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Abstract
The study of quantum thermalmachines, andmore generally of open quantum systems, often relies
onmaster equations. Two approaches aremainly followed.On the one hand, there is thewidely used,
but often criticized, local approach, wheremachine sub-systems locally couple to thermal baths. On
the other hand, in themore established global approach, thermal baths couple to global degrees of
freedomof themachine. There has been debate as towhich of these two conceptually different
approaches should be used in situations out of thermal equilibrium.Herewe compare the local and
global approaches against an exact solution for a particular class of thermalmachines.We consider
thermodynamically relevant observables, such as heat currents, as well as the quantum state of the
machine.Our results show that the use of a localmaster equation is generally well justified. In
particular, for weak inter-system coupling, the local approach agrees with the exact solution, whereas
the global approach fails for non-equilibrium situations. For intermediate coupling, the local and the
global approach both agree with the exact solution and for strong coupling, the global approach is
preferable. These results are backed by detailed derivations of the regimes of validity for the respective
approaches.

1. Introduction

Master equations are a powerful tool to study open quantum systems [1, 2]. They allow for a description of the
relevant degrees of freedomonly, which evolve under the influence of all other degrees of freedom that are not of
immediate interest. These other degrees of freedom are collectively called the environment. A particularly
simple situation occurs when the system can be described by a time-localmaster equationwith constant
dissipation rates [3–6]. This results inMarkovian evolution, where knowledge of the densitymatrix at a given
time is sufficient to predict all future observables, which implies an environment that has nomemory.Here we
refer to this type ofmaster equations asMarkovian.

Compared to the complete problemof describing all the degrees of freedomof system and environment
together, aMarkovianmaster equation governing only the systemdegrees of freedom is an immense
simplification. Such a drastic reduction of complexity usually comes at a price. In this case, the price comes in the
formof strong approximationswhich are not always justified. Studying these approximations is thus of utmost
importance and indeed, there is a large body of literature that addresses these issues [5, 7–29] (for a recent review,
see [6]). However, a large number of these studies focus on an environment that drives the system towards
equilibrium. The recent rise in interest in out-of-equilibriumquantum systems, and in particular in quantum
thermodynamics, calls for revisiting the question of the validity of thewidely usedMarkovian quantummaster
equations [15, 16, 18, 20–26].

Quantum thermalmachines are devices that performuseful tasks by exploiting thermal gradients in the
environment; for recent reviews, see e.g. [30–35]. This task can for instance be the production of work [36–41],
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ormore concretely of an electrical current [34, 42–44], the refrigeration of a quantumdegree of freedom
[45–50], the creation of entanglement [51–53], the determination of low temperatures [54], or the design of
thermal transistors [55] and autonomous quantum clocks [56].

The standard description of these systems crucially relies onMarkovianmaster equations to predict the
relevant observables, such as heat currents and power. Twomain approaches are followed in the literature. The
first is a local approach, where the thermal baths couple locally to sub-systems of themachine. The second is a
global approach, where thermal baths couple to the global eigenmodes of themachine. As the two approaches
are conceptually different, there has been considerable debate aboutwhich one should be used in order to
accurately describe thermalmachines, andmore generally out-of-equilibrium systems. Since the global
approach describes equilibrium situations accurately (see below), while the local in some cases does not, there
has been incentive to use the global approach out of equilibrium aswell. Furthermore, the local approach is often
believed to bemore phenomenological in nature [13, 14, 19, 28, 57] and it was even argued that it is unphysical in
certain regimes [27, 58, 59].

The goal of the present work is to discuss these questions in depth.Wewill consider a system forwhich the
full unitary dynamics of themachine and the thermal baths can be solved exactly. This allows us to evaluate the
performance of local and globalmaster equations for themachine against the exact dynamics. In addition, we
give detailed derivations of the local and the global approaches and discuss the involved approximations.
Specifically, we consider a heat engine introduced byKosloff [36], which can be implemented in
superconducting circuits [44]. Themachine consists of two sub-systems (oscillators), which couple to different
thermal baths, and to each other via an energy conserving interaction. In case the two oscillators have different
frequencies, themachine requires an external driving field,making theHamiltonian time-dependent. The entire
system (machine plus baths) consists only of harmonic oscillators with quadratic interactions. Therefore, the
system can be described exactly at the level of covariancematrices, and can be treated numerically even for
relatively large bathswith arbitrary precision. This exact numerical solution serves as a benchmark for evaluating
the performance of both the local and globalmaster equations. Focusing on an out-of-equilibrium steady-state
regime, we discuss relevant thermodynamical observables, such as heat currents and power, as well as the
quantum state (densitymatrix) of themachine degrees of freedom.

Our results demonstrate an overall excellent agreement between the predictions of the local approach and
the exact solution. In theweak inter-system coupling regime, we see that the local approach provides an accurate
description of the system, capturing both the thermodynamical observables and the quantum state. On the
contrary, the global approach fails in this regime.Moving to the regime of intermediate coupling, we find that
both approaches provide good descriptions of the system.Notably, the local approach still reliably captures all
thermodynamical features of themachine. For very strong inter-system coupling strengths, the local approach
starts to fail while the global approach still yields a faithful description of the system.We provide a detailed
derivation of the regime of validity for each approach.

In thefinal part of the paper, we briefly discuss the case offinite dimensionalmachines. In particular, we
consider the two-qubit entangler of [51], which is analogous to the heat engine setup considered in the first part,
but with the twomachine oscillators replaced by two qubits with equal level spacing (i.e. no external drive).
While solving the total system (including the baths) exactly is unfortunately out of reach in this case, we can still
compare the local and global approaches.Wefind very similar behavior to the results of the first part. In
particular, the global approach still fails in theweak coupling regime, while for intermediate coupling, the two
approaches agreewell.

The paper is structured as follows. Section 2 gives amore detailed introduction to the local and global
approaches. Sections 3–7 are devoted to the heat engine. In section 3, we introduce the system. The different
master equations and the respective approximations are discussed in section 4, and the exact numerics are
discussed in section 5. The observables which are investigated are introduced in section 6 and the results are
given in section 7. The qubit entangler is then discussed in section 8 beforewe conclude in section 9.

2. Local versus global

Before going into details, we provide a short introduction to the two commonly usedMarkovianmaster
equationswhichwe discuss. In the local approach, the thermal baths couple to the eigenstates of sub-systems of
themachine, while the global approach is based on a secular approximation. For time-independent
Hamiltonians, the global approach corresponds to baths that couple to the delocalized eigenstates of the system
Hamiltonian. In an equilibrium situation (i.e. baths at equal temperatures and time-independentHamiltonian)
the globalmaster equation results in the desired steady state which is given by aGibbs statewith respect to the
systemHamiltonian [1, 60] (for a discussion on deviations from theGibbs state due to the finite coupling
between system and bath, see, e.g., [61, 62]). The local approach on the other hand results in a product of Gibbs
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states with respect to the sub-systemHamiltonians [60]. Forfinite interactions, the globalmaster equation is
therefore usually considered superior to the localmaster equation. The situation drastically changes if wemove
away from equilibrium.Clearly, if the sub-systems do not interact, each sub-system should thermalize to its
respective bath.While the localmaster equation yields correct results in this case, the global approach fails,
resulting in a finite energy current through the system even in the absence of an interaction. There therefore exist
limiting cases wherewe expect one approach to clearly be superior to the other. The goal of the present work is to
connect these dots by comparing the local and the globalmaster equations to exact numerics for a wide range of
parameters in and out of equilibrium.Ourmain interest thus lies in the observables related to themachine
operation, i.e. heat currents, powers, and efficiencies.Moreover, we also compare the quantum states of the
machine.

We note that the validity of local and global approaches has been investigated before, even for out-of-
equilibrium systems. Reference [16] provides a detailed study of the different approximations, however, the
authors only consider the state of the system and not the energyflows. Reference [11] shows that the global
approach neglects terms that influence the current through a two-terminal electric conductor. In [15], it was
shown that the global approach can erroneously result in a vanishing heat current through a spin chainwhile a
local approach shows good agreementwith results obtained from aRedfield equation. The validity of the
Redfield equationwas shown in [23], where a system analogous to our heat engine in the absence of an external
drive is investigated. References [58, 59, 63] argue that a localmaster equation can violate the second law of
thermodynamics when a non-energy preserving interaction between the sub-systems is considered. These
violationswere however shown to be of the order of terms that are droppedwhen deriving a localmaster
equation [22, 64]. In [22], it was shown that in the absence of degenerate subspaces, the local approach can be
understood as the zeroth order of a perturbation series in the inter-system interaction.However,most thermal
machines cited above crucially rely on such degenerate subspaces. Finally, [20] investigates heat currents
through a system that is equivalent to our qubit entangler, without providing a benchmark. Their results agree
with the results presented in section 8. All these previous worksmotivate our detailed investigationwhich
compares the differentmaster equations for awide range of parameters.

3.Heat engine

The heat engine we consider [36, 44] is sketched infigure 1 and consists of two harmonic oscillators, with
frequencies Wc and Wh, which each couple to a bath.Here the subscript labels both the oscillators as well as the
corresponding bath (where c stands for cold and h for hot). In this setup, the oscillators constitute theweakly
interacting sub-systemsmentioned above. The frequencies of the oscillators differ from each other by

 = W - W ( )0. 1h c

In order to extract power from themachine, we consider a time-dependent external fieldwith frequency 
whichmediates a coupling between the harmonic oscillators. The purpose of the heat engine is then to use a heat
flow from the hot bath to the cold bath in order to increase the power of this externalfield. In [44], this external
field is provided by a voltage and the power is directly related to an electrical currentflowing against the voltage.

The totalHamiltonian of the heat engine (including heat baths) can then bewritten as (throughout this
paperwe set  = 1)

Figure 1. Sketch of the heat engine. The system consists of twoharmonic oscillatorswith different frequencies. Each oscillator couples
to a thermal bathmodeled by a collection of harmonic oscillators. An externalfieldmediates a weak coupling between the two
oscillators. A thermal gradient can result in a heat flow from the hot to the cold bath, injecting some of the energy into the external field
which can in principle be used to charge a battery. A thermoelectric implementation of thismachine in superconducting circuits is
proposed in [44]. In this work, we compare differentMarkovianmaster equations for the description of thismachine, using exact
numerics as a benchmark.
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where aâ ( ab̂k, ) denote annihilation operators of the system (baths), g denotes the interaction strength between
the harmonic oscillators of the system, w ak, are the frequencies of the bathmodes, and g ak, denote the
interaction strengths between system and bathmodes. The superscript l denotes the laboratory frame. The
external drive accounts for the energy that is needed to convert a photonwith frequency Wc into a photonwith
frequency Wh and vice versa. In contrast to [58, 59, 63], which lack an externalfield, wefind that the presence of
such afield ensures that the localmaster equation does not result in any violations of the laws of
thermodynamics.
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Note that the interaction terms âV are invariant under the transformation.
If not explicitly stated otherwise, all equations are given in the rotating frame.

4.Master equations

In this section, we consider differentMarkovianmaster equationswhich are used to describe the evolution of the
reduced densitymatrix of the system. These equations allow for analytic expressions of observables such as
power, heat, and efficiencywhich are then compared to the ones obtained from the exact dynamics. The
standardway of derivingMarkovianmaster equations is tofirst performBorn–Markov approximations. This
procedure is discussed in detail elsewhere (see for instance [1, 6, 16, 65]).We therefore only summarize the
approximations and give the resulting expression for the systemunder consideration. The approximations are:

• Born approximation: treating âV perturbatively to lowest order,

• Markov approximation: assuming invariance of r̃( )t on time-scales of the order of tB,

where r̃( )t is the reduced densitymatrix in the interaction picture and tB denotes the bath-correlation time that
will be introduced below. In the interaction picture (and the rotating frame), the Born–Markov approximations
result in the followingmaster equation,
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wherewe assumed the baths to be in thermal states. The Bose–Einstein distribution is given by

w =
-

a
w a

( ) ( )( )n
1

e 1
. 9B k TB

The bath correlation functions are usually peaked around t = 0 and decay for large times. This decay defines the
bath-correlation time tB such that ta a( ) ( )C C 0j B, 2, (note that a ( )C 01, vanishes as aT 0). For an explicit
evaluation of the bath correlation functions and a discussion on the relevance of tB (including a discussion of the
zero temperature limit), we refer the reader to [16].

The Born–Markov equation represents the starting point of our analysis. Since it does not guarantee positive
evolution [1], further approximations are usuallymade to obtain amaster equation inGorini–Kossakowski–
Sudarshan–Lindblad (GKSL) form [3, 4] ensuring completely positive dynamics. In the following, wewill
discuss two popular approximations, the local and the global approach, in some detail.

4.1. Localmaster equation
TheMarkov approximation that wasmade to obtain equation (5) is responsible for the fact that the density
matrix under the integral is independent of τ. This approximation is valid as long as the characteristic time over
which r̃( )t varies ismuch larger than tB. In the same spirit, we canmake the approximation

t-a a˜ ( ) ˜ ( ) ( )a t a t , 10

in the integral of equation (5). Note that wemake this approximation in the rotating frame, where the fast
oscillations with frequency Wa are encoded in the bath correlation functions (see equation (8)). In ourmodel, we
have

= -a a a˜ ( ) ˆ ( ) ˆ ( ) ( )¯a t a gt a gtcos i sin , 11

where a a¹¯ . The approximation in equation (10) is therefore expected to be good as long as t g 1B . For
reasonably small values of g, this approximation is therefore completely consistent with theMarkov
approximation.

This approximation directly results in the localmaster equation (in the Schrödinger picture)without the
need of a secular approximation
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where r wa ( ) denotes the spectral density. The renormalizedHamiltonian is given by
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0

where P denotes theCauchy principal value.We note that this renormalization should be small in order for the
Born–Markov approximations to be valid (this can be understood by noting that r̃( )t will have terms that
oscillate with frequencySa). In the following, wewill thus neglect this renormalization. As shown in section 7,
excellent agreement between the localmaster equation and exact numerics is found for awide range of
parameters without taking into account the renormalization of theHamiltonian; see also [16].

As discussed above, the localmaster equation is justified as long as t g 1B .With the help of equations (8),
this temporal inequality can be translated into an inequality involving the Fourier transformof the bath
correlation functions. If t g 1B , thenwe have t t ta a( ) ( ) ( )g C Cexp i j j, , for all τ sincewe can approximate

t t>a ( )C 0j B, . It is straightforward to show that this is fulfilled as long as the Fourier transformof the bath
correlation functions can be approximated as constant over the energy scale of g.With the help of equations (8)
and (15), this results in the inequalities
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Herewe used the fact that themain contribution for the bath correlation functions comes from the low-
frequency terms For a bosonic bathwithOhmic spectrum, the last equations are fulfilled as long as Wag ,
which is usually the case for systemswhere the local approach is employed [38, 44, 46, 51]. For fermionic baths,
equations analogous to equations (17) can be derived. These are usually not fulfilled at low temperatures due to
the step-like behavior of the Fermi–Dirac distribution [23, 66]. Note that the validity of theMarkov
approximation, which underlies both the local as well as the globalmaster equation, requires conditions
obtained from equation (17) by exchanging gwith k Wa a( ).

It is sometimes stated that the local approach is only valid for interaction strengthsmuch smaller than the
induced broadening k Wa a ( )g (see for instance [23]). Aswe show in section 7, the local approach gives
reliable predictions even for interactions that are several times the broadening. This is in complete agreement
with equation (17).

We note that the localmaster equation is also obtained in the so-called singular coupling limit [1, 5, 10, 12],
where the bath correlation functions in equations (8) tend to a delta function. This limit is often dismissed as
being unrealistic. Howeverwe stress that the bath correlation functions only have to behave like delta functions
on time-scales of the order of g1 for the localmaster equation to be valid. In theweak coupling limit, which is
often the regime of interest for thermalmachines, g1 can naturally bemuch bigger than tB.

In order to solve themaster equation, wemake use of its bi-linearity (in creation and annihilation operators)
which implies that a Gaussian state remainsGaussian at all times. Furthermore, there are no terms in themaster
equationwhich result in a displacement of the state.We can therefore restrict the analysis to states which have
á ñ =aâ 0. Then the state is fully described by its covariancematrix. From the localmaster equation in
equation (12), one can derive the following differential equations for the covariancematrix elements

k

k
k k

¶ á ñ= á ñ + - á ñ

¶ á ñ= - á ñ + - á ñ

¶ á ñ= -
+

á ñ - á ñ - á ñ

ˆ ˆ { ˆ ˆ } ( ˆ ˆ )
ˆ ˆ { ˆ ˆ } ( ˆ ˆ )

ˆ ˆ ( ) ˆ ˆ ( ˆ ˆ ˆ ˆ ) ( )

† † †

† † †

† † † †

a a g a a n a a

a a g a a n a a

a a a a g a a a a

2 Im ,

2 Im ,

2
i , 18

t h h h c h B
h

h h

t c c h c c B
c

c c

t h c
c h

h c h h c c

where

k k= W = Wa a a
a a

a( ) ( ) ( )n n, . 19B B

In the steady state, these differential equations are solved by the time-independent expressions

k
k k k k

k
k k k k

k k
k k k k

á ñ = -
-

+ +

á ñ= +
-

+ +

á ñ=
- -
+ +

ˆ ˆ ( )
( )( )

ˆ ˆ ( )
( )( )

ˆ ˆ ( )
( )( )

( )

†

†

†

a a n
g n n

g

a a n
g n n

g

a a
g n n

g

4

4
,

4

4
,

i2

4
. 20

h h B
h c B

h
B
c

h c c h

c c B
c h B

h
B
c

h c c h

h c
c h B

h
B
c

h c c h

2

2

2

2

2

4.2. Globalmaster equation
The second approximationwe consider is the secular approximation. This approximation consists of dropping
all the terms in the Born–Markovmaster equation (see equation (5))which oscillate as a function of time t. The
secular approximation is expected to hold over time-scalesmuch bigger than the inverse frequencies of the
oscillating terms and obviously becomes better as these frequencies increase. In order to identify the oscillating
terms, wewrite the interaction picture operators in equation (11) as
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The secular approximation is obtained by plugging equation (21) into equation (5) and dropping all terms
that oscillate with [ ]gtexp 2i . This results in themaster equation
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s

s s s s
=

ˆ ( ) [ ¯ ˆ ( )] { ¯ [ ˆ ] ˆ ( ) [ ˆ ] ˆ ( )} ( )†t H t a t a ti ,
1

2
, 23t S

where

å åk kG = W W + G = W Ws
a

a a s
a

a s s
a

a a s
a

a s
= =

¯ ( )[ ( ) ] ( ) ( ) ( )n n1 , , 24
h c

B
h c

B
,

, ,
,

, ,

with the frequencies

W = W a a ( )g . 25,

The renormalizedHamiltonian reads

å s= + S + S
s

s s s s
=

¯ ( ) ˆ ˆ ( )†H g a a , 26S h c, ,

and

ò w
r w

w
S =

W -
a s

a

a s

¥ ( )
( )P

1

2
d . 27,

0 ,

As for the local approach, wewill neglect the renormalization of theHamiltonian in the following.
The secular approximation results in amaster equationwhere the eigenmodes of theHamiltonian sâ are the

relevant degrees of freedom. The action of the baths decouples into a bath for each eigenmode, which drives the
mode towards thermal equilibrium characterized by the occupation numbers

k k
k k

=
+
+

s
s

s
s

s

s s
( )n

n n
, 28h B

h
c B

c

h c

,
,

,
,

, ,

wherewe introduced

k k= W = Wa s a a s
a s a

a s( ) ( ) ( )n n, . 29B B, ,
,

,

Wenote that in the limit g 0, the localmaster equation is no longer recovered. Because the secular
approximation is no longer justified in this limit, we expect the globalmaster equation to break down. This is
also consistent with the fact that we expect the secular approximation to be valid as long as the frequency of the
neglected oscillating terms ismuch bigger than the linewidths, i.e. ka  g . Since theMarkov approximation
requires k Wa a , and the local approach is valid for Wag , there is an overlap between the regimes of
validity of the local and the globalmaster equation. This implies that the local and the globalmaster equation
together are enough to describe the system for all parameters which allow for aMarkovianmaster equation.

In the global approach, the covariancematrix is governed by the differential equations

å

å

k

k

¶ á ñ= - á ñ

¶ á ñ= - á ñ

s s
a

a s
a s

s s

a s
a s

=

+ - + -

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ ˆ [ ˆ ˆ ]

ˆ ˆ ˆ ˆ ( )

† †

† †

a a n a a

a a g a a

1

2
,

2i
1

4
. 30

t
h c

B

t

,
,

,

,
,

In the steady state, we find that the state is a product of thermal states with occupation numbers á ñ = s ˆ ˆ†a a n as
expected.

5. Exact numerics

In this sectionwe briefly describe howwe obtain exact numerics which are used as a benchmarkwhen
comparing the differentmaster equations. To this end, we simulate the unitary evolution generated by the
Hamiltonian in equation (2) for big but finite baths. The key element here is that theHamiltonian in equation (2)
is quadratic, so that Gaussian states (such as thermal states) remainGaussian throughout thewhole evolution. As
such, they can be fully characterized by only theirfirst and secondmoments (see e.g. [67]). This allows us to
characterize the time-evolved state of thewhole system, including the thermal baths, by amatrix of size~N ,
whereN is the total number of oscillators involved.

We consider bathsmade up of +n 1harmonic oscillators, so that the total size of system and baths is
= +( )N n2 2 . The bathmodes are chosen to be uniformly spread over a range w( )0, c , where wc is a cutoff

frequency. That is,

w w=a ( )k

n
, 31k c,

for =k n0, .., . This defines aĤ in equation (2). Let us now turn our attention to âV , and hence to the couplings
g ak, . First note that the action of the baths in theMarkovianmaster equations, equations (14) and (23), is
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captured by the spectral density given in equation (15). It is then common to use an ad hoc form for the spectral
density in the continuum limit, instead of specifying the coupling constants g ak, . A common choice for the
spectral density is anOhmic spectrum,

r w wµa ( ) ( ), 32

which holds for low frequencies, w wc . In order to relate this approach to the g ak, ʼs, which are necessary to
simulate the fullHamiltonian in thefinite-baths scenario, let us integrate equation (15), obtaining,

ò år w w g=
w

a a
=

( ) ( )d . 33
k

n

k
0 0

,
2c

It is now convenient to discretize the integral,

ò år w w r w
w

»
w

a a a
=

( ) ( ) ( )
n

d , 34
k

n

k
c

0 0
,

c

fromwhere it immediately follows,

g r w
w

»a a a( ) ( )
n

, 35k k
c

,
2

,

which becomes increasingly accurate with increasing n. In the particular case of anOhmic distribution, we
obtain,

g
w

µa ( )k
n

. 36k
c

,

Equation (35), togetherwith equation (31), provides a simple recipe for building the discrete version of the
Hamiltonian in equation (2) for a given spectral density. The specific choice of wc and n for our simulations, as
well as the dependence of the results on this choice, is discussed in the appendix section.

The initial state for the simulations is taken to be of the form,

r t r t= Ä Äb bˆ ˆ ˆ ˆ ( )37S0 h c

where tbaˆ are thermal states,


t =b

b

a

-

a

a a

ˆ ( )
ˆe

, 38
H

B,

l

with inverse temperature b =a a( )k T1 B andwe note that aĤ
l
is in the laboratory frame.Here, the initial state of

themachine r̂S can be an arbitraryGaussian state. In our simulations, we take r = b- Wˆ ˆ ˆ†
eS

a a
h

h h h h

Ä b- W ˆ ˆ†
e a a

c
c c c c .We note that with this choice, the state given in equation (37) is Gaussian.

Once theHamiltonian and the initial state are defined, we consider the closed unitary dynamics of the full
compound under theHamiltonian in equation (2) (it is convenient towork in the rotating frame, where the
Hamiltonian is time independent). The dynamics can be derived by considering theHeisenberg equations of

motion of the operators a a a aˆ ˆ { ˆ ˆ }† †
a a b b, , ,k k, , . For details on the derivation, we refer the reader to [16].

In order to simulate the steady state usingfinite degrees of freedom, one needs to let thewhole compound
evolve for a time t that satisfies t t teq rec, where teq is the equilibration time of the system and trec is the
recurrence time of the bath. From equations (12) and (18), we infer the equilibration time to be
t k k» { }1 max ,h ceq (see also [68], where the equilibration time is discussed explicitly forfinite systems). On the

other hand, the recurrence time scales linearly with the number of oscillators in the bath [16]. Hence, by taking a
sufficiently large bath (in the simulationswe take∼400 oscillators), we can ensure that t teq rec. In our
simulations, we take t»t 20 eq.

6.Observables and reduced states

In this work, we are particularly interested in the energyflows that traverse the quantum thermalmachine in a
non-equilibrium situation.However, to compare to previousworks [16], and to further assess the validity of the
differentmaster equations, we also consider the obtained steady states.

6.1.Heat currents, power, and efficiency
6.1.1. Local master equation
Aswe consider a heat engine, themain quantity of interest is the power that is produced. For our system, it is
defined as [33]
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r= - ¶ = - á ñ{[ ˆ ( )] ˆ ( )} { ˆ ˆ } ( )†P H t t g a aTr 2 Im , 39t S
l l

h c

where the superscript denotes the laboratory frame and á ñ , denotes the ensemble average in the rotating frame.
Note that positive power implies that energy leaves the system. In addition to the power, we consider the heat
currents that enter (or leave) the system. To this end, wewrite

år r r¶ = - +
a

a
=

ˆ [ ˆ ( ) ˆ ( )] ˆ ( ) ( )H t t ti , , 40t
l

S
l l

h c

l l

,

where a
l is a super-operator that groups all the dissipative termswhich arise frombathα in the laboratory

frame.Note that under the Born–Markov approximation, the dissipators of different baths can be added [69].
The heat currents are then defined as

 år r= = + Wa a
a

a a a
=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

{ ˆ ( ) ˆ } ˆ ˆ ˆ ˆ ( )†J H t H a aTr Tr , 41S
l l l

S
h c,

where the dissipator in the rotating frame is related to the dissipator in the laboratory frame by

 r r=a aˆ ( ) ˆ ( )[ ˆ ( )] ˆ ( ) ( )†
t U t t U t . 42l l

r r

With our sign convention, a positive heat current implies energy entering the system from the bath. In the steady
state, thefirst law of thermodynamics thus reads

= + ( )P J J . 43c h

The efficiency is defined as the ratio of the obtained power, divided by the heat that originates from the hot
bath

h = ( )P

J
. 44

h

In the regimewhere the systemoperates as a heat engine (i.e. >P 0 and >J 0h ), the second law of
thermodynamics forces the efficiency to remain below theCarnot limit

h h< - = ( )T

T
1 . 45c

h
C

For the localmaster equation in equation (12), the heat currents in equation (41) can bewritten as

k= W - á ñ - á + ña a a
a

a a
⎡
⎣⎢

⎤
⎦⎥( ˆ ˆ ) ˆ ˆ ˆ ˆ ( )† † †J n a a

g
a a a a

2
. 46B h c c h

From equations (18), we can infer that the second term in the heat current decays exponentially in time. In the
steady state, from equations (20) and (39), wefind for the power

k k
k k k k

=
W - W -

+ +
( ) ( )

( )( )
( )P

g n n

g

4

4
, 47h c c h B

h
B
c

h c c h

2

2

and the heat current

k k
k k k k

= W
-

+ +
( )

( )( )
( )J

g n n

g

4

4
, 48h h

c h B
h

B
c

h c c h

2

2

resulting in the efficiency

h = -
W
W

( )1 . 49c

h

Wenote that this efficiency fulfills equation (45).When the frequencies are chosen such that the efficiency is
above theCarnot efficiency, thenwefind <P 0 and <J 0h . As long as h h< C , ourmachine is thus a heat
engine, h h= C denotes the point of reversibility, where all the energy currents vanish, and for h h> C , the
machine acts as a refrigerator, using power to induce a heat current from the cold bath to the hot bath [44].
Finally, we note that for W = Wh c, where there is no external power, heat always flows from the hot bath to the
cold bath as dictated by the second law of thermodynamics. In contrast tomodels which consider non-energy
preserving interactions, the local approach does not violate the laws of thermodynamics when including an
externalfield that provides the energy to convert photons of frequency Wc into photons of frequency Wh.

6.1.2. Globalmaster equation
In the globalmaster equation, the bath couples to global states which are dressed by the external field. Therefore,
the dissipative terms include the externalfield and the definitions introduced in the last subsection are no longer
valid. To define heat andwork in the global approach, we follow [12, 31, 35, 70, 71]. To this end, wefirst write the
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dissipator in the globalmaster equation (see equation (23)) as the sumof four dissipators given by

  r k r k r= + +a s a s
a s

s a s
a s

sˆ ( ) ( ) [ ˆ ] ˆ ( ) [ ˆ ] ˆ ( ) ( )†t n a t n a t
1

2
1

1

2
. 50B B, ,

,
,

,

We further introduce the thermal states


r =a s

b

a s

- Wa a s s s

ˆ ( )
ˆ ˆ†

e
, 51

a a

,
,

,

which constitute the steady states of the respective operators, i.e.  r =a s a sˆ 0, , .
The heat currents in the steady state (denoted r̂) are then defined as

å r r= -a a
s

a s a s
=

{[ ˆ] ˆ } ( )J k T Tr ln , 52B , ,

and the power is given by thefirst law, seeequation (43).We note that for the global approach, we enforce the
first lawwhile in the local approach, it follows from the expressions for heat currents and power.

An explicit calculation results in [70]

å
k k

k k
= W

+
-

s
s

s s

s s

s s

=

( ) ( )J n n
1

2
. 53h h

h c

h c
B
h

B
c

,
, ,

, ,

, ,

Note that if equations (17) are fulfilled, the last expression reduces to

k k
k k

= W
+

-( ) ( )J n n , 54h h
h c

h c
B
h

B
c

which is the expression obtained by the local approach in the limit kag . As expected, if the approximations
leading to both the local and the globalmaster equation are justified, the two approaches give the same result.
Whenever equations (17) are not fulfilled, the global approach implies that the heat enginemakes use of two
channels labeled by the subscriptσ. Each of these channels has an efficiency

h h= =
+

= -
W
Ws

s

s

s s

s

s

s
( )P

J

J J

J
1 , 55

h

h c

h

c

h
C

,

, ,

,

,

,

where = +a a a+ -J J J, , and Jc is obtained from Jh by exchanging the labels «c h (see equation (53)).We focus
on the heat engine regimewhere >s sJ P, 0h, . The total efficiency is then of the form h h h= + -+ -( )c c1 ,
with = ++ + -( )c J J J 1h h h, , , . The efficiency can only reach theCarnot value if one of the channels carries no
energy (i.e. c = 1 or c = 0) or if both channels can simultaneously reach theCarnot point (which is the case if
equations (17) hold). The fact that heat engines can only reachCarnot efficiency if they are effectively reduced to
a single channel is also discussed in [38].

6.1.3. Exact numerics
Whendealingwith the full Hamiltonian, we define heat currents as the energy lost by the bath,


= -a

a{ ˆ ˆ ( )} ( )J
H t

t

d Tr

d
, 56

l l

wherewe note that both aĤ
l
and ̂ ( )tl , the unitarily time evolved state of thewhole compound, are taken in the

lab frame. The power can be obtained through equation (39).

6.2. Reduced states
In addition to the energy currents, we consider the reduced state of the system as obtained by the different
solutions. Since the consideredHamiltonian is bi-linear in bosonic annihilation and creation operators, it
suffices to consider the covariancematrices. It will be convenient towork in the x̂, p̂ basis, with

= W +a a a aˆ ( ˆ ˆ )†x a a1 2 and = W -a a a aˆ ( ˆ ˆ )†p a ai 2 . Defining the vector =ˆ ( ˆ ˆ ˆ ˆ )x x p pr , , ,h c h c , the covariance
matrix is given by,

 r= +( ˆ (ˆ ˆ ˆ ˆ )) ( )r r r r
1

2
Tr . 57ij i j j i

For themaster equations, the covariancematrix can be obtained straightforwardly from section 4
(see equation (20), and the discussion around equation (30)). In the case of the exact numerics, one needs to
consider the relevant entries of the covariancematrix of thewhole compound (see e.g. [16]).

In the next section, we compare the reduced states obtained from themaster equations to the reduced state
obtained through exact numerics. As ameasure of distinguishability between two states r̂ and ŝ, we consider the
fidelity, defined as,
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 r s rs r=( ˆ ˆ ) ( ˆ ˆ ˆ ) ( ), Tr . 58

For two-modeGaussian states, represented by covariancematrices 1 and 2, and vanishing first order
moments, thefidelity is given by [72],

   = + - + - -( ) [ ( ) ] ( )b c b c a, . 591 2
2 1

Here  = +( )a det 1 2 ,   = -( )b J J2 det 44
1 2 ,  = + +( ) ( )c J J2 det i 2 det i 24

1 2 , and thematrix
elements of J are given by = - á ñ[ˆ ˆ]J r ri ,kl k l .

7. Results

Our results for the heat engine are illustrated in figures 2–7.We divide our results into three regimes. First we
discuss the equilibrium regime, where the global approach shows excellent agreementwith numerics for all
values of the inter-system interaction g. Thenwe discuss the presence of a thermal bias but no external field. In
this case, the global approach breaks down for small values of g. Finally, we focus on the heat engine regime
which requires both a thermal bias aswell as an externalfield. Again, the global approach breaks down for small
values of g as expected. In all regimes, the local approach performswell for Wag (for both a = c h, ), which is

Figure 2.Comparison of steady states in equilibriumobtained from the localmaster equation (see equation (12)), the globalmaster
equation (see equation (23)), and exact numerics. ( )a Fidelity between the states obtained from themaster equation and the state
obtained from exact numerics. ( )b Other observables as a function of interaction strength. In the equilibrium case, ={ ˆ ˆ }†a aIm 0h c .
Solid: localmaster equation, dashed: globalmaster equation, dashed–dotted: exact numerics. The globalmaster equation always
outperforms the localmaster equation, except for the limit g 0, where the two approaches result in the same steady state.
Parameters: W = W = 1h c , k k= = 0.05h c , = =k T k T 0.5B c B h . Parameters numerics: w = 3c , n=400, k=t 20 , where t is the
timewe let thewhole compound evolve to equilibrate.

Figure 3.Comparison of heat currents and other observables obtained from the localmaster equation (see equation (12)), the global
master equation (see equation (23)), and exact numerics. ( )a Heat current as a function of interaction strength. The localmaster
equation performs verywell even up to interaction strength k= W =g 2 10c h. The globalmaster equation breaks down for small g
where the secular approximation is no longer justified. For higher values of g, the globalmaster equation yields similar results to the
localmaster equation and the exact numerics. The inset shows thefidelity between the state obtained from themaster equations and
the state obtained from exact numerics. ( )b Other observables as a function of interaction strength. Solid: localmaster equation,
dashed: globalmaster equation, dashed–dotted: exact numerics. Againwe observe the breakdown of the global approach for small g.
Parameters: W = W = 1h c , k k= = 0.05h c , =k T 0.5B c , =k T 5B h . Parameters numerics: w = 3c , n=400, k=t 20 .
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Figure 4.Comparison of differentmodels for the heat engine. ( )a Heat currents: while the local approach shows very good agreement
with numerics, the global approach breaks downwhen  kag . ( )b Power and efficiency. Againwe find excellent agreement between
the local approach and exact numerics. In particular, the numerical value for the efficiency is very close to the universal value
h = - W W1 c h obtained from the localmaster equation.Note that when g becomes comparable to Wc , the local approach starts to
deviate from the exact numerics and the global approach becomes preferable. Parameters: W = 1c , W = 2h k k= = 0.05h c ,

=k T 0.5B c , =k T 5B h . Parameters numerics: w = 3c , n=400, k=t 20 .

Figure 5.Comparison of steady states out of equilibriumobtained from the localmaster equation (see equation (12)), the global
master equation (see equation (23)), and exact numerics. ( )a Fidelity between the states obtained from themaster equation and the
state obtained from exact numerics. The dip in thefidelity for the local approach occurs at » S∣ ∣g h and is therefore assumed to arise
fromneglecting the renormalization of theHamiltonian; see equation (16). ( )b Other observables as a function of interaction strength.
Solid: localmaster equation, dashed: globalmaster equation, dashed–dotted: exact numerics. The global approach breaks down for
small values of g. However, for large g, it gives a better prediction of the steady state than the local approach. Parameters: W = 2h ,
W = 1c , k k= = 0.05h c , =k T 0.5B c , =k T 5B h . Parameters numerics: w = 3c , n=400, k=t 20 .

Figure 6.Heat currents obtained from the localmaster equation (see equation (12)), the globalmaster equation (see equation (23)),
and exact numerics as a function ofTh. ( )a Absence of an externalfield. ( )b Presence of an external field. The insets show the heat
currents for strong interactions = Wg 2c . For all temperatures, the local and the global approach agreewell with exact numerics in
their respective regimes of validity ( Wag for the local, and kag for the global approach). Parameters: W = 1c ,
k k= = 0.05h c , g= 0.1 (insets g= 0.5), =k T 0.5B c , ( )a W = 1h , ( )b W = 2h . Parameters numerics: w = 3c , n=400, k=t 20 .
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where equations (17) are fulfilled for our system. As expected, the global approach performswell for kag
(for both a = c h, ), which is where the secular approximation is well justified. In the following, all energies are
given in units of Wc and all energy currents are given in units of Wc

2.

7.1. Equilibrium
Wefirst present our results for the equilibrium case, whereTc=Th and W = Wh c. Figure 2(a) shows thefidelities
between the steady states obtained from equations (12) and (23), and the steady state obtained from exact
numerics. As expected, the global approach yields an accurate description of the steady statewhile the local
approach gets progressively worse as the inter-system interaction g increases. The same conclusions can be
drawn fromfigure 2( )b , where observables such as occupation numbers are plotted.We note that figure 2 goes
up to = Wg 2c and thus covers interaction strengthswhich aremuch higher than the ones usually considered
when the localmaster equation is employed.

Wenote that in the limit g 0, the local and the globalmaster equations result in the same steady state
which is given by a product of thermal states with respect to the local oscillatorHamiltonians. If we also have
k k=c h, the twomaster equations coincide. For energy damping rates that differ, i.e. k k¹c h, we expect the two
approaches to result in different predictions for the transient regime.

These results confirm that in an equilibrium situation, the global approach is indeed preferable over the local
approach, at least when one is interested in the steady state properties. Onemight be tempted to believe that this
conclusion carries over to the out-of-equilibrium regime. That this is not the case is illustrated below.

7.2. Thermal bias
Wenow turn to the case of a thermal bias ¹T Tc h, but still no externalfield, i.e. W = Wh c. Our results for this
regime are illustrated infigure 3. The heat current is plotted infigure 3( )a . For allmodels, wefind = -J Jh c (first
law) and J 0h (second law). As discussed above, the global approach breaks down in this case for interactions
 kag . In this limit, the secular approximation is no longer justified and the global approach gives the

unphysical result of a finite heat current in the limit g 0. The local approach on the other hand predicts the
heat current extremely well up to = Wg 2c .

The inset offigure 3(a) shows thefidelities with respect to the numerical solution. As expected, the local
approach reliably reproduces the steady state for small values of gwhile the global approachworkswell for large
values of g. Figure 3(b) shows other observables such as the occupation numbers, leading to the same
conclusions. Note that the occupation numbers obtained from the local approach differ quite a bit from the ones
obtained from exact numerics for large interactions. Nevertheless, the heat current is still captured verywell by
the local approach.

7.3. Thermal bias and externalfield
Finally, we consider the regimewhere the considered systemperforms as a heat engine. This requires both a
thermal bias ¹T Tc h and an externalfield W ¹ Wh c. In the thermoelectric realization of [44], this situation
corresponds to the presence of a thermal and a voltage bias. Infigure 4, the energy flows through the heat engine
are plotted.While the local approach agrees extremelywell with exact numerics, the global approach fails for
small g. Note that allmodels fulfill + =J J Pc h (first law), and h h< C (second law). For the global approach, we
note that it is crucial to use the definitions of energy currents given in section 6.1.2. If one uses instead definitions

Figure 7.Heat engine performance as a function of Wh.Wefind good agreement between the local approach, the global approach, and
the exact numerics except for efficiencies close to theCarnot efficiency (here h = 0.5C ). The large differences in efficiencies result
from small differences in power and heat currents. Parameters: W = 1c , k k= = 0.05h c , g= 0.1, =k T 0.5B c , =k T 1B h . Parameters
numerics: w = 3c , n=400, k=t 20 .

13

New J. Phys. 19 (2017) 123037 PPHofer et al



similar to the local approach (see equation (39)), the global approach results in incorrect heat currents, leading in
particular toP=0 and = -J Jh c. This is consistent with the results of [15], which discusses the absence of any
currents as expressed through systemobservables in the global approach.

Infigure 5we compare the steady states against the exact numerics, using again fidelity as afigure ofmerit.
Similarly to the case of a thermal bias without external field, wefind that the two approaches give a faithful
description in their respective regime of validity.

For completeness, figure 6 illustrates the heat currents as a function of temperature in the presence and
absence of an externalfield. These results strengthen the conclusions drawn above: the global approach is valid
for kag while the local approach is valid for Wag . In particular, the insets show that even at reasonably
strong interaction strengths g, the local approach agrees well with numerics.

Finally, we further illustrate the heat engine performance infigure 7which shows the power and efficiency as
a function of Wh, which determines the externalfield frequency (given by W - Wh c).Wefind good agreement in
the power as well as the efficiency between the local approach, the global approach, and the exact numerics. Only
when themachine is operated close to theCarnot point (W = WT Th h c c) do the efficiencies deviate
considerably. This is due to the fact that the power and the heat current become very small. Small differences in
the energyflows then translate into large differences in the efficiency.

8.Qubit entangler

To complete our discussion, we also consider a quantum thermalmachine featuring finite-dimensional systems.
Specifically we consider a quantum thermalmachine consisting of two interacting qubits coupled to separate
bosonic thermal baths, as shown infigure 8, analogous to the setup offigure 1 for harmonic oscillators. This
machine can generate entanglement between the two qubits in the steady state, as shown in [51]. In the
following, however, we focus on comparing the steady states obtained from local and globalmaster equations in
the same spirit as above.

We denote the eigenstates of the freeHamiltonians of the qubits by ñ∣0 , ñ∣1 , and set the ground state energy to

zero. TheHamiltonian of the system is then given by = +ˆ ˆ ˆH H HS 0 int with

 = W ñá Ä + W Ä ñá

= ñá + ñá

ˆ ∣ ∣ ∣ ∣
ˆ (∣ ∣ ∣ ∣) ( )
H

H g

1 1 1 1 ,

0, 1 1, 0 1, 0 0, 1 , 60

c h0 2 2

int

where Wc , Wh are the energy gaps of the qubit, and g is the interaction strength. As in section 4, we compare local
and globalmaster equationmodels for the evolution of the system.Wewill focus on the degenerate case
where W = W = Wc h .

Both the local and globalmaster equations can bewritten inGKSL formwith constant rates [3, 4], and so
lead toMarkovian (specifically semigroup) evolution

 å år r r r¶ = - + G + G
a

a a a a
=

ˆ ( ) [ ˆ ˆ ( )] [ ˆ ] ( ) ¯ [ ˆ ] ˆ ( ) ( )†
t H t L t L ti , , 61t S

c h k
k k k k

,
, , , ,

where  is defined in equation (14), aL̂ k, are jumpoperators, and Ga k, , Ga¯ k, the corresponding rates.We consider
bosonic baths forwhich

k e e k e eG = G = +a e a
a

a e a
a( ) ( ) ¯ ( )[ ( ) ] ( )n n, 1 . 62B B, ,

Here, k ea ( ) are the bath coupling strengths, and ε is the (absolute) energy difference associatedwith the jump

induced by a eL̂ , . Thus the a e
ˆ †
L , correspond to jumps from lower to higher energies, absorbing energy from the

bathα, while a eL̂ , correspond to jumps decreasing the system energy, dissipating energy into the bathα.
Local and globalmaster equations for the two-qubitmachine can be derived using the same techniques as in

section 4. The system-bath coupling can be taken to have the same form as in equation (2), with the system
annihilation and creation operators replaced by s= Ä-ˆ ˆAc 2,  s= Ä -ˆ ˆAh 2 and s= Ä+ˆ ˆ†

Ac 2,

Figure 8.Thermalmachine consisting of two interacting qubits coupled to bosonic thermal baths.
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 s= Ä +ˆ ˆ†
Ah 2 respectively, where s = ñá-ˆ ∣ ∣0 1 and s = ñá+ˆ ∣ ∣1 0 .We take the spectral density of the baths to be
Ohmic, as before. The bath coupling strengths are then linear in energy

k e n e=a a( ) ( ), 63

for some constants na.We denote k k= Wa a ( ).
For the localmaster equation, there are just two jump operators, both corresponding to transitionswith

energyΩ. They are given by

 s s= = Ä = = ÄW - W -ˆ ˆ ˆ ˆ ( )L A L A, . 64c c h h, 2 , 2

For the globalmaster equation, the jump operators are found by diagonalizing the systemHamiltonian.
Denoting the eigenvalues and eigenstates of ĤS byλ and j ñl∣ respectively, one has

å j j j j= ñá ñáa e
l l e

l l a l l
- ¢=

¢ ¢
ˆ ∣ ∣ ˆ ∣ ∣ ( )L A . 65,

In the degenerate case, W = W = Wc h , the eigenvalues are 0, W  g , and W2 , and the corresponding eigenstates
are

j j jñ = ñ ñ = ñ  ñ ñ = ñW W∣ ∣ ∣ (∣ ∣ ) ∣ ∣ ( )0, 0 , 0, 1 1, 0 2 , 1, 1 . 66g0 2

The possible transition energies are g2 , W  g , and W2 . However, only transitionswith energies W  g can be
induced by the system-bath coupling considered here. The non-zero jumpoperators are

j j j j

j j j j

j j j j

j j j j

= ñá - ñá

= ñá + ñá

= ñá + ñá

= - ñá + ñá

W- W+ W W-

W+ W- W W+

W- W+ W W-

W+ W- W W+

ˆ ∣ ∣ ∣ ∣

ˆ ∣ ∣ ∣ ∣

ˆ ∣ ∣ ∣ ∣

ˆ ∣ ∣ ∣ ∣ ( )

L

L

L

L

1

2

1

2
,

1

2

1

2
,

1

2

1

2
,

1

2

1

2
. 67

c g g g

c g g g

h g g g

h g g g

, 2 0

, 2 0

, 2 0

, 2 0

Wenote that these are indeed global in the sense that they involve transitions to and from the non-separable
states j ñW∣ g .

We can compute the steady state solutions of both the local and globel qubitmaster equations. As before, we
compare them varying the interaction strength. Infigure 9(a)we show the heat current as a function of the
interaction strength between the two qubits. As for the harmonic oscillators, the global approach predicts a
constant heat current, which is clearly unphysical as g 0, while the localmodel predicts a vanishing heat
current in this limit, as expected. The twomodels agree well for intermediate coupling strength (i.e. kag 10
in this case, note that ka is taken one order ofmagnitude smaller than in the previous sections). Infigure 9(b)we
show thefidelity between the steady states of the twomodels. Again, we see that the states agreewell unless the
coupling is weak.

Figure 9. (a)Heat current from the hot bath to the system versus the interaction strength in the qubit entangler, for W = 1,Tc= 0.5,
Th= 5, k = 0.005c , and k = 0.005h . (b) Fidelity between the steady states of the local and globalmaster equations for the same
parameters as in (a).
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9. Conclusions

We investigated the accuracy of the local and globalmaster equations for predicting thermodynamic quantities
as well as system steady states describing a quantumheat engine. Exact numerics were used to benchmark the
results.We found that the two approaches work verywell in their respective regimes of validity which are (for
bosonic baths withOhmic spectral density):

• Local approach: Wag .

• Global approach: kag .

More generally, the condition underwhich the local approach gives a faithful description is given by
equation (17). Since theMarkov approximation, which underlies both approaches, requires k Wa a , the two
regimes of validity overlap. As expected, wefind good agreement between the local and the global approach in
this region of parameter space.

We note that the local approach is by nomeansmore phenomenological than the global approach. Indeed,
the approximation leading to the localmaster equation is completely analogous to theMarkov approximation
and has a well defined regime of validity.

Finally, we also investigated a qubit entangler. For this system, no benchmark is available. However, the
similarity to the results obtained for the heat engine strongly suggests that similar conclusions with respect to the
applicability of the local and the globalmaster equation are valid.We therefore conjecture that our results are
qualitatively valid for a variety of baths and systemHamiltonians. As long as the bath-correlation time ismuch
shorter than any inverse inter-system interaction strength, the local approach is valid. The global approach is
valid as long as the inter-system interaction strengths aremuch stronger than the system-bath interaction
strengths.

We therefore conclude that the local approach provides a valid description for thermalmachines that consist
of weakly interacting sub-systems.
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Note added. During thewriting of thismanuscript, we became aware of relatedwork [63]. There the authors
also compare local and globalmaster equations, but in the absence of externalfields,finding good agreement
with the results presented here.

Appendix. Details on the simulation

In this appendixwe discuss the robustness of the numerics, that we take as a benchmark, to the specific choices
of n (the number of oscillators) and wc (the cutoff). First of all, recall that wemodel the bath as a collection of
oscillators with frequencies,

w w=a ( )k

n
, A.1k c,

and coupling constants,

g h
w

=a a ( )k
n

A.2k
c

,

whichmodels anOhmic spectral density in the continuous limit. The ha in equation (A.2) are given
by k ph= Wa a a2 .

In all thefigures of themain text, we take w = 3c and n=400. In order to see how sensitive our results are to
this choice, we plot the heat current as a function of n (the inset) and wc, and compare it with the analytic results
(using the local approach) infigure A1. It is clearly observed that the results are independent of n. On the other
hand, we see a small dependence on the values of wc. For w » Wac , the results do not closelymatch the analytics,
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which is expected because energetically possible transitions are not captured by the bath. For w Wa2c , very
good agreement is obtained, with small differences that increase with wc. This is due to the renormalization of
theHamiltonian (see equations (16) and (27)), which is neglected in the analytic calculations. The choice w = 3c

is hence large enough to capture the different energy transitions, and at the same time not too large so that the
effect of the renormalization can be neglected. Similar considerations hold for the case of non-degenerate
frequencies of the oscillators of the system.Wehence conclude that our numerical benchmark is quite robust to
the choice of n and wc.
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