. Numerical approach and implementation

A general introduction into the Flux-Coordinate Independent
(FCI) approach can be found in [1, 2]. In its basic form (see
fig. 1) the simulation domain of e.g. a tokamak is spanned with
a cylindric grid (Ri, O Z j). Within poloidal planes (R;, Z;) the
grid is Cartesian and bound by limiting flux surfaces and diver-
tor or limiter plates (see fig. 1). Based on the assumption of a
strong toroidal field (B, > B),;) perpendicular operators can
be easily discretised with e.g. standard finite difference meth-
ods within the Cartesian poloidal planes. The discretisation of
parallel operators follows the idea of a finite difference along
magnetic field lines, i.e. from each grid points field lines are
traced to adjacent poloidal planes and values at the obtained
map points are computed via interpolation.

Several numerical practices were developed for the FCI in
the past: Based on the method of support operators [32, 33] a
self-adjoint discretisation for the parallel diffusion operator was
derived which exhibits a very low level of numerical perpen-
dicular diffusion [2, 17]. For strongly distorted maps a com-
bination of integration with interpolation was suggested [18].
Finally, the subtle but critical issue of treatment of boundaries
within FCI was touched upon in [18, 20]. All these findings
with small modifications, which will be discussed in the subse-
quent sections, went into the development of GRILLIX.



Figure 1: General overview of FCI concept in tokamak geometry. Grid, i.e. set
of Cartesian poloidal planes, is limited by outer (,,4x) and optionally inner
(Ymin) flux surface and divertor plates. Parallel operators are discretised via
field line map, i.e. field line tracing and interpolation.
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Figure 2: Scheme for toroidally staggered FCI approach. Grid is indicated with
crosses and dual grid with circles.

3.1. Toroidally staggered FCI

A conservative formulation of the FCI was presented in
[2], where the parallel gradient V| and the parallel divergence
V - (bo) fulfil the adjointness relation on the discrete level.
We present a modification which is based on a toroidally stag-
gered grid instead of a parallelly staggered grid. This resolves
a strange peculiarity of [2] where two distinct discretisations
('x") for the same operator arose. In the following we will re-
strict the discussion without loss of generality to two dimen-
sions (x, ¢), where x can be interpreted as a poloidal angle and
¢ as the toroidal angle. The magnetic field is assumed to be
axisymmetric, i.e. independent of ¢.

The scheme for the toroidally staggered FCI scheme is il-
lustrated in fig. 2. In addition to the canonical grid G denoted
with integer toroidal grid indices (k = 0,1,2,...) a dual grid
G* with half-integral toroidal grid indices (k = %, %, %, .. ) is
introduced. We define the discrete parallel gradient Qx as an
operator which maps from the grid to the dual grid:

Q:G—-G, 27)

where the integer subscript X will be clarified later. For some

quantity u collocated on G its discrete parallel gradient q collo-
cated on G* is defined (in the case X = 0) as:

U1 (X)) — g (x7)

, 28
sT+s7 (28)

Qijesl = (Qow),y =

where x* are map points and s;" lengths along field lines, which
are due to the assumed axisymmetry independent of the grid
index k. Values at map points u(x}) are obtained via inter-
polation within the poloidal plane k, where the coefficients of
interpolation are contained in the matrix Qp. The definition of
the discrete parallel gradient (28) can be generalised to a com-
bination of integration and interpolation, where the parameter X
somewhat controls the amount of integration. This is especially
important for strongly distorted maps, but we pass on a detailed
description of this which follows in complete analogy to [18],
where an exact definition for the parameter X can be found.

The discrete version Qj, of the parallel divergence V - (bo)
follows in analogy to [2, 17] according to the method of sup-
port operators [32, 33]. Neglecting surface terms the following
integral equality holds true:

qu . (bVHV) dv = - fVH”VHVdV’ (29)
which we mimic on the discrete level as:

Z an}k(’mﬁQX,ﬁ,yVy Va = - Z QX,/J,VuVQX,/l,TvT V/u (30)

By HV,T

where Greek indices denote a summation over all grid points
and V is a diagonal matrix containing flux box volumes V; as
entries as illustrated in fig. 2 with dashed blue lines. After rela-
belling the indices the discrete parallel divergence follows as:

Q;:G" -G, Qy=-V'Qiv. 31

The discrete operators Qx and Qj, fulfil by construction the ad-
jointness relation (29) on the discrete level.

Finally, we will need operators M, M* which map a quantity
from the grid G to the dual grid G* and vice versa. We employ
a simple definition using a linear interpolation along magnetic
field lines.

§; U1 (%)) + 57 u(x7)

M: G- G, Mu),,:=

, 32
sh+s7 (32)

— % + + % -
s; uk+%(xi )+ 5] uk_%(xi )

M :G" -G, (M'u);,; =

. (33)

T
S; + S;

where u* is a quantity located on the dual grid.

3.2. Discrete equations

We will now write down the equations (8,9,10,13) of the
physical model in spatially discrete form, and the temporal dis-
cretisation will be discussed in the next section.

Based again on the assumption of a strong toroidal field
any perpendicular operator can be approximated as opera-
tor acting purely within a poloidal plane, ie. ug - Vf =



-B! (OrgpOzf — 0z90rf) and C(f) ~ —20zf where the Ja-
cobi bracket [¢, f1 := Or@pdzf — 0z¢0rf is discretised with
the Arakawa scheme from [34] and for all other perpendic-
ular/poloidal operators standard second order finite difference
methods are employed.

In order to ensure its positivity the logarithm of the density
0, := logn is developed in time. The structure of the equa-
tions suggests that the discrete density n, its logarithm 6, po-
tential ¢ and vorticity Q are collocated on the canonical grid G,
whereas the discrete parallel current jl’“ and the discrete parallel
ion velocity uﬁ are collocated on the dual grid G*. The spatially
discrete equations are:

g, 6 .
6n— 5 [6.6,] + M (u/Qx8,) + Qxuj

ot
1 % ok 1 1 n 7
= C($- 60+ —Qijj + —Su+ — (Din+Din), (34)
6 s 6 * * H_ %
201~ 5 [M#.uj] + ujQuM ]
uﬁSn u * U %
= ~Quby — 5 — + D{uj + Difuj, (35)
i =0Qx (0. —9). (36)
) -
a—tﬂ -3 [4.Q] = QC¢ — Cn + Qyji + DTQ, (37)
Q =P¢, (38)

with the matrix P the discrete analogue of V - (B‘2V lo), D{ of
the perpendicular dissipation and C of the curvature operator .
The discrete parallel diffusion operator is D‘l’( = QyusQx.

3.3. Time-stepping

The Karniadakis multi-step method from [35] is used for
time advancement. We split the equation system o,F = f(F, 1)
into a part which is treated explicitly ¢ and implicitly f*. The
state at time step ¢ + 1 is computed according to:

F+ - %Azf" (F*! 1+ At) = %F’ - %FH + %F”Z
+ %At |37 (F',1) = 3¢ (F~" 1 = Ar) + £ (B2, 1 = 24

(39)

with At the size of the time step. Terms related with the parallel
current pose a strict requirement on the size of the time step
[36] and are therefore treated implicitly on the left hand side
contained in f7. All other terms are treated in an explicit manner
contained in f¢ on the right hand side. The resulting linear
equation system which is solved in GRILLIX in each time step
can symbolically be written as:

1 0 -&-LAQ, 0 \(6.\ (bg
st+1
0 1 0 S| T L7 o
—Qx 0 1 Qi T o]
0 0 -LAQ; P Jlg*') \bg

with by the corresponding right hand sides according to the
time step scheme (39), which contains also all explicitly treated

Figure 3: Scheme for treatment of radial boundary conditions. Crosses mark
positions of grid and circles of ghost grid. For homogeneous Neumann bound-
ary conditions the value of ghost point Q is set to the value at point A, which is
obtained from linear interpolation between points P1 and P2.

terms. A difficulty arises due to the factor # in the matrix
which makes the problem non-linear. In order to obtain a linear
problem we use here the extrapolated value obtained from the
3 previous time steps.

3.4. Treatment of boundaries

For the treatment of boundaries we proceed with the ap-
proach based on ghost points presented in [18].

Firstly we discuss the treatment of radial boundaries at v,
and ¥4, Which are cumbersome since the boundaries do not
conform with the grid. For the elliptic problem V - (B’zV Lq&) =
Q with Dirichlet boundary conditions we use the Shortley-
Weller scheme [37] and the case of homogeneous Neumann
boundary conditions is treated according to fig. 3. We extend
the grid within the poloidal plane by ghost points outside the
limiting flux surface. For some ghost point Q the normal to
the boundary contour is determined and its point of interesction
A with the nearest horizontal respectively vertical (depending
which one is closer) grid line. The value of ghost point Q is then
set to the value at the intersection point A, which is obtained
from linear interpolation between point P1 and P2. We note
that this is a numerically poor zeroth order procedure and more
sophisticated methods exist (e.g. [38]), which treat the bound-
ary conditions more accurately. However, their implementation
is cumbersome and intended for future work. Moreover, for
parallel operators we also decrease the order of interpolation
near the radial boundaries such that the interpolation stencil is
always complete.

The treatment of parallel boundary conditions, i.e. at diver-
tor/limiter plates, is also based on ghost points and we will re-
strict the discussion here again to two dimensions. The grid
is supplemented by ghost points within the divertor/limiter re-
gion, and the extent of the parallel ghost grid must be sufficient
such that the interpolation stencil of parallel operators for each
inner grid point is complete. A specified boundary condition
at the intersection of magnetic field lines with the target plate
is set by assigning values to ghost points according to a Tay-
lor expansion along magnetic field lines around the intersection
point. In fig. 4 field line tracing from ghost point A is performed
yielding the intersection point X, its map point B and its next
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Figure 4: Scheme for treatment of parallel boundary conditions. Crosses mark
positions of grid and circles of ghost grid.

but one map point C. In addition the distances s4, s and s¢
(signed w.r.t. direction of magnetic field) of each point to the
intersection point are computed. As an example for a Neumann
boundary condition V|u|, = « the value of ghost point A would
be set according to a second order Taylor expansion as:

2 2 2 2

Se—S Sy =S (54 — sB)(sa — S¢)
Uy = g §u3+ —Luc + " a,  (41)
SB_SC SB_SC SB Sc

where the values up and uc are obtained via interpolation. The
treatment of the full parallel boundary conditions (22-26) fol-
lows in principle the same approach but is more elaborate and
therefore discussed in Appendix B, and special care must also
be taken for quantities defined on the dual grid G* which is also
discussed in Appendix B.

A final subtlety regards the fact that ghost point A in fig. 4 is
set completely independent of its poloidal neighbour P within
the grid, and therefore a corrugation among point A and P might
be present. This could lead to an overshot at the interpola-
tion around the boundary (Runge’s phenomenon), which caused
sometimes even numerical instabilities in turbulence simula-
tions. Therefore, we implemented the possibility to smooth the
first inner grid point by applying after each time step to point P:

up=(1-2€ up+e(us+ugp), (42)
where we typically choose € < 0.1.

3.5. Comments on implementation

GRILLIX evolves the discrete equation system (34-38) in
time according to the scheme described in section 3.3. There
are no obvious reasons why the developed methods should not
easily be applicable to 3D configurations [20], e.g. stellarators,
but GRILLIX is written as an axisymmetric code in order to
facilitate implementation.

From the geometrical side GRILLIX takes as input the ax-
isymmetric field B(R,Z), and the the position of the bound-
aries is specified via a level set function whose contours usu-
ally overlap with the poloidal flux function ¥(R,Z). Via the

Number of threads 1 2 4 8 16 34 68
Strong scaling [%] | 100 94 87 80 65 45 27

Table 1: Strong scaling of OpenMP parallelisation for test problem with =
2.5-10° grid points. Test was executed on MARCONI A2 partition with Knights
Landing architecture (w/o hyper-threading).

level set function a Cartesian grid (R;, Z;) is masked and only
points within the mask are kept in memory. The grid is then
supplemented by poloidal and parallel ghost points.

In a preprocessing step the map matrices Qx, M and M* are
built. Since the map is assumed to be time-independent this
possibly costly task has to be performed only once at the be-
ginning of a simulation and the result can even be written to
hard disk for reuse. The field line tracing is performed via the
DOP853 ODE Solver [39, 40], and the coefficients of interpola-
tion are computed according to a polynomial interpolation [41]
of arbitrary odd order (usually 3rd order) where the map point is
always centred around the interpolation stencil. The final matri-
ces are generally sparse and due to axisymmetry their blocks are
identical for each plane k. Some further meta data like the flux
box volumes and information related with setting of boundary
conditions are also computed during the preprocessing phase.

The main task within the time loop is to solve the linear
equation system (40). The computation of the explicitly treated
parts, i.e. the right hand side of equation (40), is straight for-
ward, and the equation system is then solved via a GMRES
algorithm based on a reverse communication interface [42]. In
order to speed up computation we use as preconditioner:

1 00 0
0 10 0

Ri=1_ o0y 0 1 Qx| @3
0 00 P

i.e. terms proportional to At are simply dropped. The precondi-
tioning step becomes trivial if the elliptic problem Px = b with
x unknown is solved, for which we implemented a geometric
multi-grid solver [37]. With this solver GRILLIX is already
equipped for relaxation of the Boussinesq approximation in a
computationally efficient way.

GRILLIX is MPI parallelised over the toroidal direction,
i.e. each MPI process works on a single plane k. Due to ax-
isymmetry each process executes the same amount of work
and therefore load balancing is by construction excellent. Be-
sides few global communications mainly for diagnostics pur-
poses, the main communication takes place between adjacent
planes for evaluation of parallel operators. Within each plane
GRILLIX is OpenMP parallelised, respectively multi-threaded
libraries are employed. Due to the field line map the connection
between points (stencil) is in general rather complex and de-
pends on the specific resolution and geometry employed. This
is disadvantageous concerning memory access times on NUMA
systems, and an example for the strong scaling of the OpenMP
parallelisation is given in table 1, which becomes at a large
number of threads somewhat poor.



4. Verification and validation

4.1. Parallel transport in SOL

Verification tests of GRILLIX concerning parallel diffusion
as an isolated sub-problem can be found in [2, 17, 18]. As an-
other important isolated sub-problem we give here an example
for the parallel advective transport model in the SOL, in order
to verify implementation of the Chodura boundary conditions
in a sub- and super-sonic case. We consider the following sub-
problem:

0 ; ; 1
2,00 T UiV10, + V- (b)) =~ (Dy(m) + D), (44)

%‘M‘ll + uﬁV”u"l = —VHQ,, + Z)”(ulll) + DJ_(M‘Il), 45)
where the dissipation here is applied for numerical reasons,
and Chodura boundary conditions (equations (22) and (25) with
K = 2) are applied at the target plates.

As an example we use a circular equilibrium with limiter and
constant safety factor ¢ = 3. The initial state is uﬁ(t =0=0
and for the density a constant background n plus a field aligned
Gaussian structure of amplitude n,;,, = 1 of isotropic perpen-
dicular width w, = 2.5-1072. We choose as toroidal resolution
Ap = %—’6' and a poloidal resolution of 4 = 3 - 107> (Perpen-
dicular scales are measured here in Ry, i.e. 6 = 1). In order
to suppress zig-zag structures we employ a parallel numerical
diffusion of u, = u, = 0.04 in combination with a small per-
pendicular hyper-diffusion (N = 2, v, = v, = 0.01). In fig. 5
the result of a simulation with ny = 1 is shown. The blob ini-
tially splits into two counter-propagating parts and outflow at
the target plates is mostly sonic. Also the parallel ghost points
are explicitly included in the figure in order to show that quanti-
ties are obviously smooth across the boundary (We used for this
test € = 0). In fig. 6 the result of a simulation with low back-
ground of ng = 1 - 1072 is shown, where the blob propagates at
supersonic speed. As it approaches the target plates the bound-

ary condition for the parallel velocity changes from M|i|'x = =1

to Vﬁuﬁ R
extrapolation along magnetic field lines (see Appendix B).

= 0, i.e. values on ghost points are then set via linear

4.2. Method of manufactured solutions

We verify the implementation of the physical model in
GRILLIX with the Method of Manufactured Solutions (MMS)
[25], which has become a standard procedure in the community
[10, 12, 43, 44]. MMS can be performed at various levels of
thoroughness, but we will restrict our test case here only to cir-
cular geometry on closed magnetic field lines with homogenous
radial Dirichlet boundary conditions. A more extensive analy-
sis is postponed to a later point in time, when a more complex
physical model will be available in GRILLIX (see section 6).

We define the poloidal angle 6(R,Z) := arctan(%) and

a flux surface label p(R,Z) := V(R/S — 1)* + (Z/5)* with the
domain radially bounded by p € [omin - - - Pmax]- The magnetic
field is prescribed in terms of a safety factor profile of the form
q(p) = qo + s(p — po) with gy a reference value at the central

a)
0.2 e 1 _ 1
09 0.8
038 0.6
0.1
[107 0.4
[ | 106 102
N OSL.imiter (ghost points) 05 1o
! l 04 -0.2
0.3 0.4
-0.1
02 0.6
0.1 0.8
V%8 o9 111 12 s 0.9 1 1.1 12 !
R R
b)
o1 — %
z g !
1.5r5 £
o o
5 5
0528 g
= NE| -1
4 -l ﬁ
Yo -5 0 5 10 -10 -5 0 5 10
) Z|
[—t=00—t=1.0—t=2.0—t=5.0—t=10.0 —t=20.0]

Figure 5: a) Poloidal cross section of density (left) and parallel velocity for blob
withng = latt =55, ¢ = 271%. Parallel ghost points are shown explicitly
in between limiter plates (black lines). b) Density (left) and parallel veloc-
ity (right) along magnetic field line passing through center of blob at different
times.
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Figure 6: Same as fig. 5 for ng = 1- 1072, Snapshot is at t = 4.0.



| ky ko ky o
6, | 1 1 1 100
6|2 2 1 80
W |3 1 1 65

Table 2: Parameters used for MMS solution.

flux surface pg := (Omin + Pmax) /2 and s the magnetic shear. As
MMS solutions we choose functions of the following type:

Upmms (p5 0’ Y, t) = sin (ZKkPM
Pmax — Pmin

(46)

which are rather general, as the discretisation of the FCI ap-
proach does not rely on flux/polar coordinates p,6 within
poloidal planes but on Cartesian coordinates R,Z. The tem-
poral discretisation error in GRILLIX is of third order in time
according to the Karniadakis scheme. The spatial discretisation
error is of second order except for grid points in direct vicinity
of radial boundaries, where the Shortley-Weller scheme is used
for the discretisation of the elliptic operator and the interpola-
tion order might be reduced.

We benchmark the complete physical model (8,9,10,13)
without source (S, = 0) and regular perpendicular diffusion
(N = 0). A circular geometry with magnetic shear (gp = 3,
s = 10) is used where the domain ranges radially from p,,;, =
0.1 to ppgx = 0.18. The simulation parameters are in the
range of turbulence simulations presented later on, i.e. 6 = 680,
o =1, voua = 13, ftyy = 1-1072, and the parameters of
the MMS solutions are summarized in table 2. We cover a
resolution of Ap = %”/2" with a poloidal resolution of corre-
spondingly 4 = 2.04/2' and time steps At = 1 - 107#/2/, where
i = 0...4. The numerical error is measured in the L2 norm
Ay = |ty — upms | [ umms |, at time ¢ = 0.2,

The result of the MMS procedure in fig. 7 shows a conver-
gence at second order for all quantities. We do not observe any
degradation of the convergence order due to the poorer numer-
ical treatment at the radial boundaries, and the reason for this
might be the use of homogeneous Dirichlet boundary condi-
tions for this test case. The overall result provides strong confi-
dence in the correct implementation of GRILLIX.

4.3. TORPEX blob

A simple validation exercise against the TORPEX exper-
iment [45] and simultaneously a benchmark against several
edge/SOL codes is based on the propagation of seeded blobs.
The full details about the experimental setup and simulations
carried out with STORM(BOUT++), GBS, TOKAM3X and
HESEL can be found in [4]. The TORPEX device is modelled
with GRILLIX in slab geometry (R, ¢, Z), where the magnetic
field is aligned with the axial coordinate ¢, i.e. B = e,. Sheath
boundary conditions are applied at ¢ = 0 and ¢ = 27 and peri-
odic boundary conditions in y-direction. In x-direction bound-
ary values are set to the background values, which is obtained
according to the procedure described in [46]. A snapshot of the

) sin (k6) cos (k,¢) sin (1),

increasing resolution —
10_5 1 1 1 l
8 16 32 64 128
2w/ Ay

Figure 7: Numerical error of MMS procedure in circular geometry with mag-
netc shear. Black solid line shows second order as reference.
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Figure 8: Snapshot of blob at ¢ = 0 and # = 48us for case 1 of [4]. Left: blob
density n — nje in 101°m=3, right: electrostatic potential ¢ in V.



blob density and electrostatic potential for case 1 is shown in
fig. 8.

For a quantitative comparison we show in fig. 9 the radial
and vertical velocities of the blob centroid. The radial veloc-
ities obtained with GRILLIX agree by trend with experimen-
tal data, whereas the vertical velocities are systematically un-
derestimated. This deviation can be explained by an insuf-
ficiency of the isothermal physical model, especially missing
of thermal effects [4] in GRILLIX and STORM. We compare
to the STORM module (BOUT++3D) as it employs the same
model as GRILLIX except that electron inertia is taken into
account and the Boussinesq approximation is handled differ-
ently. The agreement between GRILLIX and STORM is good
and the deviations are due to the mentioned differences in the
physical model. In order to show this we have also imple-
mented the Boussinesq approximation of STORM in GRILLIX,
ie. V- (n%qub) — n%Q instead of (12). The agreement be-
tween the modified version GRILLIX(mod Bsq) and STORM
is excellent, and small deviations in the vertical propagation
velocities, especially for case 3, could possibly be explained by
effects due to electron inertia.

5. Simulations

The system is driven in GRILLIX by a particle source of the
form

s Vw2
Sn = Csree W) Ware (ntargel - <n>¢) > 47)

i.e. the source is located at the flux surface i, typically close
to the inner limiting boundary with a Gaussian width of wy,,
(typically a few p,) and drives the zonal averaged density to-
wards the target value ny.¢.;. We refer to Appendix C for the
computation of flux surface averages within the FCI approach.
In buffer zones close to the radial boundaries we additionally
smooth all quantities by applying a strong perpendicular diffu-
sion according to:

=tV (vir @)V Lu). (48)

where we realize via step functions that only in the buffer zones
vpr(¥) # 0.

5.1. Closed magnetic flux surfaces

For an example in tokamak geometry we prescribe the nor-
malized magnetic field as:

B = Vo + Vo X V¥(R, Z), (49)

case1

-500- b

L L
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|—Experiment —GRILLIX —STORM —GRILLIX (mod Bsq) |

Figure 9: Radial (a) and vertical (b) velocities of TORPEX multi-code vali-
dation obtained with GRILLIX, STORM, experiment with uncertainty (grey
shaded area) and the modified version GRILLIX(mod Bsq) which employs the
same Boussinesq approximation as STORM. Experimental data and data of
STORM was picked from [4], where also further details on the setup of case 1
(top), case 2 (center) and case 3 (bottom) can be found.
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Figure 10: Snapshot of density n at poloidal cross section ¢ = 0 and time # = 53.
Resolution within poloidal plane was & = 1, i.e. = 65 points radially at outboard
mid-plane, and 16 poloidal planes were used. Time step was df = 1 - 1074,

where we use as poloidal flux function an analytic solution to
the Grad-Shafranov equation from the class of solutions of [47]:

W(R,Z) =0.0159 - 0.0363 R? - 0.00262 R J, (5.836 R)
~0.0117R(1.769Z - 0.231) J, (5.836 R)
~0.0665 R Y, (5.836 R)
— 0.0461 R J; (4.669 R) cos (3.502 Z — 0.457)
+0.0360 R J1 (3.502 R) cos (4.669 Z - 0.610)
+0.0218 R J1 (0.584 R) cos (5.807 Z - 0.758)
—~0.0383 R J1 (6.825 R) cosh (3.537 Z - 0.462)
+0.0238 R J; (4.669 R) sin (3.502 Z — 0.457)

— 0.00926 sin (5.836 Z - 0.762), (50)
with J; and Y| Bessel functions of the first respectively second
kind, and R = R/6 and Z = Z/6 the major radius and the vertical
coordinate measured in units of Ry. Additionally, we define the
normalized flux label p = \/(lp — o) | (Wx — o) with ¥, ¥,
the poloidal flux at the magnetic axis respectively separatrix.
Firstly, we present a simulation on closed magnetic flux sur-
faces covering p € [0.6,0.9] with a safety factor in the range
of g 1.76...2.47. We choose as parameters 6 = 1000
and o 50, which could reflect a deuterium plasma with
roughly ny = 2-10"¥m™3, T, = 10eV, Ry = Im, By = 0.5T,
T, = 4.4 -1077s. A perpendicular hyper-diffusion (N = 2) with
vy = v, = vq = 10 is applied and parallel diffusion coefficients
are set to u, = u, = 0.15. The simulation is initialised with
the background density plus small random fluctuations, and all
other quantities are set to zero. A snapshot of the density in the
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Figure 11: Volume averaged density (top) and perpendicular/parallel kinetic
energy (bottom).

saturated state is shown in fig. 10.

The volume averaged density, perpendicular and parallel ki-
netic energy are shown in fig. 11. Initially the density ramps
quickly until at ¢+ ~ 2 the target density in the source region
has already been reached. On a slower time scale density is
then transported radially outwards via turbulent advection to
the outer limiting flux surface, which constitutes a sink, until
there is a balance between the driving source and the sink from
around ¢ ~ 35. In fig. 12 time derivatives of the volume av-
eraged density and kinetic energies during the saturated phase
are shown. It is obvious that the time derivative of the volume
averaged density is a balance between the driving source and
the sink at the outer limiting flux surface, showing that there
are indeed no or at least only very small spurious numerical
sources/sinks of particles in GRILLIX. The same is true for the
perpendicular/parallel kinetic energies whose time derivatives
are balanced by terms according to equations (15,16). At this
analysis we did not take into account the source term due to the
polarisation drift in equation (16), showing that this term seems
to be indeed very small.

As abasic diagnostics of the saturated state we show the aver-
age density profile and its radial gradient in fig. 13. The density
decays from the target density in the source region to the back-
ground value at the outer limiting flux surface. In the average
parallel current Pfirsch-Schliiter currents become obvious (see
fig. 14), which are under the isothermal approximation propor-
tional to the radial gradient of the density profile jps o d, (1),
[48]. The results of the simulation are consistent with this as re-
gions of strong Pfirsch-Schliiter currents coincide with regions
of strong density gradients at p ~ 0.65,0.75,0.85. We note that
the magnetic field in GRILLIX is prescribed and fixed in time,
but the average current and pressure profile evolve according to
force balance (j),,, xB = (Vp),,. The root mean square density
fluctuation exhibits the characteristic ballooning pattern with a
high fluctuation level at the low field side, and a correlation be-
tween fluctuation level and density gradient is also observed.

~
=~

The treatment of the magnetic axis is trivial within the FCI
approach, and to show an example we consider a domain with
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Figure 12: Time derivatives of volume averaged density (top), perpendicular
kinetic energy (center) and parallel kinetic energy (bottom) during saturated
phase. Solid blue lines represent directly computed time derivatives, i.e. ob-
tained via finite difference between two adjacent time points. Other solid
coloured lines are balancing terms of the underlying conservation theorem (see
equations (8,15,16)) and dashed red line is sum of balancing terms.
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Radial gradient of density profile. Minima at around p = 0.65,0.75,0.85 are
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Figure 15: Snapshot of density (left) and electrostatic potential (right) for sim-
ulation including magnetic axis.

p € [0,0.3], where the source is located slightly off-axis at p =
0.05. A buffer zone is only present near the outer limiting flux
surface and other parameters were taken over from the previous
example. A snapshot of this simulation in the saturated phase
is shown in fig. 15, where stable vortices in the potential have
developed around the resonant surface with ¢ = 3/2.

5.2. Limiter

In a geometry with circular flux surfaces the magnetic field is
prescribed via a safety factor profile g(p) = go + s (0 — po) with

p = \/(R/('i -1+ (Z/8)>. We consider a pure SOL region
with a toroidal limiter intersecting radially the full domain. A
simultaneous treatment of open and closed field lines in limiter
geometry is not yet available in GRILLIX, since an additional
type of boundary would be present where field lines run tangen-
tially to the limiter front plate.

For an example we use the same parameters as in the previ-
ous section 5.1 except that we reduced the parallel conductivity
to o = 10 in order to speed up the computation. The simula-
tion domain spans p € [0.018,0.03] with g = 2.5 and s = 30,
i.e. the safety factor is in the range of ¢ = 2.32...2.68. The di-
rection of toroidal field is counter-clockwise and the direction
of plasma current clockwise if viewed from above. A snap-
shot of the density in the saturated phase is shown in fig. 16
for a case with a toroidal limiter at the bottom and at the high
field side. Blobs are observed and density is rather depleted
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Figure 16: Snapshot of density at ¢ = 0 in saturated phase of simulation with
toroidal limiter at bottom (left) and at high field side (right). Ghost points be-
tween limiter plates are included.
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Figure 17: Density profile at outboard mid-plane averaged over time and
toroidal angle for simulation with limiter at bottom and high field side. Black
dashed lines are exponential fits to source free region with gradient lengths of
L, =20 respectively L, = 30.

on the low field side with its unfavourable curvature. Trans-
port is stronger with the limiter at the high field side, which is
supported by fig. 17 where the density profiles at outboard mid-
plane are shown, yielding a gradient length of L, = 20 with
limiter at bottom and L,, = 30 with limiter at high field side.
Depending on the position of the limiter poloidal asym-
metries of the average parallel velocity are observed in ex-
periment [49]. A theoretical investigation revealed equilib-
rium ExB flows, due to the presence of the sheath, and pres-
sure poloidal asymmetries as source with an analytic estimate
[50, 51] (here: 0y = 1 and o, = 1) for the average Mach num-

ber M := — <uﬁ>wz

M(p*,6") =M™ "+ (Mg, + My) (1 - /') = 267+

4[(My+ My - M) e = M, |07, (5D
with 6* a poloidal coordinate ranging from —0.5 to 0.5 between
the two limiter plates, and p* a flux surface label with p* = 0 at
the separatrix. In practice we set p* = 0 at the location where
the source free region starts. My = M(0,0) is a reference Mach
number and M, = (6n + 6T) /2 is due to the pressure poloidal
asymmetry, where dn, 6T is the density respectively tempera-
ture difference between the two limiter plates. For a compar-
ison to our isothermal model we neglect 67 and My,, which
represents an effect of the equilibrium electric field caused by
the sheath and estimate the gradient length as / ~ L,. The av-
erage Mach number obtained from GRILLIX and according to
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Figure 18: Average Mach number obtained from simulation with GRILLIX
(left) and from theoretical estimate (right) according to equation (51). a) Lim-
iter at bottom, b) limiter at high field side.

formula (51) is shown in fig. 18. Given the fact that formula
(51) is only an estimate, the agreement is good as the poloidal
asymmetry is reproduced correctly with GRILLIX.

In order to extract information along the parallel direction
from GRILLIX simulations the characteristics of a magnetic
field line (R(p),Z(p),p)) and its length x;(p) are computed
via field line tracing (The non-cyclic toroidal angle is used
here, i.e. ¢ = @ mod 27). Values of some quantity at inter-
section points of the magnetic field line with poloidal planes,
i.e. u (R(@r), Z(@r), ¢r), are obtained via interpolation. The den-
sity, parallel velocity and parallel current for three sample mag-
netic field lines are shown in fig. 19. There are no noticeable
numerical corrugations along the parallel direction which indi-
cates that field lines are globally resolved by the field line map,
which connects only adjacent planes via interpolation. More-
over, the specified boundary conditions at the limiter plates (22-
26) are actually fulfilled.

5.3. Divertor

We consider again the geometry and magnetic configuration
of section 5.1, but the simulation domain spans across the sepa-
ratrix p € [0.88, 1.06] with an X-point at = (0.85, —0.38). There
is a horizontal divertor at Z = —0.42, and the private flux region
is covered until p = 0.99.
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Figure 19: Density (top), parallel velocity (center) and parallel current (bottom)
plotted along sample field lines for limiter simulation at # = 18 with limiter at
bottom. x is coordinate along field line with x; = 0 halfway between limiter
plates. Three field lines running at different radial positions are shown and
solid vertical lines mark intersection with limiter plates. The values of +n¢ at
the limiter plates are also marked in the bottom plot with triangles showing that
the boundary condition (23) for the parallel current is actually fulfilled.
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Before starting a turbulence simulation we established first a
more suitable initial state via running GRILLIX as a transport
code. Starting from low background density we ran GRILLIX
without E X B advection and large nominal perpendicular dif-
fusion (N = 2, v, = v, = vo = 100) with a larger time step of
dt = 1-1073 until a steady state was achieved. After this we
switched on E X B advection and switched to hyper-diffusion
N=2,v, = v, =vg 10). Other parameters were taken
over from 5.1 except that we reduced again o = 5 in order to
save computational costs and that we chose a higher toroidal
resolution of Ap = 2r/32 with decreased parallel diffusion co-
efficients p,, = p, = 0.04.

A snapshot of the density in the saturated state is plotted in
fig. 20. Whereas the high field side is rather quiescent with
a jump in the density across the separatrix, the low field side
exhibits strong fluctuations and swamps the separatrix. Also
the effect of magnetic shear on structures is visible. Whereas
they are rather isotropic at the unstable outboard side, they
fan out towards the top and especially strongly towards the X-
point, where they become subject to perpendicular dissipation
[23, 52]. There are also abrupt changes to the private flux region
and the X-point becomes clearly visible. We emphasize here
again that neither the grid nor the discrete operators are sensi-
ble to flux surfaces or the X-point. Each grid point is treated
on the same footing, and the fact that the separatrix and the X-
point become clearly visible in the simulation is a consequence
of the field line map. Below the divertor line also the region of
parallel ghost points is shown, which are essentially obtained
from a linear extrapolation along magnetic field lines using in-
formation from the two neighbouring planes ¢;.| and ., (see
equation B.6).

To give also an impression on the parallel structure we show
in fig. 21 the parallel current on the flux surface p = 0.99 close
to the separatrix in dependency of the toroidal angle and the
geometric poloidal angle. We want to note here once again that
the complex courses of magnetic field lines become obvious in
the texture although the computational grid is not aligned along
magnetic field lines or flux surfaces. There is a disconnection
along the parallel direction across the X-point region, where the
magnetic field lines run nearly purely toroidally. This is owed
to strong dissipation in the vicinity of the X-point as structures
are strongly fanned out by the local magnetic shear around the
X-point.

6. Conclusions and Outlook

The unique feature of GRILLIX is that it is based on the FCI
approach, which exhibits a very high flexibility with respect to
geometry. No special workaround for X-point(s) or magnetic
axis is required, but every grid point is treated on the same foot-
ing. The numerical framework in GRILLIX consists of perpen-
dicular operators which are easily discretised via standard finite
difference methods within a set of Cartesian poloidal planes,
and parallel operators which connect these planes via a field line
map, i.e. field line tracing and interpolation. The discrete paral-
lel divergence is thereby constructed from the discrete parallel
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Figure 20: Snapshot of density of simulation with X-point. Separatrix is in-
dicated with black dashed line and divertor plate with solid black line. Points
below divertor at Z = —0.42 are ghost points.
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Figure 21: Snapshot of parallel current on flux surface p = 0.99 as function
of toroidal angle ¢ and geometric poloidal angle 6 = arctan (%). Low field
side (LFS) corresponds to 6 = 0, 27, top to 8 = 7/2, high field side (HFS) to
6 = 7 and bottom to 6 = 37r/2. Part of a sample field line is indicated with solid
black line and transitions between first planes with dashed black lines.
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gradient as its negative adjoint via application of the method of
support operators in a toroidally staggered framework.

An isothermal electrostatic drift reduced version of the Bra-
ginskii model with Boussinesq approximation is employed in
GRILLIX in order to model edge/SOL turbulence. An effective
solution for the treatment of sheath boundary conditions, a sub-
tle but important issue within the FCI approach, was presented.
The implementation of the model was successfully verified with
the method of manufactured solutions and a simple benchmark
based on TORPEX blob experiments was performed.

Several examples showed the geometric flexibility of the
code: The treatment of a magnetic axis within the FCI approach
is trivial, and we showed the conservation of particles and the
underlying energy theorem in a configuration with closed mag-
netic field lines. Pfirsch-Schliiter currents and the fluctuation
level appeared thereby in correlation with the density profile.
Pure SOL turbulence was investigated in toroidal limiter con-
figuration. An example in diverted geometry showed that the
structures align themselves automatically even to magnetic field
lines with complicated courses. Although the computational
grid of GRILLIX is neither aligned to field lines nor to flux sur-
faces, the separatrix, X-point and magnetic field lines become
visible.

The verification tests and examples altogether are strong in-
dications that the FCI approach in general and GRILLIX in
particular are viable approaches in order to tackle modelling
of edge/SOL turbulence in realistic diverted geometry. GRIL-
LIX is still strongly capable of development, and the full drift
reduced Braginskii model [3, 27] constitutes a rather complete
model for edge/SOL turbulence, at least from the fluid point
of view. Its further implementation into GRILLIX seems to be
rather straight forward from now as discrete versions of all nec-
essary operators are available. A geometric multigrid solver is
already implemented in GRILLIX, which allows to relax the
Boussinesq approximation, and inclusion of electron thermal
effects has already been surveyed in GRILLIX within slab ge-
ometry [53]. Electromagnetic effects enter in the drift approx-
imation as effective perpendicular dynamics. Also a gyrofluid
model could be surveyed in order to treat finite larmor radius ef-
fects. Although GRILLIX is yet based on axisymmetry, there is
no obvious reason why the developed methods could not easily
be extended also to three-dimensional geometries [20], i.e. stel-
larators.

Finally, only obvious parallelisation and computational op-
timisations are currently applied in GRILLIX. A tedious but
probably worthwhile task would be a controlled organisation of
memory affinity in order to push OpenMP scalability. More-
over, a smart domain decomposition within poloidal planes
would reduce communication and add another level of paral-
lelisation.
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Appendix A. Dissipation/sources in energy theorem

The expressions for D, and Dy, in equations (15) and (16)
are:

De, == ¢D,(Q) (A.])
Dy =55 (Do) + Dy(m) = D) - 5,
+ i [ D () + Dy ()| (A2)

Appendix B. Full parallel boundary conditions

The treatment of the full parallel boundary conditions (22-
26) according to the method touched upon in section 3.4 is pre-
sented here. Without loss of generality we restrict the discus-
sion still to 2D within the setup of fig. 4.

The expression for pure Neumann boundary condition is
given in equation (41) and for the general case of a mixed type
boundary condition:

YVjul, + B uly = (B.1)
the value on ghost points is assigned according to:
_ a—(ygs +Bfp)us — (ygc + Bfc) uc B.2)
Y84 + Bfa
with the coeflicients:
SBS. S+ S
fai= L . =i, (B3
(54 — sB)(sa — 5¢) spsc
SAS SA+ S
fp =~ A% . gpi=—fy—", (B4
(sa = sp)(sp — sc) sASc
SAS sS4+ S
fo:= - . gc=—fe—L. (BS)
(54 — sc)(s = Sc) SASB

For a vanishing second parallel derivative Vﬁu « ghost points
are set according to:

SA — Sc SB — SA
u

Up = (B6)

uc,

B
Sp — S¢ Sp — S¢

which covers the boundary conditions for the density (25) and
vorticity (26) in the cases K = 1,2.

The boundary condition (24) for the potential is of a mixed
type with 8 = — 0"1n|x and a = VHH,,ix. Consistent with the
Taylor expansion these values are obtained as

nly =fana + fang + fene.  Vibu|, =8a0na + 85005 + 8cOnc-
(B.7)
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Figure B.22: Scheme for parallel boundary conditions within FCI on dual grid
G*. Grid points of G are marked with ’+” and grid points of G* with *x’. Ghost
points of G are marked with "o’ and of G* with '[J°, which are below dashed
line. Intersection (X) and map points (B,C) are defined as in fig. 4 but w.r.t. dual
grid G*. Additionally, map points with respect to grid G are denoted with B*
and C*.

The situation is slightly different for quantities defined on the
dual grid G*, i.e. for the parallel velocity and the parallel cur-
rent. On G* also inner grid points which lie inside the domain
are ghost points, for which the parallel gradient operator would
involve ghost points from the canonical grid G. Otherwise the
same methods and definitions, e.g. (s4, Sp, S¢), as for the canon-
ical grid hold, but with respect to the dual grid (see fig. B.22).

For the Chodura boundary condition (22) uf‘ ’x < -1 we

firstly extrapolate the parallel velocity to the intersection point
according to:

SB
Sc—§

Sc
Sc — SB

iy = Uyp — B”\ZIC’ (B.8)
and values at ghost points are then set according to equation
(B.2) withy =0, = 1 and @ = min (i, —1).

Finally, the boundary condition (23) for the parallel current
follows also according to equation (B.2) with y = 0,8 = 1
and @ = — n¢ly. However, care must be taken as jj is defined
on the dual grid G*, but n and ¢ on the grid G. One could
beforehand map n and ¢ to the staggered grid, which however
would involve an additional interpolation. Instead we obtain the
value for n|y and ¢|y from the map points B* and C* in fig. B.22

as:

Sc* Sp*

nly = ng (B.9)

Scx — Sp*

np-,
Sc+ — Spr
with sp- and s¢- the distances from the intersection point to the
map points B* and C*.

Appendix C. Flux surface average in FCI

Flux surface averages (u), have to be performed in GRILLIX
for the source term and diagnostics purposes. As the grid is in
general not aligned with flux surfaces in the FCI approach its
computation requires some clarification.

In a flux aligned coordinate system (p, 8, ¢) with p some flux
surface label and 6 the geometric poloidal angle, the flux sur-



face average is defined as [13]:

2m 21

[ [ dode jgu
; €D

with /g the Jacobian, which can be computed directly via:

o 1

(RIS (R]S = 1) +(Z/6)

1 [(R/a ~ 1) (0zp/5) — (Z/5) (rp/9)
(R/6)* (RS = 12+ (Z/6)

|0rp/6)* + (920167’

2
} . (C2)

On the discrete level we introduce a flux surface aligned grid
with similar resolution as the cylindric grid, where the mapping
u (R;, Wi, Z j) — u (o, By, ¢1) can easily be performed with the
available interpolation routines. The angle integrals are sim-

2r 21
ply replaced by sums, i.e. fd@ — >, A6 and fd(p - i Ag,
0 0

and the discrete flux surface operator is a sparse matrix F of
dimension n, X n.,; with n, the number of flux surfaces of
the flux aligned grid and n.,; the number of grid points of the
cylindric grid. Finally, a 1D interpolation with the available
(u)y, = (Fu), is performed in order to obtain flux surface av-
erages at arbitrary p.
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