
Tighter Lifting-Free Convex Relaxations for Quadratic Matching Problems

Florian Bernard1 Christian Theobalt1 Michael Moeller2

1Max-Planck-Institute for Informatics, Germany 2University of Siegen, Germany

Abstract

In this work we study convex relaxations of quadratic
optimisation problems over permutation matrices. While
existing semidefinite programming approaches can achieve
remarkably tight relaxations, they have the strong disadvan-
tage that they lift the original n×n-dimensional variable to
an n2×n2-dimensional variable, which limits their practi-
cal applicability. In contrast, here we present a lifting-free
convex relaxation that is provably at least as tight as exist-
ing (lifting-free) convex relaxations. We demonstrate exper-
imentally that our approach is superior to existing convex
and non-convex methods for various problems, including
image arrangement and multi-graph matching.

1. Introduction
Matching problems that seek for correspondences be-

tween images, shapes, meshes or graphs are a long-standing
challenge in computer vision and computer graphics. Com-
putationally, they can be phrased as optimisation problems
over binary variables that encode the matching. Whilst
the formulation as a discrete optimisation problem appears
most natural, in many scenarios a continuous formulation
may be advantageous (e.g. for improving computational ef-
ficiency, or for representing uncertainties [44]).

In this work, we focus on convex relaxations of quadratic
programming problems over permutation matrices, where
we are particularly interested in finding both scalable as
well as tight convex relaxations. To be more precise, we
consider problems of the general form

min
X∈Pn∩C

f(x) := xTWx+ cTx , (1)

where x:= vec(X) ∈ Rn2

is the vector containing the
columns of matrix X ∈ Rn×n, C is a convex set, and
Pn is the set of n×n permutation matrices. Since in gen-
eral problems of this form are known to be NP-hard [36],
for moderately-sized problems one cannot expect to find a
globally optimal solution. Thus, a lot of effort has been put
into finding good solutions that may be suboptimal. Among

DS* (our) SDP spectral

6 8 10 12

n

lo
g

 o
b

je
c
ti
v
e

lower bounds

6 8 10 12

n

lo
g

 o
b

je
c
ti
v
e

upper bounds

6 8 10 12

n

10-2

100

102

lo
g

 t
im

e
 [

s
]

runtime

Figure 1. Normalised bounds (log-scale) and runtime in seconds
(log-scale) for random instances of Problem (1). The (lifted) SDP
has the best lower bounds but is not scalable. The spectral relax-
ation is efficient but has the weakest bounds. Our DS* method has
reasonably good bounds and scales much better than the SDP.

them are semidefinite programming (SDP) relaxations of
matching problems [55, 42, 25], which are known to pro-
duce good solutions for various binary problems [43, 49] by
lifting the n2-dimensional variable x to an n4-dimensional
variable. Whilst SDP relaxations allow to find a solution
in polynomial time (roughly with O(n6) per-iteration com-
plexity in SDCut [48], or even higher using interior point
methods [48]), the quadratic increase of the number of vari-
ables prohibits scalability (Fig. 1). Other methods that are
lifting-free and thus better scalable include spectral match-
ing [29], or various convex relaxations [18, 1, 17, 15], which
produce, however, weaker bounds and thus usually do not
result in high quality solutions. Our aim is to improve upon
the tightness of existing lifting-free convex relaxations.

1.1. Related work

In this section we summarise existing works that are
most relevant to our approach.

Assignment problems: The linear assignment problem
(LAP) seeks to find a permutation matrix X ∈ Pn that min-
imises the (linear) objective fLAP(X) = tr(CTX), where
Cij indicates the cost of assigning object i to object j
[33, 8]. The LAP is among the combinatorial methods that
permit to find a global optimum in polynomial time, e.g. us-
ing the Hungarian/Kuhn-Munkres [33] or the more efficient
Auction algorithm [7]. However, a shortcoming of the LAP
is that it neglects higher-order relationships. In contrast, the

1

ar
X

iv
:1

71
1.

10
73

3v
1

 [
m

at
h.

O
C

]
 2

9
N

ov
 2

01
7

quadratic assignment problem (QAP) additionally takes the
cost of matching pairs of objects (e.g. edges in a graph) into
account. The most common formulation of the QAP is the
Koopmans-Beckmann form [26], i.e. the minimisation of

fQAP(X) = tr(AXBXT) + tr(CTX) (2)

over permutation matrices X ∈ Pn. Here, in addition to the
linear costs encoded by C, the matrices A and B encode
pairwise costs. In contrast to many existing works, we fo-
cus on the more general Problem (1), which contains Prob-
lem (2) as special case (by setting C = Rn×n, c = vec(C),
and W = B ⊗A, with ⊗ denoting the Kronecker product).

Relaxation methods: The QAP has received a lot of at-
tention over decades (see e.g. [27, 8, 32]), which may be
(at least partially) owed to the fact that it is NP-hard and
that even finding an approximate solution within some con-
stant factor of the optimal solution is only possible if P=NP
[41]. Among the existing approaches that tackle the QAP
are branch and bound methods [4] which rely on the in-
expensive computation of bounds. In order to obtain such
bounds, many relaxation methods have been proposed, most
of which are either lifting-based and thus not scalable [55,
42, 25], or leverage the special structure of the Koopmans-
Beckmann form [21, 36, 14, 2, 37, 38, 13, 34, 16] and are
thus not directly applicable to the general form in Prob-
lem (1). A summary on various relaxations can be found in
the survey paper by Loiola et al. [32]. Works that are both
lifting-free and consider the general objective as in Prob-
lem (1) include spectral approaches [29, 12] and convex re-
laxation approaches [18, 15]. Our approach fits into the lat-
ter category, with our main contribution being the achieve-
ment of a relaxation that is provably at least as tight as the
so-far tightest lifting-free convex relaxation [15].

Graph matching: The problem of bringing nodes and
edges of graphs into correspondence is known as graph
matching (GM). There are several GM variations, such as
multi-graph matching [50], higher-order graph matching
[28], or second-order graph matching, where the latter is an
instance of the QAP [56]. Whilst there exist many differ-
ent ways to tackle GM problems (e.g. [46, 10, 54, 24, 28]),
in the following we focus on convex-to-concave path-
following (PF) approaches, as they are most relevant in our
context. The idea of PF methods is to approximate the NP-
hard GM problem by solving a sequence of continuous op-
timisation problems. The motivation is to realise the round-
ing for obtaining binary solutions within the optimisation
procedure, rather than as post-processing step. To this end,
PF methods start with a (convex) subproblem where a (usu-
ally non-binary) globally optimal solution can be found.
Then, using the current solution as initialisation for the next
subproblem, they gradually move on to more difficult (non-
convex) subproblems, until a binary solution is obtained
when solving the last (concave) subproblem. The PATH al-

gorithm [53] implements PF using convex and concave re-
laxations for the Koopmans-Beckmann form of the QAP, as
in (2). A similar approach is pursued in the factorised graph
matching (FGM) method [56], where however the convex
and concave relaxations are based on a factorised represen-
tation of the pairwise matching matrix W in (1). In contrast
to these methods, our approach directly establishes a con-
vex relaxation without requiring any particular structure or
factorisation of the pairwise matching matrix W .

1.2. Contributions

Our main contributions can be summarised follows:
1. We present a novel convex relaxation framework for

quadratic problems over permutation matrices that gen-
eralises existing (lifting-free) relaxations and is provably
at least as tight (Prop. 7).

2. To this end we provide a class of parametrised energy
functions that are equivalent on the set of permutations
(Prop. 5), infinitely many of them being convex.

3. Most importantly, we propose a proximal subgradient
descent type algorithm to efficiently find parameters that
yield improved convex relaxations (Algorithm 1).

4. Our experimental validation confirms the benefits of our
method on various matching problems.

2. Background

In this section we present our notation followed by some
background of convex relaxations.

2.1. Notation

We use x:= vec(X) to denote the vector containing all
columns of the matrix X , and X = vec−1(x) reshapes the
vector x back into a matrix. In denotes the n × n identity
matrix. 1n and 0n denote the constant n-dimensional vec-
tors comprising of ones and zeros, respectively (subscripts
may be omitted when the dimensionality is clear from con-
text). We write [n] := {1, . . . , n} for n ∈ N. Let Pn denote
the set of n×n permutation matrices, i.e.

Pn = {X ∈ {0, 1}n×n : XTX = In} , and let

DSn = {X : X≥0, X1n=1n,1
T
nX=1Tn} ⊂ Rn×n

denote the set of doubly-stochastic matrices. For a symmet-
ric matrix W we use W− to denote the Euclidean projec-
tion onto the cone of negative semi-definite (NSD) matri-
ces. The null space and the range of a matrix A are denoted
by ker(A) and im(A), respectively. For a set C, by δC we
denote the indicator function that is given by

δC(x) =

{
0 if x ∈ C ,
∞ otherwise .

(3)

2.2. Convex Relaxations

Convex relaxation methods are an important class
of techniques for minimising non-convex energies.
They aim at replacing the original cost function
by a convex underapproximation whose minimiser
ideally coincides with the global minimiser of the
non-convex function, see Fig. 2 for an illustration.

F

F1
F2

Figure 2. F1, F2 are convex underap-
proximations of F , where F1 is tighter
than F2, i.e. F1≥F2. The minimiser of
F1 and F coincide, the minimisers of
F2 and F do not coincide.

While the largest
convex underap-
proximation, the
biconjugate F ∗∗,
inherits such a prop-
erty under weak
additional conditions
(e.g. by combining
[22, Thm. 1.3.5] and
the Krein-Milman
theorem), it usually
is at least as difficult to compute as solving the original
problem to global optimality. One therefore has to settle
for a smaller convex underapproximation whose quality is
determined by its proximity to the original function:

Definition 1. Let F1, F2 be convex underapproximations of
F . We say that F1 is at least as tight as F2, if F1(x) ≥ F2(x)
for all x. If in addition F1(x) > F2(x) holds for at least
one x, we say that F1 is tighter than F2.

A systematic way to construct convex underapproxima-
tions is to write F (x) = f1(x)+f2(x) and use the fact that

F ∗∗(x) ≥ f∗∗1 (x) + f∗∗2 (x), (4)

where the convex conjugate f∗i (p) = supx p
Tx − fi(x) of

fi is computed twice to obtain the biconjugate f∗∗i .
Faithful convex underapproximations: Next, we in-

troduce the notion of faithful convex underapproximations.

Definition 2. Let G : Rn → R be a cost function and
C ⊂ Rn be the feasible set. We call a convex underapprox-
imation Fconv of G + δC faithful, if Fconv(x) = G(x) holds
for all x ∈ C.

Faithful convex underapproximations inherit some obvi-
ous but appealing properties:

Proposition 3. If a minimiser x̃ of a faithful convex under-
approximation Fconv of G + δC meets x̃ ∈ C, it is also a
global minimiser of G+ δC .

Proof. Assume that our statement is false. Then there exists
a x ∈ C with G(x) < G(x̃). However, since Fconv is faith-
ful, we have G(x̃) = Fconv(x̃) as well as G(x) = Fconv(x).
We conclude Fconv(x) < Fconv(x̃) which contradicts x̃ be-
ing a minimiser of Fconv. �

Proposition 4. If F 1
conv and F 2

conv are two convex underap-
proximations of G+ δC , where F 1

conv is faithful and F 2
conv is

not, then F 2
conv cannot be tighter than F 1

conv.

Proof. Since F 2
conv is not faithful, there exists a x ∈ C for

which F 2
conv(x) 6= G(x). Because F 2

conv is still an under-
approximation of G + δC , it must hold that F 2

conv(x) <
G(x) = F 1

conv(x), which shows that F 2
conv cannot be tighter

than F 1
conv. �

3. Problem Statement
Throughout the rest of the paper we consider the problem

of finding a permutation matrix X ∈ Pn that minimises
quadratic costs, i.e.

arg min
X∈Rn×n

f(x) + δP(x) =: F (x) , (5)

where f(x) := xTWx + cTx, and δP(x) is the indicator
function for the set of permutations Pn. Since partial per-
mutations can also be handled in Problem (5) by introducing
dummy variables, we assume (full) permutation matrices
X ∈ Pn. Moreover, for the sake of simplicity we assume
that C = Rn×n in Problem (1).

4. A General Convex Relaxation Framework
Before we proceed with details, we give a brief summary

how we obtain our convex relaxation: First, we show that
there exists an infinite number of functions f̃∆ parametrised
by ∆, for which f(x) = f̃∆(x) holds whenever vec−1(x)
is a permutation matrix. This observation is enormously
helpful since it allows us to replace f in (5) with f̃∆ (for
a suitably chosen ∆) and then consider a convex relaxation
thereof. Subsequently, we analyse the behaviour of f̃∆ over
the convex hull of the set P, the set of doubly-stochastic
matrices DS, from which we derive how to choose ∆ to
obtain a tight convex underapproximation (Sec. 5).

4.1. The Energy over P

A key insight for developing tight convex relaxations of
(5) is that f is not unique [39, 40, 11]. More precisely, with

f̃(x;D1, D2, d) := xT (W−Z(D1, D2, d))x (6)

+ (c+d)Tx+ 〈In, D1 +D2〉,
Z(D1, D2, d) := D1 ⊗ In + In ⊗D2 + diag(d), (7)

where we also write f̃∆ := f̃(·;D1, D2, d) and Z(∆) :=
Z(D1, D2, d) with ∆ := (D1, D2, d), one finds the follow-
ing equivalences of energies:

Proposition 5. Let X ∈ Pn and x = vec(X). For any d ∈
Rn2

, D1, D2 ∈ Rn×n it holds that f(x) = f̃(x;D1, D2, d).

Proof. With X ∈ Pn, we have XTX = In and therefore

〈In, D1〉 = 〈XTX,D1〉, (8)
= 〈XD1, X〉 = 〈vec(XD1), vec(X)〉, (9)

= 〈(DT
1 ⊗ In)x, x〉, (10)

= xT (D1 ⊗ In)x. (11)

Similarly 〈In, D2〉 = xT (In ⊗ D2)x. Moreover, since
X ∈ Pn, we have that Xij = X2

ij for all i, j = 1, . . . , n.
Thus, xT diag(d)x = dTx. Combining the above shows
that f(x) − f̃(x;D1, D2, d) = xT (D1 ⊗ In + In ⊗D2 +
diag(d))x− dTx− 〈In, D1 +D2〉 = 0. �

Since one can make f̃∆ convex by choosing ∆ such that
W−Z(∆) is positive semi-definite (PSD), in which case f̃∆

and f̃∗∗∆ coincide, the non-convex permutation constraint is
the mere reason for the non-convexity of Problem (1).

4.2. The Energy over DS

We now present a result of the behaviour of the energy
function when the constraint set P is replaced by its convex
hull, the set of doubly-stochastic matrices DS:

Lemma 6. Let D,D′ ∈ Rn×n be symmetric and let d, d′ ∈
Rn2

. Define D̂ = D′ −D. If di ≤ d′i for all i = 1, . . . , n2,
as well as D̂ii − maxj 6=i(max(D̂ij , 0)) ≥ 0 for all i =
1, . . . , n, then it holds for all x ∈ vec(DSn)

f̃(x;D, •, ◦) ≤ f̃(x;D′, •, ◦) , (12)

f̃(x; �, D, ◦) ≤ f̃(x; �, D′, ◦) , and (13)

f̃(x; �, •, d) ≤ f̃(x; �, •, d′) , (14)

where � ∈ Rn×n, • ∈ Rn×n and ◦ ∈ Rn2

.

Proof. We have

f̃(x;D, •, ◦)− f̃(x;D′, •, ◦) (15)

=xT (−Z(D, •, ◦) + Z(D′, •, ◦))x− 〈In, D̂〉 (16)

=xT (D′ ⊗ In −D ⊗ In)x− 〈In, D̂〉 (17)

=xT ((D′ −D)⊗ In)x− 〈In, D̂〉 (18)

=〈XTX, D̂〉 − 〈In, D̂〉 (19)

=
∑

i

((XTX)ii − 1)D̂ii +

∑

j 6=i
(XTX)ijD̂ij

 . (20)

We continue by looking at (20) for each i separately:

((XTX)ii − 1)D̂ii +
∑

j 6=i
(XTX)ijD̂ij (21)

≤((XTX)ii − 1)D̂ii +
∑

j 6=i
(XTX)ij max(D̂ij , 0) (22)

≤(1− (XTX)ii)(−D̂ii)

+

(
max
j 6=i

(max(D̂ij , 0))

)∑

j 6=i
(XTX)ij (23)

= (1− (XTX)ii)︸ ︷︷ ︸
≥0

(
max
j 6=i

(max(D̂ij , 0))− D̂ii

)

︸ ︷︷ ︸
≤0 by assumption

(24)

≤0. (25)

In the step from (23) to (24) we used that if X is doubly-
stochastic, then so is XTX . Thus, using (20) it follows that
f̃(x;D, •, ◦) ≤ f̃(x;D′, •, ◦). The case in (13) is analo-
gous. Note that tighter (but more complicated criteria) can
be derived by additionally considering the sum over i and
using that (XTX)i,i ≥ 1

n . We skipped this analysis for the
sake of simplicity.

Moreover,

f̃(x; �, •, d)− f̃(x; �, •, d′) (26)

=xT (−Z(�, •, d) + Z(�, •, d′))x+ (d− d′)Tx (27)

=xT (diag(d′)− diag(d))x+ (d− d′)Tx (28)

=xT (diag(d′ − d))x+ (d− d′)Tx (29)

=

n2∑

i=1

(d′ − d)ix
2
i + (d− d′)ixi (30)

=
n2∑

i=1

(d′ − d)ix
2
i − (d′ − d)ixi (31)

=
n2∑

i=1

(d′ − d)i(x
2
i − xi) ≤ 0 . (32)

The last inequality follows from the assumption d′i−di ≥ 0
and x2

i − xi ≤ 0 (using x ∈ vec(DSn)). �

For the special case of diagonal matrices D1 and D2,
Lemma 6 indicates that larger entries as well as larger ele-
ments of d lead to tighter relaxations.

5. Tight Convex Relaxations

The previous sections suggest the following strategy:
1. To obtain tight relaxations we want to write F = f1+δP,

and approximate F ∗∗ by f∗∗1 +δDSn in such a way that
f∗∗1 is as large as possible.

Figure 3. Illustration of subspace convexity. The non-convex
quadratic energy function (coloured surface) becomes convex (red
line) when restricted to a subspace (grey plane).

2. To obtain a faithful relaxation, f1 needs to be convex.
Unfaithful relaxations cannot be tighter than faithful
ones.

Based on the above demands, a naive choice would there-
fore be f1(·; ∆) := f̃(·; ∆) for a ∆ for which W−Z(∆) is
positive semi-definite, and which is optimal in the sense of
Lemma 6. Interestingly, one can, however, obtain tighter re-
laxations by additionally restricting f1 to an affine subspace
[15].

5.1. Subspace Convexity

The sets Pn and DSn are subsets of the affine subspace

A = {x ∈ Rn
2

: Ax = 12n} for A =

[
In ⊗ 1Tn
1Tn ⊗ In

]
, (33)

i.e. the set of x = vec−1(X) for matricesX whose rows and
columns sum to one. Therefore, we propose to consider the
(redundant) splitting

F (x) = f̃(x; ∆) + δA(x)︸ ︷︷ ︸
f1

+δP(x) ,

where δA is the indicator function of the setA. Note that f1

is convex whenever W−Z(∆) is PSD on the subspace A,
i.e. whenever

FT (W−Z(∆))F � 0 , (34)

where F ∈ Rn2×(n2−2n+1) denotes a matrix that spans
ker(A). This is a strictly weaker condition than the PSD-
ness of W−Z(∆), as we have illustrated in Fig. 3.

5.2. The Proposed DS* Relaxation

Next we introduce DS*, our convex relaxation of Prob-
lem (5), as

(DS*) arg min
X∈DSn

f̃(x; ∆) , (35)

for a suitable choice ∆ such that f̃(x; ∆) is convex.
Special cases: The recent DS++ approach [15] is

obtained as special case of our framework by choosing
∆DS++ = (0,0, λ?min1n2), where λ?min is the smallest eigen-
value of FTWF (with FTF = I), such that the convexity

is only enforced on the subspace A. Moreover, the DS+ re-
laxation [18] that aims for convexity on the entire Rn2

, is
obtained using ∆DS+ = (0,0, λmin1n2) for λmin being the
smallest eigenvalue of W .

Proposed relaxation: Among all possible relaxations of
the form (35), we propose to choose the relaxation that max-
imises the energy in the centroid of the simplex of doubly-
stochastic matrices, i.e. for x = 1

n1n2 , as this is the most
undesirable point when truly seeking for permutation ma-
trices. Based on Lemma 6 one can guarantee to improve
on the DS++ relaxation by introducing additional convex
constraints. We point out that there are less restrictive con-
straints, which, however, are more difficult to interpret than
the ones we have chosen to present below.

Proposition 7. The minimiser ∆̃ among all ∆ =
(D1, D2, d) with symmetric D1 and D2 of

min
∆

− tr(Z(∆)) +
1

n

∑

i,j

(Z(∆))ij (36)

s.t. FT (W − Z(∆))F � 0,

0 ≥ −(D1)ii + max
j 6=i

max((D1)ij , 0) ∀ i,

0 ≥ −(D2)ii + max
j 6=i

max((D2)ij , 0) ∀ i,

di ≥ λ?min ∀ i,

yields a relaxation that is at least as tight as DS++. If
Z(∆̃) 6= λ?minIn2 , the above is tighter than DS++.

Proof. First of all note that the constraints in (36) are fea-
sible as they are satisfied for the DS++ choice ∆DS++ =
(0,0, λ?min1n2). Thus, a minimiser exists.

Writing ∆̃ = (D̃1, D̃2, d̃), the convex constraints imme-
diately yield that

f̃(x;0,0, λ?min1n2) ≤ f̃(x;0,0, d̃)

≤ f̃(x; D̃1,0, d̃)

≤ f̃(x; D̃1, D̃2, d̃) = f(x; ∆̃)

holds for all x ∈ vec(DSn) based on Lemma 6.
Finally, one can compare f̃(x; ∆̃) with f̃(x; ∆DS++) at

x = 1
n1n2 to see that the DS++ relaxation is strictly below

the relaxation given by (36) if DS++ does not happen to
yield a solution to (36) already. �

5.3. Efficient Approximations

Although the proposed approach in (36) has the three ad-
vantages that (i) the solution is optimal in some sense, (ii)
it can be computed using convex optimisation techniques,
and (iii) we only have 3n2 unknowns, the semi-definite con-
straint FT (W−Z(∆))F � 0 involves a large matrix of size
(n2−2n+1)×(n2−2n+1). To enforce the latter using first-
order methods, one needs to iteratively project onto the PSD

cone of such matrices, which has similar complexity as the
lifting-based relaxation approaches [55, 25]. The key ques-
tion for practical applications therefore becomes how to ap-
proximate (36) such that the resulting algorithm is scalable.

To do so we consider the special case of D1 and D2 be-
ing diagonal matrices and d=0n2 , leaving us with 2n-many
unknowns. While the constraints in (36) have to be modi-
fied for such a choice, we keep in mind that their purpose
is to prevent individual entries from becoming too small,
and focus on reducing the costs of the PSD constraint first.
We follow some ideas of the SDCut algorithm [48, 49], in
which such a constraint is replaced by a penalty of the form

h̃(Y) = ‖Y−‖2F =
∑

i
min(λi(Y), 0)2 , (37)

where λ(Y) denotes the spectrum of Y . Since the gradi-
ent evaluation of h̃ requires the computation of all negative
eigenvalues of Y , we propose to only penalise the smallest
negative eigenvalue. We define

h(Y) =
1

2
min(λmin(Y), 0)2 , (38)

T (d1, d2) = FT (W − diag(d1)⊗ In − In ⊗ diag(d2))F,

and introduce h(T (d1, d2)) into our objective, where d1

and d2 denote the diagonals of D1 and D2. Interestingly,
h(T (d1, d2)) is differentiable if the smallest eigenvalue of
T (d1, d2) has multiplicity one. Moreover, gradients can be
computed very efficiently due to two reasons: (i) A gradi-
ent of hmerely requires the smallest eigenvalue/eigenvector
pair which can be determined via an inverse power method.
(ii) The special structure of the adjoint of the affine operator
T allows to efficiently compute the inner derivative:

Lemma 8. Let T (d1, d2) have a smallest eigenvalue λmin

of multiplicity 1, and let umin be a corresponding eigenvec-
tor with ‖umin‖ = 1. Then

(p1)j = −min(λmin, 0)
∑

i
((vec−1(Fumin))i,j)

2 ,

(p2)i = −min(λmin, 0)
∑

j
((vec−1(Fumin))i,j)

2

meet p1 = ∇d1(h ◦ T)(d1, d2), p2 = ∇d2(h ◦ T)(d1, d2).

Proof. The proof is based on the fact that (h ◦ T) is a com-
position of four functions:

(h ◦ T)(d1, d2) =
1

2
min(g(λ(T (d1, d2))), 0)2,

i.e. the affine function T , a function Y 7→ λ(Y) determin-
ing the eigenvalues of Y , a function g(v) = min(v) se-
lecting the minimal element of a vector, and the function
x 7→ 1

2 min(x, 0)2. The latter is continuously differentiable
with derivative min(x, 0).

Compositions of the form g(λ(Y)) have been studied in
detail in [30], and according to [30, p. 585, Example of Cox
and Overton] it holds that

∂(g ◦ λ)(Y) = conv{uuT : Y u = λmin(Y)u, ‖u‖ = 1} .
(39)

Note that (g ◦ λ) becomes differentiable if the smallest
eigenvalue of Y has multiplicity one, such that the corre-
sponding eigenspace is of dimension 1 and the above set
∂(g ◦ λ)(Y) reduces to a singleton – also see [30, Theorem
2.1].

Thus, by the chain rule

min(λmin(Y), 0) uminu
T
min

is a gradient of h at Y if λmin(Y) has multiplicity 1.
Left to consider is the inner derivative coming from the

affine map T . Let us consider the linear operator

T̃ (d1) = −FT (diag(d1)⊗ In)F

as the part of T that has a relevant inner derivative with
respect to d1. The gradient of a linear operator T̃ is nothing
but its adjoint operator T̃ ∗, i.e. the operator for which

〈T̃ (d), A〉 = 〈d, T̃ ∗(A)〉

holds for all d and all A. (In this case we could explicitly
prove this by vectorizing the entire problem, but the relation
holds in much more generality as the definition of general
(Gateaux) gradients utilises the Riesz representation theo-
rem, see e.g. [3, p. 40, Remark 2.55]). Since the adjoint of
T1◦T2 is T ∗2 ◦T ∗1 , we can consider the operations separately
in a reverse order. The last thing T̃ does is the multiplica-
tion with FT from the left and with F from the right, which
means that the first thing the adjoint T̃ ∗ does is the multi-
plication with F from the left and with FT from the right.

The operator diag(d1) ⊗ In repeats the entries of d1 n
times, and writes the result on the diagonal of an n2×n2 di-
agonal matrix. The adjoint of writing a vector of length n2

on the diagonal of an n2×n2 diagonal matrix, is the extrac-
tion of the diagonal of such a matrix. Finally, the adjoint
of the repeat operation is the summation over the compo-
nents of those indices at which values were repeated. As an
illustrative example, note that

A =

1 0
1 0
0 1
0 1

︸ ︷︷ ︸
repeat each component

⇒ A∗ =

(
1 1 0 0
0 0 1 1

)
.

︸ ︷︷ ︸
sum over repeated components

If T̃ ∗ is applied to an element Y = uuT ∈ Rn2×n2

the
first steps are left multiplication with F and right multipli-
cation with FT , leading to (Fu)(Fu)T . The extraction of

the diagonal of the resulting matrix yields a vector of length
n2 with entries (Fu)2

k. By taking sums over n consecutive
entries, and multiplying with the remaining inner deriva-
tives (−1) and min(λmin, 0) we arrive at the formula for
∇d1(h◦T) as stated by Lemma 8. Determining the formula
for ∇d2(h ◦ T) follows exactly the same computation with
a different final summation as the operator In ⊗ diag(d2)
repeats the entries in a different order. �

Considering the great success of subgradient descent
type of methods in computer vision, e.g. in the field of deep
learning, we consider such a method for our problem, too:
We simply keep using the formulas in Lemma 8 even in
the case where the multiplicity of the smallest eigenvalue is
larger than 1, and just select any umin.

Our general strategy is to take a formulation like
(36), replace the semi-definite constraint by the penalty
h(T (d1, d2)) in (38), run a few iterations of a subgradi-
ent descent type algorithm on the resulting energy to obtain
(d1, d2), and minimise f̃(x, diag(d1), diag(d2),0n2) over
DSn to obtain the solution X to our convex relaxation. Be-
fore we present our algorithm to determine (d1, d2), we ad-
dress the projection of a solution X /∈ Pn onto the set Pn,
which imposes some additional demands upon (d1, d2).

6. Projection onto Pn
If the obtained solution X of our relaxation is a permu-

tation matrix, then X is a global solution to Problem (5),
as stated in Prop. 3. However, if X /∈ Pn, a strategy for
projecting X onto Pn is necessary. Whilst the `2-projection
is most straightforward, it makes the (over-simplified) as-
sumption that the sought global solution X̂ is the permuta-
tion matrix that is closest to X in the Euclidean sense.

Instead, we pursue a convex-to-concave path-following,
as discussed in Sec. 1.1. To ensure that the final problem
we solve is concave, we not only impose PSDness upon
T (d1, d2), but also NSDness upon T (−d1,−d2), so that

Tα = (1− α)T (d1, d2) + αT (−d1,−d2) (40)

represents a path from a PSD (α=0) to a NSD (α=1) ma-
trix. The semi-definite constraints automatically constrain
the matrix Z(d1, d2,0n2) to be non-positive. Moreover, as
discussed in Section 5.3, one wants to maximise the sum of
the diagonal elements while simultaneously restricting them
from becoming too small. In our numerical experiments we
found that a quadratic penalty on the diagonal elements is an
easy-to-compute way of achieving this. By again replacing
the hard semi-definite constraints by their respective cheap
soft-constraints we end up with a problem of the form

min
d1,d2

η

2
(‖d1‖2 + ‖d2‖2) + (1− β)h(T (d1, d2)) (41)

+ βh(−T (−d1,−d2)) .

To find (d1, d2) we optimise (41) using a proximal subgra-
dient type method with a subgradient type step on the h
penalties (as discussed in Sec. 5.3), followed by a proximal
step with respect to the quadratic regularisation, see Alg. 1.

Since the PSD and NSD constraints are modelled as
penalties, there is no guarantee that the resulting (d1, d2)
lead to PSD and NSD matrices T (d1, d2) and T (−d1,−d2),
respectively. To compensate for this, one can shift the diag-
onal of the matrices T (d1, d2) and T (−d1,−d2) by their
smallest/largest eigenvalues, similar to DS++ [15].

Defining ∆α := (d1−2αd1, d2−2αd2,0), our PF proce-
dure starts with minimising f̃∆α for α=0 over DSn, which
is a convex problem that can be solved to global optimal-
ity. Then, we gradually increase α and (locally) minimise

Input: W,F, n, niter=10, τ > 0, η > 0, β ∈ [0, 1]
Output: d1, d2

Initialise: d1 = 0, d2 = 0
1 foreach i = 1, . . . , niter do
2 compute T0 and T1 using (40)
3 [umin, λmin] = eigs(T0, 1, ’sa’)
4 [umax, λmax] = eigs(T1, 1, ’la’)
5 V + = reshape((Fumin)� (Fumin), n, n)

6 V − = reshape((Fumax)� (Fumax), n, n)
// gradient step

7 d1 = d1 + (1− β)τλmin(V +)T 1n − βτλmax(V −)T 1n
8 d2 = d2 + (1− β)τλminV

+1n − βτλmaxV −1n
// proximal step of squared `2-norm

9 d1 = 1
1+τη

d1; d2 = 1
1+τη

d2

Algorithm 1: Proximal subgradient descent type of algo-
rithm to find (d1, d2). The notation eigs(), reshape() is
borrowed from MATLAB and � denotes the Hadamard
product. The parameters τ , η and β are the step size,
the regularisation weight, and the relative importance of
T (d1, d2) being PSD and T (−d1,−d2) being NSD, re-
spectively.

f̃∆α
over DSn using the solution from the previous step as

initialisation. Once α=1, the minimisation of the concave
function f̃∆α over DSn results in a solution X that is in Pn.
We use the Frank-Wolfe (FW) method [19] for the minimi-
sation of all f̃∆α

over DSn. Our DS* projection based on
path-following is shown in Alg. 2.

Input: W,∆α (obtained from Alg. 1)
Output: X ∈ Pn

1 for α = 0, . . . , 1 do
2 X = frankWolfe(f̃∆α , X)

Algorithm 2: Our DS* projection method. The function
frankWolfe(f,X0) finds a local minimiser of f over DSn
with X0 as initialisation.

7. Complexity Analysis
Computing T0 and T1 in line 2 in Algorithm 1 involves

two matrix products with matrices of sizeO(n2×n2). How-

ever, the matrix F ∈ Rn2×(n2−2n+1) spanning the null
space of A in (33) can be constructed as sparse matrix:

Lemma 9. Let xi ∈ Rn be defined as

(xi)j :=

1 if j = i

−1 if j = i+ 1

0 otherwise
, and let zi,j := xi ⊗ xj .

With F = [z1,1, z1,2, . . . , zn−1,n−1] ∈ Rn2×(n−1)2 , we
have that im(F) = ker(A), where A is defined as in (33).

Proof. The linear independence of all x1, . . . xn−1 implies
the linear independence of all zi,j = xi ⊗ xj for i, j ∈
[n−1], from which we see that dim(im(F)) = rank(F) =
(n− 1)2 = n2 − 2n+ 1 = dim(ker(A)).

We proceed by showing that im(F) ⊆ ker(A). Let z ∈
im(F), so z =

∑n−1
i,j=1 aijz

i,j for some coefficients {aij ∈
R}. By construction of the zi,j , for i, j ∈ [n−1] we have

(In ⊗ 1Tn)zi,j = 0n and (1Tn ⊗ In)zi,j = 0n , (42)

which implies that

(In ⊗ 1Tn)aijz
i,j = 0n and (1Tn ⊗ In)aijz

i,j = 0n . (43)

Thus

(In ⊗ 1Tn)z = 0n and (1Tn ⊗ In)z = 0n , (44)

from which we can see that z ∈ ker(A). Combining
dim(im(F)) = dim(ker(A)) and im(F) ⊆ ker(A) shows
that im(F) = ker(A). �

With F being a sparse matrix with O(n2) non-zero ele-
ments, the computation of T0 and T1 in line 2 has complex-
ity O(n4). The computation of the smallest and the largest
eigenvalue of matrices of size O(n2 × n2) (lines 3 and 4)
also has complexity O(n4) running an iterative solver for a
fixed number of iterations. Thus, the overall complexity of
Algorithm 1 is O(n4), which is two orders of magnitudes
smaller than the lifted SDP relaxations [55, 25].

8. Experiments
To evaluate our proposed convex relaxation we first com-

pare bounds obtained by (lifting-free) convex relaxation
methods on synthetic quadratic matching problems. Subse-
quently, we consider image arrangement using three differ-
ent datasets. Eventually, we incorporate our approach into a
convex multi-graph matching method which we evaluate on
synthetic and real data. Unless stated otherwise we used 10
steps for PF for DS+, DS++ and DS*. Moreover, for DS*
we used τ = 4, η = 0.1 and β = 0.2.

8.1. Synthetic Data

In our first experiment we compare DS+, DS++ and our
DS* on random instances of Problem (5). To this end, for
each n ∈ {16, 20, . . . , 40} we randomly draw 200 sym-
metric matrices W ∈ Rn×n with uniformly distributed ele-
ments in]−1, 1[. In total, we solve 7·200 optimisation prob-
lems for each method. The lower bounds are given by the
objective value of the respective relaxation method, and the
upper bounds are obtained via projection using PF. To al-
low a comparison across the individual problem instances
we normalise the objective values: After solving one of the
1400 problem instances with the three methods, we scale
the three objective values such that the largest lower bound
equals −1. The upper bounds are normalised analogously.

Results: The mean and the standard deviation of the so-
obtained lower and upper bounds are shown in Fig. 4. It can

DS+ DS++ DS*

16 20 24 28 32 36 40

n

-1.08
-1.06
-1.04
-1.02

-1
n

o
rm

.
o

b
j.

lower bounds

16 20 24 28 32 36 40

n

-1

-0.95

-0.9

upper bounds

Figure 4. Comparison of DS+, DS++ and DS*. Left: lower
bounds (higher is better). Right: upper bounds obtained by pro-
jection, cf. Sec. 6 (lower is better).

be seen that our proposed approach results in better lower
bounds compared to DS+ and DS++, as expected due to
our theoretical results. In general, better lower bounds are
no guarantee for better upper bounds, as can be seen when
comparing the upper bounds of DS+ and DS++. However,
our method is also able to achieve the best upper bounds.

8.2. Image Arrangement

In this experiment we consider the arrangement of a col-
lection of images on a predefined grid such that “similar”
images are close to each other on the grid (see Fig. 5). In
[20] this is tackled by minimising the energy

E(X) = δP(X) + min
c

∑

ijkl

XijXkl|c · dik − d′jl| , (45)

where the scalar factor c is used to model a normalisation
between the pairwise image “distances” d ∈ Rn×n and the
pairwise grid position distances d′ ∈ Rn×n. The distances
d (or d′) are computed as the `2-norm of the differences
between pairs of image features (or grid positions).

Setup: We compare DS* with isomatch [20] and DS++
[15] on various datasets (random colours, face images [45],
and images from the COCO dataset [31]), where we used
the RGB colour, MoFA facial expression parameters [45],

Figure 5. Left: 36 face images are randomly arranged on a 6 × 6
grid. Right: The face images are arranged with DS* according to
facial expression [45]. (Best viewed on screen when zoomed in)

and the average hue-saturation vector of each image as fea-
tures, respectively. For the random colours experiment, in
each run we uniformly sample random RGB values and then
arrange the individual colours on the grid (i.e. in the “im-
age arrangement” terminology we arrange images that com-
prise a single pixel). For the face and COCO experiments,
in each run we randomly select images and then arrange
these on the grid. In all experiments we use isomatch with
random swaps [20]. To employ image arrangement with
DS++ and DS* we follow the approach in [15] to obtain a
quadratic objective function, which is achieved by fixing c
in (45) such that d and d′ have the same mean.

Large-scale arrangement: In addition to the medium-
scale problems of arranging a few hundred images [20, 15],
we also investigate the more challenging case of large
matching problems that arrange thousands of images. To
this end, we first compute a matching between a subset of
images and grid cells, which is then extrapolated to ob-
tain a full matching. To be more specific, we use farthest
point sampling to obtain the subset of ñ images as well as ñ
grid cells. Then, using the respective method we solve the
(small) arrangement problem between those selected ñ im-
ages and grid cells to obtain a partial matching. Eventually,
in order to retrieve a full matching we apply the Product
Manifold Filter (PMF) method [47] with the computed par-
tial matching as initialisation (we use 5 PMF iterations, and
the kernel bandwidth is set to the standard deviation of the
elements in d and d′, respectively; see [47] for details).

Results: Qualitative results for arranging face images
according to facial expressions are shown in Fig. 5. Ta-
ble 1 shows quantitative results for all datasets, where we
show the objective value of (45) averaged over 100 runs.
It can be seen that the DS* method outperforms the other
approaches for random colours and faces, whilst being on
par with DS++ for COCO images. Average runtimes are
shown in Table 2. To obtain a fair comparison, in the im-
plementation of the isomatch method [20] we replaced the
LAP solver based on the Hungarian algorithm [33] by the

Table 1. Quantitative image arrangement results. We use ? to indi-
cate sparse matchings of ñ elements that are subsequently extrap-
olated using PMF. Cases that are not indicated by ? mean that we
used all images for directly computing the matching.
data/ grid ñ mean objective (eq. (45))
feat. size initial isomatch DS++ DS*

rn
d.

co
lo

ur
s

R
G

B

82 all 0.466 0.227 − 0.211 0.196
162 50 0.475 0.288 0.249? 0.242? 0.236?

322 75 0.476 − 0.246? 0.245? 0.235?

642 75 0.478 − 0.259? 0.249? 0.244?

fa
ce

fa
ci

al
ex

p. 82 all 0.519 0.285 − 0.279 0.266
162 50 0.530 0.324 0.307? 0.305? 0.300?

322 75 0.531 − 0.352? 0.336? 0.324?

422 75 0.533 − 0.379? 0.360? 0.344?

C
O

C
O

av
g.

hu
e/

sa
t. 82 all 0.541 0.273 − 0.256 0.244

162 50 0.548 0.315 0.306? 0.238? 0.238?

322 75 0.552 − 0.330? 0.274? 0.274?

402 75 0.549 − 0.338? 0.291? 0.292?

Table 2. Average runtimes for the random colours experiments.
† Due to the slow processing in the isomatch 322 and 642 settings
we have only run these settings once to estimate the runtime.

grid size ñ isomatch DS++ DS*

82 all 1.29s − 17.84s 43.95s
162 50 16.36s 1.11s? 5.85s? 19.56s?

322 75 166.44s† 2.63s? 10.14s? 29.53s?

642 75 3845.99s† 31.44s? 32.68s? 52.83s?

more efficient Auction algorithm [7] as implemented in [6].

8.3. Multi-graph Matching

The aim of multi-graph matching (MGM) is to obtain
a matching between k>2 graphs. One way of formulat-
ing MGM is to consider all pairwise matchings X :=
[Xij]i,j∈[k] ∈ (Pn)k×k and ensure that they are transitively
consistent, i.e. for all i, j, ` ∈ [k] it holds that XijXj`=Xi`.
With f ij(xij) := xTijWijxij being the matching costs be-
tween graphs i and j, the MGM problem reads

min
X∈(Pn)k×k

∑

i,j∈[k]

f ij(xij) (46)

s.t. XijXj` = Xi` ∀ i, j, ` ∈ [k] .

We propose to use a convex relaxation of Problem (46):

min
X∈(DSn)k×k

∑

i,j∈[k]

f̃ ij(xij ; ∆ij) (47)

s.t. X � 0, Xii = In ∀ i ,

for {∆ij : i, j∈[k]}, where each ∆ij is determined as
in Sec. 5 and 6. The constraints X � 0, Xii = In
are the relaxation of the transitive consistency constraint
(see [35, 23, 5, 25] for details). While Problem (47) is con-
vex, its objective is nonlinear and thus standard SDP solvers

rrwm cao-c* mOpt mSync DS*

4 8 12 16

0.2

0.4

0.6

0.8

1

a
c
c
u

ra
c
y

synthetic / complete

4 8 12 16

0.2

0.4

0.6

0.8

synthetic / density

4 8 12 16

0.2

0.4

0.6

0.8

synthetic / deform

4 8 12 16

0.4

0.6

0.8

1

a
c
c
u

ra
c
y

synthetic / outlier

4 8 12 16

0.3

0.4

0.5

0.6

0.7

0.8

house / outlier

4 8 12 16

0.2

0.4

0.6

0.8

hotel / outlier

Figure 6. Comparison of accuracies for MGM methods. The verti-
cal lines indicate the root mean square deviation of all the accuracy
values above the mean and below the mean, respectively. Each plot
shows a different pair of dataset and configuration. The number of
graphs k varies along the horizontal axis.

are not directly applicable. Instead, we introduce the con-
straint X � 0 in Problem (47) into the objective function
using the soft-penalty σ‖X−‖2F , see (37), which we then
minimise using the FW method. For solving Problem (47),
we conduct PF over the f̃ ij , as described in Sec. 6. Since
the transitive consistency constraint is relaxed, the resulting
solution is not necessarily transitively consistent, which we
tackle using permutation synchronisation [35].

Setup: We compare our MGM approach to RRWM
[9], composition-based affinity optimisation (CAO) [51],
MatchOpt (mOpt) [52], and permutation synchronisation
(mSync) [35]. We consider three datasets, synthetic prob-
lems and MGM problems using the CMU house and hotel
sequence. For the evaluation we follow the protocol im-
plemented by the authors of [51], where further details are
described. We set σ=k−116,000 and we use 30 PF steps.

Results: Fig. 6 shows that our method considerably out-
performs the other methods in almost all cases. We argue
that the superior performance of our approach is because
we simultaneously consider transitive consistency and the
pairwise matching costs during optimisation. Thus, our ap-
proach is better able to leverage the available information.
Whilst a related MGM approach has been presented in [25],
the authors consider a lifting of the pairwise matching ma-
trices, which is only applicable to very small-scale problems
due to the O(n4k2) variables (cf. Fig. 1), in contrast to our
approach with only O(n2k2) variables.

9. Discussion and Future Work
We have found that running Alg. 1 for 10 iterations pro-

vides a good trade-off between runtime and accuracy, and
that more iterations lead to comparable bounds. Assum-
ing a fixed amount of iterations for the eigendecomposition,
finding ∆ for DS* and λ?min for DS++ have equal asymp-
totic complexities. Nevertheless, DS++ is generally faster
(Table 2), whereas DS* achieves tighter bounds (Fig. 4).

In order to efficiently find a ∆ that leads to a good convex
relaxation, in Alg. 1 we fixed d=0 and optimised over d1

and d2. While Alg. 1 can easily be extended to also find
d, our preliminary experiments with such an approach led
to slightly better lower bounds, but to considerably worse
upper bounds. We leave an in-depth exploration of using
full matrices D1 and D2 as well as d6=0 for future research.

10. Conclusion
We have presented a general convex relaxation frame-

work for quadratic optimisation problems over permuta-
tions. In contrast to lifting-based convex relaxation meth-
ods that use variables of dimension O(n4), our approach
does not increase the number of variables to obtain a con-
vex relaxation and thus works with variables of dimension
O(n2). Moreover, our approach is at least as tight as exist-
ing (lifting-free) relaxation methods as they are contained as
special cases. To achieve our relaxation we have analysed
a class of parametrised objective functions that are equal
over permutation matrices, and we provided insights on how
to obtain parametrisations that lead to tighter convex relax-
ations. In particular, we have introduced a proximal sub-
gradient type method that is able to efficiently approximate
such a parametrisation. Overall, we have presented a pow-
erful framework that offers a great potential for future work
on convex and non-convex methods for diverse matching
problems, which is confirmed by our experimental results.

References
[1] Y. Aflalo, A. Bronstein, and R. Kimmel. On convex relax-

ation of graph isomorphism. Proceedings of the National
Academy of Sciences, 112(10):2942–2947, 2015. 1

[2] K. M. Anstreicher and H. Wolkowicz. On Lagrangian Re-
laxation of Quadratic Matrix Constraints. SIAM J. Matrix
Analysis Applications, 2000. 2

[3] H. Bauschke and P. Combettes. Convex Analysis and Mono-
tone Operator Theory in Hilbert Spaces. 2nd edition, 2017.
doi: 10.1007/978-3-319-48311-5. 6

[4] M. S. Bazaraa and A. N. Elshafei. An exact branch-
and-bound procedure for the quadratic-assignment problem.
Naval Research Logistics Quarterly, 26(1):109–121, 1979. 2

[5] F. Bernard, J. Thunberg, P. Gemmar, F. Hertel, A. Husch, and
J. Goncalves. A Solution for Multi-Alignment by Transfor-
mation Synchronisation. In CVPR, 2015. 9

[6] F. Bernard, N. Vlassis, P. Gemmar, A. Husch, J. Thunberg,
J. Goncalves, and F. Hertel. Fast correspondences for statis-
tical shape models of brain structures. In Proc. SPIE Medical
Imaging, 2016. 9

[7] D. P. Bertsekas. Network Optimization: Continuous and Dis-
crete Models. Athena Scientific, 1998. 1, 9

[8] R. Burkard, M. Dell’Amico, and S. Martello. Assignment
problems. 2009. 1, 2

[9] M. Cho, J. Lee, and K. M. Lee. Reweighted Random Walks
for Graph Matching. ECCV, 2010. 10

[10] M. Cho, J. Sun, O. Duchenne, and J. Ponce. Finding Matches
in a Haystack: A Max-Pooling Strategy for Graph Matching
in the Presence of Outliers. In CVPR, 2014. 2

[11] T. Cour. Convex relaxations for markov random field map
estimation. 2008. 3

[12] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching.
NIPS, 2006. 2

[13] E. de Klerk, R. Sotirov, and U. Truetsch. A New Semidefi-
nite Programming Relaxation for the Quadratic Assignment
Problem and Its Computational Perspectives. INFORMS
Journal on Computing, 27(2):378–391, Apr. 2015. 2

[14] Y. Ding and H. Wolkowicz. A low-dimensional semidefinite
relaxation for the quadratic assignment problem. Mathemat-
ics of Operations Research, 2009. 2

[15] N. Dym, H. Maron, and Y. Lipman. DS++ - A flexible, scal-
able and provably tight relaxation for matching problems.
arXiv, 2017. 1, 2, 5, 7, 8, 9

[16] J. F. S. B. Ferreira, Y. Khoo, and A. Singer. Semidefinite Pro-
gramming Approach for the Quadratic Assignment Problem
with a Sparse Graph. arXiv, 2017. 2

[17] M. Fiori and G. Sapiro. On spectral properties for graph
matching and graph isomorphism problems. Information and
Inference, 4(1):63–76, 2015. 1

[18] F. Fogel, R. Jenatton, F. Bach, and A. d’Aspremont. Convex
Relaxations for Permutation Problems. In NIPS, 2013. 1, 2,
5

[19] M. Frank and P. Wolfe. An algorithm for quadratic program-
ming. Naval Research Logistics (NRL), 3(1-2):95–110, Mar.
1956. 7

[20] O. Fried, S. DiVerdi, M. Halber, E. Sizikova, and A. Finkel-
stein. IsoMatch - Creating Informative Grid Layouts. Com-
puter Graphics Forum, 34(2):155–166, 2015. 8, 9

[21] S. W. Hadley, F. Rendl, and H. Wolkowicz. A new lower
bound via projection for the quadratic assignment problem.
Mathematics of Operations Research, 17(3):727–739, 1992.
2

[22] J.-B. Hiriart-Urruty and C. Lemarechal. Fundamentals of
Convex Analysis. Springer-Verlag, 2001. 3

[23] Q.-X. Huang and L. Guibas. Consistent shape maps via
semidefinite programming. In Symposium on Geometry Pro-
cessing, 2013. 9

[24] B. Jiang, J. Tang, C. Ding, and B. Luo. Binary Constraint
Preserving Graph Matching. In CVPR, 2017. 2

[25] I. Kezurer, S. Z. Kovalsky, R. Basri, and Y. Lipman. Tight
Relaxation of Quadratic Matching. Comput. Graph. Forum,
2015. 1, 2, 6, 8, 9, 10

[26] T. C. Koopmans and M. Beckmann. Assignment Problems
and the Location of Economic Activities. Econometrica,
25(1):53, Jan. 1957. 2

[27] E. L. Lawler. The quadratic assignment problem. Manage-
ment science, 9(4):586–599, 1963. 2

[28] D. K. Lê-Huu and N. Paragios. Alternating Direction Graph
Matching. In CVPR, 2016. 2

[29] M. Leordeanu and M. Hebert. A Spectral Technique for Cor-
respondence Problems Using Pairwise Constraints. In ICCV,
2005. 1, 2

[30] A. S. Lewis. Derivatives of spectral functions. Mathematics
of Operations Research, 1996. 6

[31] T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO - Com-
mon Objects in Context. ECCV, 2014. 8

[32] E. M. Loiola, N. M. M. de Abreu, P. O. B. Netto, P. Hahn,
and T. M. Querido. A survey for the quadratic assign-
ment problem. European Journal of Operational Research,
176(2):657–690, 2007. 2

[33] J. Munkres. Algorithms for the Assignment and Transporta-
tion Problems. Journal of the Society for Industrial and Ap-
plied Mathematics, 5(1):32–38, Mar. 1957. 1, 9

[34] D. E. Oliveira, H. Wolkowicz, and Y. Xu. ADMM for the
SDP relaxation of the QAP. arXiv, 2015. 2

[35] D. Pachauri, R. Kondor, and V. Singh. Solving the multi-way
matching problem by permutation synchronization. In NIPS,
2013. 9, 10

[36] P. M. Pardalos, F. Rendl, and H. Wolkowicz. The Quadratic
Assignment Problem - A Survey and Recent Developments.
DIMACS Series in Discrete Mathematics, 1993. 1, 2

[37] J. Peng, H. Mittelmann, and X. Li. A new relaxation frame-
work for quadratic assignment problems based on matrix
splitting. Mathematical Programming Computation, 2010.
2

[38] J. Peng, T. Zhu, H. Luo, and K.-C. Toh. Semi-definite
programming relaxation of quadratic assignment problems
based on nonredundant matrix splitting. Computational Op-
timization and Applications, 60(1):171–198, June 2014. 2

[39] S. Poljak and H. Wolkowicz. Convex Relaxations of (0, 1)-
Quadratic Programming. Math. Oper. Res., 1995. 3

[40] P. Ravikumar and J. D. Lafferty. Quadratic programming re-
laxations for metric labeling and Markov random field MAP
estimation. ICML, 2006. 3

[41] S. Sahni and T. Gonzalez. P-Complete Approximation Prob-
lems. Journal of the ACM, 23(3):555–565, July 1976. 2

[42] C. Schellewald and C. Schnörr. Probabilistic subgraph
matching based on convex relaxation. In EMMCVPR, 2005.
1, 2

[43] S. Shah, A. Kumar, D. Jacobs, C. Studer, and T. Goldstein.
Biconvex relaxation for semidefinite programming in com-
puter vision. ECCV, 2016. 1

[44] J. Solomon, G. Peyré, V. G. Kim, and S. Sra. Entropic met-
ric alignment for correspondence problems. ACM Trans.
Graph., 35(4):72–13, 2016. 1

[45] A. Tewari, M. Zollhöfer, H. Kim, P. Garrido, F. Bernard,
P. Pérez, and C. Theobalt. MoFA - Model-based Deep Con-
volutional Face Autoencoder for Unsupervised Monocular
Reconstruction. ICCV, 2017. 8, 9

[46] L. Torresani and V. Kolmogorov. A dual decomposition ap-
proach to feature correspondence. TPAMI, 35(2):259–271,
2013. 2

[47] M. Vestner, R. Litman, E. Rodolà, A. M. Bronstein, and
D. Cremers. Product Manifold Filter - Non-Rigid Shape Cor-
respondence via Kernel Density Estimation in the Product
Space. CVPR, 2017. 9

[48] P. Wang and C. Shen. A fast semidefinite approach to solving
binary quadratic problems. In CVPR, 2013. 1, 6

[49] P. Wang, C. Shen, A. v. d. Hengel, and P. H. S. Torr. Large-
scale binary quadratic optimization using semidefinite relax-
ation and applications. TPAMI, 39(3):470–485, Mar. 2017.
1, 6

[50] M. L. Williams, R. C. Wilson, and E. R. Hancock. Multiple
graph matching with Bayesian inference. Pattern Recogni-
tion Letters, 1997. 2

[51] J. Yan, M. Cho, H. Zha, and X. Yang. Multi-graph matching
via affinity optimization with graduated consistency regular-
ization. TPAMI, 38(6):1228–1242, 2016. 10

[52] J. Yan, J. Wang, H. Zha, and X. Yang. Consistency-driven
alternating optimization for multigraph matching: A unified
approach. IEEE Transactions on Image Processing, 2015.
10

[53] M. Zaslavskiy, F. Bach, and J.-P. Vert. A Path Follow-
ing Algorithm for the Graph Matching Problem. TPAMI,
31(12):2227–2242, 2009. 2

[54] Z. Zhang, Q. Shi, J. McAuley, W. Wei, Y. Zhang, and
A. van den Hengel. Pairwise Matching through Max-Weight
Bipartite Belief Propagation. In CVPR, 2016. 2

[55] Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz.
Semidefinite programming relaxations for the quadratic as-
signment problem. Journal of Combinatorial Optimization,
2(1):71–109, 1998. 1, 2, 6, 8

[56] F. Zhou and F. De la Torre. Factorized Graph Matching.
TPAMI, 38(9):1774–1789, 2016. 2

