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Abstract

We propose a new efficient single-shot method for multi-
person 3D pose estimation in general scenes from a monoc-
ular RGB camera. Our fully convolutional DNN-based ap-
proach jointly infers 2D and 3D joint locations on the ba-
sis of an extended 3D location map supported by body part
associations. This new formulation enables the readout of
full body poses at a subset of visible joints without the need
for explicit bounding box tracking. It therefore succeeds
even under strong partial body occlusions by other people
and objects in the scene. We also contribute the first train-
ing data set showing real images of sophisticated multi-
person interactions and occlusions. To this end, we leverage
multi-view video-based performance capture of individual
people for ground truth annotation and a new image com-
positing for user-controlled synthesis of large corpora of
real multi-person images. We also propose a new video-
recorded multi-person test set with ground truth 3D anno-
tations. Our method achieves state-of-the-art performance
on challenging multi-person scenes.

1. Introduction

Single-person pose estimation, both 2D and 3D, from
monocular RGB input is a challenging and widely stud-
ied problem in vision [3} 12} 25} 26| |6, 9l 21} 29]]. It has
many practical applications, for instance in activity recog-
nition, human—machine interaction, or content creation for
graphics. There has been much progress in single person
2D pose estimation, and some methods for more challeng-
ing 2D multi-person pose estimation were shown. How-
ever, work on 3D pose estimation methods has been mostly
restricted to single unoccluded subjects. Many natural hu-
man activities take place in groups with multiple persons
and in cluttered scenes. Monocular input with multiple peo-
ple therefore not only exhibits self-occlusions of the body,
but also strong inter-person occlusions or occlusions by ob-
jects, which add to the already difficult under-constrained
problem of inferring 3D pose from monocular RGB input.
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Further, it is very hard to manually annotate or compute 3D
ground truth for multi-person training image sets. Conse-
quently, only very few methods have approached this more
general 3D multi-person pose estimation problem [36]], and
it is still largely unsolved. |

This paper proposes a new learning-based method to es-
timate 3D pose of multiple persons in general scenes from
monocular input, as well as a new way of creating realistic
training data at a large scale. While there are many single-
person datasets with ground truth 3D annotations, there
are no multi-person datasets that contain realistic human—
human interaction with person and background diversity.
Computing, let alone manually annotating, such data at
scale is difficult because of occlusions and the sheer number
of annotations required. Previous approaches to the dataset
problem [36] propose using 2D pose data augmented with
3D poses from motion capture datasets, or find 3D consis-
tency in 2D part annotations from a multi-view images [40].
In this work, we transform the MPI-INF-3DHP single per-
son dataset [25] into the first multi-person set with com-
plex interactions, ground truth 3D, and real images of peo-
ple. This dataset, which we call MuCo-3DHP, is created by
compositing multiple 2D person images with ground truth
3D pose from multi-view capture, and varying backgrounds
into a single frame. This allows us to controllably gener-
ate combinatorially large amounts of real image data for
training. There are also very few multi-person test datasets
with ground truth annotation [[10] showing more than 2 peo-
ple. We therefore captured a new multi-person 3D test
set with indoor and outdoor scenes, challenging occlusions
and interactions, and varying backgrounds, to evaluate our
method. All datasets will be made publicly available.

Recent attempts at addressing the 3D multi-person pose
estimation problem [36] employ a detection framework to
obtain bounding box proposals of each person. This compli-
cates reasoning under occlusion, in strong inter-person in-
teraction, and furthermore induces a runtime penalty when
scaling to many persons in a scene. We propose a sin-
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gle shot DNN-based method to extract multi-person 3D
pose. It reasons about all people in a scene jointly and does
not require explicit bounding box detection proposals [36]
which may be unreliable under strong occlusions and ex-
pensive to compute in dense multi-person scenes. Our fully-
convolutional method infers 2D and 3D joint locations to-
gether. It uses an enhanced 3D location map representation
[26] specially tailored to the multi-person case. It allows the
readout of a full 3D pose at a detected 2D torso root loca-
tion, and articulation refinement at selected other joint loca-
tions further down the kinematic chain, and thus can jointly
infer full 3D pose of multiple people even under partial oc-
clusion. Our main insight is that not all body parts need be
visible to make a complete pose inference, but if limbs are
visible, they can be used to improve the pose readout from
the main torso. Quantitative evaluation shows that estimat-
ing 3D pose at the torso root and then refining it at the limbs
produces much better pose estimates than other approaches.
To sum up, we contribute:

e A learning-based single-shot multi-person pose esti-
mation method that predicts both 2D and 3D joint lo-
cations without the need for bounding box extraction.
Our method is tailored for scenes with occlusion by
objects or other people.

e The first multi-person dataset of real person images
with 3D ground truth that contains complex inter-
person occlusions and motion. Our compositing ap-
proach enables us to synthesize large amounts of data
under user control, for learning based approaches.

e A real in-the-wild test set for evaluating multi-person
3D pose estimation methods that contains challenging
multi-person interactions, occlusions, and motion.

2. Related Work

In this review, we focus on most directly related work,
namely estimating the pose of multiple people in 2D or sin-
gle person in 3D from monocular RGB. [37] provide a more
comprehensive review. With the exception of [36] ours is
the first method for monocular multiple person 3D pose es-
timation.

Multi-Person 2D Pose Estimation: A common ap-
proach for multiple people 2D pose estimation is to first
detect single persons and then predict the 2D pose for each
detection [32| [11} 42| 15, [30]. Unfortunately, these meth-
ods fail when the detectors fail which is likely to happen in
multiple people scenarios with strong occlusions. Hence,
a body of work first localizes the joints of each person
with CNN-based detectors and then find the correct associ-
ation between joints and subjects in a post-processing step.
The associations are obtained by solving a fully connected
graph in [31]]. This involves solving an NP-hard integer
linear program which easily takes hours per image. The

work of [[13] improves the performance of [31] by includ-
ing image-based pairwise terms and using stronger detec-
tors based on ResNet [[12]]. This approach takes minutes in-
stead of hours but it is still computationally very expensive
and can only handle a limited number of proposals. Cao et
al. [[7] detect joint locations and Part Affinity Fields (PAFs),
which are 2D vectors indicating the direction of bones in the
skeleton. By using PAFs and greedy part association they
achieve real time mutli-person 2D pose estimation results.
Others simultaneously predict joint locations and their as-
sociations [28]] using a stacked-hour glass CNN [29].

Single-Person 3D Pose Estimation: Many monocu-
lar single person 3D methods show good performance on
standard benchmarks, such as [14, [38]]. Many methods
train a discriminative predictor that regresses directly to 3D
poses [4]. However, they often do not generalize well to
natural scenes with varied poses, appearances, backgrounds
and occlusions. This is due to the fact that most afore-
mentioned 3D datasets are restricted to indoor setups with
limited backgrounds. The advent of large real world image
datasets with 2D annotations made 2D monocular pose esti-
mation in the wild remarkably accurate. Annotating images
with 3D poses is much harder. Hence, recent works have fo-
cused on leveraging 2D image datasets for 3D human pose
estimation. Some works split the problem in two: they first
estimate 2D joints and then lift them to 3D. In the semi-
nal works of [44} |41] they achieve that by reasoning about
kinematic depth ambiguities; in [8} 49] they match detected
2D joints with a database of 3D poses; in [27]] they regress
pose from a 2D joint distance matrix. Another option is to
exploit pose and geometric priors for lifting [S1} 11,139, [16]];
in [24] they train a feed forward network to directly pre-
dict 3D pose from 2D joints; in [S} 20] they fit a recently
released human body model [23]] to 2D detections.

Other works leverage the features learned by a 2D pose
estimation CNN for 3D pose estimation, assuming that fea-
tures discriminative for 2D estimation should be useful in
the 3D case as well. For example, in [45] they learn to
merge features from a 2D joint prediction network and a
3D joint prediction network. Another approach is to train
a network with separate 2D and 3D losses for the different
data sources [34,150, 43]]. The advantage of such methods is
that they can be trained end to end. A simpler yet very ef-
fective approach is to refine a network trained for 2D pose
estimation for the task of 3D pose estimation [26} 25]. A
major limitation of methods that rely on 2D joint detections
directly or for bounding boxes is that they easily fail under
body occlusion or if some of the 2D detections are incor-
rect, both of which are common in multi-person scenes. In
contrast, our approach is more robust to occlusions since
the complete global 3D pose can be read out at the first
non-occluded location of pelvis, spine or neck. As shown
in [26], 3D joint prediction works best when the prediction



Figure 1. Examples from MuCo-3DHP dataset, created through
compositing MPI-INF-3DHP [23] data. (Top) composited ex-
amples without appearance augmentation, (bottom) with BG and
clothing augmentation. The last two columns show rotation and
scale augmentation, and truncation with the frame boundary.

is centered at the 2D joint of interest.

Multi-Person 3D Pose Estimation: To our knowledge,
only Rogez et al. [36] tackle multi-person 3D pose estima-
tion from one image. Their method uses a pipeline con-
sisting of localization, classification and regression. They
first identify proposals of bounding boxes likely to con-
tain a person using [33]. Instead of regressing to pose di-
rectly, they then classify the bounding box into a set of K-
poses, which is similar to [33]. These poses are scored by
a classifier and refined using a regressor. All three compo-
nents share the convolutional feature layers and are trained
jointly. However, the method still reasons using bounding
boxes internally and produces multiple proposals per sub-
ject that need to be accumulated and fused. Results with
severe person-person occlusions are not shown. In contrast,
our approach uses a fully-convolutional network, and pro-
duces multi-person 2D joint locations and 3D location maps
in a single shot, from which the 3D pose can be inferred af-
ter grouping the 2D joint detections by people. 3D Pose
Datasets: Existing pose datasets are either for a single per-
son in 3D [[14] 38| [47, 48], 23] or multi-person with only 2D
pose annotations [2}, 22]]. One exception is the MARCOnI
dataset [10] that features 5 sequences but contains only 2
persons simultaneously and there are no close interactions.
We choose to leverage the person segmentation masks avail-
able in MPI-INF-3DHP [23] to generate annotated multi-
person 3D pose images of real people through compositing.
The ground truth annotations for each person were obtained
through multivew marker-less motion capture [25]. Then
we compose images of multiple people by stacking layers
with different people simulating people-people occlusions,
see Section

3. Multi-Person Dataset

As discussed, single person image data sets with 3D pose
annotation at scale and with sufficient appearance diversity
were generated. Previous work used a combination of trans-
fer learning [25}50] and appearance augmentation [25] with

Figure 2.

Sample frames from the proposed multi-person test
set. Ground truth reference is available for up to 3 subjects in the
scene (shown projected on to the image on the left). The set covers
a variety of scene settings, activities and clothing.

marker-based and marker-less indoor motion cap-
ture. At first it may seem trivial to extend these concepts to
the multi-person case, i.e., use a combination of in-the-wild
multi-person 2D pose data [2, 22] and multi-person multi-
view motion capture for 3D annotation. However, multi-
person 3D motion capture under strong occlusions and dif-
ficult interactions is still challenging even for commercial
multi-view systems. In such scenes, manual pose correction
is often needed, and 3D accuracy is thus constrained. This
severely limits the scale at which real multi-person data can
be captured and processed.

Hence, we employ multi-view marker-less motion cap-
ture only to create the 20 sequences of the first expressive
in-the-wild test set for multi-person 3D pose estimation. For
the much larger training set MuCo-3DHP, however, we re-
sort to a new compositing and augmentation scheme that
leverages the single-person image data of real people in
MPI-INF-3DHP[23]] to composite an arbitrary number of
real multi-person interaction images with captured ground
truth 3D under user control.

3.1. MuCo-3DHP: Compositing-Based Training Set

The recently released MPI-INF-3DHP [23] single person
3D pose dataset provides marker-less motion capture based
annotations for real images of 8 subjects, each captured with
2 clothing sets, using 14 cameras with different elevations.
We leverage the person segmentation masks to create per-
camera composites with 1 to 4 subjects, with frames ran-
domly selected from the 8 x 2 sequences available per cam-
era. Since we have ground truth 3D skeleton pose for each
video subject in the same space, compositing can be done
in a 3D-aware way, resulting in correct depth ordering and
overlap of the composited subjects, without any interpen-
etration of 3D bounding boxes. We refer to this compos-
ited training set as the Multiperson Composited 3D Human
Pose dataset. Example composites are shown in Fig[] The
compositing process results in plausible images covering a
range of simulated inter-person overlap and activity scenar-
ios. User-control over desired pose and occlusion distri-



butions during synthesis, and further FG/BG augmentation
using the masks provided with MPI-INF-3DHP, is possible.
For details on further processing applied to MuCo-3DHP
dataset while training, please refer to the supplementary
document. Even though the synthesized composites may
not simulate all fine-grained aspects of human-human inter-
action fully, our approach trained on these data generalizes
well to real world scenes shown in our test set.

3.2. Test Set

We provide a new filmed, not composited, multi-person
test set comprising 20 general real world scenes with ground
truth 3D pose for up to three subjects obtained with a multi-
view marker-less motion capture system [46]. The set cov-
ers 5 indoors and 15 outdoor settings, with stationary and
moving backgrounds, trees, office buildings, road, people,
vehicles, and other distractors in the background. Addi-
tionally, some of the outdoor footage have challenging ele-
ments, e.g., drastic illumination changes, and lens flare. The
indoor sequences use footage at 2048 x 2048px resolution
at 30fps, outdoor sequences were captured with GoPros at
1920 x 1080px resolution at 60fps. The test set consists of
>8000 frames, split among the 20 sequences, with 8 sub-
jects, in a variety of clothing styles, poses, interactions, and
activities. A key feature is that the test sequences do not re-
semble the training sequences, and include real interaction
scenarios.

Evaluation Metric: We use the robust 3DPCK evalua-
tion metric proposed in [25]]. It treats a joint’s prediction as
correct if it lies within a 15cm ball centered at the ground
truth joint location, and is evaluated for the common mini-
mum set of 14 joints marked in green in Figure[3] We report
the 3DPCK numbers per sequence, averaged over the sub-
jects for which GT reference is available. Occluded joints
or subjects are not excluded from the evaluation.

4. Method

Location Maps: In previous work [26] it has been ob-
served that 3D pose inference can be linked more strongly
to image evidence by inferring 3D joint positions at the re-
spective 2D joint pixel locations using a fully convolutional
neural network. This forces the network to focus on the
image evidence around the 2D joint when inferring its 3D
counterpart. This is achieved using location maps. A loca-
tion map for a joint is a 2D feature channel with each of its
2D pixel locations storing the most likely x, y, or z coordi-
nate for that joint, conditional on the 2D prediction for that
joint being at that 2D pixel location. For an input image of
size W x H, 3n location maps (each of size W/4 x H/4) are
used to store the 3D location of all n joints. Location maps
are trained to produce reliable 3D predictions at image loca-
tions where 2D joints are detected. Hence, at test time, the
3D joint location is read out at the corresponding 2D de-
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Figure 3. We represent human body pose as a hierarchical skele-
ton with 17 joints (of which only 15 are shown here for clarity).
Our location maps store the 3D joint locations of the whole body at
the 2D position of the neck and the pelvis, and limb-specific pose
at all limb joints (blue ovals). During 3D pose inference, we first
obtain the complete 3D pose from the neck/pelvis joint (a). We
then refine it by replacing the limb sub-pose with the readout from
a joint representative of that limb (b, c¢). In case the representative
joint is occluded, we fall back to a joint further up in the skeleton
hierarchy (b’,c’).

tection. Per-joint location inference as proposed in [26]], en-
ables full 3D pose inference only if the person is completely
visible. It therefore breaks down when joints are occluded,
which happens often in general scenes. Self-occlusions,
person-person occlusions, occlusions by objects, and body
truncation at frame boundaries are common in multiple per-
sons scenes. In the following, we detail our formulation and
our solution to handle these challenges.

4.1. Formulation

Given a monocular RGB image 7, we seek to estimate
the 3D pose P = {P,}7, for each of the m persons in the
image. Here, P; € R3” describes the 3D locations of the
n (n = 17) body joints of person i. The joint locations are
encoded relative to their reference joints, marked with ar-
rows in Figure 3] We make use of 2D joint heatmaps H =
{H, };‘:1 predicted by our network to encode the detection
confidence of each joint type j in the image. Additionally,
we predict part affinity fields A = { Ay, }2™, which encode
a 2D vector field for each body part denoting the direction
pointing from the parent joint to its child [7]. This facili-
tates association of 2D detections to person identities when
there are multiple people in the scene. The 3D locations
of each joint j that our network predicts are encoded in the
location maps denoted by X' = {X;}7_;, ¥V = {Y,}]_,,
and Z = {Z;}7_,, where X;, Y, Z; € R"*", w = W/4,
and h = H/4. Note that we predict a fixed number of maps
(n heatmaps, 3n location maps, and 2n part affinity fields)
irrespective of the number of persons in the scene making
our method scale without additional processing.
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Figure 4. During training, the location maps for each person’s
joints are defined by specifying their 3D position at multiple 2D
joint locations (columns 1-3). For instance, the 3D position of the
neck (red dot in skeleton) can be read out either at the pelvis or at
the neck 2D locations. The 3D position of the left elbow (red dot
in skeleton) can be read out at the wrist, pelvis, neck, or elbow 2D
locations. Dotted lines indicate secondary read out priority in case
the primary read out joint location is occluded (see Algorithm|[T).
Note that the 3D location of multiple persons are encoded into the
same map and no additional channels are needed.

Occlusion-Robust Location Maps: At the core of our
method is a carefully designed encoding of pose for multi-
ple persons which we call Occlusion-Robust Location Maps
(ORLM). ORLMs have two special features: (1) they sup-
port a special read out scheme (see Section[4.2)) that makes
our method robust to partial occlusions of the body, (2) they
encode the pose of multiple persons without needing a vari-
able number of outputs.

To support our special read out scheme, we decompose
the body into torso, four limbs, and head (see Figure E[)
We denote as full pose the vector P € R3" containing all
joint locations. We denote as limb pose the part of the pose
parameters corresponding to the limb, e.g., the limb-pose of
the left arm is a vector of 6 parameters consisting of two
3D vector offsets: shoulder—elbow, and elbow—wrist. Given
this decomposition, the ORLM are trained such that (see

Figure f):

e At the root and neck location the full pose can be read
out, and

o At the wrist, elbows, ankles and knees location the cor-
responding limb pose can be read out.

Notice that ORLM have redundancy built in to better deal
with occlusions at inference time. For instance, the 3D lo-
cation of the left elbow can be read out at four different
pixel locations, namely, at the neck, root, wrist and the el-
bow 2D location (see Figure [d). Therefore, if a particular
joint is occluded in the image we read the pose information
at a different joint as explained in Section[d.2]

While in the original formulation location maps encode
the 3D pose for only a single person, ORLM encode the 3D
pose for all persons jointly without adding more channels.

As shown in Figure ] during training, we encode the the
full 3D pose of multiple persons within the location maps.
This ensures efficient pose inference even when multiple
persons are visible without needing variable outputs.

Algorithm 1 3D Pose Inference
1: Given: P20, C?P X, y, Z
2: foralli € (1..m) do

3 if C2P[k] > thresh, k € {pelvis,neck} then

4 Person 7 is detected

5: for all joints j € (1..n) do

6

7

8

9

rloc = P?P[k]
P;[:, j] = READLOCMAP(], rloc)

for all joints a in [, [ € {limbs, head} do
if ISVALIDREADOUTLOC(i,a) then

10: rloc = P?P]a)

11: for all joints b € limb ! do

12: P;[:, b)j=READLOCMAP(b, rloc)
13: break

14: else

15: No person detected

16: function READLOCMAP(joint j, 2DLocation rloc)
17: rloc = rloc/locMap_scale_factor

18: P = (X[rloc], Y j[rloc], Zj[rloc])

19: return P

20: function ISVALIDREADOUTLOC(person i, joint j)
21:if (C2?P[j] > 0) then

22: return ISISOLATED(i,j)
23: else
24: return 0

25: function ISISOLATED(person i, joint j)
26: M=p,pe(l.m),p#i
27: It = limb_type(j)

28: isol =1

29:  for all personi € M do

30: for all joints j with limb_type(j) == It do

31: if [|P2P[j] — P2P[j]|| < isoThresh then
32: isol =0

33: break

34: return :sol

4.2. Pose Inference

3D pose inference of multiple people from ORLM is
predicated on successful 2D joint location inference and as-
sociation.

2D Pose Inference: We infer 2D joint locations PP =
{P2D1m P2D, ¢ R2X" and joint detection confidences
C?P = {C?P,;}m, C2P,; € R" for each person i in the
image. Explicit 2D joint-to-person association is done with
the predicted heatmaps H and part affinity fields A using
the approach of Cao et al. [7].



3D Pose Inference with ORLM : We use the 2D body
joint locations P2P and the body joint detection confi-
dences C2P to infer the 3D pose of all persons in the scene.
Algorithm|[T]describes the 3D pose inference process which
is also visually explained in Figure[3] Since occlusions oc-
cur, the naive approach reading of 3D joint locations at 2D
detections completely fails. To that end, we propose two
strategies to handle occlusions: (1) read out priority and (2)
2D joint validation.

Read Out Priority: By virtue of the ORLM we can
read out joint predictions at different pixel locations which
makes us robust to occlusions. Let us denote as extremity
joints: the wrists, and ankles, and as middle-joints: the el-
bows and knees. The neck and the root joint 2D detections
are usually reliable, these joints are most often not occluded
and lie in the middle of the body. Therefore, we start read-
ing the full pose at the neck location. If the neck is invalid
(as defined below) then the full pose is read at the pelvis. If
both joints are invalid we consider that person is not visible
in the scene and we do not predict their pose. While robust,
full poses read at the pelvis and neck tend to be closer to the
average pose in the training data. Therefore, for every limb,
we continue by reading out the limb pose at the extremity
joint. If the extremity joint is valid, the limb pose replaces
the corresponding elements of the full pose. If the extremity
joint is invalid we try to read out the limb pose at the middle
joint. If the middle joint is valid the limb pose replaces the
corresponding elements of the full pose. If the middle joint
is also invalid, the prediction for the limb pose will come
from the neck/pelvis full pose read out. The procedure is
illustrated in Figure 3] This inference strategy with priority
makes us robust to occlusions.

2D Joint Validation: We check a selected 2D joint and
mark it as valid if it satisfies 2 conditions: (1) is unoccluded,
i.e. has confidence value higher than a threshold, and (2) is
sufficiently far away from similar joints on another person.
If both conditions are satisfied, we lookup the correspond-
ing 3D pose based on the read out priority. Otherwise, we
fall back to a limb joint higher up in the hierarchy (e.g., an-
kle for leg, elbow for arm) until the above conditions are
satisfied. The redundancies and fall backs incorporated in
our pose inference algorithm ensure reliable pose estima-
tion in the presence of strong inter-person occlusions. Even
if none of the limb joints are visible, we can still estimate a
reasonable 3D pose based solely on the torso readout.

4.3. Network Details

Our network is based on ResNet-50 [12]. The original
architecture is preserved till res4f, after which we split it
into two—a 2DPose+Affinity stream and a 3DPose stream.
Architectural specifics of the two streams may be found in
the supplemental document. The 2DPose+Affinity stream
predicts the 2D heatmaps Hcooco for the MS-COCO body

(w/8, h/8)
ResNet 50 | 2DPose
till res4 | +Affinit .
( ﬁ Y [#Heocos Acocol
(w/4, h/4)
l:l Trained on MS COCO | ) 3DPOSe N
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Figure 5. The network architecture with 2DPose+Affinity
branch predicting the 2D heatmaps Hcoco and part affinity
maps Acoco with a spatial resolution of (W/8, H/8), and
3DPose branch predicting 2D heatmaps H s pr and location maps
Xumpr.Ympr,Zu pr with a spatial resolution of (W/4, H/4), for
an input image with resolution (W, H).
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Figure 6. Test for robustness to occlusion using textured synthetic
rectangles overlaid on the TS1 sequence from MPI-INF-3DHP.
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Figure 7. Qualitative evaluation of the extent of articulation of
LCR-net and Our method. 3D pose viewed from the side.

joint set, and part affinity fields Acoco.

The 3DPose stream predicts 3D pose location maps
Xypr, Yupr and Zyrpy, as well as 2D heatmaps H s pr
for the VNect (MPI-INF-3DHP [25]) joint set, which has
some overlap with the MS-COCO joint set, but does not in-
clude facial keypoint annotations and includes annotations
for hands, toes and spine. For limb pose read out locations
as described in the preceding section, we restrict ourselves
to the common minimum joint set between the two, as indi-
cated by the circles in Figure 3]

Training: We start with a Resnet-50-based archi-
tecture trained for single person 2D pose estimation on
LSP [18][19] and MPI [2] datasets and use that to initialize
the network till res4f. We train without the 3DPose branch
on MS-COCO multi-person 2D pose data in accor-
dance with Cao et al.[[7]. We then freeze the weights of the
core network and the 2DPose+Affinity branch, and train the
3DPose branch on our MuCo-3DHP data for 360k iterations
with a batch size of 6. More details on the training can be
found in the supplementary document.

Loss: The 2D heatmaps Hococo and H s pr are trained



Table 1. Comparison of our method against the state of the art on single person MPI-INF-3DHP test set. All evaluations use ground-truth
bounding box crops around the subject. We report the Percentage of Correct Keypoints measure in 3D (@150mm), and the Area Under
the Curve for the same, as proposed by MPI-INF-3DHP. We additionally report the Mean Per Joint Position Error in mm. Higher PCK and
AUC is better, and lower MPJPE is better.

Stand/ Sit On|Crouch/|On the
Network Walk |Exercise| Chair | Reach | Floor |Sports|Misc. Total
PCK | PCK |PCK | PCK | PCK | PCK |PCK |[PCK|AUC|MPJPE(mm)
VNect [26] 8717 | 714 | 747 | 729 | 51.3 | 83.3 | 80.1|/76.6/40.4 124.7
LCR-net [36] | 70.5 | 56.3 |58.5 | 694 | 39.6 | 57.7 | 57.6 ||59.7|27.6 158.4
Zhou et al.[50] - - - - - - - 1]69.2]32.5 -
Mehta et al.[25] || 86.6 | 753 | 74.8 | 73.7 | 52.2 | 82.1 | 77.5/75.7|39.3 117.6
Ours (Torso) || 73.7 | 643 | 653 | 673 | 437 | 69.5 |59.5(63.7|31.1 147.1
Ours (Full) 822 | 73.1 |76.0 | 75.8 | 49.8 | 78.6 | 70.6 ||73.0|36.2 126.2

with per pixel L2 loss comparing the predictions to the ref-
erence which has unit peak Gaussians with a limited support
at the ground truth 2D joint locations, as is common. The
part affinity fields Acoco are similarly trained with a per
pixel L2 loss, using the framework made available by Cao
et al. [7]. In order to support the pose inference process de-
scribed in Section[4.2] the training loss enforced on the lo-
cation maps differs from that of [26]. Per joint type, for all
subjects in the scene, a per-pixel L2 loss is enforced in the
neighborhood of all the 2D joint locations where a 3D pose
readout for this particular joint should be possible. The loss
is weighted by a Gaussian with limited support centered at
the 2D joint location.

5. Results

We demonstrate the merits of our proposed approach
through a series of experiments on the single person MPI-
INF-3DHP [25] test-set, as well as the proposed multi-
person 3D pose test set. We show that our method is sig-
nificantly more accurate than existing multi-person 3D pose
estimation approaches, while being comparable to the state
of the art for single person pose estimation. We also use
the experiments to establish the usefulness of the proposed
multi-person 3D pose test set.

5.1. Ablative Analysis

Torso Only Readout vs. Full Readout: To rule out
other confounding factors, we use the single person MPI-
INF-3DHP test set to conclusively show the benefit of our
3D pose inference method over naive torso centered pose
read out. Pose read out at the torso without further limb
based refinement performs significantly worse (63.7 PCK)
than our full readout method (73 PCK), as shown in Table[T]
and the performance improvement is consistent across ac-
tivity classes.

Robustness to Occlusion: To test the robustness to oc-
clusion of our approach, we qualitatively evaluate it on the

LCR-Net

Figure 8. Qualitative comparison of LCR-net [36] and our method
for overlap between people.

TS1 sequence of MPI-INF-3DHP overlaid with random tex-
tured boxes. Our approach performs well, producing plausi-
ble poses even under significant occlusion, and does not ex-
hibit drastic failures which VNect [26] suffers from. LCR-
net [36] is also trained to produce plausible poses under oc-
clusion. See Figure [6] Please refer to the supplementary
video for more results.

5.2. Comparison with 3D Multi-Person Methods

We report the results of extensive qualitative and quan-
titative comparisons with the only other known monocu-
lar multi-person 3D pose estimation approach of Rogez et
al. [36]. For fairness of comparison, in all evaluations we
retarget the predictions from LCR-net on to a skeleton with
bone-lengths matching the ground truth.

Performance for Single-person Pose Estimation:
While LCR-net can handle multiple people in the scene and
produces plausible poses under significant occlusion, it suf-
fers from low accuracy on account of its seeming tendency
to be conservative about the extent of articulation of the pre-
diction. We show an example in Figure[7]

As show in Table [T] on MPI-INF-3DHP single person
test set, LCR-net shows 59.7 PCK, and tends to perform
worse than all methods that report their performance on the
test set, performing even worse than our torso-only readout
(63.7 PCK). Our full method at 73.0 PCK, though slightly
worse than the state-of-the-art methods overall, improves
over the state of the art on activity classes such as ’Sit on



Figure 9. Visualization of predictions from our method for frames from our multi-person 3D pose test set. Our method can handle strong
occlusions (green box on the left), but occlusions where neck and pelvis detections both fail result in people not being detected (red box).

Mild limb pose failures are shown on the right (yellow boxes).

Chair’ and ’Crouch/Reach’ which exhibit significant occlu-
sion (both self occlusions and by a chair).

Performance for Multi-person Pose Estimation: We
compare LCR-net and our method on the 20 sequences of
our new multi-person 3D pose test set. Since there can be
more or fewer predictions per frame than the number of
annotated subjects for the frame, on account of people in
the background or significant occlusion of one of the main
subjects, we use 2D predictions associated with each 3D
prediction to find a matching to the annotated subjects in
the scene. Figure [T0]reports the PCK metric for each each
sequence. Our method performs significantly better than
LCR-net for most sequences, while being comparable for a
few. Our method has a total PCK of 63.7, which is signifi-
cantly better than the PCK of 51.5 obtained with LCR-net.
We provide a joint-wise breakdown of the overall accuracy
in the supplementary document.

We also compute the fraction of annotated subjects that
were matched to a prediction, which is affected both by the
2D pose prediction quality as well as the method being able
to detect a person under severe occlusion. With LCR-net,
82.5% of the annotated subjects were matched, while with
our approach, 89% of the annotated subjects were matched.

Figure [8] shows a qualitative comparison of predictions
on a frame from the test set showing significant occlusion
for the subject in the back. LCR-net fails to estimate the
leg articulation for the person in front while predicting a
standing pose for the person at the back.

Limitations and Future Work: While our method
works well for significant occlusions, it still fails when sim-
ilar limbs of different persons are in close proximity leading
to association ambiguity. Furthermore, we have shown ac-
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Figure 10. Sequence-wise evaluation of our method and LCR-
net[36] on our proposed multi-person 3D pose test set. Our
method (in blue) shows significantly better performance than
LCR-net (in orange) across all tested sequences.

curate root-relative 3D pose estimation, but estimating the
relative sizes of people is challenging and remains an open
problem for future work.

6. Conclusion

Multi-person 3D pose estimation from monocular RGB
is a challenging problem which has not been addressed ex-
tensively by previous work. Our proposed method uses
a novel formulation, which is occlusion-robust and scales
well with the number of people, in order to reliably estimate
the 3D pose even under strong inter-person occlusions. Our
method is trained on a new annotated multi-person dataset
which was created using a compositing approach leveraging
existing single person 3D data. To evaluate our method, we
introduce the first real 3D annotated multi-person test set on
which we significantly outperform the state of the art.



Supplementary Document:
Single-Shot Multi-Person 3D Body Pose
Estimation From Monocular RGB Input

1. Network Details
1.1. Architecture

A visualization our network architecture using the
web-based visualization tool Netscope can be found
at http://ethereon.github.io/netscope/#/
gist/069a592125c78fbddeebl1fd45306£fa0.

1.2. Data

We use 12 out of the 14 available camera viewpoints (us-
ing only 1 of the 3 available top down views) in MPI-INF-
3DHP [23] training set, and create 400k composite frames
of MuCo-3DHP, of which half are without appearance aug-
mentation. For training, we crop around the subject closest
to the camera, and apply rotation, scale, and bounding-box
jitter augmentation. Since the data was originally captured
in a relatively restricted space, the likelihood of there being
multiple people visible in the crop around the main person
is high. The combination of scale augmentation, bounding-
box jitter, and cropping around the subject closest to the
camera results in many examples with truncation from the
frame boundary, in addition to the inter-person occlusions
occurring naturally due to the compositing.

1.3. Training

We train our network using the Caffe framework.
The core network’s weights were initialized with those
trained for 2D body pose estimation on MPI and
LSP datasets as done in [23]]. The core network and
the 2DPose + Affinity branch are trained for multi-person
2D pose estimation using the framework provided by Cao
et al. [7]. We use the AdaDelta solver, with a momentum of
0.9 and weight decay multiplier of 0.005, and a batch size
of 8. We train for 640k iterations with a cyclical learning
rate ranging from 0.1 to 0.000005.

The 3DPose branch is trained with the core network and
2DPose + Affinity branch weights frozen. We use a batch
size of 6 and train for 360k iterations with a cyclical learn-
ing rate ranging from 0.1 to 0.000001.

2. Joint-wise Analysis

Figure [I] shows joint-wise accuracy comparison of our
approach with LCR-net [36] on the single person MPI-INF-
3DHP test set. For limb joints (elbow, wrist, knee, angkle)
LCR-net performs comparably or better than our torso-only
readout, but our full readout performs significantly better.

Figure [2] shows joint-wise accuracy comparison of our
approach with LCR-net on our proposed multi-person 3D
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Figure 1. Joint-wise accuracy comparison of our method and LCR-
net [36] on the single person MPI-INF-3DHP test set. LCR-net
predictions were mapped to the ground truth bone lengths for fair-
ness of comparison.

pose test set. We see that our approach obtains a better accu-
racy for all joint types for most sequences, only performing
worse than LCR-net for a select few joint types on certain
sequences (TestSeq18,19,20).
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Figure 2. Comparison of our method and LCR-net [36] on our proposed multi-person test set, here visualized as joint-wise breakdown of
PCK for all 20 sequences, as well as the difference in accuracy between our method and LCR-net. LCR-net predictions were mapped to
the ground truth bone lengths for fairness of comparison.

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(7]

(18]

A. Elhayek, E. Aguiar, A. Jain, J. Tompson, L. Pishchulin,
M. Andriluka, C. Bregler, B. Schiele, and C. Theobalt.
MARCOnI - ConvNet-based MARKker-less Motion Capture
in Outdoor and Indoor Scenes. [EEE Transactions on Pat-
tern Analysis and Machine Intelligence (PAMI), 2016.

G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. Us-
ing k-poselets for detecting people and localizing their key-
points. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3582-3589, 2014.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang,
E. Levinkov, B. Andres, B. Schiele, and S. I. Campus. Art-
track: Articulated multi-person tracking in the wild. In Proc.
of CVPR, 2017.

C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Hu-
man3.6m: Large scale datasets and predictive methods for
3d human sensing in natural environments. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI),
36(7):1325-1339, 2014.

U. Igbal and J. Gall. Multi-person pose estimation with lo-
cal joint-to-person associations. In European Conference
on Computer Vision Workshops, pages 627-642. Springer,
2016.

E. Jahangiri and A. L. Yuille. Generating multiple diverse
hypotheses for human 3d pose consistent with 2d joint detec-
tions. In IEEE International Conference on Computer Vision
(ICCV) Workshops (PeopleCap), 2017.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceed-
ings of the 22nd ACM International Conference on Multime-
dia, pages 675-678, 2014.

S. Johnson and M. Everingham.  Clustered pose and
nonlinear appearance models for human pose estimation.
In British Machine Vision Conference (BMVC), 2010.
doi:10.5244/C.24.12.

10

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

S. Johnson and M. Everingham. Learning effective human
pose estimation from inaccurate annotation. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recog-
nition, 2011.

C. Lassner, J. Romero, M. Kiefel, F. Bogo, M. J. Black, and
P. V. Gehler. Unite the people: Closing the loop between 3d
and 2d human representations. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), July 2017.

S. Li, W. Zhang, and A. B. Chan. Maximum-margin struc-
tured learning with deep networks for 3d human pose estima-
tion. In IEEE International Conference on Computer Vision
(ICCV), pages 2848-2856, 2015.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dolldr, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer
vision, pages 740-755. Springer, 2014.

M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J.
Black. SMPL: A skinned multi-person linear model. ACM
Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1—
248:16, Oct. 2015.

J. Martinez, R. Hossain, J. Romero, and J. J. Little. A simple
yet effective baseline for 3d human pose estimation. In /EEE
International Conference on Computer Vision (ICCV),2017.
D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko,
W. Xu, and C. Theobalt. Monocular 3d human pose esti-
mation in the wild using improved cnn supervision. In 3D
Vision (3DV), 2017 Fifth International Conference on, 2017.
D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin,
M. Shafiei, H.-P. Seidel, W. Xu, D. Casas, and C. Theobalt.
Vnect: Real-time 3d human pose estimation with a single
rgb camera. volume 36, 2017.

F. Moreno-Noguer. 3d human pose estimation from a sin-
gle image via distance matrix regression. In CVPR 2017-
IEEE Conference on Computer Vision & Pattern Recogni-
tion, 2017.

A. Newell and J. Deng. Associative embedding: End-to-end
learning for joint detection and grouping. In Advances in
Neural Information Processing Systems (NIPS), 2017.



[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

A. Newell, K. Yang, and J. Deng. Stacked hourglass net-
works for human pose estimation. In European Conference
on Computer Vision (ECCV), 2016.

G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tomp-
son, C. Bregler, and K. Murphy.  Towards accurate
multi-person pose estimation in the wild. arXiv preprint
arXiv:1701.01779, 2017.

L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. An-
driluka, P. Gehler, and B. Schiele. Deepcut: Joint subset
partition and labeling for multi person pose estimation. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016.

L. Pishchulin, A. Jain, M. Andriluka, T. Thormihlen, and
B. Schiele. Articulated people detection and pose estimation:
Reshaping the future. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3178-3185. IEEE, 2012.
G. Pons-Moll, D. J. Fleet, and B. Rosenhahn. Posebits for
monocular human pose estimation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2337-2344, 2014.

A.-1. Popa, M. Zanfir, and C. Sminchisescu. Deep multi-
task architecture for integrated 2d and 3d human sensing.
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

S.Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages
91-99, 2015.

G. Rogez, P. Weinzaepfel, and C. Schmid. Lecr-net:
Localization-classification-regression for human pose. In
CVPR 2017-IEEE Conference on Computer Vision & Pat-
tern Recognition, 2017.

N. Sarafianos, B. Boteanu, B. Ionescu, and I. A. Kakadiaris.
3d human pose estimation: A review of the literature and
analysis of covariates. Computer Vision and Image Under-
standing, 152:1-20, 2016.

L. Sigal, A. O. Balan, and M. J. Black. Humaneva: Syn-
chronized video and motion capture dataset and baseline al-
gorithm for evaluation of articulated human motion. Inter-
national Journal of Computer Vision (IJCV), 87(1-2):4-27,
2010.

E. Simo-Serra, A. Quattoni, C. Torras, and F. Moreno-
Noguer. A joint model for 2d and 3d pose estimation from a
single image. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3634-3641, 2013.

T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint
detection in single images using multiview bootstrapping. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

C. Sminchisescu and B. Triggs. Kinematic jump processes
for monocular 3d human tracking. In Computer Vision and
Pattern Recognition, 2003. Proceedings. 2003 IEEE Com-
puter Society Conference on, volume 1, pages I-1. IEEE,
2003.

M. Sun and S. Savarese. Articulated part-based model for
joint object detection and pose estimation. In /IEEE Inter-
national Conference on Computer Vision, pages 723-730.
IEEE, 2011.

11

[43]

[44]

[45]

(46]
(47]

(48]

[49]

(50]

(51]

X. Sun, J. Shang, S. Liang, and Y. Wei. Compositional
human pose regression. arXiv preprint arXiv:1704.00159,
2017.

C. J. Taylor. Reconstruction of articulated objects from point
correspondences in a single uncalibrated image. In /[EEE
Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 677-684, 2000.

B. Tekin, P. Marquez-Neila, M. Salzmann, and P. Fua. Learn-
ing to fuse 2d and 3d image cues for monocular body pose
estimation. In IEEE International Conference on Computer
Vision (ICCV), 2017.

The Captury. http://www.thecaptury.com/} 2016.
M. Trumble, A. Gilbert, C. Malleson, A. Hilton, and J. Col-
lomosse. Total capture: 3d human pose estimation fusing
video and inertial sensors. In Proceedings of 28th British
Machine Vision Conference, pages 1-13, 2017.

T. von Marcard, G. Pons-Moll, and B. Rosenhahn. Human
pose estimation from video and imus. Transactions on Pat-
tern Analysis and Machine Intelligence, 38(8):1533-1547,
Jan. 2016.

H. Yasin, U. Igbal, B. Kriiger, A. Weber, and J. Gall. A
Dual-Source Approach for 3D Pose Estimation from a Sin-
gle Image. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei. Towards
3d human pose estimation in the wild: A weakly-supervised
approach. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 398—407, 2017.
X. Zhou, M. Zhu, S. Leonardos, K. Derpanis, and K. Dani-
ilidis. Sparseness Meets Deepness: 3D Human Pose Estima-
tion from Monocular Video. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015.


http://www.thecaptury.com/

