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Characterization of Infectious and Defective Cloned Avian Hepadnavirus Genomes
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The infectivity in vivo, replication competence in vitro, and expression of viral genes of several molecularly cloned
duck hepatitis B virus (DHBV) genomes were investigated. In addition, replication competence, ¢ore protein expres-
sion, and secretion of viral proteins were investigated for a grey heron hepatitis B virus genome. Except two, all DHBY
isolates tested induced a systemic infection in Pekin ducks when injected as cioned viral DNA into the liver. After
transfection of chicken hepatoma cells, both defective DHBV genomas expressed intraceliular nuclebcapsid and pre-8
envelope proteins and secreted DHBs/pre-S particles into the medium. One of the defective DHBVY genomes and HHBV
produced within the cells replicative intermediates encapsidated in core particles and secreted virions, whereas the
other defective DHBV genome did not and was unable to efficiently encapsidate the RNA pregetiome. Cormparative
sequence analysis was performed to identify potential amino acid changes in viral proteins of both defective DHBY
genomes, The data obtained demonstrate that most cloned avian hepadnaviruses are infectious or rapiication compe-
tent and suggest defects in envelope, polymerase or encapsidation function, respectively, in two cloned DHBV ge-

nomes. © 1991 Academic Press, Inc.

INTRODUCTION

Members of the family of hepatitis B viruses (hepad-
naviruses) have been isolated, cloned, and sequenced
from human (HBV), woodchucks (WHV), ground
squirrels (GSHV), Pekin ducks and a goose (DHBV),
and from herons (HHBV) (for review see Marion, 1988;
and Schodei er a/, 1989, 1991). All hepadnaviruses
induce acute and chronic infections. Mammalian he-
padnaviruses are to various degrees pathogenic
whereas those of birds are not (Marion, 1988). Replica-
tion of all hepadnaviruses involves synthesis of an RNA
pregenome which is reverse transcribed into minus
strand DNA which in turn is transcribed into a DNA
plus strand by a DNA polymerase (Will et al., 1987).
Both the reverse transcriptase (RTase) and the DNA
polymerase and in addition an RNase H activity are
virus encoded (for review see Schbtdel et a/., 1989,
1991). Similar to retroviruses the RTase probably lacks
proofreading activity and this may be one reason why
hepadnavirus populations in infected patients and ani-
mals are heterogeneous in sequence (Miller et al,,
1990; Schodel et af, 1989, 1991 and references
therein). For a few cloned HBV, WHV, and one GSHV
genomes the infectivity or defectivity were experimen-
tally tested (Sprengel et al., 1984; Will et al, 1985;
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Seegeretal., 1987, 1989; Girones et a/., 1989; Milleret
al., 1990), and from some HBV and WHV genomes the
defect is obvious because of large deletions in essen-
tial genes (Miller et al.,, 1990; Okamoto et af,, 1987).
From this limited number of experiments the number of
defective mammalian hepadnavirus genomes appears
to be rather high and they seem to accumulate in
chronic infection.

Avian hepadnaviruses, and in particular DHBV, have
served in the past as very useful tools to decipher the
life cycle of hepadnaviruses and are increasingly used
as model systems for antiviral drug, antibody neutral-
ization, and virus receptor studies (Lambert et a/.,
1980; Schide! et a/., 1989, 1991; Yuasa et a/., 1991).
HHBV and several genomes of DHBY were isolated,
cloned, and sequenced, and a remarkable sequence
variation was observed (Uchida et al., 1989; Tong et
al., 1990; Mattes et al., 1990; Tong et a/., 1991; Spren-
geletal., 1991; and some isolates reviewed in Schdel
et al., 1991). The significance of this sequence varia-
tion is not known since the infectivity of only three
cloned DHBV DNA genomes was experimentally dem-
onstrated ({Sprengel et al, 1984; Schneider et al.,
1991). Naturally occurring defective DHBV genomes
were not identified so far.

Here we report the characterization of infectivity and
defectivity of several DHBV genomes and one HHBV
genome by in vivo and in vitro assays. The data ob-
tained indicate that most cloned avian hepadnaviruses
are infectious or replication competent. Two defective
DHBV genomes were identified with possible defects
in the pre-S/S and polymerase coding region.
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Fic. 1. DHBV replicative intermediates in livers of Pekin ducks
transfected with DHBV genomes. nc, mock transfected livers; oc,
open circular form of DHBV genome; ss, single-stranded DHBY
minus strand DNA.

MATERIALS AND METHODS
DHBYV isolates

Cloned avian hepadnavirus genomes were derived
from a goose (DHBV 1, Sprengel et al., 1991), Pekin
ducks (DHBV 3, 16; Sprengel et al., 1985; Mandart et
al., 1984), various other ducks (DHBV 22 and 26;
Sprengel et al., 1991; DHBV S18-B, Tong et al., 1990;
DHBV F1-6, Mattes et al., 1990; DHBV S5 and S31,
Uchida et a/., 1989; DHBYV QCA34, Tong et al., 1991,
and Q49, Tong and Mattes, unpublished), and from a
grey heron (HHBV 4, Sprengel et al., 1988). All these
genomes were cloned from virions derived from serum
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of naturally infected animals. Infectivity has been dem-
onstrated so far for DHBV 3, 16, and 26 only (Sprengel
et al., 1984 Schneider et al., 1991). The infectivity of
the HHBV genome could not be tested in grey herons
because they are under conservation protection—in
Pekin ducks this genome does not induce viremia pre-
sumably due to its heron-specific host range (Sprengel
et al., 1988) but a defect in the genome could not be
excluded in this study.

Transfection of avian liver tumor cells (LMH)

Chicken hepatoma cells (LMH, Kawaguchi et al.,
1987) were grown in petri dishes of 60 mm diameter
and transfected by the Ca,(PO,), method as described
(Condreay et al., 1990). The plasmid DNAs were puri-
fied by the method of Clewell and Helinski {1969) fol-
lowed by two isopycnic centrifugations in cesium chio-
ride gradients. All plasmids used contained the corre-
sponding DHBV or HHBV genomes as dimers in a head
to tail linked conformation.

About half of the culture medium was changed 3
days after transfection; cells were harvested another 2
to 3 days later. The cells were washed twice with PBS
(10 mM Na,HPO,, 2 mM KH,PO,, 170 mM NaCl, 3
mM KCl), scraped off and lysed for 1 hronice in 100 ul
lysis buffer consisting of 150 mM NaCl, 20 mM Tris/
HCI, 10 mM EDTA, 1% NP40, 1 mM phenylmethylsul-
fonylfluoride, pH 8. The lysate was sonified for 15 sec
before aliquots were used for immunoblotting or DNA
isolation for Southern blot analysis as described (Lam-
bert et al., 1990).

Partial purification of viral particles

Viral particles of culture medium of LMH cells (3
X 10% cells each) transfected with various DHBY DNAs
were concentrated by precipitation with 10% PEG and
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Fig. 2. Detection of nucleocapsid (A) and pre-S (B) protein expression in LMH celis transfected with cloned DHBV and HHBV 4 genomes by
immunoblotting with polyclonal antibodies to recombinant DHBcAg and DHBV pre-8 protein visualized by autoradiography and '2%|-protein A. In
the lane designated + a cell extract from an infected duck liver was loaded. (C) Pre-S proteins in virus particles pelieted from the supernatant of
transfected LMH cells was detected by immunoblotting as described above.
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Fig. 3. Southern blot analysis of replicative intermediates ex-
tracted from transfected cells. oc, double-stranded open circular
DHBV DNA; ss, single stranded DHBV minus strand DNA.

nonencapsidated DNA was digested with DNase | as
described (Summers et a/., 1991). The pellets were re-
suspended in CsCl and the particles were separated
by ultracentrifugation for 2 hr at 80 krpm in a TLV100
rotor. The gradients were divided into three large frac-
tions {from bottom 1o top densities were 1.29, 1.27,
and 1.24 g/cm?; core particles (density, 1.35 g/cm?)
pellet under these condition whereas virions stay on
top) and were analyzed for virion DNA by Southern
blotting after pelleting of the virions with SDS, Protein-
ase K digestion, phenol and chloroform/isoamylalcohol
extraction, and precipitation of the DNA by ethano! as
described (Summers et al., 1991).

Detection of viral proteins by immunaoblotting

Cell lysates and viral particles pelleted from culture
supernatants (1 of total from each) were applied on
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Fig. 4. Southern blot analysis of viral DNA extracted from viral
particles purified by CsCl centrifugation (1 to 3 each denote a pool of
bottom, middle, and top fractions of the gradient). oc, double-
stranded open circular DHBV DNA.

- C mRNA

- Pre-5 mRNA
- S mRNA

Fia. 5. Analysis of core particle-encapsidated pregenomic RNA in
LMH cells transfected with DHBV 26 and DHBV 22'DNA. Lanes 1 to
4: long exposure; lanes 5 and 6: short-exposure. Total polyA+ RNA
isolated from a DHBV 3 infected fiver (fane 7} and DNA restriction
fragments (lane SM) were run as size markers. * and ~ denote
whether or not the RNA was pretreated with 0.3 N NaOH before
loading.

17.5% SDS-polyacrylamide gels. immunoblotting was
performed as described (Lambert et a/., 19908). Cell ly-
sates and suspensions of pelleted virat particies were
boiled in SDS-sample buffer (3% SDS, 2% 2-mercap-
toethanol, 10% glycerol, 0.1% bromopheno! blue, b
mM EDTA, 200 mM Tris-HCI, pH 6.8), cleared by cen-
trifugation for 5 min in an Eppendorf centrifuge, and the
supernatant was loaded on the gel. After electropho-
retic transfer of the proteins from the gel to the nitrocel-
lulose filter, unspecific binding sites were blocked
overnight with PBS/6% BSA. For detection of pre-S
proteins and viral particles in cellular lysates a polyclo-
nal rabbit anti-pre-SAg serum (anti-pre-8-Kpn; Lambert
et al., 1990) and for detection of core proteins an anti-
DHBcAg serum (anti-C2989, Schneider et al., 1991)
were diluted 1:2000 in PBS/1% BSA and incubated
with the nitrocellulose-sheets for 2 hr at RT or over-
night at 4°C. The blots were washed 3X with PBS/
0.1% Tween before '2%-Protein A (diluted 1:2000 in
PBS/1% BSA) was added for 2 hr. After washing 4X
with PBS/0.1% Tween the nitrocellulose filters were
dried and exposed to an X-ray film.

Analysis of viral DNA by Southern blotting

Replicative intermediates of viral DNA were isolated
essentially as described (Summers et af., 1990) using
0.5 mg/m! Proteinase K instead of Pronase. After
phenol extraction and ethanol precipitation the DNA
was analyzed by agarose ge! electrophoresis, trans-
ferred to nitroceliulose filters, and hybridized using a
gel-purified EcoRl full-length genome fragment of
DHBVY 26 DNA radiolabeled with 32P-odCTP to a spe-
cific activity of 108 cpm/ug.
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isolation and analysis of viral RNA

Transfected cells were lysed in lysis buffer and
MgAc, and DNAse | was added to obtain a final con-
centration of 6 mM and 100 ug/ml, respectively. Core
particles were precipitated from these lysates with 6%
PEG 8000 in 350 mM NaCi, 10 mM EDTA by incuba-
tion for 30 min at 4° and centrifugation in an Eppendorf
centrifuge for 4 min at 4°. The pellet was resuspended
in 200 ul of Tris—=HCI, pH 8, and treated with nuclease
S7 (final concentration: 100 ug/ml nuclease S7, 6 mM
MgCl,, 1 mM CaCl,, 50 ug/mi t-RNA) for 20 min at 37°.
The reaction was stopped by addition of 10 mM EGTA,
and proteins were digested with Proteinase K (in 0.1
mM Tris=HCI, pH 7.5, 12 mM EDTA, 150 mM NaCl,
1% SDS) for 30 min at 37°. The RNA was extracted
once with phenol and twice with chloroform/isoamylal-
cohol (24:1 v/v) and after addition of 10 ug of t-RNA
precipitated with ethanol. Extraction of total RNA and
preparation of polyA+ RNA from a liver infected with
DHBYV 3 was performed and analyzed by Northern blot
analysis as described (Buscher et al., 1985). To ensure
that no DNA is present in the RNA isolated from cores
an aliquot of the RNA was treated for 5 min at 100°
with 0.3 N NaOH, neutralized with HCI, and precipi-
tated with ethanol.

RESULTS

Infectivity of cloned DHBV genomes in vivo

The infectivity of 10 cloned DHBYV genomes (DHBV
1, 22, QCA34, Q49, 518-B, F1-6, S5, and DHBV 3, 26
and 16 as positive controls) was tested /in vivo by in-
jecting the cloned double-stranded viral DNA into the
liver of 1 to 3 day-old ducklings {five animals for each
type of DNA) negative for markers of previous DHBY
infection, as previously described (Sprengel et al.,
1984). Three weeks after injection of the DNA, the ani-
mals were sacrificed and the blood and livers were
tested for the presence of replicative intermediates
and for DHBcAg and pre-S protein expression in the
liver, as well as for viral DNA and pre-S protein in the
serum by Southern and immunoblotting, respectively,
as described previously (Lambert et a/., 1990). Except
DHBV 1 and DHBV 22, all other DHBV genomes in-
duced in 3 to 5 animals all viral markers tested. Pre-S
protein and DHBV DNA titers were similar to those in
animals infected with control virus (data not shown).
Representative examples showing the replicative inter-
mediates in the liver of animals transfected with cloned

DHBV DNAs are shown in Fig. 1. Except for DHBV S5,
serum from animals with these replicative interme-
diates in the liver was used for infection of two to five
animals to further confirm the infectivity of the virus
produced. One to 2 weeks after inoculation all these
animals had similar high levels of pre-S and core pro-
teins in the serum and in the fiver (data not shown) as
when inoculated with DHBV of proven infectivity
(DHBV 3 or 16) {Schneider et af., 1991). These data
indicate that five of the newly analyzed viral genomes
with previous unknown infectivity (DHBV QCA34, Q49,
S$18-B, F1-6, and S5) induce a systemic infection
whereas two of the genomes (DHBV 1 and 22) are
defective.

Expression of viral proteins from two defective
DHBV and one HHBV genome

To test whether the two DHBV genomes and an
HHBV genome which were not infectious in Pekin
ducks (HHBV was previously tested for infectivity in
vivo; Sprengel et al., 1988) are defective for expression
of viral nucleocapsid and pre-S protein expression,
LMH cells were transfected with the cloned viral
DNAs. By immunoblotting using an antibody specific
for recombinant DHBCAg, strong expression of nu-
cleocapsid protein was visualized in cell extracts pre-
pared from LMH cells transfected with HHBV and all
DHBV genomes tested (Fig. 2A). Expression was at
least as efficient as that seen with cells transfected
with an infectious DHBV 26 genome (Fig. 2A). An analo-
gous experiment using antibodies to a recombinant
DHBYV pre-S protein revealed in the same cell extracts
pre-S proteins qualitatively and quantitatively similar to
an infectious DHBV genome (Fig. 2B). The 36-kDa
band corresponds to the major pre-S protein, the 28-
kDa band is a processing product of P36 (Lambert et
al., 1990; Fernholz and Will, unpublished). Minor bands
with lower or higher electrophoretic mobilities than
pre-S protein P36, which were only seen in transfected
LMH cells, are minor pre-S proteins initiated at internal
AUGs of the pre-S open reading frame (D. Fernholz and
H. Will, unpublished data) and some of them probably
also modified and processed forms of P36. The pre-S
protein of HHBV, if present in these cell extracts, could
not be visualized because DHBV pre-S antibodies do
not cross-react with HHBV pre-S proteins due to sub-
stantial sequence divergence from DHBV pre-S
(Sprengel et al., 1988, Schneider et al., 1991). To test
whether the pre-S proteins produced inside the celis
are secreted and form virus particles, the medium of

Fia. 8. Comparative analysis of all published avian hepadnavirus sequences of the pre-5/S (A), nucleocapsid (B), and pol (C) proteins. Indicated
are the translation initiation sites (underlined) and transcription initiation sites (arrows). Amino acid changes unique to the defective DHBV 1 (A

and B) and DHBV 22 (C) proteins are enboxed.
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by other viral proteins produced from coinfecting
DHBVs. It can, however, not be excluded with certainty
that the defect arose during cloning of the DHBV ge-
nomes.

Indications as to the type of defect that renders ge-
nomes DHBV 1 and 22 noninfectious were obtained by
studying synthesis of viral DNA, expression of viral pro-
teins, and secretion of viral particles. The data ob-
tained in vitro and in vivo suggest that genome DHBV 1
is fully functional except in the early step of the infec-
tion process. Possible candidate mutations which are
responsible for DHBV 1 defectivity could be located in
the envelope (pre-S/S) proteins which are believed to
bind to cell specific virus receptors and mediate virus
entry into the cell (reviewed in Alberti et al., 1990). To
further support this speculation a comparative se-
quence analysis of pre-S/S protein sequences, as de-
duced from all cloned viral DNAs, was performed (Fig.
6). Three amino acid changes unique to the predicted
DHBV 1 pre-S/S proteins were observed {(enboxed in
Fig. 8A). It is therefore conceivable that DHBV 1 pre-S/
S proteins have an altered structure which does not
allow attachment to the cells or interfere with one of
the other early steps of virus cell-penetration or un-
coating. A gross structural change in the DHBV 1 pre-
S/S proteins induced by the observed mutations is un-
likely because particle formation and secretion is unal-
tered. A definite answer will require studies of the
interaction of the DHBV 1 pre-S/S protein with the
DHBV receptor protein. Two amino acid changes
unigue to DHBV 1 are also present in the nucleocapsid
protein; one is at a position where the HHBV core pro-
tein has also an amino acid altered, and the other is a
conservative change from leucine to isoleucine (en-
boxed in Fig. 6B). Perhaps these mutations alter the
interaction of pre-S with core protein which is involved
in regulation of the copy number of intracellular ccc-
DHBV DNA and of virion secretion (Summers et al.,
1990, 1991).

The most likely defect of the DHBV 22 genome
which expressed all viral proteins tested /n vitro and led
to secretion of viral particles is a defect of the polymer-
ase protein(s). The comparative sequence analysis of
all known DHBV pol-proteins revealed five mutations
unique to DHBV 22, four of them in highly conserved
regions (enboxed in Fig. 6C). Three of the mutations
are located at the carboxyterminal end of the pol-pro-
tein which encodes the RNase H domain (Schodel et
al., 1988; Kudyakov and Makhov, 1989; Radziwill et a/.,
1990). Similar mutants were shown to be in part replica-
tion competent and to produce DHBYV minus strand
DNA (Radziwill et a/., 1990). Southern blot analysis with
DNA from DHBV 22-transfected cells revealed only a
weak smear in the region of replicative intermediates
but not a clear band of minus strand DHBV DNA. The
smear could represent degraded plasmid DNA and/or

a small amount of heterogeneous replicative interme-
diates. Because of these technical difficuities we can
therefore currently not decide whether DHBV 22 is a
RNase H-defective mutant. One of the unique DHBV
22 mutations is located in the highly conserved amino-
terminal end of the pol-protein which.is believed to rep-
resent at least part of the genome-linked protein (Bar-
tenschlager and Schaller, 1988; Khudyakov and Mak-
hov, 1989). The second possibility is, therefore, that
DHBV 22 is defective because of a nonfunctional ge-
nome-linked protein. As the polymerase protein hag an
essential role in encapsidation of the RNA pregenome
(Bartenschlager et af., 1990) and is a RNA binding pro-
tein (Kbchel et al.,, 1991) this mutation could also pre-
vent efficient RNA pregenome encapsidation. All these
possibilities are not mutually exclusive and the combi-
nation of DHBV 22 specific mutations could also play a
role. Mutational and functional analysis will provide us
with answers to these guestions.

In a previous report we have shown that the HHBV 4
genome is notinfectious in Pekin ducks and have spec-
ulated that this is due to a heron-specific host range
(Sprengel et al., 1988; Sprengel and Will, 1988). Our
current study has demonstrated the replication com-
petence of the cloned HHBV 4 genome and efficient
expression of nucleocapsid protein of the predicted
size. Although pre-S/S proteins could not be visualized
because a corresponding antibody is not available, the
observation that viral particles were shed into the me-
dium as efficiently as from infectious DHBV genomes
suggests that both pre-8 and S proteins are expressed,
form viral particles and are secreted. Whether or not
the HHBV DNA is also infectious in herons remains
unknown.
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