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Abstract: Speakers adjust their voice when talking in noise (known as
Lombard speech), facilitating speech comprehension. Recent neurobio-
logical models of speech perception emphasize the role of amplitude
modulations in speech-in-noise comprehension, helping neural oscilla-
tors to “track” the attended speech. This study tested whether talkers
produce more pronounced amplitude modulations in noise. Across four
different corpora, modulation spectra showed greater power in ampli-
tude modulations below 4 Hz in Lombard speech compared to match-
ing plain speech. This suggests that noise-induced speech contains more
pronounced amplitude modulations, potentially helping the listening
brain to entrain to the attended talker, aiding comprehension.
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1. Introduction

Speakers typically adjust their voice when talking in noisy conditions. Speech produced
in noise generally exhibits increased intensity, slower speech rate, raised F0, and flatter
spectral tilt (for an overview, see Cooke et al., 2014a). These and other modifications
result in what is collectively known as Lombard speech (Lombard, 1911). The scientific
importance of this form of speech stems in large part from the discovery by Dreher
and O’Neill (1957) that, after discounting intensity increases, Lombard speech is more
intelligible than unmodified speech when presented in noise, a finding that has been
confirmed in a number of subsequent studies (e.g., Pittman and Wiley, 2001; Summers
et al., 1988). However, the basis for intelligibility gains is not fully understood. One
aspect of noise-induced speech that has received little attention concerns how talkers
adjust the temporal modulations of their speech when conversing in noise. The present
study examines the temporal modulations in Lombard speech and plain speech (speech
produced in quiet) and demonstrates that amplitude modulations are enhanced in the
temporal envelope of Lombard speech compared to matching plain speech.

Speech is an inherently rhythmic signal in that it contains strong amplitude
modulations, particularly in the 1–15 Hz range (Ding et al., 2017; Varnet et al., 2017).
These amplitude modulations, evident in the temporal envelope of speech, greatly con-
tribute to speech intelligibility (Drullman et al., 1994; Ghitza, 2012; Shannon et al.,
1995; Smith et al., 2002). Speech with more pronounced amplitude modulations is more
intelligible in noise (Houtgast and Steeneken, 1985; Koutsogiannaki and Stylianou,
2016; Steeneken and Houtgast, 1980). Also, speakers who are intrinsically more intelli-
gible than others show more pronounced low-frequency modulations in the temporal
envelope (Bradlow et al., 1996). Modulations as low as 2 Hz have been shown to be
essential for phoneme identification (Drullman et al., 1994). In fact, removing amplitude
modulations, occurring at a syllabic rate, from speech impairs its intelligibility to a large
degree (Ghitza, 2012).

Recent neurobiological models of speech perception (Ghitza, 2011; Giraud and
Poeppel, 2012; Peelle and Davis, 2012) propose that enhanced temporal modulations facil-
itate speech perception because speech-envelope information evokes marked “envelope-
following” neural responses in the auditory cortex, known as neural entrainment.
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Endogenous neural oscillators in the delta (1–4 Hz) and theta range (4–8 Hz) are thought
to phase-lock (entrain) to the amplitude fluctuations in the input signal (Doelling et al.,
2014). Thus, neuronal excitability is temporally aligned with the temporal structure of the
attended spoken input, serving as a parsing mechanism for the initial neural coding of the
speech signal (Arnal et al., 2015; Bosker, 2017; Bosker and K€osem, 2017; K€osem et al.,
2017).

This neural entrainment to the temporal modulations in speech has been pro-
posed to be one of the mechanisms by which listeners are capable of understanding
speech in challenging listening conditions, such as in noise or with competing talkers.
Brain oscillations during speech-in-noise perception preferentially track attended rela-
tive to ignored speech streams, using particularly the phase of low-frequency neural
activity (1–8 Hz) (Ding and Simon, 2012; Kerlin et al., 2010). The intelligibility of an
attended speech stream in noise can be predicted from the extent to which cortical
oscillators are aligned to the temporal envelope of the attended signal (Golumbic
et al., 2013; Golumbic et al., 2012; Rimmele et al., 2015). In fact, modulating listeners’
neural activity with transcranial stimulation with speech-envelope-shaped currents has
been argued to help speech-in-noise comprehension (Riecke et al., 2018).

Considering these neurobiological models and the reported beneficial effects of
enhanced amplitude modulations on perception, it may be hypothesized that speakers,
in an attempt to aid speech intelligibility, would also naturally produce more enhanced
amplitude modulations when talking in a noisy acoustic environment. This would allow
greater opportunity for the listening brain to entrain to the enhanced temporal enve-
lope. There is some evidence for larger within-syllable intensity changes (Garnier and
Henrich, 2014) and greater overall RMS range (Folk and Schiel, 2011) in Lombard
speech (relative to speech-in-quiet) but none of these studies examined the strength of
amplitude modulations in the temporal envelope.

Krause and Braida (2004) investigated another kind of speech adjustment,
namely, clear speech. In contrast to Lombard speech, clear speech is elicited in quiet envi-
ronments by explicitly asking speakers to speak more clearly (e.g., by imagining speaking
to a hearing-impaired person; Uchanski, 2008). Modulation spectra, showing the power
of frequency components in the temporal envelope, revealed stronger amplitude modula-
tions below 4 Hz in clear speech. This difference between clear and plain speech was most
apparent in frequency bands around 500, 1000, and 2000 Hz. However, the effect was
only observed for two talkers (T3 and T5; 50 trials each) and was induced through
instructions rather than by physically presented adverse listening conditions (Krause and
Braida, 2002).

Therefore, the present study examines the temporal modulations in Lombard
speech and plain speech, adapting the method from Krause and Braida (2004). Using
modulation spectra, the power of amplitude modulations in the temporal envelope of
Lombard speech and plain speech is compared in three modulation frequency bands:
the delta range (1–4 Hz), the theta range (4–8 Hz), and the alpha range (8–15 Hz).1

In neurobiological studies, neural entrainment is particularly observed in the lower
frequency range. Accordingly, we hypothesize that, across several speech corpora,
Lombard speech will have more pronounced amplitude modulations compared to
plain speech in the delta/theta range, as evidenced by greater power in the modulation
spectrum.

2. Method

Four English speech corpora were analyzed (see Table 1), each including sentences
produced in quiet and the same sentences produced in noisy elicitation conditions. The
corpora varied on several dimensions: for instance, corpus 1 and 3 used “normal” sen-
tences (i.e., meaningful everyday sentences), while corpus 2 used six-word matrix

Table 1. Characteristics of the four speech corpora [M¼male; F¼ female; BMN¼ 9-talker babble-modulated
ICRA noise from Dreschler et al. (2001); SSN¼ speech-shaped noise; SMN¼ speech-modulated noise].

Talkers Sentences Noise Source

Corpus 1 N¼ 1 (M) “Normal”; N¼ 25 BMN; intense Mayo et al. (2012)
Corpus 2 N¼ 8 (4 M/4 F) Matrix; N¼ 400 SSN; 96 dB (L) Lu and Cooke (2008)
Corpus 3 (Hurricane) N¼ 1 (M) “Normal”; N¼ 720 SMN; 84 dB (A) Cooke et al. (2013)
Corpus 4 (MRT) N¼ 1 (M) Frame; N¼ 300 SMN; 84 dB (A) Collected by

Valentino-Botinhao (2013)
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sentences (e.g., “lay green with A4 now” or “set white at B8 again”) and corpus 4 used
frame sentences [e.g., “Now we will say CV(C)C again”]. Corpora also varied in the
noise conditions and loudness levels used to elicit Lombard speech; for instance, some
used speech-shaped noise (i.e., noise with speech-like LTAS), others used noise modu-
lated by a single talker or multiple talkers (e.g., ICRA noise from Dreschler et al.,
2001).

Before analysis, any leading and trailing silences around the sentences were
manually removed. Two types of analysis were performed: a broadband analysis and a
filterbank analysis. Both the broadband analysis and the filterbank analysis involved cal-
culating the modulation spectrum of each sentence in each corpus using a method
adapted from Krause and Braida (2004). This included normalizing the overall power of
signals [root-mean-square (RMS)], matching the overall energy of plain and Lombard
signals. Thus, any potential differences between plain and Lombard speech cannot be
attributed to differences in overall energy.

For the broadband analysis, each sentence was filtered by a sixth-order
Butterworth band-pass filter spanning the 250–4000 Hz range, followed by estimation
of the envelope of the filter’s output via the Hilbert transform. The envelope signal
was then submitted to a fast Fourier transform, resulting in the modulation spectrum
of that particular speech fragment. Finally, for statistical comparisons, the average
power in three frequency bands was calculated: average power in the 1–4 Hz range
(delta), the 4–8 Hz range (theta), and the 8–15 Hz range (alpha). This resulted in three
different observations for each sentence, forming the dependent variables for the statis-
tical analyses reported below.

The filterbank analysis was performed to further investigate whether any poten-
tial difference between the plain and Lombard speech could be attributed to particular
frequency bands. The filterbank analysis was identical to the broadband analysis, except
that the speech signal was filtered into five component signals, using a bank of fourth-
order Butterworth filters with center frequencies of 500 Hz (bandwidth: 125 Hz), 1000 Hz
(250 Hz), 2000 Hz (500 Hz), 4000 Hz (1000 Hz), and 8000 Hz (2000 Hz). The bandlimited
output of this filterbank formed the input for the subsequent calculation of the modula-
tion spectrum separately for each frequency band (using the procedure described above).

Since each sentence had its own unique duration, this procedure resulted in
modulation spectra with unique frequency resolutions. However, in order to visualize
the average rhythmicity in plain and Lombard speech across multiple sentences, identi-
cal frequency resolutions were required. This was achieved by repeating the procedure
above with the envelope signal zero-padded to the next power of 2 higher than the
length of the longest fragment of that particular corpus. Note that this zero-padding
was only performed for visualization purposes; statistical analyses were performed on
the data from the non-padded signals.

3. Results

Figure 1 shows the average modulation spectra from the broadband analysis
(250–4000 Hz) for plain and Lombard speech, for each corpus.

The first thing to note is that the modulation spectra of Lombard speech resem-
ble those of plain speech in overall shape (e.g., number of peaks and troughs), indicating
that the temporal structure of matching Lombard and plain utterances is very much
alike. Second, the peaks in the modulation spectra of Lombard speech occur at slightly
lower frequencies (i.e., shifted leftward) than the peaks in the modulation spectra of
plain speech. This observation is in line with the fact that Lombard speech typically has
a slower speech rate than plain speech, shifting the temporal modulations down towards
lower frequencies. In fact, the size of the shift observed in the modulation spectra is in

Fig. 1. (Color online) Average modulation spectra, calculated from the broadband analysis (250–4000 Hz), of
Lombard speech (solid line) and matching plain speech (dashed line), for each corpus. Shaded areas indicate
95% CIs.
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keeping with the average rate change in Lombard speech (e.g., 7.6% in corpus 2; Lu
and Cooke, 2008).

Finally, there would seem to be consistently higher power in Lombard speech,
across the four corpora, in the lower frequency range between 1–4 Hz (delta). This differ-
ence was statistically analyzed by means of linear mixed models (LMMs) (Baayen, 2008)
as implemented in the lme4 library in R. Our three dependent variables, average power
in delta (1–4 Hz), theta (4–8 Hz), and alpha range (8–15 Hz), were entered into separate
LMMs with identical structure. Condition (categorical predictor, with the plain condition
mapped onto the intercept), Corpus (categorical predictor, with corpus 1 mapped onto
the intercept), and their interaction, were entered as predictors, with Talker entered as
random factor with by-talker random slopes for Condition (Barr et al., 2013). More
complex models including a by-talker random slope for Condition failed to converge.
Statistical significance was assessed at the 0.05 significance level by checking whether
effects had absolute t-values exceeding 2 (Baayen, 2008).

Only the model of average power in the delta range (marginal R2¼ 0.185; condi-
tional R2¼ 0.408) revealed a significant effect: Lombard speech had a significantly higher
average power in the delta range compared to plain speech (b¼ 0.008, SE¼ 0.002,
t¼ 3.855). The fact that no significant interactions between condition and corpus were
observed suggests that the effect of Condition held equally across all four corpora. No
significant effects or interactions were observed in the other two models.

In order to explore whether this difference in overall power between Lombard
and plain speech in the delta range happened to be a by-product of the lower average
speech rate in Lombard speech, a follow-up analysis was performed. This analysis
involved artificially matching the (slower) speech rate of the Lombard sentences to the
(faster) speech rate of the plain sentences. We adopted the global duration modifications
described in Cooke et al. (2014b), involving linear compression of the Lombard utteran-
ces using PSOLA in PRAAT. The results of statistical analyses of the modulation spectra of
plain and these duration-matched Lombard sentences mirrored the results reported above.
We found no significant effects in the theta or alpha range, and only one significant effect
of Condition in the delta range (b¼ 0.011, SE¼ 0.005, t¼ 2.230; model’s marginal
R2¼ 0.127; conditional R2¼ 0.226), corroborating that duration-matched Lombard utter-
ances had higher overall power in the delta range than plain utterances across the four
corpora.

The filterbank analysis was designed to further investigate which frequency
bands drive the difference in temporal modulations between plain and Lombard speech.
Figure 2 shows the average modulation spectra for plain and Lombard speech from the
filterbank analysis (with center frequencies at 500–8000 Hz), averaging over the four dif-
ferent corpora.

Judging from Fig. 2, higher overall power in Lombard speech in the delta range
would seem to be primarily driven by the 1000 and 2000 Hz bands. Differences between
Lombard and plain speech in the delta range were statistically tested by means of another
LMM. This LMM predicted average power in the delta range (1–4 Hz) with fixed effects
of Condition (categorical predictor, with the plain condition mapped onto the intercept),
Band (categorical predictor, with the 2000 Hz frequency band mapped onto the intercept),
and their interaction. Talker was entered as random factor with by-talker random slopes
for condition and band (marginal R2¼ 0.686; conditional R2¼ 0.773). More complex
models including the predictor Corpus failed to converge.

A simple effect of Condition revealed significantly higher average power in the
Lombard condition (relative to plain) in the delta range in the 2000 Hz frequency band
(being mapped onto the intercept; b¼ 0.003, SE¼ 0.0002, t¼ 14.850). Interactions
between Condition and Band led to two observations: first, the absence of an interaction

Fig. 2. (Color online) Average modulation spectra, calculated from the filterbank analysis (center frequencies at
500–8000 Hz), of Lombard speech (solid line) and matching plain speech (dashed line), averaging over the dif-
ferent corpora (CF ¼ center frequency). Shaded areas indicate 95% CIs.
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between Condition and the 1000 Hz frequency band showed that the effect of Condition
was comparable in the 1000 and 2000 Hz frequency bands. Second, the effect of
Condition was considerably smaller or even absent in the 500, 4000, and 8000 Hz fre-
quency bands (500 Hz: b¼�0.004, SE¼ 0.0001, t¼�22.815; 4000 Hz: b¼�0.003,
SE¼ 0.0002, t¼�14.705; 8000 Hz: b¼�0.003, SE¼ 0.0002, t¼�16.868).

4. Discussion

This study compared the power of amplitude modulations in the temporal envelope of
Lombard speech (sentences produced in noise) and plain speech (same sentences but
produced in quiet). Speech from four different corpora (various speakers, sentences
types, elicitation methods; see Table 1) was analyzed by means of modulation spectra,
revealing the power of frequency components in the temporal envelopes. Across all
four corpora, amplitude modulations below 4 Hz were stronger in Lombard speech
compared to matched plain speech (cf. similar findings for clear speech; Krause and
Braida, 2002, 2004). This difference was shown to be independent of changes in speech
rate and was concentrated in frequency bands around 1000 and 2000 Hz (cf. similar
findings for clear speech; Krause and Braida, 2002, 2004).

The modulations most affected by Lombard speech (i.e., in delta range; 1–4 Hz)
correspond to the average syllable rates (e.g., corpus 2; plain: 3.7 Hz; Lombard: 3.4 Hz).
This suggests that the difference in amplitude modulations in Lombard and plain speech
may be driven by more pronounced syllabic energy fluctuations in Lombard speech. The
effect was concentrated in higher frequency bands (around 1000 and 2000 Hz), which is
in line with studies on artificial speech enhancement. For instance, Koutsogiannaki and
Stylianou (2016) found that artificially decreasing the modulation depth in lower fre-
quency regions (200–600 Hz) and increasing the modulation depth in higher frequencies
(800–3000 Hz) enhanced speech-in-noise intelligibility.

These results suggest that speakers produce more pronounced amplitude mod-
ulations in noise compared to in quiet. We interpret these findings in light of recent
oscillations-based models of speech perception (Ghitza, 2011; Giraud and Poeppel,
2012; Peelle and Davis, 2012), whereby neural oscillations phase-lock (entrain) to
amplitude fluctuations in speech. Greater amplitude modulations in speech produced
in noise presumably help the listening brain to entrain to the attended talker, aligning
neuronal excitability to the temporal structure of the attended signal, facilitating
speech-in-noise perception.

This idea is corroborated by neurobiological studies showing that removing
amplitude modulations, occurring at the syllabic rate, from speech reduces neural
envelope-tracking activity, impairing intelligibility (Doelling et al., 2014). Similarly, per-
ception studies have shown beneficial effects of temporal modulations on phoneme iden-
tification (Drullman et al., 1994) and intelligibility (Ghitza, 2012). Future neuroimaging
studies should investigate whether the observed greater modulation depth in Lombard
speech indeed facilitates cortical speech-tracking, aiding speech-in-noise intelligibility.
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