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Abstract

We introduce a large-scale RGBD hand segmentation
dataset, with detailed and automatically generated high-
quality ground-truth annotations. Existing real-world
datasets are limited in quantity due to the difficulty in man-
ually annotating ground-truth labels. By leveraging a pair
of brightly colored gloves and an RGBD camera, we pro-
pose an acquisition pipeline that eases the task of annotating
very large datasets with minimal human intervention. We
then quantify the importance of a large annotated dataset
in this domain, and compare the performance of existing
datasets in the training of deep-learning architectures. Fi-
nally, we propose a novel architecture employing strided
convolution/deconvolutions in place of max-pooling and un-
pooling layers. Our variant outperforms baseline architec-
tures while remaining computationally efficient at inference
time. Source and datasets will be made publicly available.

1. Introduction

In everyday life we interact with the surrounding envi-
ronment employing our hands as our analog controllers. As
we would like to transfer this natural way of interaction to
virtual environments, the development of robust hand track-
ing technology becomes a key requirement for the success
of immersive AR/VR experiences. Thanks to depth cam-
eras, substantial progress towards this goal has been made,
where the state of the art involves a mixture of generative
and discriminative methods to fulfill the objectives of effi-
ciently/accurately tracking hand poses, and re-initializing
properly in case of tracking failures. Most real-time tracking
algorithms rely on the identification of the hand location
in the image: generative trackers first need to identify the
subset of the point cloud to which the digital model should
be aligned; analogously, discriminative trackers assume the
input of the regressor to be a rectangular region of fixed size,
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Figure 1. Our dataset is created by having a number of subjects
performing in front of the camera while wearing a pair of colored
gloves. Color and depth are then jointly exploited to automatically
compute a ground-truth labeling without any user intervention.
The mapping between input depth and ground truth labels is then
exploited to learn a hand segmentation network for depth input.

with the hand roughly centered therein. Rather than tackling
the generic problem of hand tracking, we focus our attention
to the problem of hand segmentation, as robust solutions to
this first step are essential to enable robust tracking.

A number of heuristic solutions have been proposed to
simplify the task of hand segmentation [24} [18], 23} 37, [30].
While these approaches are well suited for small-scale lab
experiments, they do not possess the robustness required
for a consumer-level solution that needs to work under the
full diversity of interaction in general real-world scenes: the
violation of one of their underlying assumptions results in
immediate tracking failure. One could learn a hand seg-
menter from a dataset of annotated depth images. However,
as we will show, the limited size and quality of currently
available datasets results in regressors that typically overfit
to the training data, and do not generalize well to unseen
scenarios. Further, in contrast to marker-based hand tracking,



and primarily due to the limited size of available datasets,
the application of modern deep learning solutions to the
problem of real-time hand segmentation has received limited
attention. Hence, a central challenge is to capture a suffi-
ciently large dataset equipped with high-quality ground truth
annotations.

Our first contribution is the introduction of a new an-
notated dataset for hand segmentation from depth data. We
obtain this dataset by having a number of users perform hand
gestures in front of an RGBD camera while wearing a pair of
colored gloves; see Figure[I] The color and depth channels
are then used to generate high-quality ground truth annota-
tions with minimal user intervention. This process allowed
us to generate a high-quality annotated dataset that is two
orders of magnitude larger than what is available in the litera-
turd’] Our second contribution is the analysis of the use of
this dataset towards the training of a segmenter that is appro-
priate for real-time hand tracking applications. We evaluate
popular machine learning techniques for multi-class seg-
mentation, and we propose a new convolutional neural net-
work leveraging strided [transposed- Jconvolutions in place
of [un]pooling layers. This allows the network to achieve
high-accuracy (97.2% mean IoU), and a forward-propagation
performance suitable to real-time applications (= 5ms on
an NVIDIA GTX980).

2. Related Work

We now introduce several heuristics that have been pro-
posed for real-time hand segmentation, describe existing
datasets, and overview techniques for semantic segmenta-
tion. For references on hand tracking, see [41].

2.1. Heuristics for hand segmentation

The pioneering approach of Oikonomidis et al. [24] lever-
ages skin color segmentation and requires the user to wear
long sleeves and to keep their face out of sight. Melax et al.
[L8]] exploited short-range depth sensors by assuming that
everything within the camera field of view is to be tracked,
while Oberweger et al. [23]] expect the hand to be the closest
object to the camera. Some methods identify the ROI as
the portion of the point cloud attached to the wrist, where
this can be identified either with the help of a colored wrist-
band [37]], or by querying the wrist position in a full-body
tracker [30]. As discussed, these heuristics stop working as
soon as their underlying assumptions are violated.

2.2. Datasets for hand segmentation

Datasets for hand segmentation from color images were
previously proposed by Buehler et al. [3] and Bambach et al.

Note how although [39] represents an exception to this statement,
their annotations are generated via heuristics starting from input fingertip
annotations. In our evaluation we clearly demonstrate how these annotations
result in a significant loss of learning performance.

[2]] who provided pixel-level manually annotated ground
truth for respectively ~ 500 and ~ 15k color images. Man-
ual annotation of segmentation masks from color images is
extremely labor intensive. This not only makes it very diffi-
cult to collect large-scale datasets, but the quality of annota-
tions also depends on the skills of individual annotator. Gath-
ering bounding-box annotations is easier, as demonstrated by
the datasets of ~ 500 annotated images in Everingham et al.
[6]], the =~ 5k images in [14], or the ~ 15k images in Mit-
tal et al. [19]. However, these annotations are too coarse
for applications that require accurate hand/background or
hand/object segmentation.

Automatic segmentation. Hand segmentation can be cast
as a skin color segmentation problem [45]]. However, seg-
menting this not only detects hands but also other skin re-
gions, such as faces or forearms when the user is not wearing
sleeves. Further, datasets of this kind [} 44, 9] contain at
most a few thousand manual annotations, which is mag-
nitudes smaller than what is needed to train deep neural
networks. Zimmermann and Brox [45] recently proposed
a dataset of ~ 44k synthetic images. However, it is notori-
ously difficult to accurately model skin colors and complex
effects like subsurface scattering, making it challenging to
develop segmentation methods that could work in the wild.
Conversely, hand segmentation from depth images does not
suffer this problem. Tompson et al. [38] pioneered this ap-
proach and painted each user hand with bright colors which
are segmented and post-processed with the help of depth
information. However, while [38]] contains ~ 70k marker-
annotated frames from three viewpoints, only ~ 7k are
provided with annotations suitable for hand segmentation.

Segmentation via tracking. Recent datasets targeting
hands have mostly focused on acquiring annotated 3D
marker locations for joints [41]. Creating datasets via man-
ual annotation is not only labor-intensive [34], but placing
markers within a noisy depth map often results in inaccurate
labels. Assuming marker locations are correct, simple heuris-
tics can be employed to infer a dense labeling. Following
this idea, Wetzler et al. [39] first employ a complex/invasive
hardware setup comprising of magnetic sensors attached to
fingertips to acquire their locations, and obtain the segmen-
tation mask via a simple depth-based flood-fill algorithm.
While the dataset in [39] contains =~ 200k annotated exem-
plars, these heuristic annotations should not be considered to
be ground truth for learning a high-performance segmenter;
see our evaluations in Section [6]

2.3. Semantic segmentation

Recently, neural networks have been successfully applied
to the problem of semantic segmentation of a broad range
of real world objects and scenes. Popular methods include
fully convolutional neural networks [17]], encoding the in-
put to a low-dimensional latent space, and decoding via



Dataset Annotation # Frames # Subjects Viewpoint = Hand? Sensor Type Resolution
HandSeg (Ours) automatic 265,000 14 exo left/right RealSense SR300 640 x 480
Freiburg [435] synthetic 43,986 20 exo left/right  Synthetic Render 320 x 320
NYU [38] automatic 6,736 2 exo left Microsoft Kinect vl 640 x 480
HandNet [39]] heuristic 212,928 10 exo left RealSense SR300 320 x 240
Table 1. A summary of datasets for hand segmentation from depth imagery.

bilinear upsampling to predict the semantic segmentation.

Follow-up works perform learning at the decoder level as

well, such as the well known architectures DeconvNet [22] |

and SegNet [l1]; see Section |§[ Learnt encoder-decoder ar- —

chitectures have been shown to perform well on semantic
segmentation [42, |15} 27, |25], but when fast inference time
is essential, random forests are an excellent alternative due
to their easy parallelization [12| 31]]. In human pose esti-
mation applications, Shotton et al. [33]] inferred body parts
labels via random forests, which was later adopted for hand
localization from depth images by Tompson et al. [38]], and
color images by Zimmermann and Brox [45]]. In multi-view
setups, effective segmentation provides a strong cue for ef-
fective tracking [[L6], and the two tasks can even be coupled
into a single optimization problem [10]. Predicted segmenta-
tion masks can be noisy and/or coarse, and post-processing
is typically employed to remove outliers by regularizing the
segmentation [[13|14,!43]]. A recent approach by Kolkin et al.
[[L1]] accounts for the severity of mis-labeling by a loss en-
coding their spatial distribution, but this method has yet to
be generalized to a multi-label classification scenario like
ours. Relevant to our work is also the recent R-CNN series
of works, of which the instance segmentation work by He
et al. [[7] represents the latest instalment. While combining
bounding box localization with dense segmentation could
be effective, it is however unclear to which extent such net-
works could be adapted to demanding real-time applications
such as hand tracking.

3. Overview

Compared to manual annotation, the synchronized
color/depth input of an RGBD device can be exploited to
generate automatic annotations of hand segmentations at a
larger scale. As we attempt to regress a labeling from depth
images only, the color channel of RGBD images can be used
to (quasi) non-invasively instrument our acquisition. More
specifically, we record subjects performing hand motions in
front of a depth camera while wearing skin-tight gloves; see
Figure[2] As the gloves fit the user’s hand tightly, minimal
geometric aberration to the depth map occurs, while the con-
sistent color of the glove can be used to extract the hand ROI
via a joint color/depth-based segmentation; see Section [4]
In this process, the only interaction required is to discard
the few images that have been incorrectly segmented. In
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Figure 2. Our dataset is constructed by recording a user performing
hand movements wearing a pair of bright colored gloves in front

of a depth camera. To the best of our knowledge, our dataset is the
first two-hand dataset for hand segmentation.

Section 3} we overview well-known learning approaches to
semantic segmentation, and propose a novel hybrid network
architecture. The performance of the dataset, as well as the
one of the newly proposed network is evaluated against the
state of the art in Section

4. Dataset acquisition

After an initial color calibration session, we acquire our
dataset following a three-step process: we ask the user to
perform a few motions according to the protocol described
below while wearing a pair of colored gloves, and record se-
quences of (depth,color) image pairs at a constant 48Hz rate
with an Intel RealSense SR300; we then execute a joint
color/depth segmentation to generate masks with a very
small false-positive rate; we finally quickly discard images
containing erroneous labels via manual inspection. This task
is significantly simpler than manually editing individual im-
ages. In our experiments, 20% of the automatically labeled
images were discarded. The sequences we acquired are in
exo-centric configuration, with one or two hands of subjects
in the 20-50 age range; see Table[I]and Figure 2]

Color glove calibration. To simplify the task of color seg-
mentation, the lighting conditions during acquisition are kept
constant, and the camera is not moving. As shown in Fig-
ure[I} the gloves have a Lambertian material with a constant
albedo, and a very weak specular component. This simpli-
fies the calibration process, as the color of a pixel on the
glove can be largely explained by the relative orientation of
surface normal and light, with only minor brightness vari-
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Figure 3. Our color calibration setup. (top-left) A hemisphere
wrapped in the glove’s material contains all of the potential surface
normals visible from the camera’s point of view. By notching
the sphere, we also obtain color variations caused by ambient
occlusion and self-shadowing. (top-middle) We calibrate the system
by probing various parts of the view frustum, generating a set of
calibration images (bottom). All the pixels within the detected

circles participate in the computation of the color space (top-right).

ations caused by self-occlusions/shadows. To calibrate the
gloves we then use a simple yet effective solution. As shown
in Figure 3] we wrap the glove onto a sphere, and acquire
calibration images by sparsely sampling the field of view
with our probe. Due to its simple geometry and consistent
color, the probe can be easily located, and all pixels within
its circular profile are then used for color calibration. Simi-
larly to what is commonly done for skin segmentation [26],
we then convert the calibration images to HSV space, from
where conservative min/max thresholds for every channel
are then extracted.

Acquisition protocol. Similarly to Yuan et al. [41]], we at-
tempt to maximize the coverage of the articulation space by
asking each user to assume a number of example extremal
poses, while capturing the natural motion during each tran-
sition. Due to limitations in our automatic segmentation
algorithm, we require the user to keep the hands sufficiently
far from the body, as well as from each other (for the two-
hands portion of the dataset).

Segmentation. Even when properly calibrated, segmenta-
tion via simple color-space thresholding is sensitive to light-
ing variation, resulting in noisy annotations; see Figure @h.
Hence, we first remove small outliers by a morphological
opening with a 5 x 5 circular kernel; see Figuredp. We then
connect nearby connected components (when elements are
closer than 25 pixels), and compute the convex hull of the
mask; see Figure[dc. We then retrieve the depth values of the
pixels within the convex hull and compute their median. As
the hull is expected to mostly contain pixels corresponding
to the hand, we can identify the hand depth by computing the
median of the depth pixels within the hull. We then discard
any pixel with a depth sufficiently far from the mean (i.e. the
radius of a sphere enclosing the hand in rest pose). Hence,

input color a) tresholding b) opening

input depth ¢) convex hull d) median split
Figure 4. We combine color and depth input to extract ground
truth segmentations. We first segment the color image via HSV
thresholding (a), and remove noise with a morphological opening
(b). The convex hull of the labels is used to extract a portion of the
depth map (c). As most of the pixels within the hull correspond
to the hand, the median of its depth values can be used to discard

background pixels (d).

our underlying assumption is that the hands are sufficiently
distant and separated from other objects in the scene. When
labeling two hands the algorithm is simply executed twice,
one for each label, and the results combined to generate the
final mask.

5. Learning to segment hands

We now detail the structure of several learning-based
semantic segmentation methods which we will then quanti-
tatively cross-evaluate on our dataset in Section [6]

Random forests. Our first baseline is the shallow learning
offered by Random Forests popularized for full-body track-
ing by Shotton et al. [32]. Tompson et al. [38] pioneered
its application to binary segmentation of one hand, while
Sridhar et al. [35]] extended the approach to also learn more
detailed part labels (e.g. palm/phalanx labels). Analogously
to [32, 135]], our forest consists of 3 trees each of depth 22,
and uses the typical depth differential features proposed by
[32, Eq.1]. At inference time, random forests are highly
efficient, making them suitable to applications like real-time
hand tracking. However, while their optimal parameters (off-
set/threshold) are learnt, the features themselves are fixed,
and this can result in overall lower accuracy when compared
to deep architectures; for an in-depth analysis, we refer the
reader to [28]].

5.1. Deep convolutional segmenters

To overcome the challenges of shallow learning, we eval-
uate several recently proposed deep learning convolutional
architectures, as well as propose a novel variant with en-
hanced forward-propagation efficiency and precision; see
Figure[5] As we have a multi-class labeling problem, we em-
ploy the soft-max cross entropy loss. In all our experiments
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Figure 5. Semantic segmentation CNN architectures.

we train our networks with ADAM optimizer with a learning
rate of 0.0002, and 51 = .5, B2 = 0.999 for 50 epochs on
an NVIDIA Tesla P100.

Fully convolutional neural network (FCNN). Long et al.
proposed an architecture where a coarse segmentation
mask is produced via a series of convolutions and max-
pooling stages (encoder), where the low-resolution image
is then upsampled (decoder) via bilinear interpolation — the
FCN32s variant in [17), Fig.3]. As this process produces a
blurry segmentation mask, a sharper mask can be obtained
by combining this image with the higher-resolution activa-
tions from earlier layers in the network; the FCNI6s and
FCNSs variants. Unfortunately, the initial layers in the net-
work only encode very localized features. Hence while
this process does produce sharper results, it also introduces
high-frequency mis-classifications in uncertain regions. An-
other problem of FCNN is their difficulty in dealing with
the problem of class imbalance: in our training images, the
cardinality of background pixels is significantly larger than
the one of hand pixels. We overcome this problem by in-
corporating the class frequency in the loss [20}, 40], which
effectively prevents the network from converging to one that
trivializes the output to be always classified as background.
Even with these changes, the limited accuracy achieved by
this network can be understood by noting that the encoder
layer is learnt, while the decoder layer is not.

Learnt encoder-decoder networks. The popular Seg-

Net [[1]] and DeconvNet [22]] semantic segmentation networks
follow an encoder-decoder architecture. Similarly to FCNNSs,
the encoder is realized via a sequence of convolutions and
max-pooling operations. However, rather than relying on
interpolation, the decoder used to generate high-resolution
segmentations is also learnt. Both architectures employ an
unpooling operation that inverts the max-pooling in the en-
coder. Similarly to DeconvNet, SegNet upsamples the fea-
ture maps via memorized max-pooling indices in the corre-
sponding encoder layer. Further, while unpooling in SegNet
is followed by a simple series of convolutions, DeconvNet
employs a series of deconvolution layers. This deconvolu-
tion is the transpose of a convolution, in turn represented by
the gradient of a convolution layer. This characteristic, and
the large number/size of deconvolution layers makes Decon-
vNet significantly more computationally intensive to train
end-to-end without a justifiable increase in accuracy [1].

Proposed baseline. Our novel architecture is a hybrid
encoder-decoder: we employ a hierarchy of deconvolu-
tion layers (a-la DeconvNet), and to improve sharpness
and local detail of our predictions we forward informa-
tion from encoder to decoder through skip-connections (a-la
FCNN or U-Net [29])). Differently from other architectures,
note how our encoders/decoders do not contain any max-
pooling/unpooling layer. Pooling layers are meaningful in
classification tasks, where we are interested in the maximal
activation in a bank of filters without retaining fine-grained
information about its spatial structure. However, the defini-
tion of a downsampling layer is essential, as a bottleneck in
the network is necessary to learn the low-dimensional man-
ifold of hand appearance. In our encoder network, this is
achieved by stride-2 convolution layers. As pooling indices
are not available, in the decoder we symmetrically employ
stride-2 deconvolution layers, as this enables the network
to learn an appropriate upsampling filter. The simplicity in
our design results in efficient forward propagation, while
simultaneously achieving superior accuracy; see Table[2]

6. Evaluation

We quantitatively evaluate our dataset and learning archi-
tecture from three different angles according to the metrics
defined below. In Section[6.1] we evaluate the performance
of several classical learning architectures on our data, re-
vealing how our proposed architecture can produce state-
of-the-art accuracy, while remaining efficient in terms of
forward-propagation. In Section[6.2] we document the need
for larger training datasets in this applicative domain. In
Section[6.3] we train the same network on different datasets,
and compare the ability of a network trained on a dataset to
generalize to others.

Evaluation metrics. In our multi-label classification prob-
lem, each pixel can be classified as {left, right, background}.



‘ | Time | IoU ‘ Precision ‘ Recall

| mloU | train  test | left right bg | left right bg | left right bg
FCN(32s) | 78.1 36h  8ms | 782 78.1 824|782 77.8 993 | 679 68.1 99.6
Forests 84.5 6h Ims | 825 864 96.1 | 919 89.1 995 | 882 962 964
SegNet 87.7 50h  21ms | 92.1 834 873 | 88.7 715 99.8 |94.6 922 993
Proposed | 97.2 22h Sms | 97.6 969 979 | 982 987 999 | 96.8 95.1 999

Table 2. The performance of several learning-based segmentation methods trained on our dataset.

Within each class, we can have true-positives (TP), false-
positives (FP) and false-negatives (FN). Given such a cate-
gorization, we can then recall the notions of precision, recall
(equivalent to accuracy in this scenario), and Intersection
over Union (IoU) that will use for quantitative evaluation:

Precision = |T'P| / (|TP| + |FP|)
Recall = |TP|/ (|TP|+ |FN|)
IoU = |TP|/ (]TP|+ |FP|+ |FN)|)

To summarize results and avoid bias due to class imbal-
ance, our mean IoU (mloU) is the average of the IoU of the
left/right class only (ignoring the background).

6.1. Segmenting with different architectures

In Table[2] we compare the different learning approaches
in terms of accuracy, as well as training and test time. Al-
though Random Forests are clearly the fastest to train and
to infer on, they perform poorly when compared to deep
networks. As we will discuss in Section[6.3] this is enabled
by the size of our training dataset. Due to its simple up-
sampling scheme, FCN(32s) performs the worst among the
evaluated networks which manifests in low precision/recall
scores for hands, while performing well on the background
class. Thanks to its learnt decoder network, SegNet ob-
tains much better results. However its architecture is too
heavy, resulting in a runtime that is not suitable for real-time
tracking applications. Our proposed architecture not only
outperforms the others in terms of accuracy, but it is also fast
to forward-propagate, running at ~ 200fps. The increase
in accuracy of our network can be justified by the fact that
downsampling operators are learnt, rather than max-pooled,
and by the connections bringing high-frequency information
into the decoder layer.

Due to slow training we were not able to perform quanti-
tative comparison to DeconvNet (a single epoch took over 12
hours to complete). Note how DeconvNet has 15 deconvolu-
tion layers, while we only have 4. Given its architecture, we
expect it to have an inference time even larger than the one
we measured on SegNet. Comparatively, our network should
also be easier to train, as vanishing gradients are resolved via
skip-connections, while batch-normalization further helps
speed-up training.

6.2. Effectiveness of large training datasets

In Table |3 we report the results of training our network
on datasets of progressively larger size. This is achieved
by randomly sub-sampling our dataset into smaller ones.
Similarly to the observations made by Sun et al. [36], seg-
mentation accuracy has a guasi-logarithmic dependency on
the training set size. This can be better appreciated in Fig-
ure[6] where the IoU metrics are plotted against dataset size
on a log-scale. This analysis highlights the importance of
new larger datasets in this applicative domain.

6.3. Cross-dataset evaluation

We test our baseline network by training/testing on all
possible combinations of the datasets in Table[I| which are
summarized in Table[6.2)in terms of mIoU (see supplemen-
tal material for details). For comparisons where only one
hand is considered, we coalesce the left/right labels to com-
pute our metrics. Testing a network that is trained on the
same dataset clearly provides the highest accuracy. This
is expected, as not only noise and structured-outliers are
sensor-specific, but there are also slight inconsistencies in
the meaning of “ground-truth” across datasets (e.g. how
much of the wrist is considered). Nonetheless, the very low
off-diagonal entries clearly illustrate how more effort should
be invested in the development of learning architectures that
are sensor-invariant and suitable to transfer learning.

HandSeg and HandNet are acquired with the same sen-
sor, and are comparable in size, yet the performance of
training the network is drastically different (we perform
~ 30% better). This clearly reveals how relying on heuris-
tics for ground-truth annotation can be highly detrimental
towards the generation of high-quality datasets. We expect
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954
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Figure 6. The unreasonable effectiveness of big data



‘ Summary ‘ IoU (per-class) | Precision (per-class) ‘ Recall (per-class)
#Images | mloU | left right bg | left right bg | left right bg
Sk 87.2 873 87.1 939 | 863 902 99.7 | 852 81.2 99091
10k 90.2 90.6 899 950|913 929 99.78 | 884 854 99.94
20k 93.4 93.8 93.1 96.0 | 947 96.1 99.82 | 922 89.6 99.96
40k 95.3 95.8 948 96.8 | 969 973 9985|944 920 99.97
80k 95.5 96.0 950 969 | 964 984 99.85 | 954 915 99.97
160k 97.2 97.6 969 979|982 98.7 9990 | 96.8 95.1 99.98

Table 3. Impact of training set size on hand segmentation (trained on our network).

similar conclusions could be made when employing anal-
ogous heuristics to annotate much larger datasets such as
BigHand2.2M [41]].

Training on neither NYU nor Freiburg performs partic-
ularly well. Note how NYU performs better than Freiburg,
but this can be justified via the fact that NYU data is simpler
and more self-consistent, hence requiring less variation in
the training data. As Freiburg is synthetic in nature, our
analysis reveals it is too small in size to effectively capture
the targeted pose/shape complexity. The necessity of larger
datasets for the effective training of deep networks is also ev-
ident by comparing our network performance to the random
forest results reported by Tompson et al. [38], where they
achieved a higher performance (classification error ~ 4.1%).

6.4. Qualitative evaluation

In Figure[8] we provide qualitative segmentation results
on our proposed dataset. As expected, the bilinear upsam-
pling of FCNN loses many of the details, resulting in blob-
like segmentation masks. By learning the decoder Seg-
Net can perform better, but fine-grained details can still
be blurred out; see sample #3 and #4. In comparison, our
network can resolve fine-grained details thanks to the reuse
of encoder feature maps in the decoder. Sample #6 and #7
show typical failure cases of our architecture, where a part
of the left hand is mis-classified as right — these type of mis-
takes would create large outliers in a tracking optimization
and could be avoided via regularization layers [4}43], or by
training with a loss that accounts these configurations [11]].
Figure[7]shows other challenging frames. Sample #1 illus-

w NYU HandSeg HandNet Freiburg
Train
NYU 9.6  69.8 448 618
HandSeg 770  97.2 470 482
HandNet 500 53.8 669 485
Freiburg ~ 80.3 520 455 812

Table 4. Generalization across datasets (mloU).

trates how the network can still segment the hands of multi-
ple persons, although it was trained on frames containing a
single individual. This reveals the generalization capabilities
of our network, which did not only learn to segment one/two
regions, but also learnt a latent shape-space for human hands.
Sample #2 shows a person holding a cup, while Sample #3
has the hand lying flat on the body. These scenarios are
difficult, as the network has never seen a hand interacting
with objects. Accuracy could be improved by accounting
for the additional information in the color channel, or by
learning the appearance of the object via training examples.

7. Conclusions and future works

We introduced a new high-quality dataset for hand seg-
mentation that is significantly larger than what is currently
availableﬂ Our dataset contains high-accuracy dense pixel
annotations, large pose variations, and many different sub-

2at an equivalent annotation quality level, hence excluding [39]
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Figure 7. A selection of challenging segmentation frames.
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Figure 8. We illustrate a few examples of hand segmentation performance across the considered learning techniques.

jects. Our results show that larger datasets are essential for
the development of more accurate segmentation models, and
the new dataset enables effective training of deep networks
for real-time hand tracking applications.

Our analysis has also revealed poor generalization charac-
teristics for currently available methods. With the Microsoft
Kinect v1 sensor being retired from production, this creates
an immediate problem as the only high-quality (albeit small)
dataset for the task at hand [38]] becomes unusable. Con-
versely, our data is acquired on Intel RealSense SR300 sen-
sors, one of the most commonly employed sensors available.
Beyond these immediate needs, it would also be interesting
to see whether simultaneously training on multiple datasets
could generate architectures that are apt to transfer learning.
While eventually the use of (very large) synthetic datasets
like [45] could be very effective for training, the proposed
HandSeg dataset will remain valuable for validation/testing.

We also propose a novel segmentation network that is
faster than existing baselines, and provides superior mloU

accuracy. While these results are encouraging, our dataset
opens new frontiers for investigation, such as the effective-
ness of spatially-aware losses [11]], the use of efficient quan-
tized networks [8§]], or its use for weak-supervision of dis-
criminative hand tracking [21]].
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