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Abstract
In language production research, the latency with which speakers produce a spoken response to a stimulus and the onset and
offset times of words in longer utterances are key dependent variables. Measuring these variables automatically often yields
partially incorrect results. However, exact measurements through the visual inspection of the recordings are extremely time-
consuming. We present AlignTool, an open-source alignment tool that establishes preliminarily the onset and offset times of
words and phonemes in spoken utterances using Praat, and subsequently performs a forced alignment of the spoken utterances
and their orthographic transcriptions in the automatic speech recognition system MAUS. AlignTool creates a Praat TextGrid file
for inspection and manual correction by the user, if necessary. We evaluated AlignTool’s performance with recordings of single-
word and four-word utterances as well as semi-spontaneous speech. AlignTool performswell with audio signals with an excellent
signal-to-noise ratio, requiring virtually no corrections. For audio signals of lesser quality, AlignTool still is highly functional but
its results may require more frequent manual corrections. We also found that audio recordings including long silent intervals
tended to pose greater difficulties for AlignTool than recordings filled with speech, which AlignTool analyzed well overall. We
expect that by semi-automatizing the temporal analysis of complex utterances, AlignTool will open new avenues in language
production research.
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Introduction

In light of the fluency and swiftness with which speakers
produce spoken language (see Levelt, 1989), many studies
of language production are concerned with the temporal co-
ordination of utterance encoding processes. The dependent
variables are the latency with which speakers produce a spo-
ken response to a stimulus or the temporal structure of spoken
utterances (specifically onset- and offset-times of words). For
instance, in order to study the retrieval of words from the
mental lexicon, researchers often use picture naming tasks

requiring speakers to retrieve the names of objects shown on
the screen. The temporal onsets of the spoken words are taken
as the dependent variable, as they reflect the time taken for
retrieving and preparing the response (Bock, 1996; Griffin &
Ferreira, 2006; Levelt, Roelofs, & Meyer, 1999). When seek-
ing to study the formulation of more complex utterances, re-
searchers often use eye-tracking technology to study where
speakers look while describing a scene or reading a text (for
a review, see Hüttig, Rommers, & Meyer, 2011, and Rayner,
1998, respectively). A dependent variable of particular interest
is the eye-voice-span, that is, the time elapsing between the
onset of a gaze on an object or a word on the screen and the
onset of the participant's naming response (e.g., Griffin &
Bock, 2000; Laubrock & Kliegl, 2015).

For measuring onset times of single words in response to a
stimulus, many researchers use custom-made hardware or
software tools (often called “voice-keys”) that establish the
onset times of the first acoustic input after stimulus presenta-
tion (Rastle & Davis, 2002). However, as we will review
shortly, voice-keys do not provide consistently accurate mea-
surements and can be triggered by non-speech signals preced-
ing the response. In addition, they measure the onsets of
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utterances only. When having to analyze the full temporal
structure of multiple-word utterances, many psycholinguists
resort to establishing the onset and offset times of individual
words by visually inspecting the waveforms of the utterances
in standard audio editors, such as Praat (Boersma &Weenink,
2016) or Audacity (Audacity team, 2016). This is an extreme-
ly time-consuming procedure. In addition, the reliability of the
hand-measurements is often unknown.

We present AlignTool, a tool for semi-automatically ana-
lyzing the full temporal structure of complex utterances, in-
cluding utterance onsets and offsets as well as the onsets and
offsets of individual words and phonemes in utterances. We
demonstrate that for high quality recordings with an excellent
signal-to-noise ratio, AlignTool can work in a largely automat-
ic mode requiring virtually no corrections by the user. With
recordings of lesser quality, the automatic measurements
AlignTool establishes are less exact and require manual cor-
rections.1 However, AlignTool is still functional when work-
ing with such recordings, and it provides researchers with
useful hypotheses of where to set relevant time stamps and
hence helps to reduce the manual annotation time. By gener-
ating TextGrid files, AlignTool allows users to easily adjust
individual time stamps using Praat. Note, however, that
AlignTool does not work for audio files with substantial back-
ground noise, such as speech recordings made in an MRI
scanner.

In being functional even for recordings of lesser quality,
AlignTool presents a promising bridge between the two major
research traditions in language production research (Clark,
1996). The language-as-product (or chronometric; Levelt,
1999) tradition is the research tradition we have outlined
above. It focuses on the cognitive representations and process-
es underlying utterance generation. Typically, research in this
tradition involves testing individual speakers in a laboratory
situation. In the language-as-action tradition, by contrast, lin-
guistic behavior is studied in the context of its natural dialogue
context. For instance, researchers may be interested in the
length of pauses in speaking (e.g., Clark, 1996; Marklund,
Marklund, Lacerda, & Schwarz, 2015) or in the duration of
individual words (Fox Tree & Clark, 1997; Mousikou &
Rastle, 2015). This requires that the temporal onsets and off-
sets of words be established. Note, however, that establishing
as natural dialogue settings as possible (including persons
moving freely in a room or even on a university campus;
Brennan, Schuhmann & Batres, 2013), often comes at the
expense of losing the technical precision required for high-
quality audio recordings with a near-perfect signal-to-noise
ratio.

Eye-tracking technology is already starting to build a
bridge between the two research traditions (for early

examples, see Hanna & Brennan, 2007; Metzing &
Brennan, 2003), as it allows researchers to assess with high
temporal resolution which information in the environment
speakers and listeners are attending to while listening to or
generating utterances (e.g., Coco & Keller, 2015; Coco,
Malcolm & Keller, 2014). In order to link this information
to the time course of linguistic processes in production and
perception, the temporal structure of the spoken utterances
must be analyzed at a similar level of granularity. To date, this
is extremely time-consuming as the spoken utterances are
mostly labelled manually. AlignTool was designed to autom-
atize large portions of these analyses, reducing effective anno-
tation time by up to two thirds. This estimate is based on the
time it took our trained annotators to analyze an audio file of
good recording quality manually; with audio data of lesser
quality, the reduction in annotation time might be less pro-
nounced. We expect that by rendering the temporal analyses
of more complex utterances feasible, AlignTool will aid in
bridging the gap between the language-as-product and the
language-as-action traditions.

Establishing the temporal structure of speech
for psycholinguistic purposes

Establishing utterance onsets

To our knowledge, the only domain that has been automatized
to some extent and with mixed success is the measurement of
utterance onsets. Most researchers use a custom-made hard-
ware or software voice-key, which can be programmed to
measure the time that elapses between the presentation of a
stimulus and the first audio input to the participant’s micro-
phone, registered physically as sound pressure. Hardware-
based voice-keys typically convert the acoustic energy record-
ed at the participant’s microphone into electric energy and are
triggered as soon as the energy (i.e., the sound pressure) ex-
ceeds a pre-specified threshold. Alternatively, software-based
voice-keys have been developed that measure response times
based on an algorithmic analysis of audio files (e.g., Jansen &
Watter, 2008; Protopapas, 2007).

The language production research community has long
been aware that voice-keys of this type are potentially inaccu-
rate. For instance, voiced word onsets (as in man) are likely to
be detected better than unvoiced onsets (as in fall); voiceless
fricative onsets (as in fall) are likely to yield more variable
measures than voiceless plosives (as in tall; Duyck, Anseel,
Szmalec, Mestdagh, Tavernier, & Hartsuiker, 2008; Kessler,
Treiman, & Mullenix, 2002; Pechmann, Reetz, & Zerbst,
1989; Rastle & Davis, 2002). Kessler et al. (2002;
see also Pechmann et al., 1989) had participants read out
2,982 words as quickly and as accurately as possible in a
speeded naming task, establishing response times by means

1 In Belke et al. (2017), we give some practical advice on how to obtain good
audio recordings (see Section 5, Step 0).
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of a voice-key. When all item-related variables (familiarity,
frequency, length) except for the initial phoneme were entered
into a multiple regression analysis of the response times, they
accounted for 35 % of the variance. Further analyses showed
that the residual reaction times were significantly affected by
the identity of the initial phoneme of the word, suggesting that
there is a substantial phonetic bias in voice-key measure-
ments. Findings like these have led language production re-
searchers to adapt their experimental designs in order to min-
imize potential voice-key-related confounds, for instance by
matching the stimuli used in different experimental conditions
with regard to their word onsets.

However, this practice may not suffice because not only
initial phonemes but second phonemes, too, appear to impact
on the accuracy of the voice-key measurements (see Kessler
et al., 2002). A particularly dramatic demonstration of this
problem was reported by Rastle and Davis (2002), who had
24 participants name 40 monosyllabic words beginning with
the phoneme /s/. Half of these words had a CVC structure with
simple onsets (e.g., sat), the other half had a CCVC structure
with complex onsets (e.g., spat). In addition, participants read
aloud filler words, none of which started with /s/, which were
not considered in the analyses. Naming latency measurements
were obtained from two voice-keys and from a human rater
who visually inspected the waveforms of all responses. The
two voice-keys differed marginally in that the first one, which
was the built-in voice-key of a frequently used experimental
control software (DMDX; see L.I. Forster & J.C. Forster,
2003), read out the amplitude of the input registered at the
sound card and triggered as soon as the amplitude moved
above (below) a pre-defined upper (lower) threshold. The sec-
ond voice-key was a custom-made voice-key constructed at
the University of Cambridge (see also M. D. Tyler, L. Tyler &
Burnham, 2005). It was not only sensitive to the amplitude of
the signals but also to their duration. This way, the voice-key
was not only triggered by high-intensity signals but potential-
ly also by low-intensity signals that are sufficiently long-
lasting (e.g., /s/ in the example). The results showed that the
voice-keys established the speech onset approximately
100 ms later than the human rater; more disturbingly, howev-
er, the reaction time difference between the words with simple
and complex onsets differed substantially between the mea-
surement techniques: Hand-marked measurements yielded
longer latencies for simple than for complex onsets, while
the measurement of the DMDX-voice-key yielded longer la-
tencies for complex than for simple onsets. The measurements
obtained from the custom-built voice-key yielded no differ-
ence between simple and complex onsets.

The results reported by Rastle and Davis (2002) call into
question the validity of voice-key-basedmeasurements. Partly
in response to this, several research groups have attempted to
develop highly accurate digital voice-keys for language pro-
duction research in the past 10 years:

– Protopapas (2007) developed CheckVocal, a program
specifically designed to re-edit measurements and record-
ings made using the experimental control software
DMDX (L.I. Forster & J.C. Forster, 2003). CheckVocal
allows users to manually adjust measurements performed
by the built-in voice-key of DMDX.

– Jansen and Watter (2008) presented SayWhen, a
software-based voice-key that operates on recordings of
full experimental sessions, independently of the experi-
mental control software that they were originally record-
ed with. It requires that experimenters record an audio-
signal at the moment of stimulus onset in order for the
software to compute response latencies with reference to
the stimulus onset. Hence, like CheckVocal, SayWhen
operates on the recorded experimental session off-line,
which provides the opportunity for the experimenter to re-
visit those trials that may be hard to measure for the soft-
ware. SayWhen includes a problem-tagging component that
tells the user which trials were hard to analyze andmay need
to be inspected visually for accurate measurements of
response latencies. With both CheckVocal and SayWhen,
the combination of an automatic analysis of unambiguous
trials along with the possibility for manual corrections of
ambiguous trials ensures that the proportion of trials that
have to be discarded for measurement problems is minimal.

– Abrams and Jennings (2004) developed a software,
VoiceRelay, that uses a purely amplitude-based threshold
criterion to establish voice onsets in experiments with
reference to the presentation of a stimulus. In light of
the disadvantages of purely amplitude-based voice-keys
that we have discussed above (see Rastle & Davis, 2002),
VoiceRelay appears to be less promising than the ap-
proach presented by Jansen and Watter (2008).

– Roux et al. (2016) presented Chronset, a fully automated
alignment tool that makes use of multiple acoustic features
of the signal (such as spectral change, amplitude modula-
tion, and frequency modulation). For an onset to be detect-
ed, four of six acoustic features must exceed a predefined
threshold for at least 35 ms. The thresholds were
established based on manually annotated datasets in
Spanish and English (taken from Sadat, Martin, Alario,
& Costa, 2012, and Jansen & Watter, 2008, respectively).
In order to render the thresholds valid and applicable to
other languages than Spanish and English, the authors
carried out a regression analysis, minimizing the standard
deviation of the residuals of the six acoustic features. The
resulting thresholds proved reliable when used with data
from a different language and a different recording
environment, promising broad generalizability of
Chronset across languages. However, Chronset is
unlikely to achieve perfect accuracy. Roux et al. (2016)
usedMonte Carlo simulations to demonstrate that for sam-
ple sizes of 23 or more, simulated measurement errors with
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a standard deviation of 87 ms led to a reduction in statisti-
cal power of less than 10 %, decreasing further with larger
sample sizes (p. 15). However, for some users, this level of
accuracy may be unacceptable, especially in light of the
fact that Chronset does not allow for a post-hoc manual
correction of the measurements.

While Chronset’s accuracy is promising, it is clear from this
review that, to date, no fully automatic and fully reliable voice-
key has been engineered. Hence, it would seem that the most
promising way forward is to design a tool that provides a good
preliminary temporal analysis of the audio data and that allows
the user to easily correct the measurements where necessary.
AlignTool was designed to achieve this goal, reducing dramat-
ically the work load associated with manual measurements of
the onset and offset times of words and phonemes in utterances.

Beyond utterance onsets

As discussed previously, many eye-tracking studies make use
of scene description or reading tasks that require the partici-
pants’ utterances to be annotated temporally beyond the utter-
ance onset so as to be able to link the temporal structure of
their eye movements to that of their speech. Similarly, for
researchers interested in the comprehension of spoken lan-
guage, it may be of interest to link the temporal structure of
a spoken utterance processed by participants to their eye
movements. Finally, in dialogue these two perspectives are
linked. Continuous speech can be aligned temporally with a
literal transcription using automatic speech recognition in a
procedure called forced alignment. Users feed transcripts of
the spoken utterances to the speech recognition system and
make it align the speech into the audio signal. MAUS (Schiel,
1999, 2015), an acronym for Munich Automatic Segmentation
System, is a tool that allows users to feed the recordings of
spoken utterances and their literal transcriptions into the automat-
ic speech recognition system HTK, which then maps what has
been said onto the speech signal (forced alignment; see
Appendix 1) and generates a TextGrid file specifying the onset
and offset times of words and phonemes. WebMAUS (Kisler,
Reichel, Schiel, Draxler, Jackl, & Pörner, 2016) presents a web-
based interface for using MAUS (see Rosenfelder, Fruehwald,
Evanini, Keelan, & Jiahong, 2011, for a similar application for
the English language only).

AlignTool

AlignTool was designed to cover the full range of functionalities
reviewed so far. It was developed in Python under Linux and
runs underWindowswithin a virtual Linux environment. After a
pre-segmentation of the audio signal with respect to speech on-
set and offset times using Praat (Boersma and Weenink, 2016),

AlignTool uses the automatic speech recognition systemMAUS
(Schiel, 1999, 2015) via WebMAUS (Kisler et al., 2016) to
force-align transcripts of the utterances by the speakers with
the speech signal (Strunk, Schiel & Seifart, 2014). To this end,
an orthographic transcription provided by the user is trans-
formed into a phonotypical transcription by means of a phonetic
lexicon. Based on this phonotypical transcription, a sequence of
acoustic phone models is derived, which is force-aligned with
the speech signal, providing the most likely temporal alignment
of speech and transcription (see Appendix 1). By creating
TextGrid files as an output, AlignTool allows its users to man-
ually correct the results of its analyses in the TextGrid file, if
necessary. This may be particularly helpful for analyses of audio
data of poor quality. All manual changes to the TextGrid file can
be saved and the corrected data exported to an Excel file (or
equivalent) for further data processing.

AlignTool can analyze recordings of single trials but also
recordings of whole experiment blocks, i.e., series of trials, pro-
vided that the recording contains segmentation signals indicating
trial onset times. AlignTool handles single word utterances but
also multiple word utterances and semi-spontaneous speech in
dialogue-like experimental settings, such as the Map Task
(Anderson et al., 1991). Note that for analyzing single- or
multiple-word utterances in experimental settings, it is indispens-
able to first apply AlignTool’s pre-segmentation routine. It estab-
lishes the location of the speech interval in the recording of a
given trial, filtering out the silent intervals at the beginning and
the end of the recording. In earlier work with MAUS (Schiel,
1999) and ESMERALDA (Fink, 1999; Katzberg, Belke,Wrede,
Ernst, Berwe, & Meyer, 2014), we have found that long silent
intervals are difficult to accommodate for automatic speech rec-
ognition systems, most likely due to the lack of (phonetic) struc-
ture in these intervals. Therefore, AlignTool makes use of Praat
to detect the beginning and end of the spoken utterance in a trial
and subsequently force-aligns the pre-segmented portions of the
audio signal using MAUS.

To date, AlignTool is able to handle German, Dutch, and
British English speech input. An extension to other languages
is possible, as the only language-sensitive processing step of
the tool relies onWebMAUS, which supports other languages,
such as Italian, Spanish, Russian, as well as other variants of
English and German (Australian andAmerican English, Swiss
German etc.).

Our aim was to design AlignTool for average Windows
users with little programming experience. To this end, we
embedded the Linux environment required for working with
MAUS into a virtual environment that can be run under
Windows. Users interact with AlignTool via an Excel file2

and hence are not required to use the Linux command line.

2 Alternatively, users can use OpenOffice/LibreOffice. For the sake of consis-
tency with the User Manual (Belke, Keite, & Schillingmann, 2017) we refer to
Excel in the following.
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At the same time, we give users with more programming
expertise the opportunity to improve and expand AlignTool
and therefore make it available open-source (see Author note).

System requirements and terms of usage

AlignTool runs under Linux Ubuntu natively. In order to use it
with a Microsoft Windows operating system, it is necessary to
simulate a virtual Linux environment. For this purpose,
VMWare Workstation Player is required. AlignTool runs as
a Virtual Machine in the Workstation Player. Note that
VMware Workstation Player requires a 64-bit Windows pro-
cessing system and, in some cases, it requires that users edit
the BIOS settings to allow for VMWare to be executed.

AlignTool is designed for academic, i.e., non-profit, re-
search purposes only and is made available to members of
academic institutions only. It makes use of the WebMAUS
web service for the automatic alignment of spoken utterances
and their literal orthographic transcriptions under the
Conditions of Use for Academic Institutions as specified by
the Bavarian Archive for Speech Signals at the Ludwig-
Maximilians-University Munich (BAS) (see BAS, 2017c). In
addition, users need MS Excel or equivalents (OpenOffice/
LibreOffice) and Praat to use AlignTool. Within the virtual
environment, AlignTool and WebMAUS are both easy to
use. AlignTool and its documentation are available at https://
www.linguistics.ruhr-uni-bochum.de/~belke/aligntool.shtml.

Basic concepts and processing steps

The function of this section is to provide an overview of
AlignTool’s functionality. Users of AlignTool are referred
to the AlignTool User Manual (Belke, Kei te , &
Schillingmann, 2017; see link provided above) to find out
more about how to use AlignTool for analyzing their own
data. AlignTool is geared towards analyzing files from three
different types of recordings as illustrated schematically in
the top row of Fig. 1. The first two types pertain to exper-
imental settings consisting of sequences of trials. Each trial
features a stimulus that the participant is asked to react to,
for instance, an object or a word that the participant is asked
to name. In recordings of multiple trials in one audio file,
the trial sequence of a full experiment or experimental block
is recorded. Whenever a new stimulus is shown, audio sig-
nals, e.g., beeps, are emitted and are recorded alongside the
participant’s responses so that the temporal relation be-
tween stimulus onset and the participant’s response can be
analyzed off-line. In trial-by-trial recordings, a new audio file
is generated on every trial, recording the participant’s response.
Recordings are typically made from the onset of the stimulus
until some time after the participant has responded. In record-
ings of semi-spontaneous speech, participants are recorded in
an experimental setting but are less constrained in terms of the

content and the length of the utterances they generate. We will
focus on the first two types of recordings in the beginning of
this section and return to recordings of semi-spontaneous
speech at the end.

When using AlignTool, users work with and coordinate
three groups of files: wav audio files, TextGrid files, and an
Excel file (the workbook) that includes (a) lists of commands
to be executed by AlignTool (sheet “batch”; see Fig. 2), (b) a
copy of the intervals and their contents stored in the TextGrid
files (sheet “segments”; see Fig. 3), and, eventually, (c) the
onsets and offsets of all words analyzed by AlignTool (sheet
“on_offsets”).

Figure 1 gives an overview of the workflow for each type
of recording listed above. In the following sections, we briefly
describe the main steps in the workflow.

Prepare Excel workbook and working directory In a first step,
users need to prepare a working directory, copying all wav
files that are to be analyzed into a folder “wav” in this direc-
tory. Next, they prepare the “batch” sheet of the Excel work-
book (Fig. 2). To this end, they first make AlignTool retrieve
the wav files and write their names into the workbook.
AlignTool simultaneously specifies the corresponding
TextGrid file names. After that, users set the parameters of
the commands to be executed in the following steps.

Initial segmentation (where applicable) and creation of
seg.beep tier (segmentBeeps) In the second step, the
TextGrid files are created and a new tier called seg.beep is
added (see Fig. 4). Its function is to segment the recording
into trials, as required for recordings of multiple trials in one
audio file. In these recordings, users will typically have re-
corded the participant’s utterances in one channel and an audio
signal indicating the onset of a trial in the other channel, as
illustrated in Fig. 1 (top left). AlignTool uses Praat to automat-
ically detect the trial onsets and to create trial-by-trial inter-
vals. It labels all intervals identified as beeps “beep” in the
seg.beep tier and all periods between two beeps and after the
last beep as “speech" (see Fig. 4).

Strictly speaking, a segmentation into trials is not required
for trial-by-trial recordings or recordings of semi-spontaneous
speech, as these do not include trial onset beeps. However, as
subsequent processing stages in AlignTool require a tier called
seg.beep, we recommend that users generate TextGrid files
with a seg.beep tier nonetheless. They can do so using the
command addTier (see Fig. 1). We detail how to do this in
the User Manual (Belke et al., 2017).

When a new tier has been created in the TextGrid files,
users can import the information into the “segments” sheet
of the Excel workbook using the command Import from
TextGrids. Each interval represented in a tier in the TextGrid
file will then be represented in one line of the “segments”
sheet. Lines are listed in a tier-by-tier fashion for each file,
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with all lines pertaining to the first tier being listed first, all
lines pertaining to the second tier second, and so forth.
Figure 3 presents the “segments” sheet for the seg.beep tier

of a recording of multiple trials. It displays the “beep” and
“speech” segments and their onset and offset times as
established during the segmentBeeps procedure.

Fig. 1 Overview of the processing steps required to align automatically the three types of audio recordings

Fig. 2 Example of the “batch” sheet for 10 audio files. AlignTool works
through them line by line as soon as the user initiates a command (e.g.,
segmentBeeps). All wav and TextGrid files are specified in the first two

columns and the parameters for using the command segmentBeeps are set.
The parameters for using the other commands have yet to be added
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Detecting speech in trials using Praat (segmentSpeech)
segmentSpeech searches for relevant speech events based
on the intervals established in the seg.beep tier (see Fig.
1). For instance, in beep-segmented recordings of multiple
trials, segmentSpeech will search each interval labelled
“speech” in the seg.beep tier to find the actual speech onset
and offset. In trial-by-trial recordings featuring one trial per
file, segmentSpeech will search each file for the onset and
offset of the speech signal. Given that AlignTool’s primary
function is to obtain word onset and offset times of one
utterance per trial, segmentSpeech assumes that one speech
chunk is present per trial and searches for the beginning and

the end of this chunk. Pauses within the utterance are ig-
nored by segmentSpeech. Note though that they are detected
in a later processing step, alignMAUS (see below), provided
that they are not too long. segmentSpeech creates a new tier
called seg.speech, labelling the intervals of speech it detect-
ed as “speech” (see Fig. 4). Users can synchronize the new
information in the TextGrid files with the Excel workbook
by means of Import from TextGrids function.

Creating literal transcriptions In the next processing step,
users need to create literal transcriptions of the speech includ-
ed in the “speech” intervals identified previously in the

Fig. 4 Example of a fully annotated beep-segmented recording of
multiple trials. Trial-onset beeps and speech are recorded on separate
channels (see top half of panel). The speech signal features an average

signal-to-noise ratio. The bottom half of the screenshot presents the tiers
generated by AlignTool during the course of the automatic annotation

Fig. 3 Example of the “segments” sheet
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seg.speech tier. To this end, they first use the function addTier
to add a new tier called anno.trans to the TextGrid files, spec-
ifying as preliminary text to be entered in all intervals
“TODO”. Next, they import the contents of the anno.trans
tier to the Excel workbook, where they can replace all
“TODO”-entries by the transcriptions of the participants’ ut-
terances. We provide some recommendations about how to
best do this in the User Manual (Belke et al., 2017), as users
will often be able to paste in the transcripts from the individual
trial descriptions for the participant, which typically include
the target utterances. Once all transcriptions have been entered
into the Excel workbook, users can transfer the transcriptions
from the Excel workbook to the TextGrid file by means of the
Export to TextGrids function of AlignTool.

Aligning the speech signal with transcriptions using
WebMAUS In this processing step, WebMAUS (Kisler et al.,
2016), the web service providing forced alignments using
MAUS (Schiel, 1999), is used to generate forced alignments
of the speech intervals in the audio signal and the transcription
the user has provided for these intervals. This processing step
creates two new tiers – a tier representing the onset and offset
times of words (maus.ort) and a tier representing onset and
offset times of individual phonemes (maus.pho, see Fig. 4).
Using Import from TextGrids, these tiers can be imported to
the Excel workbook.

As stated above, AlignTool uses the WebMAUS service,
which is based on MAUS (BAS, 2017a; Schiel, 1999, 2015),
to carry out this processing step. MAUS is an automatic
speech recognition system based on continuous HMMs
(Hidden Markov Models; see also Appendix 1). Unlike most
other automatic speech recognition systems, MAUS is geared
explicitly towards performing forced alignments. AlignTool
uses MAUS in conjunction with the BAS Grapheme-
Phoneme Converter (G2P; see BAS, 2017b) service to gener-
ate automatic phonetic transcriptions of the orthographic tran-
scriptions. This service is provided for a variety of languages,
including German, Dutch, and British English, which we fo-
cused on in our evaluation of AlignTool’s accuracy, but also
French, Italian, Spanish, Finnish, and Russian (for a full list,
see the “service options” menu on the WebMAUS web page,
https://clarin.phonetik.uni-muenchen.de/BASWebServices/
interface/WebMAUSBasic. This allows for AlignTool to be
applied to more than just the three languages we report on. It
also allows for AlignTool to be used on pseudoword
utterances, as long as the pseudowords are phonotactically
plausible in the speakers’ language, so that G2P can
generate a pronunciation based on the pseudowords’
orthography.

Users of AlignTool who use alignMAUS accept the
"Conditions of Use" of the Bavarian Archive for Speech
Signals Webservices (cf. BAS, 2017c). We therefore encour-
age all users to read these conditions before using alignMAUS.

Extract On/OffsetsWhen all processing steps for analyzing the
audio files have been completed, the “segments” sheet of the
Excel workbook contains information on all tiers in the
TextGrid file, i.e., onset and offset times of the intervals cor-
responding to individual trials, words in trials and phonemes
within words. Extract On/Offsets adds a new sheet to the
workbook (“on_offsets”) and computes the onset and offset
times of each of these events in relation to the trial onset. In
recordings of multiple trials, this will be the onset of the beep;
in recordings of individual trials or semi-spontaneous speech,
this will be the onset of the recording.

Aligning semi-spontaneous speech When aligning semi-
spontaneous speech, users should pre-segment the audio files
into intervals of about 30 s or less (the most suitable interval
length may vary depending on the properties of the spoken
utterances (number of pauses etc.) and the quality of the audio
recording). To this end, users need to create a TextGrid file for
each recording with a tier called seg.beep and a tier called
anno.trans. Starting with the tier anno.trans, users segment
the audio file and enter the literal transcriptions of the utter-
ances included in each interval into the anno.trans tier. Next,
they use the addTier function to copy the anno.trans tier to a
tier called seg.beep, including the label “speech” in each of the
intervals specified previously in the tier anno.trans. As of
here, alignMAUS can be applied and the procedure is the same
as described above.

Inspection and manual corrections of AlignTool results and
parameter optimization As AlignTool does not stop process-
ing when an error occurs, users need to check the log file for
potential processing errors. The User Manual (Belke et al.,
2017) includes suggestions about how to do this. We also
recommend that users open the TextGrid and audio files for
one (or more) audio files repeatedly during the course of the
analysis to check whether AlignTool has made the intended
changes to the TextGrid files correctly and whether the mea-
surements are accurate. At the very latest, users should inspect
the temporal annotation provided by AlignTool after carrying
out the forced alignments using AlignMAUS.

Users can contribute to yielding optimal preliminary tempo-
ral annotations fromAlignTool by optimizing the parameters for
each processing step. This applies primarily to segmentBeeps
and segmentSpeech, but also to alignMAUS. For instance, in
order to optimize the accuracy of segmentSpeech, users can
specify how much (in db) the audio signal must differ from
the silence threshold in order to be classified as speech. This
parameter should be usedwith care though, as a too conservative
(i.e., too high) setting may cause AlignTool not to detect voice-
less fricatives or other speech events that differ little from the
silence threshold.

A full list of parameters and their functions is provided in
the User Manual (see Appendix A in Belke et al., 2017).
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Which parameters are suited best for which recording depends
to a large extent on the quality of the recording and the kind of
background noise, so we cannot give any general recommen-
dations on the parameter settings. However, in Appendix A6 of
the User Manual we give recommendations on how users can
find optimal parameters for their recordings (Belke et al.,
2017). Table 1 presents an overview of the parameter settings
we used for the evaluation of AlignTool, detailed in the next
section. They can serve as orientation for the parameter settings
users may want to use for their own analyses.

We recommend that users annotate the recordings of a few
participants manually so as to be able to evaluate the quality of
the alignment under their parameter settings in AlignTool with
respect to this gold standard. In our experience, an optimal pa-
rameter setting for a given recording scenario can be carried forth
to new recordings from the same scenario. Therefore, it is worth-
while to invest some tuning effort when first using AlignTool.

Evaluation of AlignTool

Manually established measurements of onset and offset times
of words in participant recordings are the gold standard for
evaluating tools like AlignTool. We compiled a sample of
participant recordings obtained in experimental and semi-
experimental settings typical of language production research
and annotated them manually. We used them to evaluate the
accuracy of the measurements generated automatically by
AlignTool. Note that the tool is designed in such a way that
users can easily inspect its accuracy and correct the measure-
ments, where necessary. Hence, its actual accuracy in proper
use will be much higher. The evaluations reported below can
serve as an estimate of how exact a purely automatic annota-
tion with AlignTool can be.

Speech corpora I: single and multiple word utterances

We used two corpora to assess AlignTool’s accuracy in estab-
lishing the temporal onsets and offsets of words in spoken
utterances of one to four words recorded in an experimental
setting. By assessing the accuracy of determining the temporal
onset of the first word in an utterance, we specifically assessed
AlignTool’s accuracy as a voice-key. In doing so, we also
compared its performance to the performance of a custom-
made hardware voice-key (Hasomed NesuBox 2) and of
SayWhen and Chronset, the software-based voice-keys pre-
sented by Jansen and Watter (2008) and Roux et al. (2016),
respectively, both of which we could apply to our data.

Rastle&Davis corpus (Rastle & Davis, 2002; English) As
outlined in the Introduction, Rastle and Davis (2002) had 24
participants name two groups of 20words, one beginning with
/s/ (simple onset) and one beginning with /sp/ or /st/ (complex

onset). The speakers were participants from the University of
Cambridge (cf. Rastle & Davis, 2002, p. 309). Data from two
participants had to be excluded due to technical problems,
yielding a total of 880 critical trials. An additional set of filler
words, none of which started with /s/, were recorded but were
not considered in the analyses. Onset times were measured
manually (for details, see Rastle & Davis, 2002) and using
two different types of voice-key. For the purpose of this eval-
uation, we shall focus on the manual measurements of partic-
ipants’ speech onset times, which were longer for simple than
for complex onsets.

The parameters for analyzing the word onset and offset
times in the Rastle&Davis corpus with AlignTool are present-
ed in Table 1. In order to measure the onset times of the
utterances with SayWhen, we pre-processed the data so as to
bring them into a format suitable for SayWhen. First, we
resampled the recordings from 22,050 Hz to 44,100 Hz, using
SoX (sox [inputfile].wav -r 44100 [outputfile.wav]). Next, we
concatenated the trialwise recordings of the wav files to one
wav file in order to simulate a recording of a full experiment.
In order for this file to be processed by SayWhen, it needed to
also include a 10-ms trial onset signal, which had not been part
of the original recordings, on the left channel.We incorporated
this marker in the concatenation process by including a trial
onset signal file (with the trial onset signal on the left channel
and silence on the right channel) before each trial recording. In
addition, we added 30 ms of silence at the beginning and the
end of the concatenated files, as this was necessary for
SayWhen to find the first and last trials reliably. The
concatenated file thus included 30ms silence at the beginning,
followed by a series of pairs of trial onset signal files and trial
recordings, and 30 ms silence at the end. A new wav file
header was added to the concatenated audio file and it was
entered to SayWhen (using default settings). The onset laten-
cies established by SayWhen were saved to a CSV file. In a
last processing step, we subtracted 10 ms from all latencies
provided by SayWhen, as its measurements were started at the
beginning of the 10-ms trial onset marker, which had not been
part of the original trial recording.

MTAS corpus (English, German, Dutch) The MTAS (short for
Manually Temporally Annotated Speech) corpus, was specifi-
cally created for the evaluation of AlignTool: We collected data
from 30 native speakers of German, 30 native speakers of
Dutch, and 30 native speakers of British English, who all com-
pleted an object-naming and a word-reading task. We chose
these two tasks as they are frequently used in language produc-
tion research. The participants were recruited via the participant
pools of the Department of Linguistics at Ruhr-University
Bochum, the Max Planck Institute for Psycholinguistics in
Nijmegen, and the School of Psychology at the University of
Birmingham, respectively. We did not record the region of or-
igin of the speakers and their accents.
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For the single object-naming task, we selected 100 pictures
of objects for each language from the databases provided by
Bates et al. (2003) for German and English and by Severens,
van Lommel, Ratinckx, and Hartsuiker (2005) for Dutch (see
Appendix 2). These databases include details on the frequency
of the object names in the respective languages (cf. Baayen,
Piepenbrook, & van Rijn, 1995) and the name agreement as-
sociated with the pictures of the objects – the more likely the
participants are to use the same word(s) for a given object, the
higher its name agreement. In selecting the objects, we made
sure that their names were frequent words and that the pictures
had high name agreement, meaning that in the norming stud-
ies, pictures were associated with three different names at
most. In addition, we selected the stimuli in such a way that
their names covered a variety of different onset phonemes.
Occasionally, this required applying a less strict criterion on
name agreement. The full list of stimuli is provided in
Appendix 2. Participants were asked to name the pictures as
fluently and accurately as possible.

In the word-reading task, the same object names were used
as in the object-naming task, but they were combined into a
total of 50 different four-word combinations, such as tent dog
grapes skeleton. Each object name featured twice across all
word combinations. The word combinations were compiled to
include words that ended and began with the same phoneme
(grapes – skeleton), were very similar (frog – clock) or very
dissimilar phonemes (broom – chair), so as to model easy and
hard conditions for establishing precisely the onset and offset
times of individual words within the utterance. Again, partic-
ipants were asked to read the object names out loud as fluently
and accurately as possible. During testing, we used a custom-
made hardware voice-key (Hasomed NesuBox 2) for estab-
lishing participants' utterance onset times online, allowing us
to evaluate AlignTool against this voice-key. The voice-key
emitted a beep signal when it was triggered, allowing the
experimenter to record all trials when the voice-key was trig-
gered audibly too early, too late, or not at all.

Regarding the manner of articulation, the sets included a
large number of picture names with fricative onsets (34 for
German, 33 for English, and 39 for Dutch, respectively) and
plosive onsets (39 for German, 35 for English, and 29 for
Dutch). Vowels and semivowels were less frequent onsets
(17 for German, 20 for English, and 21 for Dutch) and nasals
approximants and trills were rather rare. This distribution re-
flects that the frequency of occurrence of phonemes in the
onsets of words varies. Some onsets are not included in the
materials because they either did not constitute word onsets in
any of the three languages or because the name agreement of
the words containing the onsets was too low.

For the word-reading task, we assembled the written names
of the objects selected for the single object naming to 50 lists
of four names. Within each list, we manipulated the similarity
of the final phoneme of the first (second, third) word and the

first phoneme of the second (third, fourth) word. Below, we
refer to these pairs of offsets and onsets of consecutive words
as transitions. With 50 four-word lists per language and three
transitions per list, there were 150 transitions per language.
Across word groups, we identified five categories of transi-
tions between words, depending on the similarity between the
two phonemes at the transition between two words:

– The two phonemes differed in both place and manner of
articulation.

– The two phonemes were similar, i.e., they shared the
same manner of articulation but differed in the place of
articulation (as in tent – plate) or vice versa (as in plate –
swan), or they shared the same place and manner of ar-
ticulation, but differed in voicing (as in frog – clock).

– The two phonemes were identical (as in grapes –
skeleton).

The data collection procedure was identical across the three
languages. All participants were tested in both the single-
object-naming and the multiple-word-reading tasks in their re-
spective native language. We asked them to complete the mul-
tiple-word-naming task first, as we hoped that familiarizing the
participants with the object names in this task would increase
name agreement in the single-object-naming task. Participants
received written instructions prior to each task and were given
the opportunity to ask questions. Each task was preceded by
three practice trials so as to familiarize the participants with the
task and the procedure. In the word-naming task, a fixation
point was shown for 500 ms, followed by the four words for
6 s and a blank screen for 150 ms. After that, the next trial was
initiated. In the single object-naming task, the same trial
timing was used, but the object was presented for 2 s
and the blank screen between two trials was shown for
750 ms. The apparatus was also parallel across the three
languages, featuring standard desktop Pentium com-
puters for controlling the stimulus presentation and 17-
in. to 19-in. computer screens for presenting the stimuli
using the NESU software (Nijmegen Experiment
SetUp).

In the English and Dutch testing settings, participants were
seated in a quiet room; the German recordings were madewith
participants seated in a sound proof booth. The responses of
the participants were registered using a Sony ECM-MS907
microphone (German and English) and a Sennheiser ME64
microphone (Dutch), respectively. The signal was fed through
an external voice-key (Hasomed NesuBox 2) on to a second
computer for recording (German) and an external DAT record-
er (Dutch), respectively. For the English recordings, we had
planned to use the same setup for DAT recordings as in Dutch.
However, due to technical difficulties, we had to record the
utterances with an M-Audio MicroTrack II recorder, which
produced recordings of very poor quality. In the end, the
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recording quality was excellent for the Dutch utterances, av-
erage for the German and very poor for the English data.
These unintended differences in recording quality allow us
to evaluate how much the three software-based analysis tools,
AlignTool, SayWhen, and Chronset, are affected by differ-
ences in recording quality.

The parameters for analyzing the word onset and offset
times in the MTAS corpus with AlignTool are presented in
Table 1. In order to measure the onset times of the utterances
with SayWhen, we first split our audio recordings of the ex-
perimental sessions into trialwise recordings, based on the trial
onset beeps we had recorded during the experiment. These
trialwise recordings were treated in the same way as the re-
cordings of the Rastle&Davis corpus, with the exception that
no resampling was necessary.

Speech corpora II: semi-spontaneous speech

The semi-spontaneous speech data were used to pilot
AlignTool’s accuracy in analyzing the temporal structure of
semi-spontaneous speech elicited in description tasks.

Display Comparison Task corpus (Sichelschmidt et al., 2010;
German) For German, we used a subset of a corpus of utter-
ances recorded from pairs of speakers engaged in semi-
spontaneous dialogues (see Sichelschmidt, Jang, Kösling,
Ritter, &Weiß, 2010). Each of them saw a set of colored ob-
jects on the screen but was unable to see the display of their
partner. The displays differed in only one detail and the dia-
logue partners’ task was to describe their displays to each
other so as to identify the difference. Speakers were recruited
at Bielefeld University (Sichelschmidt et al., 2010). We have
no detailed information on the speaker characteristics. In total,
we annotated 10,822 words from seven pairs of speakers. The
signal-to-noise ratio of the recordings was poor, as they un-
avoidably included noise generated by the computers and oth-
er background noise in the room. The parameters for analyz-
ing the word onset and offset times in the Display Comparison
Task corpus with AlignTool are presented in Table 1.

Sjerps&Meyer corpus (Sjerps & Meyer, 2015; Dutch) For the
evaluation in Dutch, we employed data from an experi-
ment using a pseudo-dialogue setting (Sjerps & Meyer,
2015; Experiment 1, Speaking Only task). Participants
described the spatial positioning of two pairs of objects,
using sentences of the form “put the A above (below) the
B and put the C below (above) the D”. Manual annota-
tions of the onset and offset times were available for all
nouns in the utterances (A, B, C, and D). Participants
were native speakers of Dutch and were recruited from
the participant pool of the Max Planck Institute for
Psycholinguistics in Nijmegen. We have no detailed in-
formation on the speaker characteristics.

We selected correct responses only, yielding a total of 993
utterances with 12,367 words, 3,972 of which had been anno-
tated manually. Originally, we had planned to include a second
set of utterances from the Tapping and Speaking task, which
required participants to tap rhythmically while speaking.
Unfortunately, the tapping noise was clearly audible in the re-
cordings and made it impossible for AlignTool to operate reli-
ably, so we could not include these data. The parameters for
analyzing the word onset and offset times in the Sjerps&Meyer
corpus with AlignTool are presented in Table 1.

Map Task corpus (Anderson et al., 1991; English) This corpus
includes route descriptions of 64 different speakers, most of
whom were Scottish and were from “within a 30 mile radius
of the center of Glasgow” (Anderson et al., 1991, p. 361). The
recordings include the speech of an instructor and a dialogue
partner recorded on separate channels. We converted the .ses
(raw) audio files to wav files using the Linux-based SoX util-
ity tool and transcribed and temporally annotated a total of
13,619 words of the instructor in the recordings of 21 pairs
of speakers.We selected those recordings because they includ-
ed only few intervals where the two speakers spoke simulta-
neously. The parameters for analyzing the word onset and
offset times in the Map Task corpus with AlignTool are pre-
sented in Table 1.

Manual annotations of word onsets and offsets

We used the AVS audio editor version 7.2.1.487 to annotate
the words manually. With this tool, it is possible to set markers
within an audio file and create a “marker list” in which
markers can be added, merged, renamed, replayed, and saved
into an xml file. The values stored in the xml file provide the
time stamp of a marker, multiplied by the sampling rate. The
annotation rules are summarized in Appendix 3.

After 2–3 weeks into the annotation process we double-
checked the marked onsets and offsets by exchanging the
annotated data among the annotators and controlling whether
they would all have annotated the data as their colleagues had
done. This was usually the case. After this, we addressed
problems that often occurred. For instance, it turned out that
word-final plosives like /k/ and /t/ had sometimes been left
unmarked. We corrected the data accordingly and also
checked whether the first annotator had observed the rule that
successive words should always be 1 ms apart. In a second
round of corrections, we distributed the data in such a way that
they were assigned to annotators who had not previously seen
them and had each annotator check 15 % of the data as to
whether he or she would have marked the same word begin-
nings and endings. Whenever annotators differed by 10 ms or
more, they were asked to correct the marker and if it became
clear that in a file the accordance was off multiple times, they
were asked to check the entire file.
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At the end of the annotation process, each file was assigned
to yet another annotator who annotated about 10 % of the data
from scratch (see Table 2). These annotations were used to
assess the consistency of the annotations across annotators.
For the sake of comparability, we restricted the consistency
analyses to those data points that were also included in the
evaluation of AlignTool (see below). Table 2 presents the
average differences between annotators in ms (averaging
across differences greater and smaller than 0), as well as the
average absolute difference between annotators. It also pro-
vides the standard deviation of the measurements provided by
each annotator, the covariance between annotators and their
correlation (Pearson’s r). In addition, we provide intraclass
correlation (ICC) scores (ICC(C,1); McGraw & Wong,
1996) as a measure of consistency. The differences were small
and the ICCs exceptionally high throughout. However, they
display a small dip for the English MTAS data, which is most
likely due to the poor audio quality of these data.

Comparison of automatic and manual annotations:
single and multiple word utterances

Rastle&Davis corpus (Rastle & Davis, 2002; English) One par-
ticipant was excluded from the analyses as this person inhaled

audibly on almost all trials, which caused substantial devia-
tions of the automatic temporal alignments provided by
AlignTool from the manual measurements. Such deviations
would usually be corrected manually but as the present eval-
uation was geared towards establishing the results of the auto-
matic temporal alignments alone, we excluded this participant
from the analyses. Of the remaining data, 18 trials were ex-
cluded due to participant errors. Table 3 lists the mean utter-
ance onset times established manually and using AlignTool,
SayWhen, and Chronset. The results of the manual
annotations are given for all 22 participants originally
included in the analyses reported by Rastle and Davis (2002)
and for the subset of 21 participants included in the present
analysis. Rastle and Davis had found that with their manual
annotation, response times were 9 ms faster for complex than
for simple onsets. This effect was significant by participants
and approached significance by items (p = .05). Excluding one
participant yielded an effect of 8 ms with p < .05 for the by-
participants and p = .061 for the by-items analysis.

AlignTool automatically annotated the onset times in the
two conditions about 33 ms earlier than the manual annota-
tions. The reduction in response time was slightly more pro-
nounced in the simple than in the complex condition, reducing
the effect of condition to 2 ms (n.s.). Critically, the reduction

Table 2 Average differences (in ms, with standard deviations) between annotators, averaging across differences greater and smaller than 0, average
absolute differences (in ms, with standard deviations) and measures of variability per annotator and across annotators (standard deviations (in ms),
Person’s r and ICC). For comparability, analyses were restricted to the data points included in the analyses for evaluating AlignTool’s accuracy

Mean difference Mean absolute
difference

SD
annotator 1

SD
annotator 2

Covariance Pearson's r ICC (95 % CI)

MTAS Corpus, Onsets

Germana 5 (29) 17 (24) 600 596 357,134 .999 .999 (.001)

Dutchb 2 (30) 18 (25) 647 651 420,535 .999 .999 (.001)

Englishc 26 (312) 54 (309) 610 693 377,527 .893 .885 (.017)

MTAS Corpus, Offsets

Germana 3 (39) 28 (27) 610 613 372,728 .998 .998 (.001)

Dutchb -2 (42) 27 (32) 682 686 466,843 .998 .998 (.001)

Englishc 28 (317) 66 (311) 606 692 372,907 .889 .880 (.018)

Semi-Spontaneous Speech Corporaf, Onsets

Germand -3 (61) 30 (53) 24,234 24,230 586,603,308 .999 .999 (.001)

Englishe 5 (118) 34 (113) 48,197 48,205 2,321,038,189 .999 .999 (.001)

Semi-Spontaneous Speech Corporaf, Offsets

Germand 5 (71) 38 (60) 24,226 24,225 586,272,117 .999 .999 (.001)

Englishe 11 (131) 50 (121) 48,182 48,199 2,320,005,616 .999 .999 (.001)

aN = 1155 (13.8% of all data included in evaluation)
bN = 746 (10.5 %)
cN = 682 (8.7 %)
dN = 458 (5.2 %)
eN = 456 (4.4 %)
f The SDs per annotator and their covariance are substantially higher in the semi-spontaneous speech corpora, as the recordings are longer, yielding a
larger range of annotated time stamps
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in response times was not affected significantly by condition
(see Table 3).

SayWhen allocated the onset times about 77 ms later than
Rastle and Davis had done, yielding a difference between
conditions in the opposite direction of what Rastle and
Davis had found (-9 ms). This effect approached significance
in the by-items analysis (p = .063) but was not significant in
the by-participants analysis. The discrepancy between the
manual annotation and that established using SayWhen was
particularly pronounced in the complex condition, yielding a
significant effect of condition on the difference between the
two types of annotation (see Table 3).

Chronset suffered from a parallel problem: While it was
better than SayWhen in detecting the onsets in the simple
condition, it was as inaccurate as SayWhen in the complex
condition, yielding a substantial effect of condition in the op-
posite direction of that seen with the manual annotations and a
highly significant effect of condition on Chronset’s deviation
from the manual annotations. Chronset’s and SayWhen’s re-
sults correspond to those obtained with a threshold based
voice-key by Rastle and Davis (2002).

The results obtained with Chronset highlight the relevance
of a post-hoc correction: Unlike a threshold-based voice-key
or a fully automatic software voice-key like Chronset,
SayWhen and AlignTool allow the user to correct manually
the automatic annotations, eventually yielding much higher
levels of accuracy. All in all, our findings suggest that the
preliminary analyses of the response times provided by
AlignTool are more accurate overall than those obtained by
SayWhen, Chronset or a voice-key.

MTAS corpus For the MTAS corpus, we carried out two sets of
analyses. First, we compared manual annotations of the utter-
ance onset times with those obtained by the voice-key
employed during data collection, by SayWhen, by Chronset,
and by AlignTool, respectively. In the second analysis, we

compared the annotations generated by AlignTool with the
manual annotations for onset and offset times of words within
utterances, taking into account the similarity of the last pho-
neme of the first and the first phoneme of the second word in
pairs of successive words.

Table 4 shows how many data points had to be excluded
in each language because of recording problems, participant
errors, voice-key malfunction, and AlignTool malfunction.
In the Dutch data set, the recordings of the word-reading
task were faulty in two participants, requiring us to exclude
the corresponding data points from further analysis. Also,
the voice-key was very sensitive in the Dutch and English
experimental setup, causing it to be triggered too early on a
substantial number of trials that were excluded from the
analysis. In the English data set, many additional trials were
lost by a malfunction of AlignTool. As the audio quality of
the English data was rather poor, AlignTool failed to anno-
tate automatically about 9 % of the data. One would, of
course, be able to annotate these trials manually. For the
purpose of the present evaluation, however, we simply ex-
cluded them.

Unsurprisingly, the analysis of utterance onset times yielded
largely parallel patterns of results for the picture-naming and
the word-reading task (see Table 5). In German, the measure-
ments generated by AlignTool differed least from the manual
measurements, compared to SayWhen, Chronset, and the
voice-key. For Chronset, there was only a small difference from
the manual annotations in the object-naming task, but that dif-
ference was almost twice as big for the word-reading task. Note
that there were only half as many trials in the word-reading than
in the object-naming task, so a few larger deviations would
impact more on the mean in the word-reading task than in the
object-naming task. The voice-key tended to be triggered about
75 ms too late. SayWhen allocated the onset times about
160 ms too early, yielding the greatest deviation from the man-
ual measurements.

Table 3 Mean utterance onset times (ms) in the simple and complex conditions of the word-naming task reported in Rastle and Davis (2002) as
established by a human rater (R&D), by AlignTool, by SayWhen, and by Chronset

Simple Complex

M SE M SE Mdiff t1(20)a t2(38)

R&D (incl. all ppts.) 371 13 362 11 9 2.89 ** 2.02 (*)

R&D 370 13 362 12 8 2.67 * 1.93 (*)

AlignTool 334 11 332 11 2 0.51 n.s. 0.28 n.s.

AlignTool - R&D -36 7 -30 6 -6 -1.68 n.s. -1.10 n.s.

SayWhen 439 16 448 16 -9 -1.67 n.s. -1.92 (*)

SayWhen - R&D 69 8 86 10 -17 -3.61 ** -4.67 ***

Chronset 378 14 506 17 -128 -17.04 *** -24.45 ***

Chronset - R&D 8 4 144 8 -135 17.09 *** -32.76 ***

(*) p < .1, * p < .05, ** p < .01, *** p < .001
a df = 21 for Rastle (incl. all ppts)
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In Dutch and English, the voice-key tended to generate the
most exact measurements. In Dutch, AlignTool established
the utterance onset times about 40 ms too early, i.e., it was

too sensitive. By contrast, SayWhen and Chronset were not
sensitive enough, establishing the utterance onset times 20–
30 ms too late. Overall, SayWhen and Chronset deviated

Table 4 Number of word onset and offset times lost in each language due to participant or measurement errors

German Dutch English

No. of words tested 9,000 9,000 9,000

Data points lost due to recording problems and
manual annotation problems

17 0.19 % 652 7.24 % 20 0.22 %

Data points lost due to participant errors 109 1.21 % 158 1.76 % 161 1.79 %

Data points lost due to voice-key malfunction 507 5.63 % 1,109 12.32 % 943 10.48 %

Data points lost due to AlignTool malfunction 282 3.13 % 308 3.42 % 796 8.84 %

Data points remaining for analysis 8,085 89.83 % 6,773 80.63 % 7,080 85.30 %

Table 5 Mean utterance onset times (in ms) in the picture naming and word-reading task in German, Dutch, and English, as established by human
raters (hand annotation), by AlignTool, by a voice-key, by SayWhen, and by Chronset

Picture naming Word reading

M SE M SE

German

Hand annotation 727 3 724 4

AlignTool 719 3 704 4

VK 810 3 796 4

SayWhen 569 3 561 3

Chronset 753 4 771 4

AlignTool minus Hand -8 *** -20 *

VK minus Hand 83 *** 72 ***

SayWhen minus Hand -158 *** -163 ***

Chronset minus Hand 26 *** 47 ***

Dutch

Hand annotation 739 4 664 5

AlignTool 707 4 615 6

VK 740 4 659 5

SayWhen 770 4 697 5

Chronset 749 4 698 6

AlignTool minus Hand -32 *** -50 ***

VK minus Hand 1 n.s -5 (*)

SayWhen minus Hand 31 *** 33 ***

Chronset minus Hand 11 *** 34 ***

English

Hand annotation 735 4 718 4

AlignTool 789 4 772 4

VK 753 4 729 4

SayWhen 1073 19 819 5

Chronset 562 7 673 10

AlignTool minus Hand 53 *** 54 ***

VK minus Hand 18 *** 11 ***

SayWhen minus Hand 338 *** 101 ***

Chronset minus Hand -181 *** -51 ***

(*) p < .1, * p < .05, ** p < .01, *** p < .001
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substantially less from the manual measurements in Dutch
than in German, possibly due to the fact that the recording
quality was better for the Dutch than for the German speakers.
In line with this interpretation of the Dutch data, SayWhen’s
and Chronset’s performance dropped markedly with the
English recordings, which were of by far the poorest quality
overall. AlignTool was able to deal with this problem reason-
ably well, yielding much smaller deviations from the manual
annotations than SayWhen and Chronset. The voice-key was
as exact for the English speakers as for the Dutch speakers.
Recall that the audio signal was first fed to the external voice-
key (Hasomed NesuBox 2) and was then recorded. The rela-
tively unaffected operation of the voice-key along with rather
poor recordings suggest that the recording problems in the
English corpus arose after the voice-key had operated.

Overall, these findings suggest that AlignTool establishes
utterance onset times reasonably exactly, irrespective of the

quality of the recordings in terms of the signal-to-noise ratio.
However, users will need to tune the parameters to their re-
cording quality. In Appendix A6 of the User Manual (Belke
et al., 2017), we give some advice on how to do this. The
present results also indicate that users need to edit some of
the automatically generated measurements manually in order
to obtain optimal results. To this end, they can access the
TextGrid files established byAlignTool and edit them directly.
All changes made can be saved and imported to the Excel
workbook by means of the Import to TextGrids function.

Table 6 presents the average deviation from the manual
annotations at the transitions of successive words in the
four-word utterances generated in the reading task. These tran-
sitions pertained to the last phoneme of the first word and the
first phoneme of the secondword and accordingly to the offset
and onset phonemes of the second and third word and the third
and fourth word. Table 7 presents the results of the statistical

Table 6 Measurement differences between AlignTool and manual annotators for dissimilar, similar, and identical transitions between the first and
second, second and third, and third and fourth word in the word-reading task

Dissimilar Similar Identical

Position Ma SEa Mb SEb N Ma SEa Mb SEb N Ma SEa Mb SEb N

Onsets

German

1-2 -1 2 632 -4 28 444 -12 7 278

2-3 25 20 618 16 13 433 -8 3 302

3-4 77 24 652 81 26 480 21 17 220

Dutch

1-2 0 6 -6 5 496 -1 7 -10 5 304 4 9 -6 4 308

2-3 44 13 12 4 394 64 21 4 4 361 7 15 -25 4 352

3-4 537 55 18 5 466 349 50 2 4 403 409 78 -28 6 239

English

1-2 26 3 337 10 4 255 35 12 548

2-3 35 19 431 33 21 293 31 12 416

3-4 99 27 424 30 25 322 87 25 392

Offsets

German

1-2 6 3 632 -4 29 444 -11 8 278

2-3 36 20 618 15 11 433 -5 3 303

3-4 59 20 653 40 15 480 9 6 220

Dutch

1-2 -1 7 -7 6 496 -12 8 -20 7 304 -2 8 -11 5 308

2-3 30 9 8 4 394 32 9 4 4 362 -10 7 -30 4 352

3-4 143 19 16 4 465 72 15 -6 4 403 87 26 -20 5 239

English

1-2 22 4 337 -5 5 255 -4 4 548

2-3 29 18 431 4 22 293 -16 12 416

3-4 59 23 425 20 22 323 -3 17 392

aM and SE of the first annotation of the trials in full length
bM and SE of the annotation of the trimmed trials (Dutch data only)
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analysis of the effects of transition position, transition similar-
ity, and their interaction on the difference between the mea-
surements established by AlignTool and the manual measure-
ments. The position of the transition within the four-word
utterances had a substantial effect on the accuracy of the mea-
surements generated by AlignTool (or MAUS, to be precise),
with measurement accuracy decreasing substantially across
the four-word sequence (see Table 6). Indeed, from a technical
perspective one would expect that accuracy decreases with
increasing length, as the search space (i.e., all possible seg-
mentations) of the HMM-based alignment algorithm increases

quadratically with utterance length, thus increasing the prob-
ability of errors at later positions within the utterance. The
position effect was particularly pronounced in the Dutch data,
yielding average deviations of 400–500 ms for the transition
from the third to the fourth word. Given that the recording
quality of the Dutch data was excellent, this finding is surpris-
ing and clearly exceeds the technically induced position effect
caused by the increase in length.

Inspection of trials yielding such high deviations between
the third and the fourth word suggested that segmentSpeech
had malfunctioned on some occasions, taking audible

Table 7 Results of the statistical analyses of the effects of Transition Position, Transition Similarity, and their interaction on the differences between the
measurements obtained with AlignTool and manual annotations

df1 F F F F

Word onsets

German (df2 = 4,050) Dutch (df2 = 3,314)
(annotation of
full trials)

Dutch (df2 = 3,314)
(annotation of
trimmed trials)

English (df2 = 3,409)

Transition Position 2 6.96 *** 127.64 *** .86 n.s. 5.29 **

Transition Similarity 2 1.74 n.s 2.59 (*) 25.88 *** 1.83 n.s.

Position × Similarity 4 0.35 n.s. 3.15 * 6.89 *** 0.93 n.s.

Word offsets

German (df2 = 4,052) Dutch (df2 = 3,314)
(annotation of
full trials)

Dutch (df2 = 3,314)
(annotation of
trimmed trials)

English (df2 = 3,411)

Transition Position 2 3.13 * 51.87 *** 2.47 n.s. 1.60 n.s.

Transition Similarity 2 2.73 (*) 5.58 ** 20.96 *** 6.64 ***

Position × Similarity 4 0.19 n.s. 3.56 ** 6.08 *** 0.40 n.s.

Fig. 5 Example of a trial from the Dutch MTAS (Manually Temporally
Annotated Speech) corpus used in the evaluation of AlignTool: in
segmentSpeech, AlignTool has erroneously established the utterance

offset time too late, impacting on the accuracy of the subsequent
alignMAUS processing step
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breathing of the participants towards the end of the trial to be
speech rather than noise (see Fig. 5 for an example trial). This
is caused by the automatic floor noise detection used to estab-
lish the silence threshold. The excellent audio quality of the
Dutch recordings led to a low floor noise and thus breathing
was likely more prominent than in recordings with a poor
signal-to-noise ratio. This problem may have occurred on oth-
er trials as well. To assess this, we trimmed all audio data,
deleting the interval starting 500 ms after utterance offset (as
established in the manual annotation) and ending at the end of
the trial.3 Table 6 presents the average deviations in onsets and
offsets by position and transition similarity. Trimming the au-
dio data improved the results of the automatic annotation con-
siderably, eliminating the statistical effect of transition posi-
tion (see Table 7). There was still an effect of transition sim-
ilarity, with the offset and onset times of dissimilar and similar
words being annotated a little earlier than the manual annota-
tions early on in the utterances and slightly later than the

manual annotations at later positions in the utterance. This
effect was reversed, however, for transitions with identical
phonemes at the end of the first and the beginning of the
second word, yielding a significant interaction of transition
similarity and transition position. It is not clear why the posi-
tion effect reversed for this transition similarity only but it is
important to keep in mind that with identical transitions, man-
ual annotations are largely arbitrary (see Appendix 3 for the
annotation guidelines we followed). For the time being, the
most important finding is that trimming the data improved the
performance of AlignTool considerably, suggesting that
segmentSpeech had not segmented the speech-relevant inter-
vals in the trials reliably. This reflects a trade-off between
setting highly sensitive parameters and sacrificing onset and
offset accuracy.

Figure 6 presents the deviations from the manual annota-
tions for the onset and offset times by phoneme type. For the
DutchMTAS corpus, Fig. 6 shows the results of the analysis of
the trimmed audio data. There was a clear connection between
the quality of the audio recordings and the overall amount of
deviation of the annotation generated by AlignTool from the
manual annotation. While there was only little deviation from
the manual annotations in Dutch (excellent recording quality),
there was more deviation in German (average recording qual-
ity) and most in English, where the recordings were worst. The
deviation seen across languages was not systematically

3 We are, of course, aware that users of AlignTool would normally not have
themanually annotated utterance offset times at their disposal to implement the
solution we used. However, upon inspecting the data generated by AlignTool,
they would typically spot outliers in the distributions of onset times, offset
times and word durations (by position) and would thus be able to identify trials
with potential problems of the kind observed here. Users would then be able to
trim the audio files manually or automatically, using Praat. Note that such
trimming does not need to be exact, as long as it cuts off large sections of
the non-speech phase at the end of the trial.
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Fig. 6 Distribution of measurement differences between -100 ms and +100 ms by phoneme types in onsets (left) and offsets (right) in the German, Dutch, and
English sections of the MTAS (Manually Temporally Annotated Speech) corpus
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affected by phoneme type – positive and negative deviations
from the manual annotations were seen in all phoneme classes
alike.

Semi-spontaneous speech In the English and German corpora
of semi-spontaneous speech, we had to exclude some of the
data from the analysis. As these corpora involved dialogue-
like settings, speakers occasionally spoke at the same time.
These sections of the corpus were excluded, as MAUS is
unlikely to be able to deal with them. Interjections, like
“hm”, speech errors, and incomprehensible words were ex-
cluded from the analysis as well. Finally, all trials associated
with AlignTool malfunction were excluded, leaving 75.4 % of
the words in theMap Task corpus and 82% of the words in the
Comparison Task corpus for analyses. There was no need to
exclude any data from the Sjerps&Meyer corpus.

Table 8 presents the average measurement deviation in the
corpora and the correlation between this measurement devia-
tion and the position of a word in the participants’ utterance.
Unlike what we had seen in the analyses of the MTAS data,
there was no consistent positive correlation between the posi-
tion of a word in the utterance and AlignTool’s accuracy; the
correlation was positive for the Dutch data, negative for the
German data and absent for the English data. In order to in-
terpret these correlations, we also assessed the absolute differ-
ence between the annotations by AlignTool and the manual
raters (see Table 8). For the Display Comparison Task corpus,
AlignTool seems to have annotated the relevant word bound-
aries too early, and this error intensified over positions. As a
result, there was a significant negative correlation between
utterance position and the average differences between
AlignTool and the manual annotations, along with a positive
correlation between utterance position and the absolute differ-
ences between AlignTool and the manual annotations. The
Dutch data suggest that AlignTool again tended to annotate
relevant word boundaries earlier than the manual annotators.
Over the four positions in the Dutch utterances, this difference
grew more positive, accounting for the positive correlation
between the average differences and utterance positions. For

the absolute differences, there was no significant correlation
with utterance position, as the absolute differences would first
be positive, then move towards 0 and finally above 0 again,
yielding a non-linear sequence of decreasing and increasing
absolute differences. Finally, in the English Map Task corpus,
there was no systematic effect of utterance position on the
average differences between the annotations generated by
AlignTool and by the manual annotators. In fact, the analysis
of the absolute differences showed that the error became
smaller over utterance positions rather than bigger.

It is noteworthy that the utterance length in the three corpora
of semi-spontaneous speech differed considerably. For Dutch,
participants produced utterances of the type “Put the A above
(below) the B and put the C below (above) the D”, including 13
words in total. For the Map Task corpus, by contrast, there
were, on average, 2 min and 40 s of pure speech in each of
the 21 recordings, which we analyzed. For the Display
Comparison Task corpus, the recordings were even longer: on
average, there were 7 min and 30 s of pure speech from each
speaker pair. Hence, one might expect that the effect of word
position on average absolute differences seen in the English and
German data decreases considerably when the recordings are
pre-segmented into shorter sections of, say, 30 s each, prior to
applying alignMAUS to the recordings (see Belke et al., 2017).

Figure 7 presents the deviations from the manual annota-
tions for the onset and offset times by phoneme type. In
German and English, the results mirrored those obtained for
the MTAS corpus: While the quality of the audio recordings,
which was excellent in the EnglishMap Task corpus but much
poorer in the German Display Comparison Task corpus, clear-
ly impacted on the overall deviation of the annotation gener-
ated by AlignTool from the manual annotation, there was no
systematic effect of phoneme type. By contrast, the results for
the Dutch corpus differed from those obtained for the MTAS
corpus in that there was a marked effect of phoneme type,
especially for word onsets. AlignTool annotated the onsets
of words starting with plosives substantially earlier than the
human raters, whereas all other phoneme types were annotat-
ed similarly by AlignTool and the human raters. For offsets

Table 8 Semi-spontaneous speech: Mean measurement differences (in ms) for word onsets and offsets and correlations of the magnitude of the
deviation with utterance position. For each corpus, the first row presents the average differences, including those greater and smaller than 0, and the
second row presents the average absolute differences

Word onsets Word offsets

N M SE rdeviation × position M SE rdeviation × position

Display Comparison Task corpus (German)
(Sichelschmidt et al., 2010)

Average difference
Absolute difference

8,879 -129
393

13
13

-.074
.097

***
***

23
404

13
13

-.065
.090

***
***

Sjerps&Meyer corpus (Dutch, nouns
only) (Sjerps & Meyer, 2015)

Average difference
Absolute difference

3,971 -23
108

6
6

.224
-.022

***
n.s.

-14
96

6
6

.164
-.011

***
n.s.

Map Task corpus (English)
(Anderson et al., 1991)

Average difference
Absolute difference

10,272 -7
239

11
11

.009
-.030

n.s.
**

-6
246

11
11

.009
-.029

n.s.
**
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this effect was not visible. We assume that the systematic
deviations in the onsets came about because the human raters
had used the moment of plosion in order to establish the
speech onset whereas AlignTool established the beginning
of the plosives slightly earlier. This difference impacts on
the temporal annotation of onsets only, as for plosives in the
word offsets, both AlignTool and the human raters established
the moment of plosion as the offset of the word.

Outlook

AlignTool is an open source tool for the semi-automatic tem-
poral alignment of speech in single- and multiple-word utter-
ances and semi-spontaneous speech. In a large-scale evalua-
tion, we have identified strengths and weaknesses of
AlignTool, demonstrating that it can provide most accurate
automatic alignments for recordings with an excellent
signal-to-noise ratio but becomes less accurate as the record-
ing quality decreases.

Evidently, each researcher will try to ensure that the record-
ings are of the best possible quality in terms of their signal-to-
noise ratio, but in our experience, ideal recording conditions
are rarely given. Therefore, we configured AlignTool to per-
form with recordings of poorer quality as well and to allow for
easy-to-implement manual corrections in Praat. However,
AlignTool is likely to perform less robustly and less accurately

with audio signals of poorer quality, requiring the user to
correct more trials than with audio signals of better quality.

In language production research, AlignTool can be used as
a digital voice-key as well as as a tool for establishing word
onset and offset times in more complex, semi-spontaneous
settings. Our pilot data from evaluating AlignTool’s accuracy
in automatically aligning semi-spontaneous speech are prom-
ising in that the deviations were small, especially for record-
ings of excellent quality, and there was no systematic effect of
a word’s position in the utterance on alignment accuracy. Note
that MAUS deserves most of the credit for this, as the align-
ments of semi-spontaneous speech largely relied on MAUS.

Unlike for the semi-spontaneous speech, we found that the
automatic analyses of the four-word utterances in the MTAS
corpus with AlignTool exhibited a substantial effect of word
position. We presume that this contrast between the two types
of utterances came about because the recordings in the MTAS
corpus included long silent intervals, namely the interval be-
tween stimulus onset and response onset, when participants
were planning their utterance, and the interval after utterance
completion until the beginning of the next trial. We have dem-
onstrated for the Dutch data that even in cases when the re-
cording quality is excellent, non-speech sounds can have an
impact on the quality of the automatic alignments generated
by AlignTool. One might reduce such problems by training
the automatic speech recognition system to distinguish
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between speech and non-speech sounds. Note, however, that
such training is necessarily tied to the given recording scenario
and is therefore unlikely to transfer to other recording
scenarios.

Given that users can correct the results of AlignTool man-
ually, the alignments provided byAlignTool can be potentially
as accurate as those generated by hand. However, the aim is,
of course, to have AlignTool generate as many word onsets on
its own as possible. To this end, we recommend that users
prepare manual annotations of a sample of the utterances they
want to align using AlignTool and use them to find the optimal
parameter settings for their recording setting. In Appendix A6
of the User Manual, we give some recommendations on how
to do this. In all likelihood, an optimal parameter setting for a
given recording scenario can be carried forth to new record-
ings. Therefore, it is worthwhile to invest some tuning effort
when first using AlignTool.

However, our evaluation results also indicate that even
when parameters are optimized, users must not rely on the
results generated by AlignTool blindly but need to be intelli-
gent inspectors of its results. For instance, by generating his-
tograms of the onset times and the durations of individual
words, users can identify apparent outliers so as to find out
whether there are problems in the recordings of the kind re-
ported for the Dutch section of the MTAS corpus, where a
breathing noise was mistaken for speech and distorted the
automatic alignment.

Apart from the domains we have evaluated AlignTool for
in this paper, it can also be used in research on language
comprehension, where it may be of interest to link the tempo-
ral structure of spoken utterances to listeners’ eye movements,
for instance in visual word experiments or in instruction set-
tings like the Map Task setting. In addition, AlignTool can be
applied to analyzing the onset and offset times of
pseudowords, as long as the pseudowords are phonotactically
plausible in the speakers’ language, such that the G2P-service
(BAS, 2017b) can generate a pronunciation based on the
pseudowords’ orthography. We have tested AlignTool on
short sequences of pseudowords used in an artificial
language learning study with German speakers (Bebout &
Belke, 2017). Each of the utterances consisted of four or eight
pseudowords (cf. the prose and rhyme training conditions in
the study). There were no manual annotations of the onset and
offset times of the pseudowords but we assessed the outcome
of AlignTool’s measurements visually for a sample of the 144
recordings we aligned in this way and found the results to be
accurate.

Moving on from AlignTool, the next big challenge will be
to develop efficient tools for the (semi-)automatic annotation
of speech recorded in dialogue settings involving multiple
speakers. Rosenfelder et al. (2011) have presented FAVE-
align, a tool that allows users to temporally align speech re-
corded from multiple speakers in dialogue settings, such as

sociolinguistic interviews. Users transcribe each speaker’s ut-
terance in a separate tier and feed this information to FAVE-
align, which performs forced alignments using the Penn
Phonetics Lab Forced Aligner (P2FA). The tool has not been
evaluated for temporal accuracy, but given that it allows for
manual corrections of the alignment very high levels of accu-
racy should be achievable.

In sum, many psycholinguistic studies require precise in-
formation about the time course of spoken utterances.
AlignTool is an open source instrument that should, we hope,
support researchers in the semi-automatic analysis of their
corpora. By functioning as a voice-key as well as as a tool
for the analysis of word onset and offset times in more com-
plex utterances, we expect that AlignTool will open new ave-
nues in language production research.
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Appendix 1

Automatic speech recognition systems work by training the
parameters of a statistical model – in this case a Hidden-
Markov-Model (HMM) – with data from an annotated set of
speech data (Rabiner, 1989). HMMs model sub-word-units,
normally phone-like segments, through a sequence of unob-
servable states associated with observable features modelled
by mixtures of Gaussian distributions. These sub-word-units
can then be concatenated to form words. The acoustic features
in such standard approaches are based on the spectral infor-
mation of the speech signal where only the information of the
vocal tract configuration is retained while discarding informa-
tion about the sound source (i.e. the fundamental frequency;
Young, 1996).

In order for such a recognition system to perform well on
new data, several parameters need to be optimized on the basis
of a cross-evaluation test set that is independent of the training
set. Optimizing these parameters requires weighting, for ex-
ample, bottom-up acoustic information against top-down in-
formation as provided by a statistical language model or a
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grammar, or determining the number of Gaussian distributions
needed to optimally model the training data while maintaining
sufficient generalisation power. Other parameters relate to op-
timizing the ability of the system to predict the (prior) proba-
bilities of words. In addition, a speech recognition system
designed to recognize speech on its own needs a custom-
made lexicon – a predefined set of words to be recognized.
Words unknown to the system are very difficult to spot as they
will be projected onto the next most similar word. In addition,
the system needs to be trained with sequences of words that
are likely to occur in the application scenario. This means that
prior to the use in a specific scenario, it is necessary to train a
statistical language model with data from this scenario.

However, the system’s search space can be reduced dra-
matically by providing it with an orthographic transcription of
the utterances. Given such a transcription, the automatic
speech recognition system will force-align the given sequence
of phone models (as derived from the orthographic transcrip-
tion through a pronunciation lexicon or a phoneme string gen-
erated by a Grapheme-Phoneme Converter, e.g., BAS, 2017b)
to the speech signal and provide the most likely temporal
alignment.

Appendix 2

Lists of object names used in the picture naming
and the word-reading task in each language.

English: airplane, anchor, apple, arm, ball, bed, bowl, bra,
broom, cactus, chair, cheese, clock, clown, crab, cross, desk,
dog, dragon, dress, drum, ear, egg, elephant, envelope, eye,
fish, flag, flower, frog, genie, ghost, glasses, glove, grapes,
guitar, hammer, horse, igloo, iron, jacket, key, kite, knife, lad-
der, leaf, map, monkey, nail, nose, octopus, onion, orange,
owl, penguin, plate, plug, priest, puzzle, queen, ring, robot,
ruler, saddle, shark, shoe, skateboard, skeleton, sled, slide,
smoke, snake, snowman, spider, spoon, squirrel, statue, stool,
strawberry, stroller, sun, swan, swing, table, tent, thermos,
thumb, train, tree, umbrella, unicorn, vase, volcano, watch,
whale, worm, wrench, yoyo, zebra, zipper

Dutch: aap, aardbei, ananas, appel, arm, auto, bed, blad,
bloem, bril, brug, bus, cactus, citroen, clown, dak, deur,
dolfijn, draak, eekhoorn, eend, eenhoorn, ei, emmer, eskimo,
fiets, fles, fontein, geweer, gieter, glas, gordijn, graf,
grasmaaier, helikopter, hoed, hond, iglo, jojo, kaas, kerk,
kip, klerenkast, krokodil, kruis, ladder, leeuw, lepel, masker,
muur, neus, noot, olifant, oog, oor, paard, paraplu, pijl,
pleister, pruik, radio, ring, robot, saxofoon, schaar, schildpad,
schommel, schroevendraaier, sigaret, sjaal, skatebord, skelet,
slang, sleutel, sneeuwman, spaghetti, spiegel, ster, stofzuiger,
strijkijzer, tafel, telefoon, trap, trein, trompet, uil, varken, vlag,

vleermuis, vlieger, voet, vulkaan, weegschaal, wereldbol,
wiel, wolk, zadel, zon, zwaan, zwembad

German: Anker, Apfel, Arm, Auge, Auto, Ball, Besen,
Bett, Blitz, Blume, Briefkasten, Brille, Clown, Dach,
Daumen, Drache, Eichhörnchen, Eimer, Einhorn, Elefant,
Ente, Esel, Eule, Fass, Fenster, Fledermaus, Flugzeug, Frau,
Frosch, Geweih, Giraffe, Glas, Globus, Grab, Gürtel,
Handschuh, Herz, Hund, Iglu, Jacke, Junge, Käfig, Käse,
Kinderwagen, Kleid, Knochen, Knopf, Kreuz, Krokodil,
Leiter, Löwe, Luftballon, Mädchen, Messer, Mund, Nagel,
Nase, Ohr, Ohrring, Papagei, Pfeil, Pflaster, Pistole, Rakete,
Roboter, Säule, Schere, Schlange, Schlüssel, Schmetterling,
Schnecke, Schneemann, Schraube, Schreibmaschine, Schuh,
Schwan, Schwein, Skateboard, Skelett, Soldat, Sonne,
Spargel, Spiegel, Spritze, Staubsauger, Straße, Streichholz,
Stuhl, Tasse, Telefon, Tisch, Trichter, Trommel, U-Boot,
Uhr, Waage, Wasserhahn, Zigarette, Zitrone, Zwiebel

Appendix 3

Annotation Rules

Ten different research assistants were involved in the annota-
tion of the data. As the visible waveform information was not
always reliable, we annotated the files by ear. To guarantee
that the annotations were comparable, we established basic
rules for coding. In single word utterances, as recorded in
the object-naming task, the onset of a word was marked as
soon as the first audible speech sound started. Accordingly,
the offset was marked at the end of audible speech. For utter-
ances that did not appear in isolation but in the presence of
other words, additional rules applied: When two words blend-
ed into each other, we marked the first point during the utter-
ance, at which the first word was not audible any longer as the
offset of the first word. For instance, when uttering “that is”,
the /t/ of “that” will still be audible when the /i/ is already
being uttered and vice versa. We marked the beginning of
the word “is” at that point, at which only the /i/ was audible
and the /t/ not anymore.

Sometimes words were recognizable in their context but
hardly audible in isolation, such as “is” in “it is blue”. In these
cases, we chose to mark the ending of the first and the begin-
ning of the last word and marked the space between them as
the shorter word. In the above example, this means we anno-
tated “it” and “blue” and marked the rest as “is”.

We agreed that the ending of one word and the beginning of
another should not overlap. Therefore, in an utterance like “it
is”, if “it” ended at, for instance, 12 s and 220 ms, “is” would
have been marked as starting at 12 s and 221 ms. This kind of
coding is useful for potential applications of the data for ASR
systems, which often do not accept overlaps across words
(e.g., Fink, 1999). When transitions between words were
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identical, as in “unicorn-nail” and participants did not pause
between words, we divided the total length of the sound at the
transition (/n/ in the example) in half and assigned each half to
one of the words.

In the Map Task corpus (Anderson et al., 1991) and the
Display Comparison Task corpus (Sichelschmidt et al.,
2010), interjections, cases in which two speakers spoke simul-
taneously, and words that were unintelligible or distorted in
other ways were highlighted so as to be excluded from the
analyses with AlignTool.

References

Abrams, L., & Jennings, D. T. (2004). VoiceRelay: Voice key operation
using Visual Basic. Behavior Research Methods, Instruments, and
Computers, 36, 771-777.

Anderson, A. H., Bader, M., Bard, E. G., Boyle, E., Doherty, G., Garrod,
S., ... Weinert, R. (1991). The HCRC Map Task Corpus. Language
and Speech, 34, 351-366.

Baayen, R. H., Piepenbrook, R., & van Rijn, H. (1995). The CELEX
lexical database (CD-ROM). Linguistic Data Consortium,
University of Pennsylvania, Philadelphia, PA.

BAS (Bavarian Archive for Speech Signals) (2017a, August 9). BAS
WebServices. Retrieved from https://clarin.phonetik.uni-
muenchen.de/BASWebServices/interface.

BAS (Bavarian Archive for Speech Signals) (2017b, August 9) BAS
WebServices: G2P. Retrieved from https://clarin.phonetik.uni-
muenchen.de/BASWebServices/interface/Grapheme2Phoneme.

BAS (Bavarian Archive for Speech Signals) (2017c, August, 8). BAS
WebServices: General Help – Terms of Usage. Retrieved from
https://clarin.phonetik.uni-muenchen.de/BASWebServices/help/
termsOfUsage#termsofusage.

Bates, E., D’Amico, S., Jacobsen, T., Székely, A., Andonova, E.,
Devescovi, A., ... Tzeng, O. (2003). Timed picture naming in seven
languages. Psychonomic Bulletin and Review, 10, 344-380.

Bebout, J. & Belke, E. (2017). Language play facilitates language learn-
ing: Optimizing the input for rapid gender-like category induction.
Cognitive Research: Principles and Implications, 2, 11.

Belke, E., Keite, V., & Schillingmann, L. (2017). AlignTool
Documentation. Retrieved from https://www.linguistics.rub.de/
~belke/aligntool.shtml.

Bock, J. K. (1996). Language production: Methods and methodologies.
Psychonomic Bulletin & Review, 3, 395-421.

Boersma, P. & Weenink, D. (2016). Praat: Doing phonetics by computer
(Version 6.0.14) [Computer software]. Retrieved from http://www.
praat.org/.

Brennan, S. E., Schuhmann, K. S., & Batres, K. M. (2013). Entrainment
on the move and in the lab: The Walking Around Corpus.
Proceedings of the 35th Annual Conference of the Cognitive
Science Society.

Clark, H. (1996). Using Language. Cambridge: Cambridge University
Press.

Coco, M. I., & Keller, F. (2015). Integrating mechanisms of visual guid-
ance in naturalistic language production. Cognitive Processing, 16,
131-150.

Coco,M. I., Malcolm, G. L., &Keller, F. (2014). The interplay of bottom-
up and top-downmechanisms in visual guidance during object nam-
ing, The Quarterly Journal of Experimental Psychology, 67, 1096-
1120.

Duyck, W., Anseel, F., Szmalec, A., Mestdagh, P., Tavernier, A., &
Hartsuiker, R. (2008). Improving accuracy in detecting acoustic

onsets. Journal of Experimental Psychology: Human Perception &
Performance, 34, 1317-1326.

Fink, G. A. (1999). Developing HMM-based recognizers with
ESMERALDA. In V. Matousek, P. Mautner, J. Ocelíková, & P.
Sojka (Eds.), Lecture notes in artificial intelligence science: Vol.
1692. Text, speech and dialogue: Second international workshop,
TSD ’99, Plzen, Czech Republic, September 13-17, 1999 (pp. 229-
234). Berlin: Springer.

Forster, K. I., & Forster, J. C. (2003). A windows display program with
millisecond accuracy. Behavior Research Methods, Instruments, &
Computers, 35, 116-124.

Fox Tree, J. E., & Clark, H. H. (1997). Pronouncing “the” as “thee” to
signal problems in speaking. Cognition 62, 151-167.

Griffin, Z. M., & Bock, J. K. (2000). What the eyes say about speaking.
Psychological Science, 11, 274-279.

Griffin, Z. M., & Ferreira, V. S. (2006). Properties of spoken language
production. In M. J. Traxler, & M. A. Gernsbacher (Eds.),
Handbook of psycholinguistics (2nd ed.) (pp. 21-59). London:
Elsevier.

Hanna, J. E., & Brennan, S. E. (2007). Speakers' eye gaze disambiguates
referring expressions early during face-to-face conversation.
Journal of Memory and Language, 57, 596-615.

Hüttig, F., Rommers, J., & Meyer, A. S. (2011). Using the visual world
paradigm to study language processing: A review and critical eval-
uation. Acta Psychologica, 137, 151-171.

Jansen, P., & Watter, S. (2008). SayWhen: An automated method for
high-accuracy speech onset detection. Behavior Research
Methods, 40, 744-751.

Katzberg, D., Belke, E., Wrede, B., Ernst, J., Berwe, Th., & Meyer, A. S.
(2014). AUDIOMAX: A software using an automatic speech rec-
ognition system for fast and accurate temporal analyses of word
onsets in spoken utterances. Poster presented at the International
Workshop on Language Production 2014, Geneva.

Kessler, B., Treiman, R., &Mullennix, J. (2002). Phonetic biases in voice
key response time measurements. Journal of Memory and
Language, 47, 145-171.

Kisler, T., Reichel, U. D., Schiel, F., Draxler, Ch., Jackl, B., & Pörner, N.
(2016). BAS Speech Science Web Services - an update of current
developments. Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC 2016), Portorož,
Slovenia, May 23-28, 2016.

Laubrock, J., & Kliegl, R. (2015). The eye-voice span during reading
aloud. Frontiers in Psychology, 6, 1432.

Levelt, W. J. M. (1989). Speaking: From Intention to Articulation.
Cambridge: MIT Press.

Levelt, W. J. M. (1999). Models of word production. Trends in Cognitive
Sciences, 3, 223-232.

Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical
access in speech production. Behavioral and Brain Sciences, 22, 1-
75.

Marklund, U., Marklund, E., Lacerda, F., & Schwarz, I.-C. (2015). Pause
and utterance duration in child-directed speech in relation to child
vocabulary size. Journal of Child Language, 42, 1158-1171.

McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some
intraclass correlation coefficients. Psychological Methods, 1, 30-46.

Metzing, C. & Brennan, S. E. (2003). When conceptual pacts are broken:
Partner-specific effects in the comprehension of referring expres-
sions. Journal of Memory and Language, 49, 201-213.

Mousikou, P., & Rastle, K. (2015). Lexical frequency effects on articula-
tion: A comparison of picture naming and reading aloud. Frontiers
in Psychology, 6, 1571.

Pechmann, T., Reetz, H., & Zerbst, D. (1989). Kritik einer Messmethode:
Zur Ungenauigkeit von Voicekey Messungen [Critique on a mea-
surement method: About the inaccuracy of voicekey measure-
ments]. Sprache & Kognition, 8, 65-71.

488 Behav Res (2018) 50:466–489

https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/Grapheme2Phoneme
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/Grapheme2Phoneme
https://clarin.phonetik.uni-muenchen.de/BASWebServices/help/termsOfUsage#termsofusage
https://clarin.phonetik.uni-muenchen.de/BASWebServices/help/termsOfUsage#termsofusage
https://www.linguistics.rub.de/%7Ebelke/aligntool.shtml
https://www.linguistics.rub.de/%7Ebelke/aligntool.shtml
http://www.praat.org
http://www.praat.org


Protopapas, A. (2007). CheckVocal: A program to facilitate checking the
accuracy and response time of vocal responses from DMDX.
Behaviour Research Methods, 39, 859-862.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected
applications and speech recognition. Proceedings of the IEEE, 77,
257-286.

Rastle, K., & Davis, M. H. (2002). On the complexities of measuring
naming. Journal of Experimental Psychology: Human Perception
and Performance, 28, 307-314.

Rayner, K. (1998). Eye movements in reading and information process-
ing: 20 years of research. Psychological Bulletin, 124, 372-422.

Rosenfelder, I., Fruehwald, J., Evanini, K., & Jiahong, Y. (2011). FAVE
(Forced Alignment and Vowel Extraction) Program Suite. Retrieved
from http://fave.ling.upenn.edu.

Roux, F., Armstrong, B. C., & Carreiras, M. (2016). Chronset: An auto-
mated tool for detecting speech onsets. Behavior Research Methods.

Sadat, J., Martin, C. D., Alario, F. X., & Costa, A. (2012). Characterizing
the bilingual disadvantage in noun phrase production. Journal of
Psycholinguistic Research, 41, 159-179.

Schiel, F. (1999). Automatic phonetic transcription of non-prompted
speech. International Congress of Phonetic Sciences 14, 607-610.).

Schiel, F. (2015, November 5). Munich Automatic Segmentation.
Retrieved from http://www.bas.uni-muenchen.de/Bas/BasMAUS.
html.

Severens, E., van Lommel, S., Ratinckx, E., & Hartsuiker, R. J. (2005).
Timed picture naming norms for 590 pictures in Dutch. Acta
Psychologica, 119, 159-187.

Sichelschmidt, L., Jang, K.-W., Koesling, H., Ritter, H., & Weiß, P.
(2010). Alignment in aufgabenorientierten Dialogen: ein
multimodales Such- und Vergleichskorpus. [Alignment in task-
oriented dialogues: A multimodal search and comparison corpus].
Linguistische Berichte, 222, 205-230.

Sjerps, M. J., & Meyer, A. S. (2015). Variation in dual-task performance
reveals late initiation of speech planning in turn-taking. Cognition,
136, 304-324.

Strunk, J., Schiel, F., & Seifart, F. (2014). Untrained forced alignment of
transcriptions and audio for language documentation corpora using
WebMAUS. In N. Calzolari, K. Choukri, T. Declerck, H. Loftsson,
B. Maegaard, J. Mariani, A. Moreno, J. Odijk, & S Piperidis (Eds.),
Proceedings of the Ninth International Conference on Language
Resources and Evaluation (LREC 2014), Reykjavik, Iceland,
May 26-31, 2014.

Tyler, M. D., Tyler, L., & Burnham, D. K. (2005). The Delayed Trigger
Voice Key: An improved analogue voice key for psycholinguistic
research. Behavior Research Methods, 37, 139-147.

Young, S. (1996). A review of large-vocabulary continuous-speech rec-
ognition. IEEE Signal Processing Magazine, 13, 45-56.

Behav Res (2018) 50:466–489 489

http://fave.ling.upenn.edu
http://www.bas.uni-muenchen.de/Bas/BasMAUS.html
http://www.bas.uni-muenchen.de/Bas/BasMAUS.html

	AlignTool:...
	Abstract
	Introduction
	Establishing the temporal structure of speech for psycholinguistic purposes
	Establishing utterance onsets
	Beyond utterance onsets

	AlignTool
	System requirements and terms of usage
	Basic concepts and processing steps

	Evaluation of AlignTool
	Speech corpora I: single and multiple word utterances
	Speech corpora II: semi-spontaneous speech
	Manual annotations of word onsets and offsets
	Comparison of automatic and manual annotations: single and multiple word utterances
	Outlook

	Appendix 1
	Appendix 2
	Lists of object names used in the picture naming and the word-reading task in each language.

	Appendix 3
	Annotation Rules

	References


