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When coupling fermions to gravity, torsion is naturally induced. We consider the pos-

sibility that fermion bilinears can act as a source for torsion, altering the dynamics of the

early universe such that the big bang gets replaced with a classical non-singular bounce. We

extend previous studies in several ways: we allow more general fermion couplings, consider

both commuting and anti-commuting spinors, and demonstrate that with an appropriate

choice of potential one can easily obtain essentially arbitrary equations of state, including

violations of the null energy condition, as required for a bounce. As an example, we con-

struct a model of ekpyrotic contraction followed by a non-singular bounce into an expanding

phase. We analyze cosmological fluctuations in these models, and show that the perturba-

tions can be rewritten in real fluid form. We find indications that spinor bounces are stable,

and exhibit several solutions for the perturbations. Interestingly, spinor models do not ad-

mit a scalar-vector-tensor decomposition, and consequently some types of scalar fluctuations

can act as a source for gravitational waves already at linear order. We also find that the

first order dynamics are directionally dependent, an effect which might lead to distinguished

observational signatures.
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I. INTRODUCTION

Any successful model of cosmology is required to explain the large scale properties of our universe,

including its near homogeneity, isotropy and flatness, as well as the almost scale-invariant spectrum

of its primordial density perturbations. Our current understanding is that of an expanding universe

initiated at a big bang singularity, at which point our usual effective description given in terms of

general relativity breaks down. It is natural to wonder therefore how this initial singularity might

be resolved, especially in light of recent results showing that a replacement of the big bang by

regular semi-classical geometries [1, 2] does not work [3–6]. An attractive possibility, and the basis

for this paper, is to replace the big bang with a bounce in which the current expanding phase of

our universe emerges from a prior period of contraction.

While a cosmological bounce may be induced by quantum gravity effects when the scale factor

of the universe shrinks to near the Planck scale [7–9], in this paper we are interested in classical

non-singular bouncing scenarios. In such scenarios the contraction of the universe stops and reverses

into an expanding phase at a finite value of the scale factor ‘a’ when a classical description remains

valid. In this way it should be possible to follow the entire cosmological evolution through the

bounce using the well understood framework of general relativity and effective field theory [10–12].

According to the singularity theorems of Penrose and Hawking [13], under rather broad assump-

tions the null energy condition (NEC) must be violated in order to obtain a non-singular bounce.

This usually requires the introduction of some sort of NEC violating exotic matter, such as a scalar

field that undergoes ghost condensation (see e.g. [14–17]) or models involving Galileon fields (see

e.g. [18–25]; such models can also be embedded into supergravity [26, 27]). While a scalar conden-

sate phase is not difficult to achieve on its own, the situation becomes much more restrictive once

observational and stability requirements are taken into consideration [28–30]. The purpose of this

paper is to see if a more desirable outcome might be achieved by making use of fermionic rather

than scalar matter. Such an approach is sensible to consider for two reasons: the first being of

course the natural predominance of fermionic matter in the standard model of particle physics (as

well as the comparable dearth of fundamental scalar fields). The second, as we will discuss briefly

in the bulk of this work, is the relative ease with which any desirable equation of state is achievable

using spinor fields [31].

In this paper we explore models of gravity with torsion coupled to spinors [32]. Of particular

interest are models in which the torsion is non-dynamical and sourced by the spinor content. Such

models arise naturally when viewing general relativity as a gauge theory, more specifically as having
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the gauge symmetries of reparameterisations and local Lorentz transformations (see e.g. [33]) – it

is then also known as the Cartan-Sciama-Kibble theory [34–36]. In order to be able to treat

the spinor bilinear sources classically, one must make some assumptions about the nature of the

spinors – here we will consider both commuting and anti-commuting spinors, and will discuss the

respective assumptions in some detail. In this framework the usual dynamics of Einstein gravity

is recovered under most circumstances of interest, and the effects of torsion only become relevant

in regions of extreme spinor density. The idea is that in a contracting universe, as the scale factor

drops the spinor density increases until eventually a bounce is precipitated [37–41]. We will show

how one is readily able to construct backgrounds which not only undergo a bounce, but which also

accommodate other interesting dynamics outside the bouncing phase, such as inflation or ekpyrosis.

As usual, a study of cosmological perturbations is crucial both in order to assess the viability of

these models, and to see if one might be able to distinguish them using cosmological observations.

We investigate linear perturbation theory in some detail, showing for instance that the linearized

equations of motion may be cast in real fluid form. Our main results include a derivation of the

equations of motion for models that include more general spinor-torsion couplings than appear

elsewhere in the literature, the realization of the absence of a scalar-vector-tensor decomposition,

the derivation of several solutions for the perturbations, and the identification of directionally

dependent perturbations. These features are in direct contrast with the known results regarding

perturbations for non-singular bounces sourced by scalar field matter [28], and indicate that spinor

bounces may indeed have their own specific observational signatures.

We organize the paper as follows: we first introduce our model and present the equations of

motion in section II. Then, in section III we discuss how the restriction to simple cosmological

metrics considerably simplifies the dynamical equations and allows for bouncing solutions. The

core of the paper is in section IV, in which we analyze the cosmological perturbations of these

models by studying the linearised equations of motion. We discuss our results in section V. In the

extensive appendix we present our conventions and provide details regarding both the derivation

of the equations of motion and the construction of perturbation theory.

II. THE MODEL

In our model the action S will be split into two parts: the gravitational sector SG, and the matter

sector SΨ. Our goal is to explore the effect of torsion on gravitational dynamics, and so we begin by

first introducing the most general gravitational action. Anticipating the introduction of fermionic



5

matter we work within the first order formalism, written in terms of the frame field eI = eIµdx
µ, and

the Lorentz connection ωIJ = ωIJµdx
µ. Following the effective field theory approach [42], attention

is restricted to Lagrangians which are generally covariant, locally Lorentz invariant, and polynomial

in the basic fields and their derivatives. Under such restrictions there are only six possible terms that

can be written down to leading order, three of which are topological and will not be considered [43].

Of the three bulk terms, one is given by the cosmological constant, and will be included in the

matter action SΨ. The remaining two possible terms we take for our gravitational action:

SG = κ

∫
(εIJKL + 2

γ ηI[KηJ ]L)eIeJRKL, (1)

where κ = 1/32πG. Equation (1) is known as the Cartan-Holst action, while the coupling constant

γ is known as the Immirzi parameter. Note that in a theory without torsion the second term in

Eq. (1) is identically zero due to the symmetries of the Riemann tensor, in which case Eq. (1)

reduces to the familiar Einstein-Hilbert action.

We next need to introduce a source for the torsion in our model. We consider Dirac spinors,

which we couple into our model by including the following matter action:

SΨ = i
2.3!

∫
εIJKLe

IeJeK(ΨγLDΨ−DΨγLΨ)− 1
4!

∫
εIJKLe

IeJeKeLU(ΨΨ)

+ 1
4

∫
εIJKLe

JeK(DeI)ΘL + 1
4

∫
ηI[KηJ ]Le

JeK(DeI)ΩL,

(2)

where D is the covariant exterior derivative with torsion, and Ψ is a Dirac spinor. The potential

U is an arbitrary function of the spinor bilinear ΨΨ, and might include for example a cosmological

constant tern. For compactness of notation we have defined the spinor currents ΘL ≡ (αV L+βAL),

and ΩL ≡ (τV L + λAL), where α, τ, β, and λ are arbitrary coupling constants, and the vector and

axial spinor bilinears are given respectively by:

V L = ΨγLΨ, AL = Ψγ5γ
LΨ. (3)

Our full action is given by S = SG + SΨ. Note that we have implemented general couplings

between torsion and the vector and axial currents in order to encapsulate the various models present

elsewhere in the literature. By setting τ = λ = 0 we recover the matter action introduced in [39],

while setting β = τ = λ = 0 we recover the matter action given for example in [42, 44, 45]. Turning

off all torsion couplings α = β = τ = λ = 0 recovers the matter action discussed for example in [46].

Having constructed the action provided in Eqs. (1) and (2), we can now determine the corre-

sponding equations of motion. In order to do so we take the vierbein e, spin connection ω, and

spinor Ψ, as our fundamental fields, and vary the action with respect to each in turn. As the cal-

culation itself is rather long and involved, we will simply outline our final results. In the appendix
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we present the trickier parts of the calculation, and also provide the full calculation for the simpler

case in which the Holst term in the action is removed and the torsion couplings are all switched off,

i.e. α = β = τ = λ = 0.

We begin by considering the variation of the action S = SG + SΨ with respect to the spin

connection ωMN , which yields the following equation of motion:

2κ(εIJMN + 2
γ ηI[MηN ]J)(DeI)eJ = − 1

4!εIJKLe
IeJeKεDL••MNAD − 1

4ε[M |JKLe
JeKe|N ]Θ

L

− 1
4e
JeKe[NηM ]KηJLΩL.

(4)

In its current form Eq. (4) is rather opaque to interpretation. We can however make progress by

solving it to obtain an algebraic expression for the contortion CTXS , defined via CIMNe
NeM = DeI .

Full details are provided in the appendix, and the resulting expression for the contortion is

CTXS =
γ2

8κ(1 + γ2)

[
1
2ε
QXST ( 1

γΘQ − (AQ + ΩQ)) + ηS[T δ
X]
A (ΘA + 1

γ (AD + ΩD))
]
. (5)

Our result generalises the work found for example in [39, 42, 44–46]. The reader should take care

when comparing between papers however, as there are a range of different sign conventions being

used. Notice that our expression for the contortion is algebraic, and depends only on the vector and

axial spinor densities. In particular, if we had not coupled spinors into our model the contortion

would have been identically zero.

We next vary the action with respect to the spinor Ψ to obtain the following curved space Dirac

equation:

i
3!εIJKLε

IJKMγLD̃MΨ = −1
4εIJKLε

PQJKCI•QP
δΘL

δΨ
− 1

4ηI[KηJ ]lε
PQJKCI•QP

δΩL

δΨ

+ i
8.3!εIJKLε

IJKMCABMγ
L[γA, γB]Ψ +

δU

δΨ
,

(6)

where we have used tildes to indicate when a term is taken to be torsion free (See Appendix A). The

Dirac equation can be simplified considerably by making use of the expression for the contortion

derived in Eq. (5). A long calculation leads to

ieµLγ
LD̃µΨ =

δW

δΨ
, (7)

where the effective potential W is defined by

W = U(E) + ξAAA
IAI + 2ξV AV

IAI + ξV V V
IVI , (8)
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and where

ξAA = − 3πGγ2

2(1 + γ2)
( 2
γβ(1 + λ) + β2 − (1 + λ)2),

ξAA = − 3πGγ2

2(1 + γ2)
( 2
γατ + α2 − τ2),

ξAV = − 3πGγ2

2(1 + γ2)
(α(β + 1

γ (1 + λ)) + τ( 1
γβ − (1 + λ)).

(9)

Finally, the Einstein equations are obtained by varying the action with respect to the vierbein,

0 = 2κ(εSJKL + 2
γ ηSKηJL)eJ(R̃KL + D̃CKL + CKPC

PL)

+ i
4εSJKLe

JeKXL − 1
3!εSJKLe

JekeLU + 1
4εSJKLe

JeKDΘL

+ 1
2(ηS[KηJ ]L + ηJ [KηS]L)(DeJ)ΩL + 1

4ηSKηJLe
JeKDΩL,

(10)

where XL = (ΨγLDΨ−DΨγLΨ) and where we are once again using the tildes to indicate when a

quantity is torsion free. The Einstein equations appear unfamiliar in this first order form, but can

be re-expressed in second order form. After another lengthy but rather straightforward calculation

requiring Eq. (5) and repeated use of the identities given in Eq. (A5), the following compact form

may be obtained:

4κG̃µν = − i
2

[
ea(µX̃

a
µ) − X̃gµν

]
− gµνW

+ 1
8eaνebµ

[
Ψ[γa, γb]γcD̃cΨ− D̃cΨγ

c[γa, γb]Ψ
]
,

(11)

where we have defined X̃L
τ = (ΨγLD̃τΨ− D̃τΨγLΨ). Notice that the last term on the RHS is not

symmetric in its indices, which appears to be in conflict with the symmetries of the torsion free

Einstein tensor. However, by making use of the Dirac equation this term is found to be identically

zero on shell.

III. BACKGROUND COSMOLOGY

In this section we find bouncing, cosmological background solutions for the equations of motion

which were derived above. In order to do so we make two simplifying assumptions: (i) we impose

a ‘classicality’ assumption on spinor bi-linears, in which we view spinor pairs ΨΨ as forming a

classical bosonic condensate, and (ii) we take a flat Friedman-Lemaître-Robertson-Walker (FLRW)

ansatz for the background metric. With these two assumptions the equations of motion simplify

rather dramatically and even allow for analytic solutions as we will describe.
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A. Classicality conditions

Having derived the equations of motion in Sec. II, our next goal is to interpret them. The usual

approach in the literature has been to view the equations of motion as operator equations, and

assume that the classical gravitational field that we observe is sourced by the expectation value of

spinor bilinears such as 〈AI〉 and 〈V I〉. Taking this approach leads to an ambiguity however when

considering the four point spinor interaction terms present in Eq. (7). In particular, starting with

the first order formalism and solving for the classical contortion, one obtains interaction terms of

the form 〈AI〉〈AI〉. On the other hand, if one had instead started from the second-order formalism

with quartic interactions, then contributions of the form 〈AIAI〉 would be obtained. The problem

is that 〈AI〉〈AI〉 and 〈AIAI〉 are not in general equal [39, 47].

To avoid any ambiguity, previous authors have restricted their attention to so called ‘classical

spinors’ Ψcl = 〈Ψ〉 [31, 39]. Classical spinors are defined as the expectation value of the operator Ψ

in a state such that f(〈Ψ〉) ' 〈f(Ψ)〉 for any function f . In practice the classical spinor assumption

is extremely stringent, and amounts to describing Ψcl as a four component object with complex

entries. While it is fine to presume the existence of classical spinors as an effective description of

nature, this assumption is not well motivated by known physics. The fermions of the standard

model of particle physics are quantum fields, and due to the Pauli exclusion principle it is not well

understood when they might be treated consistently as a classical spinor condensate. Thankfully

it is really not necessary to impose any classicality conditions directly on the spinors in our model.

It is only spinor bilinears which appear in the Einstein equations, and similarly the Dirac equation

may be re-expressed in projected form in terms of bilinears. A weaker classicality assumption which

one might then consider, is to ask instead that the variance of the various spinor bilinears is small,

i.e.

〈AIAI〉 ' 〈AI〉〈AI〉, (12)

together with similar relations for the other bilinear terms present in the model.

Once this ‘variance’ assumption has been made the Fierz identity can be used to further simplify

the form of the potential given in (8). In four dimensions the generalized Fierz identity is given

by [33]:

s(λMχ)(ψNφ) = −1
4(λMNφ)(ψχ) + 1

4(λMγaNφ)(ψγaχ)− 1
4(λMγ5Nχ)(ψγ5φ)

+ 1
8(λMγ[ab]Nφ)(ψγ[ab]χ)− 1

4(λMγ5γ
aNφ)(ψγ5γaχ)

(13)
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where λ, χ, ψ, and φ are Dirac Spinors, and where the sign s depends on the spin statistics chosen.

For commuting spinors, s = −1 and we can immediately derive the following identities:

〈AIAI〉 = −〈VIV I〉 = E2 +B2,

〈AIV I〉 = 0,
(14)

where we have defined the following densities E = 〈ΨΨ〉 and iB = 〈Ψγ5Ψ〉. For commuting spinors

the effective potential given in Eq. (8) therefore simplifies considerably:

W = U(E) + ξ(E2 +B2), (15)

where

ξ = − 3πGγ2

2(1 + γ2)

[
( 2
γβ(1 + λ) + β2 − (1 + λ)2)− ( 2

γατ + α2 − τ2)
]
. (16)

This is the same form for the potential found by those authors who impose the so called ‘classical

spinor’ assumption [31, 39]. In practice, since we will ultimately only ever be dealing with spinor

bilinears, what we really mean by ‘commuting spinors’ is that the following two conditions hold:

(i) first we ask that all quartic spinor terms may be expressed as the square of bilinear terms,

i.e. of the form 〈V I〉〈VI〉. This requires either the primacy of the first order formalism, or that

the variance condition from Eq. (12) hold. And (ii) that the conditions derived in Eqs. (14) for

commutative spinors, hold. As we will show, under these two assumptions the equations of motion

simplify dramatically, allowing us to find a number of very interesting analytic solutions even at

linear order in perturbations.

It is of course physically more interesting to consider the case of anti-commuting spinors for

which s = 1. In this case the Fierz identity together with our classicality assumption on bilinears

yields the following relation:

1
2(〈V IVI〉 − 〈AIAI〉) = E2 +B2, (17)

where we note the sign change in front of square of the axial and vector currents. Since we will only

ever deal directly with spinor bilinears, what we mean by ‘non-commuting’ spinors is that we will be

using (17) in place of the conditions given in Eqs. (14) for commuting spinors. For anti-commuting

spinors our analysis does not require us to impose any restriction at all on the variance of bilinears.

It is enough to presume the first order formalism as fundamental, in which case all quartic spinor

terms in the classical action are considered to be of the form 〈AI〉〈AI〉.
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B. Flat FLRW and commuting spinors

Our next goal is to construct background solutions which undergo a cosmological bounce. As we

demonstrate, bouncing solutions may be readily obtained both for commuting, and anti-commuting

spinors. We begin in this section with commuting spinors, which are simpler to deal with com-

putationally. Our procedure is to assume the line element of FLRW spacetime, and then given

this assumption check for consistency of the Dirac and Einstein equations given in Eqs. (7) and

(11). Notice however that it is by no means a foregone conclusion that it will be possible to find

cosmological solutions. As can be seen from Eq. (14), under our classicality assumption the axial

current AI is spacelike. It appears therefore that spinor fields pick out a preferred direction in

spacetime, violating Lorentz invariance and potentially conflicting with the isotropy assumption

of the background metric. As was shown by Isham and Nelson in [48] this fear is indeed realised

in most, but not all, cases. In most cases, once an FLRW background solution is selected for the

metric, the equations of motion force the axial spinor current, and therefore the spinor itself, to be

identically zero. For flat FLRW however, there is no such obstruction and consistent solutions can

be found in which the metric remains isotropic despite AI being anisotropic.

In this paper we work with the flat FLRW line element expressed in physical time as

ds2 = −dt2 + a(t)2δijdx
idxj , (18)

and we will denote the Hubble rate by H = ȧ/a. Given this choice of line element, it is natural to

take the classical spinor Ψ to have no spatial dependence. In this case, a short calculation shows

the Einstein and Dirac equations to be:

12κH2 = i
2(Ψγ0Ψ̇− Ψ̇γ0Ψ)− [ξ(E2 +B2) + U ′E − U ]

=
[
U + ξ(E2 +B2)

]
, (19a)

−4κ(2Ḣ + 3H2) = [ξ(E2 +B2) + U ′E − U ], (19b)

γ0∂0Ψ + 3
2γ

0HΨ = −i[(U ′ + 2ξE)Ψ− 2iξBγ5Ψ], (19c)

where we have assumed that the potential U is a function of E only, and the ‘prime’ refers to

differentiation with respect to E. We have made use of the Dirac equation in order to obtain the

second line of (19a).

Notice that because of homogeneity and isotropy of the background, the stress energy tensor on

the RHS of the Einstein equations is necessarily of the perfect fluid form

Tµν = uµuν(P + ρ) + δµνP, (20)
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where because of homogeneity the pressure and density are functions of time only, i.e. ρ = ρ(τ) and

P = P (τ), and because of isotropy the fluid is at rest in the background universe: uµ = {−1, 0, 0, 0}.

From Eqs. (19a) and (19b) we read off immediately that

P = ξ(E2 +B2) + U ′E − U, ρ = ξ(E2 +B2) + U , (21)

while we can use the Dirac equation (19c) to obtain the usual conservation equation

ρ̇ = −3H(P + ρ). (22)

Notice that the spinor field can accommodate any desired behavior for its energy density and

equation of state by a judicious choice of potential U [31].

As might be expected the RHS of the Einstein equations is expressed entirely in terms of spinor

bilinears. It will be useful therefore to also re-express the Dirac equation in projected form, written

entirely in terms of spinor bilinears. In order to do this, first notice that in addition to the bilinears

E and B defined below Eq. (14), there are six other possible (non-independent) hermitian spinor

bilinears which can be constructed from a single background spinor Ψ. The full list is given by:

iB = Ψγ5Ψ,

iCi = Ψγ0γiΨ,

E = ΨΨ,

V i = ΨγiΨ,

V 0 = Ψγ0Ψ,

Ai = Ψγ5γ
iΨ,

A0 = Ψγ5γ
0Ψ,

Qi = Ψγ0γ5γ
iΨ.

(23)

To obtain dynamical equations for each of these bilinears we consider projections of the Dirac

equation of the following form:

iΨ†M
δW

δΨ
± i
(
δW

δΨ

)†
MΨ, (24)

where M = {I, γ5, γ
0, γ5γ

0, γi, γ5γ
i, γ0γi, γ5γ

0γi} is one of 8 possibilities taken from the four di-

mensional Clifford algebra. Through this procedure we obtain the following eight projected Dirac

equations,

Ė = −3HE + 4ξBA0, (25a)

Ḃ = −3HB − 2(U ′ + 2ξE)A0, (25b)

Ȧ0 = −3HA0 + 2(U ′ + 2ξE)B − 4ξBE, (25c)

V̇ 0 = −3HV 0, (25d)

Ċi = −3HCi + 2(U ′ + 2ξE)V i, (25e)

Q̇i = −3HQi + 4ξBV i, (25f)

V̇ i = −3HV i − 2(U ′ + 2ξE)CI − 4ξBQi, (25g)
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Ȧi = −3HAi . (25h)

C. Parity invariant bouncing solutions

Having chosen our flat FLRW background ansatz for the metric, we are now in a position to

obtain analytic solutions to the equations of motion. Given the form of the metric, it is reasonable

- as well as computationally advantagous - to consider solutions in which the background spinor is

also parity invariant (although for a more complete discussion of parity violations in these models

the reader should consult [42]). That is, we consider the ‘ambidextrous’ case of [39], in which the

background spinors satisfy:

γ0Ψ = Ψ. (26)

For parity invariant spinors, bilinears which sandwich an odd number of spatial gamma matrices

will always be zero. For example Ψγiγ5γ
jΨ = 0. This implies V i = Ci = A0 = B = 0, while

Qi = Ai, and E = V 0. The equations of motion therefore simplify further, and only four remain

which will be of relevance to us:

Ė + 3HE = 0, (27a)

Ȧi + 3HAi = 0, (27b)

12κH2 = [U + ξE2], (27c)

−4κ(2Ḣ + 3H2) = (ξE2 + U ′E − U), (27d)

It is possible to directly solve the projected Dirac equations given in Eq. (27a) and (27b), yielding

the results:

E =
M

a3
, Ai =

αi

a3
, (28)

where, following Eq. (14),M,αi are time independent constants satisfyingM2 = αiαi. Interestingly

this result is true for any time dependence of the background geometry (as noticed before [39]),

and so the spinor density and axial current monotonically increase in a contracting universe.

We would also like to solve Eq. (27c) to obtain a background solution for the scale factor.

However such a solution will necessarily depend on the choice of potential U . Fortunately, given
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our solution for the spinor density E, it is very easy to select the potential U such that the {0, 0}

component of the Einstein equations takes the following tractable form:

ȧ2 =
c1

a3n−2
+

c2

a6n−2
, (29)

where c1 and c2 are time independent constants. Equation (29) has the following solution:

a(t) = (− c2
c1

+ 9
4c1n

2t2)1/3n. (30)

which undergos a bounce rather generically so long as c1 is positive and c2 is negative. As an

example consider the case in which the potential is simply given by a mass term for the spinor

U = mE. In this case the {0, 0} component of the Einstein equation is precisely of the form given

in Eq. (29) for n = 1. This is the so-called ‘borderline’ scenario found in [39], in which the matter

density scales in the same way as the anisotropies during a contracting phase. In this case the

solution for the scale factor is given by

U = mE, a(t) =

[
M(− ξ

m
+

3mt2

16κ
)

]1/3

, (31)

with ξ < 0. While this solution is interesting we would like to see how easy it is to obtain not only

a bouncing solution, but also to control the dynamics away from the bounce. For example, is it

possible to obtain a phase of inflation following the bounce, or a period of ekpyrosis prior? Spinor

inflaton fields have already been discussed elsewhere in the literature (see eg. [31]), and so for the

sake of interest we will consider the example of an ekpyrotic model.

In some sense, having an ekpyrotic phase before the bounce is not really optional, but rather

necessary: in a contracting universe small anisotropies grow as a−6 and, in the absence of a faster-

growing energy component, the anisotropies quickly come to dominate the dynamics, thus prevent-

ing a smooth non-singular bounce from occurring. Thus, if we want to explain the required isotropy

of the contracting universe just prior to the bounce in a dynamical fashion, we need an ekpyrotic

phase. The stiff equation of state P > ρ during ekpyrosis suppresses anisotropies and renders the

universe flat and smooth in the approach to the bounce [49, 50]. Moreover, some models of ekpyrosis

can generate the density perturbations seen as temperature fluctuations in the cosmic microwave

background (see e.g. [51, 52] and references therein). To implement an ekpyrotic phase, followed

by a bounce, consider the following potential:

U(E) = −ξE2 + b1E
n + b2E

2n, (32)
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for integer n. Now the Einstein equation is once again of the desired form given in Eq. (29), while

the equation of state is given by

ω =
P

ρ
=
U ′E − U + ξE2

U + ξE2
= (n− 1) +

nb2E
2n

b1En + b2E2n
(33)

Because E decreases monotonically with growing scale factor, the equation of state approaches

(n− 1) far away from the bounce, while becoming negative (and of large magnitude) as the bounce

is approached. For an ekpyrotic phase we require ω > 1, which means that we need to take n > 2.

For n = 3 we can solve the {0, 0} component of the Einstein equations exactly to obtain the

following solution for the scale factor:

a(t) =

[
M3

(
−b2
b1

+
27b1t

2

16κ

)]1/9

. (34)

As shown in Fig. 1, this solution neatly combines an ekpyrotic contracting phase with a cosmological

bounce leading into an expanding phase of the universe.
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FIG. 1. Evolution of the scale factor a (left panel) and the equation of state ω (right panel) for choice of

potential U = −ξE2 + b1E
3 + b2E

6, with b1 = 0.1, b2 = −0.1, M = 1, and κ = 1/4. In this model an

ekpyrotic contraction phase is followed by a non-singular bounce into an expanding phase. The ekpyrotic

phase renders the universe flat and isotropic in the approach to the bounce, and justifies the assumption of

a flat FLRW metric in describing the bounce.

D. Flat FLRW and anti-commuting spinors

In the previous subsections we considered background solutions for commuting spinors satisfying

the identities given in Eq. (14). While commuting spinors are simpler to work with computationally,

they do not correspond to any of the fermions known in the standard model. In this section we work

with anti-commuting spinors. We once again ask that the quartic spinor terms in the equations
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of motion may be taken to be of the form 〈AI〉〈AI〉. This can be achieved either by assuming the

variance of spinor bilinears is low, or by assuming that the first order description is fundamental.

Given either of these assumptions the Einstein Equations for a flat FLRW background are given

by:

12κH2 = W (35a)

−4κ(2Ḣ + 3H2) = (W + U ′E − 2U) (35b)

where the potential W is given as in Eq. (8). The projected Dirac equations are given by:

Ė = −3HE + 4(ξAAA
0 + ξAV V

0)B + 4(ξV V V
i + ξAVA

i)Ci, (35c)

Ḃ = −3HB − 4(ξAAA
0 + ξAV V

0)E + 4(ξV V V
i + ξAVA

i)Qi, (35d)

Ȧ0 = −3HA0 + 2U ′B, (35e)

V̇ 0 = −3HV 0, (35f)

Ċi = −3HCi + 2U ′V i + 4(ξAAAj + ξAV Vj)ε
0jikCk

− 4[(ξAAA0 + ξAV V0)Qi + (ξV V V
i + ξAVA

i)E],
(35g)

Q̇i = −3HQi + 4(ξAAA0 + ξAV V0)Ci + 4(ξV V V
i + ξAVA

i)B − 4ε0ijkQj(ξAAAk + ξAV Vk) (35h)

V̇ i = −3HV i − 2U ′Ci + 4[ξAAAjε
0jikVk + ξV V Vjε

0jikAk] (35i)

Ȧi = −3HAi. (35j)

We are not able to solve the above equations analytically, even when restricting attention to parity

invariant anti-commuting spinors. This does not prevent us from making progress however, as we

can solve the above equations numerically. We consider the simple case in which the couplings

ξAV and ξV V are both set to zero, and for which the potential is given by a mass term for the

spinor: U = mE. The projected Dirac equations then simplify considerably. We plot solutions for

these equations for a particular choice of initial conditions below in figures 2 and 3. Once again a

non-singular bouncing solution is obtained. In fact, in the solution shown in the figures the null

energy condition is violated twice, leading to a “double” bounce. Note that in the anti-commuting

case bounces arise for ξAA > 0, i.e. for the opposite sign of the coupling than in the commuting

case. Also, the axial vector is timelike instead of spacelike for these solutions.

The numerical solutions we have obtained provide a ‘proof of principle’, that commuting spinnors

are not a necessary requirement in order to obtain bouncing solutions. It will certainly be interesting

to investigate the properties of anti-commuting spinor bounces in more detail, to see how general

they are. Here we simply note the evident similarity with the commuting case. For now we will
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return to the technically simpler case of commuting spinors, in order to assess the stability of such

non-singular bouncing solutions.
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FIG. 2. Evolution of the scale factor a (left panel) and the equation of state ω (right panel) for a particular

set of initial conditions, and the choice of potential U = mE, with m = 0.5, M = 1, κ = 1/4, and choice of

couplings ξAA = 0.15, ξV A = ξV V = 0.
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FIG. 3. Evolution of the spinor densities E and B (left panel) as well as the axial vector components A0

and A1 (right panel) for a particular set of initial conditions, and the choice of potential U = mE, with

m = 0.5, M = 1, κ = 1/4, and choice of couplings ξAA = 0.15, ξV A = ξV V = 0.

IV. PERTURBING AROUND FLAT FLRW

So far we have treated the universe as perfectly homogeneous and isotropic. We will now

introduce inhomogeneities by perturbing around our flat FLRW background solutions in order to

address the questions of stability and of observational consequences. In our preliminary foray we

return to the case of commuting spinors for the purpose of computational simplicity. In future work

we plan to make a more complete analysis which includes anti-commuting spinors.
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A. Linearised equations of motion in Newtonian gauge

In this section we analyse the linearised equations of motion using a standard Fourier decom-

position. We work in Newtonian gauge, and provide a complete description of our gauge fixing

procedure in the appendix for both the metric and vierbein perturbations. The perturbed FLRW

line element in Newtonian gauge is expressed as

ds2 = −(1 + 2ψ)dτ2 + 2a(t)Bidτdx
i + a(t)2((1− 2φ)δij + hij)dx

idxj , (36)

where ψ, Bi and hij are perturbations which depend a priori on all spacetime coordinates, and where

∂iBi = hii = ∂ihij = 0. For the perturbed Dirac spinor Ψ we introduce the following notation:

Ψ = Ψ(0) + Ψ(1) , (37)

where the subscripts (0) and (1) label background and first order quantities respectively. Although

our background spinor solutions Ψ(0) are spatially independent, we allow for general spatial depen-

dence of the perturbation Ψ(1). Given this notation, the first order momentum space Dirac equation

is:

(1− ψ)γ0Ψ̇ + iγi kia Ψ = −3
2γ

0[H − φ̇−Hψ]Ψ− i(U ′(E)Ψ + 2ξ(EΨ− iBγ5Ψ))

− 1
2γ

i[ikia ψ − 2ikia φ+ 1
2Ḃi]Ψ(0) + i

2(U ′ + 2ξE)Biγ
iΨ(0),

(38)

where for compactness we have included some background terms, and some terms higher than first

order. Any terms that are not of order 1 should be ignored by the reader. For example the left

hand side of Eq. (38) is intended to be read as: −ψ∂0Ψ(0) + γ0∂0Ψ(1) + iγikiΨ(1). We adopt this

compact notation often throughout the remainder of the section.

In Section III B, we found it useful to express the background Dirac equation in projected form,

written entirely in terms of spinor bilinears. Following an analogous procedure, we similarly project

the linearized Dirac equation. Because we are interested in parity invariant background solutions

satisfying Ψ(0) = γ0Ψ(0), there are only eight possible ‘kinds’ of first order hermitian bilinears which

may be constructed from the background spinor Ψ(0) and its perturbation Ψ(1). These are:

E(1) = (Ψ(0)Ψ(1) + Ψ(1)Ψ(0)),

A0
(1) = (Ψ(0)γ5γ

0Ψ(1) + Ψ(1)γ5γ
0Ψ(0)),

V i
(1) = (Ψ(0)γ

iΨ(1) + Ψ(1)γ
iΨ(0)),

Ai(1) = (Ψ(0)γ5γ
iΨ(1) + Ψ(1)γ5γ

iΨ(0)),

iẼ(1) = (Ψ(0)Ψ(1) −Ψ(1)Ψ(0)),

iB(1) = (Ψ(0)γ5Ψ(1) + Ψ(1)γ5Ψ(0)),

iCi(1) = (Ψ(0)γ
iΨ(1) −Ψ(1)γ

iΨ(0)),

iÃi(1) = (Ψ(0)γ5γ
iΨ(1) −Ψ(1)γ5γ

iΨ(0)),

(39)
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where our naming convention corresponds as closely as possible with that of the background bilinears

defined by Magueijo et al. [39]. We point out in particular that the axial scalar B(1) should not be

confused with the metric vector purturbation Bi, which always apears with an index. In projected

form, the linearized Dirac equations are expressed in terms of these eight ‘kinds’ of spinor bi-linears

as:

Ė(1) = −3HE(1) + 3φ̇E(0) − ikia V
i

(1), (40a)

Ȧj(1) = −3HAj(1) + 3φ̇Aj(0) − i
kj

a A
0
(1) − iε

0ji
k
ki
a C

k
(1), (40b)

Ḃ(1) = −3HB(1) + ikia Ã
i
(1) − 2(U ′(0) + 2ξE(0))A

0
(1) − (U ′(0) + 2ξE(0))BiA

i
(0), (40c)

Ȧ0
(1) = −3HA0

(1) + 2U ′(0)B(1) − ikia A
i
(1) − [ikia ψ − 2ikia φ+ 1

2Ḃi]A
i
(0), (40d)

Ċj(1) = −3HCj(1) + 2(U ′(0) + 2ξE(0))V
j

(1) − i
kj

a Ẽ(1) + iε0ji
k
ki
a A

k
(1)

+ ε0ji
k[i

ki
a ψ − 2ikia φ+ 1

2Ḃi]A
k
(0) + (U ′(0)E(0) + 2ξE2

(0))B
j ,

(40e)

V̇ j
(1) = −3HV j

(1) − i
kj

a E(1) − iε
0ji
k
ki
a Ã

k
(1) − 2

[
(U ′(0) + 2ξE(0))C

j
(1) + 2ξB(1)A

j
(0)

]
− [ik

j

a ψ − 2ik
j

a φ+ 1
2Ḃ

j ]E(0) + (U ′(0) + 2ξE(0))Biε
0ji
kA

k
(0),

(40f)

˙̃
E(1) = −3HẼ(1) − ikia C

i
(1)

− 2(U ′(1) + 2ξE(1))E(0) − 2ψ(U ′(0) + 2ξE(0))E(0),
(40g)

˙̃
Ai(1) = −3HÃi(1) + iε0ij

k
kj
a V

k
(1) + ik

i

a B

− 2(U ′(1) + 2ξE(1))A
i
(0) − 2ψ(U ′(0) + 2ξE(0))A

i
(0),

(40h)

In component form, there are 16 spinor bilinears, and correspondingly 16 projected Dirac equations.

We remind the reader that the spinor bilinears do not all represent independent degrees of freedom

as they derive from the same spinor Ψ. For example, we know that for commuting spinors, the

bilinears E,B, V I , and AI are related by the identity given in Eq. (14). Further relationships can

be found between the various bilinears by use of the Fierz identity given in Eq. (13).

After some manipulation the first order Einstein equations can be written in the following

compact form, in which the stress energy tensor is expressed entirely in terms of spinor bilinears:

4κG00 = −8κ[kik
i

a2
φ+ 3Hφ̇]

= (1 + 2ψ)(U + ξE2) + i
4

1
a [B[ikk]ε

0ikjAj + 2kiC
i],

(41a)

4κGi0 = 4κ[2ikia (φ̇+Hψ)− (2Ḣ + 3H2)Bi + 1
2
kkk

k

a2
Bi]

= −1
4 [2ikia Ẽ + ηiniε

0mnkAk
km
a − i(3ηinφ

km
a + 1

2him
kn
a )ε0mnkAk]

+Bi(ξE
2 + U ′E − U),

(41b)
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4κGij = 4κ
[
[−kkkk

a2
(ψ − φ) + 2φ̈+ 2(2Ḣ + 3H2)(φ+ ψ) + 2Hψ̇ + 6Hφ̇]δij − kikj

a2
(φ− ψ)

− i 1
a(Ḃ(ikj) + 2HB(ikj)) + 1

2 ḧij + 1
2
kkkk
a2

hji + 3
2Hḣij − (2Ḣ + 3H2)hij

]
= 1

4

[
2i 1
aC(ikj) − 1

2 [(ḣjl − iBj kla )ηik + (ḣil − iBi kla )ηjk]ε
kl0mAm

]
+ ((1− 2φ)ηij + hij)[ξE

2 + U ′E − U ].

(41c)

The standard approach when perturbing about FLRW is to separate the equations of motion at

linear order into their scalar, vector, and tensor components. This procedure is known as the SVT

decomposition and greatly simplifies the analysis. Unfortunately, we are not able to follow the

standard approach here, as can be seen for example by considering the B[i,k]ε
0ikjAj term present in

Eq. (41a). This term is a scalar in the sense that all of its indices are fully contracted, however it is

clearly built from the vector perturbation Bi. Similar couplings between scalar, vector, and tensor

modes can be seen in Eqs. (41b) and (41c), as well as in the first order projected Dirac equations.

To understand this point, notice that the proof of the SVT decomposition theorem is highly

dependent on the symmetries of the background, and requires that no relevant background quantity

can be formed which violates this symmetry (see for example the appendix of [53]). As seen in

Eq. (14) however, the models we consider all fail this requirement explicitly because the background

axial vector Ai(0) picks out a preferred spacelike direction. In practice this allows first order terms

to be constructed in which the index on a perturbation is contracted with the index on Ai(0), rather

than always having to transform as a free index, or else contract with non-symmetry-breaking

projectors such as ki. This is precisely the kind of SVT mixing that we observe in the equations of

motion.

Despite the difficulty of not being able to completely decompose the equations of motions into

separate scalar, vector, and tensor parts, this does not prevent us from making considerable progress.

For example, we are able to make simplifications by considering contractions of the {0, i} Einstein

equation with ki, and also the {i, j} Einstein equation with kikj and ηij . After some manipulations

this procedure yields the following scalar equations:

Ẽ = −16κ(φ̇+Hψ), (42a)

8κ
(
φ̈+ (2Ḣ + 3H2)ψ +H(ψ̇ + 3φ̇)

)
= i

2
kj

a Cj + (ξE2 +
∂U

∂E
E − U)], (42b)

4κ(φ− ψ) = i
8kkkk

a(klBkε
kl0mAm − 4kiC

i). (42c)

Substituting these scalar relations back into the first order Einstein equations, we can also obtain
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simplified equations for the vector and tensor modes:

8κkkk
k

a2
Bi = i[ηinε

0mnkAk
km
a − (3ηinφ

km
a + 1

2him
kn
a )ε0mnkAk], (43a)

−8κ
kikj
a2

(φ− ψ) =
[
i 1
aC(ikj) − 1

4 [iBk
kl
a δij + (ḣjl − iBj kla )ηik + (ḣil − iBi kla )ηjk]ε

kl0mAm

]
+ 4κ

[
i 1
a(Ḃ(ikj) + 2HB(ikj))− 1

2 ḧij −
1
2
kkkk
a2

hji − 3
2Hḣij

]
.

(43b)

1. Real fluid description

Before attempting to solve the linearized equations of motion, we note that it is conceptually

useful to re-express the equations of motion in fluid form. Unlike for the highly symmetric back-

ground, the first order contribution to the stress energy tensor can not be expressed as a perfect

fluid, but instead take the more general form of a real fluid:

Tµν = uµuν(P + ρ) + δµνP + Σµ
ν , (44)

where Σµν is the anisotropic stress satisfying:

Σµν = Σνµ, Σµνu
ν = 0, Σµ

µ = 0, (45)

with uµ = {−(1 + ψ), avi}, uµ = {(1− ψ), 1
a(vi −Bi)}, and where vi is the peculiar velocity of the

fluid. Making use of the relations given in Eq. (45), together with equations (41), we determine the

first order contributions to the density ρ, pressure P and anisotropic stress Σij to be:

ρ = (U + ξE2) + i
4a [B[ikk]ε

0ikjAj + 2kkC
k], (46a)

P = [ξE2 + U ′E − U ] + i
12a [Bkklε

kl0mAm + 2kkC
k], (46b)

Σij = i
4

[
2 1
aC(ikj) − 2

3ηij
kk
a C

k + 1
2 [(iḣjl +Bj

kl
a )ηik + (iḣil +Bi

kl
a )ηjk − 2

3ηijBk
kl
a ]εkl0mAm

]
,

(46c)

where we are once again using compact notation, in which we have included background terms, and

terms higher than first order. It is also useful to define the 3-momentum density:

qi ≡ (ρ+ P )vi = i
4a [2kiẼ − ((1− 3φ)ηin + 1

2hin)kmε
0mnkAk]. (46d)

The scalar components of the anisotropic stress tensor, and 3-momentum density are given respec-

tively by:

Σ = i
8kkkk

a(klBkε
kl0mAm − 4kiC

i), (46e)
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q = 1
2Ẽ. (46f)

Here we see that anisotropic stress is induced both from the vector perturbations Bi, as well as the

spinor bilinear Ci(1). Using the definitions given above for ρ, P,Σ, and q, equations (41a) and (42)

can be written in the standard real fluid form

4κ(φ− ψ) = Σ, (47a)

8κ[k
2

a2
φ+ 3Hφ̇+ 3H2ψ] = −ρ, (47b)

8κ(φ̇+Hψ) = −q, (47c)

8κ[φ̈+ (2Ḣ + 3H2)ψ +H(ψ̇ + 3φ̇)] = P − 2
3
k2

a2
Σ. (47d)

We may also use the projected Dirac equation to derive evolution equations, including the equation

of continuity:

ρ̇ = −3(H − φ̇)(ρ+ P ) + k2

a2
q, (47e)

q̇ = −3Hq − ψ(P + ρ)− P + 2
3a2
kikiΣ, (47f)

Ṗ = −6[H − φ̇](P + U − U ′E + 1
2U
′′E2) + 1

3
k2

a2
[4HΣ + q]

− 1
3

[
−U ′ + 4ξE

]
ikia V

i +Hikia C
i,

(47g)

(2φ̇− ψ̇) = −H(2φ− ψ) + 1
4κ

a
4k2

[
−9HikjC

j − 3ikjĊ
j + 2(U ′ + 2ξE)ikjV

j
]
, (47h)

Σ̇ = −2HΣ + 1
2q + a

4k2

[
−9HikjC

j − 3ikjĊ
j + 2(U ′ + 2ξE)ikjV

j
]
. (47i)

B. Solving the Equations of motion

Our goal in this section is to solve the Linearized Projected Dirac equations given in Eq. (40),

together with the first order Einstein equations listed in Eq. (41). We consider the simple potential

U = mE, for which we found a bouncing background solution in section III C. To make progress

we find it also useful to work in a convenient basis k = {k1, 0, 0}, for which the scalar and tensor

perturbations of the metric can be written:

Bi =


0

B2

B3

 , hij =


0 0 0

0 h22 h23

0 h23 −h22

 . (48)
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If we were dealing with a model in which only scalar matter were present, then selecting such a basis

would be completely without loss of generality. This is not the case for models with spinor content

however. As discussed in section III B, the background axial vector AI(0) picks out a preferred

spacelike direction. As a result, the dynamics of the first order perturbations will depend heavily

on the orientation of the wave vector k relative to direction picked out by the background. We

therefore separate our this first analysis into two parts: (i) to start with, we analyze ‘longitudinal’

modes for which the wave vector k is aligned with the direction picked out by the axial current, and

(ii) we analyze the first order equations for orthogonal modes which lie in the plane perpendicular

to the direction picked out by the background axial vector.

1. Longitudinal modes

We begin by considering perturbative modes for which the wave vector k is aligned with the

background axial vector. Given the basis chosen in Eq. (48), this corresponds to a parity invariant

background solution in which A2
(0) = A3

(0) = 0, and for which A1
(0) = −E(0). From the definitions

of the spinor bilinears given in in Eqs. (23) and (39), it then follows that for parity invariant

backgrounds the following identifications hold:

A1
(1) = −E(1),

Ã1
(1) = −Ẽ(1),

V 1
(1) = −A0

(1),

B(1) = C1
(1),

Ã3
(1) = −A2

(1),

V 3
(1) = C2

(1),

Ã2
(1) = A3

(1),

V 2
(1) = −C3

(1).
(49)

Making use of these relations allows us to remove much of the degeneracy occurring in the linearized

equations of motion. In particular, the 16 components of the projected Dirac equations given in

Eq. (40) reduce to the following set of eight:

Ė(1) = −3HE(1) + 3φ̇E(0) + ik1a A
0
(1), (50a)

˙̃
E(1) = −3HẼ(1) − ik1a C

1
(1) − 2(U ′(1) + 2ξE(1))E(0) − 2ψ(U ′(0) + 2ξE(0))E(0), (50b)

Ȧ0
(1) = −3HA0

(1) + 2U ′(0)C
1
(1) + ik1a E(1) + [ik1a ψ − 2ik1a φ]E(0), (50c)

Ċ1
(1) = −3HC1

(1) − i
k1

a Ẽ(1) − 2(U ′(0) + 2ξE(0))A
0
(1), (50d)

Ċ2
(1) = −3HC2

(1) − 2(U ′(0) + 2ξE(0))C
3
(1) − i

k1
a A

3
(1) −

1
2Ḃ3E(0) + (U ′(0)E(0) + 2ξE2

(0))B
2, (50e)

Ċ3
(1) = −3HC3

(1) + 2(U ′(0) + 2ξE(0))C
2
(1) + ik1a A

2
(1) + 1

2Ḃ2E(0) + (U ′(0)E(0) + 2ξE2
(0))B

3, (50f)

Ȧ2
(1) = −3HA2

(1) + ik1a C
3
(1), (50g)

Ȧ3
(1) = −3HA3

(1) − i
ki
a C

2
(1). (50h)
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We note rather curiously that for longitudinal modes there is an absence of mixing terms between

scalar, vector, and tensor modes exhibited by the projected Dirac equations. To be clear, in the

above 8 equations the ‘scalar’ terms φ, ψ, E(1), A
0
(1), Ẽ(1), and C1

(1) decouple completely from

what we will term the components of ‘vector’ modes B2, B3, C2
(1), C

3
(1), A

2
(1), and A3

(1). A

similar decoupling also occurs for the Einstein equations, and so for longitudinal modes the SVT

decomposition appears to hold, just as would be the case for scalar matter content. The scalar

Einstein equations given in Eqs. (41a) and Eq. (42), become:

0 = 8κ[kik
i

a2
φ+ 3Hφ̇+ 3H2ψ] + (U + ξE2) + i

2
1
ak1C

1, (51a)

0 = Ẽ + 16κ(φ̇+Hψ), (51b)

0 = 8κ
(
φ̈+ (2Ḣ + 3H2)ψ +H(ψ̇ + 3φ̇)

)
− i

2
k1

a C1 − ξE2, (51c)

0 = 8κ(φ− ψ) + i
kkkk

a(kiC
i). (51d)

Similarly, Eqs. (43) yield the following relations for the vector components Bi:

B2 = i a
8κk1

A3
(1),

C2
(1) = −4κ(Ḃ2 + 2HB2),

B3 = −i a
8κk1

A2
(1),

C3
(1) = −4κ(Ḃ3 + 2HB3),

(52)

together with two equations for the tensor modes hij :

0 = 4κ
[
ḧ22 + 3Hḣ22 + kkkk

a2
h22

]
− ḣ23E(0),

0 = 4κ
[
ḧ23 + 3Hḣ23 + kkkk

a2
h23

]
+ ḣ22E(0).

(53)

Because the scalars, vectors, and tensors decouple from one another we are able to solve each set of

equations independently. We begin by first considering the scalar dynamics, which at least naively

seem to be overconstrained. That is, the 6 ‘scalar’ terms φ, ψ, E(1), A
0
(1), Ẽ(1), and C1

(1) appear

to be governed by eight equations of motion (four projected Dirac equations together with the four

‘scalar’ Einstein equations). It turns out however the not all 8 equations are independent. By

differentiating Eq. (51a), and then making use of Eqs. (51a), (51b), (50a), (51c), and (51d), we

can obtain the projected Dirac equation for C1 given in Eq. (50d). Similarly, by differentiating

Eq. (51b) and then making use of Eqs. Eq. (51b), (50b) we can obtain Eq. (51c). A complete

system of equations describing the scalar dynamics is therefore given by the following two Dirac

equations:

Ė(1) = −3HE(1) + 3φ̇E(0) + ik1a A
0
(1), (54a)

Ȧ0
(1) = −3HA0

(1) + ik1a [E(1) + 16κU ′(0)(φ− ψ) + (ψ − 2φ)E(0)], (54b)
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where we have used Eq. (51d) to remove all instances of C1
(1) from the above equations. The

remaining two scalar Einstein equations are similarly given by:

0 = 8κ[1
2
kik

i

a2
(φ+ ψ) + 3Hφ̇+ 3H2ψ] + (U + ξE2), (54c)

0 = 8κ
(
φ̈+ (2Ḣ + 3H2)ψ +H(ψ̇ + 3φ̇)

)
+ 4κk1k

1

a2
(φ− ψ)− ξE2, (54d)

While these equations are difficult to solve analytically, they are straightforward to solve numeri-

cally. We plot the typical behavior of the scalar perturbations below in figures 4 and 5. As can be

seen in the figures, the perturbations grow in amplitude towards the time of the bounce, and decay

again afterwards. Thus the bounce is stable to longitudinal perturbations. For long wavelength

modes, where the k-dependence in the equations may be neglected, the spectrum will be unchanged

by the bounce, though the amplitude will depend on the details of the background solution and

the initial conditions for the perturbations. Notice also that the metric perturbations φ and ψ

are unequal (and in fact they are approximately opposite to each other over large regions of the

solution), and thus the solution involves increased anisotropic stress induced by the spinor bilinears

in the vicinity of the bounce.
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FIG. 4. Evolution of the first order spinor bilinears E(1) and A1
(1) for k1 = 2 (left panel) and k1 = 10

(right panel), for a given choice of initial conditions. We have chosen the potential U = mE, with m = 0.1,

ξ = −0.1, M = 0.3, and κ = 1/4. We set the initial conditions at t = −50, and choose them such that all

Fourier modes are either purely real or purely imaginary, with −iA0
(1) = E(1) = φ = φ̇ = ψ = 0.1E(0).

We next consider the vector perturbations, which once again seem at least naively to be over

constrained. That is, the dynamics of the six modes C2
(1), C

3
(1), A

2
(1), A

3
(1), B

2, and B3, seem to be

governed by 8 equations of motion (four projected Dirac equations together with the four equations

given in (52)). Combining Eqs. (52) together with Eq. (50g) and (50h), it can be shown after a

little manipulation that C2
(1) = C3

(1) = 0, and therefore also that the Bi scale as a−2. The first
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FIG. 5. Evolution of the scalar modes φ and ψ for k1 = 2 (left panel) and k1 = 10 (right panel), with the

same parameter choices as in Fig. 4.

order axial currents A2 and A3 scale as a−3. We therefore find:

B2 = i 1
8κk1

α̃3

a2
,

A2
(1) = α̃2

a3
,

B3 = −i 1
8κk1

α̃2

a2
,

A3
(1) = α̃3

a3
,

(55)

where the α̃i, are k-dependent, but time independent. We need to ensure that these solutions are

compatible with Eqs. (50e) and (50f), which after setting C3 = C2 = 0, become:

0 = 8κk1k
1

a2
α̃3 +HE(0)α̃

2 + 8κḢα̃3, (56)

0 = 8κk1k
1

a2
α̃2 −HE(0)α̃

3 + 8κḢα̃2. (57)

We see immediately that in order to satisfy these equations, the (k-dependent) constants α̃2 and α̃3

must be set identically to zero. The ‘vector’ dynamics for longitudinal modes is therefore completely

constrained and we have B2 = B3 = C2
(1) = C3

(1) = A2
(1) = A3

(1) = 0. This situation is reminiscent

of the results of Isham and Nelson in [48], who found that solving the full set of Einstein equations

for FLRW metrics with spatial curvature required the background axial vector current to be set to

zero.

The dynamics for the tensor modes is described completely by Eqs. (53). Solving this pair of

equations numerically, we obtain a typical solution, which we display in figure 6. Again the solutions

grow in amplitude in the approach of the bounce, and decay afterwards, such that the amplitude

is typically of comparable magnitude on either side of the bounce.

2. Orthogonal modes

In this subsection we explore the linearized equations of motion for modes which are perpendic-

ular to the direction picked out by the background axial vector. It is convenient to maintain the
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FIG. 6. A typical example of the behaviour of tensor modes around the time t = 0 of the non-singular

bounce for k1 = 2 (left panel) and k1 = 10 (right panel). We set the initial conditions at t = −50, with

h22 = ḣ22 = h23 = ḣ23 = 0.01E(0).

basis chosen in Eq. (48) for the first order modes, and so we consider a parity invariant background

solution in which A1
(0) = A3

(0) = 0, and for which A2
(0) = −E(0). It follows from Eqs. (23) and (39),

that for parity invariant backgrounds the following identifications hold:

A2
(1) = −E(1),

Ã2
(1) = −Ẽ(1),

V 2
(1) = −A0

(1),

B(1) = C2
(1),

Ã3
(1) = A1

(1),

V 3
(1) = −C1

(1),

Ã1
(1) = −A3

(1),

V 1
(1) = C3

(1).
(58)

As occurred with longitudinal modes we find that the original 16 components of the projected Dirac

equations given in Eq. (40) collapse down to the following set of 8:

Ė(1) = −3HE(1) + 3φ̇E(0) − ik1a C
3
(1), (59a)

˙̃
E(1) = −3HẼ(1) − ik1a C

1
(1) − 2(U ′(1) + 2ξE(1))E(0) − 2ψ(U ′(0) + 2ξE(0))E(0), (59b)

Ċ1
(1) = −3HC1

(1) + 2(U ′(0) + 2ξE(0))C
3
(1) − i

k1

a Ẽ(1) + 1
2Ḃ3E(0), (59c)

Ċ3
(1) = −3HC3

(1) − i
k1
a E(1) − 2(U ′(0) + 2ξE(0))C

1
(1)

− [ik1a ψ − 2ik1a φ]E(0) + (U ′(0)E(0) + 2ξE2
(0))B

3,
(59d)

Ȧ0
(1) = −3HA0

(1) + 2U ′(0)C
2
(1) − i

k1
a A

1
(1) + 1

2Ḃ2E(0), (59e)

Ȧ1
(1) = −3HA1

(1) − i
k1

a A
0
(1), (59f)

Ȧ3
(1) = −3HA3

(1) − i
k1
a C

2
(1), (59g)

Ċ2
(1) = −3HC2

(1) − i
k1
a A

3
(1) − 2(U ′(0) + 2ξE(0))A

0
(1) + (U ′(0)E(0) + 2ξE2

(0))B
2, (59h)

We note that unlike was the case for longitudinal modes, no obvious decoupling seems to occur

between ‘scalar’ and ‘vector’ modes. Instead the set of modes {E(1), Ẽ(1), C
1
(1), C

3
(1), φ, ψ, B

3}

seem to decouple from the set {A0
(1), A

1
(1), A

3
(1), C

2
(1), B

2}, at least at the level of the Dirac
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equations. Let us see if this decomposition continues to hold: The scalar Einstein equations given

in Eqs. (41a) and Eq. (42), become:

0 = 8κ[kik
i

a2
φ+ 3Hφ̇+ 3H2ψ] + (U + ξE2) + i

4
1
a [−B3k1E + 2k1C

1], (60a)

0 = Ẽ + 16κ(φ̇+Hψ), (60b)

0 = 8κ
(
φ̈+ (2Ḣ + 3H2)ψ +H(ψ̇ + 3φ̇)

)
− i

2
k1

a C1 − ξE2, (60c)

0 = 8κ(φ− ψ) + i
4kkkk

a(k1B
3E + 4k1C

1), (60d)

while the equations of motion given in Eqs. (43) yield the following relations for the vector com-

ponents Bi:

B2 = i a
8κk1

[A3 + 1
2h23E], B3 = i a

8κk1
[E − 3φE − 1

2h22E], (61)

along with two pairs of equations which relate the tensor modes hij to the scalar and vector modes:

0 =
[
i 1

2aC
2k1 − 1

4 ḣ23E
]

+ 4κi 1
2a(Ḃ2k1 + 2HB2k1),

0 =
[
i 1

2aC
3k1 + 1

4 ḣ22E
]

+ 4κi 1
2a(Ḃ3k1 + 2HB3k1),

(62a)

0 = 1
2 iB

3 k1
a E − 4κ(ḧ22 + 3Hḣ22 + kkkk

a2
h22),

0 = 1
2 iB

2 k1
a E + 4κ(ḧ23 + 3Hḣ23 + kkkk

a2
h23).

(62b)

Indeed, just as was the case for the projected Dirac equations, no explicit mixing occurs in

the Einstein equations between the set {E(1), Ẽ(1), C
1
(1), C

3
(1), φ, ψ, B

3, h22} and the set

{A0
(1), A

1
(1), A

3
(1), C

2
(1), B

2, h23}. We are free therefore to treat these two sets as behaving

completely independently from one another. Before making use of this decomposition however, we

note that a few of the above equations offer immediate analytic solutions. Differentiating Eqs. (61)

with respect to time, and making use of the projected Dirac equations for E(1) and A3
(1) given in

Eqs. (59a) and (59g), we obtain:

Ḃ2 = −2HB2 − i a
8κk1

[ik1a C
2
(1) −

1
2 ḣ23E], Ḃ3 = −2HB3 − i a

8κk1
[ik1a C

3
(1) + 1

2 ḣ22E]. (63)

Substituting these equations into Eqs. (62a) we then find the following relationship between the

vector components C2
(1) and C3

(1), and the tensor modes hij :

ik1a C
2
(1) = 1

2 ḣ23E, ik1a C
3
(1) = −1

2 ḣ22E. (64)

Making use of these relationships for C2
(1) and C

3
(1), we see that Eqs. (63) simplifies further, and the

vector modes Bi scale as a−2. Equations (64) also allow us to solve Eqs. (59a), and (59g), which
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yield:

A3
(1) = (−1

2h23 − 2 α̃
3

M )E(0),

E(1) = (3φ+ 1
2h22 − 2M̃M )E(0),

B2 = −i 1
4κk1

[ α̃
3

a2
],

B3 = −i 1
4κk1

[M̃
a2

],
(65)

where the α̃3, and M̃ are (k-dependent) constants with respect to time. These solutions very clearly

exhibit mixing between scalar, vector, and tensor modes.

To find the remaining solutions it will be useful to consider the mode decomposition which

occurs between the various perturbative modes for the full set of equations of motion. We begin in

particular, by searching for solutions for the set {Ẽ(1), C
1
(1), C

3
(1), φ, ψ, h22}, which are compatible

with the solutions for {E(1), B
3} already given in Eq. (65). As was the case for longitudinal modes, it

appears at least naively, as though the remaining equations of motion are over constrained, because

there are more equations than degrees of freedom. Not every equation is independent however:

Differentiating Eq. (60a) with respect to time, and then making use of Eqs. (60a), (59a), (51c) and

(51d) we can derive Eq. (59c) for C1
(1). Similarly By differentiating Eq. (60b) with respect to time,

and then making use of Eqs. (60b) and (59b) we can derive Eq. (60c). We therefore have only to

consider the reduced set {φ, ψ, C3
(1), h22}, with dynamics specified by the following equations:

0 = 8κ[1
2
kik

i

a2
(φ+ ψ) + 3Hφ̇+ 3H2ψ − Ḣ(3φ+ 1

2h22 − 2M̃M )]− ik1a
3
8B

3E, (66a)

0 = φ̈+ (2Ḣ + 3H2)(ψ + 3φ+ 1
2h22 − 2M̃M ) +H(ψ̇ + 3φ̇) + 1

2
k21
a2

(φ− ψ) + i
64κ

k1

a B
3E, (66b)

0 = ik1a C
3
(1) + 1

2 ḣ22E, (66c)

0 = 1
2 iB

3 k1
a E − 4κ(ḧ22 + 3Hḣ22 + kkkk

a2
h22), (66d)

Ċ3
(1) = −3HC3

(1) − i
k1
a (ψ + φ+ 1

2h22 − 2M̃M )E(0) + (U ′(0) + 2ξE(0))(
3
2E(0)B

3 − 16κik1a (φ− ψ)),

(66e)

where we have made use of our solution for E(1) given in Eq. (65) to simplify these equations further.

We could similarly have used the solutions given in Eqs. (65) to remove B3 from the equations.

Our ultimate goal is to whittle down Eqs. (66) to a set of four equations in four unknowns. We

are unfortunately not able to do so analytically however, and so we must turn to numerics. We

find that the above set of equations are indeed consistent, so long as the vector perturbation

B3 is set to zero. In particular, we have been able to solve equations (66a), (66b), (66c), and

(66d) simultaneously, while making use of Eq. (66e) in order to set the initial conditions. We

then find that Eq. (66e) remains consistent with the solutions obtained throughout their evolution.

Example solutions for the modes {φ, ψ, C3
(1), h22} are displayed below in Figs. 7, 8, 9, and 10.

All examples we have explored show the same characteristic behavior: the perturbations grow in
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amplitude towards the bounce, reach a finite maximum value and decay again in a more or less

time-symmetric manner after the bounce, though in some cases the amplitude is enhanced by the

bounce. Note that in all cases the evolution of scalar, vector and tensor modes is linked, and the

presence of scalar modes necessarily induces the presence of gravitational waves. This is one of

the main distinguishing features of spinor bounces. Also, just as for the longitudinal solutions,

the scalar metric perturbations φ and ψ are unequal, a feature that reveals how near the bounce

anisotropic stress plays an increasingly important role.

We next consider the dynamics of the four modes {A0
(1), A

1
(1), C

2
(1), h23}, which do not include

scalar metric perturbations and are completely described by the equations:

Ȧ0
(1) = −3HA0

(1) + 2U ′(0)C
2
(1) − i

k1
a A

1
(1) −HB2E(0), (67a)

Ȧ1
(1) = −3HA1

(1) − i
k1

a A
0
(1), (67b)

0 = ik1a C
2
(1) −

1
2 ḣ23E, (67c)

0 = 1
2 iB2

k1
a E + 4κ(ḧ23 + 3Hḣ23 + kkkk

a2
h23), (67d)

Ċ2
(1) = −3HC2

(1) + ik1a (1
2h23 + 2 α̃

3

M )E(0) + (U ′(0) + 2ξE(0))(E(0)B
2 − 2A0

(1)), (67e)

where we have simplified the above expressions by making use of the solution for A3
(1) given in

Eq. (65). We could similarly have used the solutions given in Eq. (65) to remove B2. Once again

we are not able to continue analytically, however the above five equations are consistent, so long

as the vector perturbation B2 is set to zero. In particular, we are able to first solve the equations

of motion and constraints (67a), (67b), (67c), and (67d), making use of Eq. (67e) in order to set

the initial conditions. We then find that Eq. (67e) remains consistent with the solutions obtained.

Example solutions for the modes {A0
(1), A

1
(1), C

2
(1), h23} are displayed below in Figures 7, 8, 9,

and 10. These examples are remarkably similar to the solutions obtained for the independent set of

modes discussed above. Once again, the bounce is stable and combines scalars, vectors and tensors

together.

V. DISCUSSION

Circumventing the big bang is an ambitious goal. In classical general relativity it amounts to

finding a loophole in the Penrose-Hawking singularity theorems, which is no easy feat. In particular

it is proving notoriously difficult to violate the null energy condition in a convincing way. Spinor

cosmologies have the great advantage that they employ a rather minimal generalisation of general

relativity which includes adding torsion. This is well motivated from the framework of deriving
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FIG. 7. A typical example of the behaviour of the orthogonal scalar modes φ and ψ around the time t = 0

of the non-singular bounce for k1 = 2 (left panel) and k1 = 10 (right panel). We set initial conditions at

t = −50, and again choose initial conditions such that the Fourier modes of the perturbations are either

purely real or purely imaginary, with iA0
(1) = A1

(1) = h23 = 0.3E(0) and φ = −ψ = h22 = 0.1E(0), while our

choice of parameters are given by m = 0.1, ξ = −0.1, and κ = 1/4.
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FIG. 8. A typical example of the behaviour of the ‘scalar’ modes iA0
(1) and A

1
(1) around the time t = 0 of the

non-singular bounce for k1 = 2 (left panel) and k1 = 10 (right panel), with the same choice of parameters

and initial conditions as in Fig. 7.

relativity as a gauge theory, and naturally allows for the coupling of fermions to gravity. It is

therefore doubly interesting that such models can also allow for solutions undergoing a cosmological

bounce in which the scale factor transitions from a contracting to an expanding phase of the universe.

More generally, such models easily allow for a wide range of possible cosmological evolutions, as we

have discussed. Nevertheless, let us repeat here that our classicality assumption on spinor bilinears

is a rather non-trivial one, which deserves further examination. The results of the present paper

motivate a more extensive study where the fermions are treated quantum mechanically, in the spirit

of the study of Damour and Spindel [54].

Despite the attractive features of spinor models, to date most treatments of cosmological solu-

tions involved only a discussion of the background. Just a few works looked at perturbations of the
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FIG. 9. A typical example of the behaviour of the ‘vector’ modes iC2
(1) and −iC

3
(1) around the time t = 0 of

the non-singular bounce for k1 = 2 (left panel) and k1 = 10 (right panel), with the same choice of parameters

and initial conditions as in Fig. 7.
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FIG. 10. A typical example of the behaviour of the tensor modes h22 and h23 around the time t = 0 of the

non-singular bounce for k1 = 2 (left panel) and k1 = 10 (right panel), with the same choice of parameters

and initial conditions as in Fig. 7.

spinor fields, but we are not aware of any work taking into account metric perturbations as well.

We have done so in this paper, and have discovered several interesting and perhaps unexpected fea-

tures. For instance, we have found that spinor bounces are stable to linear perturbations, despite

the fact that the null energy conditions is violated near the bounce, and this without any particular

tuning of the parameters of the models. The stability is ensured by the fact that the torsion terms,

which ultimately induce the null energy violating contributions to the stress tensor, only enter al-

gebraically – thus they do not alter the kinetic terms of the metric or matter perturbations, and do

not induce the ghosts that plague many other NEC-violating models.

Furthermore, in cosmological spinor models the standard decomposition into scalar, vector and

tensor modes does not in general lead to decoupled equations for these different sets of modes.

Rather, the gamma matrices needed to describe Dirac spinors also have the consequence of pro-

viding direction-dependent background quantities that spoil the scalar-vector-tensor decomposition
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usually present at linear order. Far from being a drawback, this feature may well lead to the most

interesting consequences for spinor driven bounces: already at linear order, scalar fluctuations gen-

erated during a contracting phase will generate gravitational waves. This leads to the interesting

prospect that spinor bounces may lead to more pronounced gravitational wave signatures, espe-

cially in cosmological models where there is no additional source of primordial gravitational waves

at linear order, such as in ekpyrotic models [50, 55].

Another remarkable consequence of these models is that their cosmological perturbations are

direction dependent, even when the background is given by an isotropic FLRW solution. This is

again due to the direction dependent gamma matrices required to define the Dirac spinors. A clear

goal for future studies will be to determine to what extent these distinguishing features may be

observable in cosmological experiments.

ACKNOWLEDGMENTS

We would like to thank Abhay Ashtekar, Latham Boyle, Hadi Godazgar, Mingzhe Li, Tom

O’brien, Tomas Ortin, Rafael Sorkin, Neil Turok, Edward Wilson-Ewing and Tom Zlosnik for

useful discussions and correspondence. T. Q. also wishes to thank the Department of Astrophysics

at the University of Science and Technology of China for their hospitality during his visit, during

which time this work was finalized. The work of T. Q. is supported in part by the National Natural

Science Foundation of China under Grants No. 11405069 and 11653002.

VI. APPENDIX

Appendix A: Conventions and useful identities

In this section we outline the conventions and useful identities that we use in this paper. To

facilitate comparison of results we follow closely the conventions used by Magueijo et al. [39]. In

particular we work with the flat metric ηIJ = diag(−1, 1, 1, 1), such that the spacetime metric

gµν = ηIJe
I
µe
J
ν is mostly positive. For spacetime indices we use Greek letters, while for internal

Lorentz indices we use upper case Roman letters. When summing over only spatial indices we use

lower case Roman letters. The co-tetrad is denoted eI = eIµdx
µ, while for a general m−form Λ we

define Λ ≡ 1
m!Λa1...amdx

a1 ∧ ... ∧ dxam . The determinant of the co-tetrad is defined as:

e = 1
4!εIJKLε

µνδσeIµe
J
ν e
K
δ e

L
σ , (A1)
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where following [39], the symbol εIJKL is a local SO(1, 3) spacetime scalar antisymmetric in all of its

indices, and satisfying ε0123 = 1. The symbol εµνσδ is a spacetime density, which is antisymmetric

in all of its indices and satisfies ε0123 = 1. Equation (A1), yields the following useful relation which

we make repeated use of throughout the paper:

εµνδσeIµe
J
ν e
K
δ e

L
σ = eεIJKL = −eεIJKL. (A2)

We will use the Weyl representation for spinors in this paper, with the following convention for

gamma matrices γI :

γI =

0 σ

σ 0

 , γ5 = i
4!εabcdγ

aγbγcγd =

−I2 0

0 I2

 (A3)

where σ = {1, σi}, σ = {1,−σi}, and where σi are the Pauli matrices. It is easy to check that these

gamma matrices satisfy {γI , γJ} = −2ηIJ . We can use the gamma matrices to construct generators

Σab of the Lorentz group, which are Krein anti-hermitian and take the form:

Σab = −1
4 [γa, γb] . (A4)

The following identities will be used extensively, and will be indispensable for those wishing to

reproduce the results of this paper:

[[γa, γb], γc] = 4(ηacγb − ηbcγa) (A5a)

{[γa, γb], γc} = 4γ[aγbγc] = i4εabcdγ5γd (A5b)

γ0γaγ0 = (γa)† (A5c)

The covariant exterior derivative on spinors is given by:

DΨ = dxµ(∂µ + ωµ)Ψ ≡ dxµ(∂µ + 1
2ωIJµΣIJ)Ψ, (A6)

where ω is the spin connection. The covariant exterior derivative acting on the co-tetrad defines

the torsion two form T I :

T I ≡ DeI = deI + ωIJe
J . (A7)

As we show in Eq. (5), the spacetime torsion T I is sourced by the axial and vector currents AJ and

V J . It will be useful to decompose the spin connection as follows:

ωIJ = ω̃IJ + CIJ , (A8)



34

where ω̃ is the ‘torsion free’ spin connection obtained by setting AI = V I = 0. The torsion free spin

connection satisfies the equation T I = 0, and depends only on the vierbein eI . As a result the torsion

can be expressed in terms of the contortion one-form CIJ = CIJµdx
µ: T I = CIJe

J = CIJKe
KeJ .

We use a ‘tilde’ to indicate when a quantity is ‘torsion’ free. For example the covariant exterior

may be denoted

D = D̃ + C. (A9)

Finally we define the curvature two-form RIJ by:

RIJ = dωIJ + ωIKω
KJ = R̃IJ + D̃CIJ + CIKC

KJ . (A10)

The torsion free Ricci tensor R̃µν and Ricci scalar R̃ are defined respectively by

R̃µν = eIµe
J
ν R̃

IK
JK ,

R̃ = R̃IJ IJ ,
(A11)

while the torsion free Einstein tensor is defined by

G̃µν = R̃µν − 1
2gµνR̃. (A12)

Appendix B: Deriving the equations of motion: A simplified example

The derivation of the equations of motion is too lengthly to show in complete detail here.

Instead we provide the reader with a derivation in full detail for a simplified model in which

α = β = τ = λ = 0, and for which we remove the Holst term in the gravitational part of the action.

We also choose U(ΨΨ) = 0. Given these simplifications the full action is written as:

S = κ

∫
εIJKLe

IeJRKL + i
2.3!

∫
εIJKLe

IeJeK(ΨγLDΨ−DΨγLΨ). (B1)

We consider the vierbein eI , spin connection ωmn, and spinor Ψ as our fundamental fields, and so

the variation of this action is given by:

δS = 2κ

∫
εIJKL(δeI)eJRKL + i

4

∫
εIJKL(δeI)eJeK(ΨγLDΨ−DΨγLΨ)

+ κ

∫
εIJKLe

IeJDδ(ωKL))− i
16.3!

∫
εIJKLe

IeJeK(δωMN )(Ψ{γL, [γM , γN ]}Ψ)

+ i
2.3!

∫
εIJKLe

IeJeK(δΨγLDΨ + ΨγLDδΨ−DΨγLδΨ−DδΨγLΨ).

(B2)
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The Euler-Lagrange equations are obtained directly from Eq. (B2) by setting the variation to zero.

Considering first of all the variation of the action with respect to the spin connection we obtain the

following equation of motion

2κε MN
IJ CIPQe

QeP eJ = 1
4!εIJKLe

IeJeKεLMNPAP , (B3)

where we have made use of the identity given in Eq. (A5b). Direct comparison can be made between

this result and that which we provided for our full model in Eq. (4). The above equation can be

solved to obtain an expression for the contortion. The approach is to first multiply through on both

sides of the above equation by eX . After some manipulation we then obtain:

(ηX[NC
Q|M ]
Q + CXNM ) = 1

16κε
XNMPAP . (B4)

Contracting this equation with ηXM yields CMN
M = 0, and so we immediately find the following

algebraic expression for the contortion,

CXMN = 1
16κε

XMNPAP . (B5)

Direct comparison can be made between this expression for the contortion, and that provided for

our full model in Eq. (5).

We next consider variation of the action with respect to the spinor Ψ. After some manipulation,

we obtain the following curved space Dirac equation:

iεIJKLε
IJKM (2γLD̃MΨ− 1

8CSTM{γ
L, [γS , γT ]Ψ) = 0 (B6)

We can write the above equation in completely ‘torsion free’ form, by making use of the expression

for the contortion given in Eq. (B5). We then find:

ieµLγ
LD̃µΨ = i

8CMNLγ
L[γM , γN ]Ψ

= 3πGAIγ5γIΨ, (B7)

where we have again made use of the identity given in Eq. (A5b). If we define W = 3πG
2 ADAD,

then we can re-express the Dirac equation as

ieµLγ
LD̃µΨ =

δW

δΨ
, (B8)

where direct comparison can be made with Eq. (7).

Finally we consider the variation of the action with respect to the vierbein, which yields the

following Einstein equation:

κεIJKLe
JeMeNRKLMN = − i

4εIJKLe
JeKeM (ΨγLDMΨ−DMΨγLΨ). (B9)
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We use the expression for the contortion given in Eq (B5) to re-write this equation in torsion free

form:

κεIJKLe
JeMeN R̃KLMN = − i

4εIJKLe
JeKeM (ΨγLD̃MΨ− D̃MΨγLΨ)

+ 1
4.16κεIJKLe

JeKeM (δLMA
PAP −ALAM )

− 1
8εIJKLe

JeMeNεKL P
N D̃MAP

− 1
8.16κεIJKLe

JeMeN (ε KQ
PM AQε

PL
NSA

S).

(B10)

The Einstein equations appear very unfamiliar when written in this ‘first-order’ form. To re-

express them in second order form we first multiply though on both sides by eX . After some some

manipulation we obtain:

4κG̃µν = i
2gµνX̃ −

3
4.16κgµνAIA

I − i
2eLµX̃

L
ν − 1

4eLµeMνε
LMNP D̃NAP . (B11)

where XL
µ = (ΨγLDµΨ−DµΨγLΨ), and where we have used the vierbein to switch to spacetime

indices. Notice that the above equation appears a little strange in that the last two terms on

the right hand side do not appear to be symmetric in their indices. Let us however consider the

anti-symmetric part of the second term on its own:

− i
2eL[µX̃

L
ν] = − i

4eLµeMν(Ψ(γLηMN − γMηLN )D̃NΨ− D̃NΨ(γLηMN − γMηLN )Ψ)

= − i
16eLµeMν(Ψ[[γM , γL], γN ]D̃NΨ− D̃NΨ[[γM , γL], γN ]Ψ)

= i
16eLµeMν(Ψ{[γM , γL], γN}D̃NΨ + D̃NΨ{[γM , γL], γN}Ψ)

− i
8eLµeMν(Ψ[γM , γL]γND̃NΨ + D̃NΨγN [γM , γL]Ψ)

= 1
4eLµeMνε

LMNP D̃NAP − i
8eLµeMν(Ψ[γM , γL]γND̃NΨ + D̃NΨγN [γM , γL]Ψ),

(B12)

where for the second equality we have made use of the identity given in Eq. (A5a). We therefore

express the torsion free Einstein equation in its final form as:

4κG̃µν = i
2gµνX̃ −

i
2eL(µX̃

L
ν) − gµν

3πG
2 AIA

I

− i
8eLµeMν(Ψ[γM , γL]γND̃NΨ + D̃NΨγN [γM , γL]Ψ).

(B13)

Direct comparison can be made between this equation and Eq. (11). Once again the second line

on the right hand side does not appear symmetric in its indices. Notice however that this term is

identically zero on shell, which can be seen by making use of the Dirac equation given in Eq. (B8).
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Appendix C: Deriving the form of the Contortion tensor CIJK

In section B we derived the equations of motion for a simplified model with no Holst term, and for

which α = β = τ = λ = 0. While deriving the equations of motion for the full model is significantly

more computationally intensive, it is for the most part no more technically difficult. Perhaps the

one exception is in deriving Eq. (5) from Eq. (4). In this section we therefore fill in the details of

that calculation. We begin by first contracting both sides of Eq. (4) with (εSTMN−2γηS[MηN ]T )eX ,

which after some manipulation yields:

−8κγ

(
1 + γ2

γ2

)[
CX[TS] + ηX[TC

Q|S]
Q

]
= ηX[Sδ

T ]
A (γQA + (AA +Q

A
))

+ 1
2ε
QXST (QQ − γ(AQ +QQ)).

(C1)

The first term on the left hand side of this equation has anti-symmetrised brackets around two of

its indices that we wish to remove. In order to do so we sum together instances of Eq. (5) with

various permutations of its indices. From this procedure we obtain:

8κγ

(
1 + γ2

γ2

)[
CTXS + 2ηS[XC

Q|T ]
Q

]
= ηS[Xδ

T ]
A (γQA + (AA +Q

A
))

+ 1
2ε
QXST (QQ − γ(AQ +QQ)).

(C2)

Next, in order to remove the second term on the left hand side of this equation, notice that we can

obtain an expression for CTXT on its own by contracting Eq. (6) with ηST :

CTXT =
3γ

16κ(1 + γ2)

[
γQX + (AX −QX)

]
. (C3)

Substituting this expression for CTXT back into Eq. (6) finally yields an algebraic equation for the

contortion which we provide in Eq. (5).

Appendix D: Selecting a gauge

In order to simplify the linearly perturbed equations of motion we choose to work in a fixed

gauge. As vierbein gauge fixing is not often discussed in the literature we will provide details

here. We begin by determining how our metric and vierbein perturbations transform under the

symmetries of our model. The line element in conformal time is given by

ds2 = a(τ)2[−(1 + 2ψ)dτ2 + 2Bidτdx
i + (δij + hij)dx

idxj ] , (D1)

where ψ, φ,Bi, and hij are perturbations which depend a priori on all spacetime coordinates. We

can use the invariance of the line element under coordinate transformations to determine how each
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of these perturbations transforms under a coordinate transformation:

ds2 = gµνdx
µdxν = g̃ρσdx̃

ρdx̃σ

= g̃ρσ
dx̃ρ

dxµ
dx̃σ

dxν dx
µdxν

−→ gµν = g̃ρσ
dx̃ρ

dxµ
dx̃σ

dxν (D2)

If we consider a coordinate transformation of the form xµ → x̃µ = xµ+ξµ, where ξµ is small so that

it can be treated as a perturbation, Eq (D2) tells us that the metric perturbations must transform

as:

ψ → ψ̃ = ψ −Hξ0 − ξ̇0 (D3a)

Bi → B̃i = Bi + ∂iξ
0 − δij ξ̇j (D3b)

hij → h̃ij = hij − 2ξ0Hδij − δkj∂iξk − δki∂jξk (D3c)

Following a similar procedure we can also work out how the perturbed vierbein must transform

under coordinate transformations. We express the components of the perturbed vierbein eaµ in

conformal time as:

e0
0 = a(τ)(1 + ψ), e0

i = a(τ)Ci, ei0 = a(τ)Ei, eij = a(τ)(δij + kij). (D4)

Note that the Ci and Ei that are used in this section denote spacetime fluctuations, and that they

are unrelated to the spinor bilinears used in the rest of the paper. We then use the invariance of

the tetrad ea under coordinate transformations to determine how the vierbein must transform:

ea = eaµdx
µ = ẽaνdx̃

ν

= ẽaν
dx̃ν

dxµdx
µ

→ eaµ = ẽaν
dx̃ν

dxµ (D5)

Once again looking at coordinate transformations of the form xµ → x̃µ = xµ + ξµ where ξµ is

small so that we can treat it like a perturbation, Eq. (D5) tells us that the vierbein perturbations

transform as

ψ → ψ̃ = ψ −Hξ0 − ξ̇0 , (D6a)

Ei → Ẽi = Ei − ξ̇i , (D6b)

Ci → C̃i = Ci − ∂iξ0 , (D6c)

kij → k̃ij = kij − ∂jξi − δijHξ0 . (D6d)
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Notice that the vierbein and metric perturbations are not independent, but are linked via the

definition gµν = eaµe
b
νnab. We therefore find:

Bi = −Ci + ηijE
j , (D7a)

hij =
∑
k

(δki k
k
j + δkj k

k
i ) . (D7b)

It is easy to check that the gauge transformations given in Eq. (D3) can be reproduced by making

use of Eqs. (D6) together with Eqs. (D7).

As well as a coordinate index, the vierbeine also have a Lorentz index. Under an infinitesimal

Lorentz transformation, the vierbeine transform as eaµ → êaµ = (δab + Λa•b)e
b
µ. As short calculation

shows that vierbein perturbations therefore transform as

ψ → ψ̂ = ψ, (D8a)

Ei → Êi = Ei + Λi0, (D8b)

Ci → Ĉi = Ci + Λ0
i, (D8c)

kij → k̂ij = kij + Λij . (D8d)

From Eqs. (D7) it follows that the metric perturbations Bi and hij remain invariant under local

infinitesimal Lorentz transformations, as expected.

Let us now eliminate the redundant components that arise because we are analyzing a gauge

theory. We start by fixing a local Lorentz gauge. The vierbein perturbations account for 16 degrees

of freedom, which is 6 more than for the metric. The Lorentz group is 6 dimensional, and so the

choice we take is to fix the extra degrees of freedom in the vierbein (i.e. we leave the spinor degrees

of freedom completely un-fixed). We set:

Ci = −ηijEj , (D9)

kij = kji, (D10)

which from Eq. (D7) implies Bi = −2Ci = 2Ei. Having used up all of our Lorentz freedom to gauge

fix the vierbein, we next want to use coordinate freedom to do the same for the metric. Before doing

so however it will be useful to first perform a so called scalar, vector, tensor (SVT) decomposition

of the metric. This means that we decompose the vector perturbation Bi into its scalar and vector

components [56]:

Bi = ∂iB︸︷︷︸
scalar

+ B̂i︸︷︷︸
vector

(D11)
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where ∂iB̂i = 0. We similarly decompose hij into its constituent parts:

hij = 2δijφ+ 2∂〈i∂j〉χ︸ ︷︷ ︸
scalar

+ 2∂(iF̂j)︸ ︷︷ ︸
vector

+ 2ĥij︸︷︷︸
tensor

, (D12)

where ∂〈i∂j〉χ = (∂i∂j − 1
3δij∂

k∂k)χ, and hatted quantities are divergence-less ∂iF̂i = ∂iĥij = 0 and

traceless ĥii = 0. Likewise ξi = ξ̂i + ξ,i. We therefore see that the metric perturbations decompose

into four scalar degrees of freedom φ, ψ,B, χ, four vector degrees of freedom B̂i, F̂i, and two tensor

degrees of freedom ĥij . Under this decomposition the gauge transformations given in Eq. (D3) are

re-expressed as:

ψ → ψ −Hξ0 − ξ̇0,

φ→ φ− ξ0H− 1
3∂k∂

kξ,

B̂i → B̂i − ∂0ξ̂i,

χ→ χ− ξ,

B → B + ξ0 − ξ̇,

F̂i → F̂i − ξ̂i,

(D13)

while ĥij is gauge invariant. It is immediately clear that by choosing ξ, ξ0 and ξ̂i appropriately we

have the freedom to set two scalar and two vector degrees of freedom to zero. We choose Newtonian

gauge: B = χ = F̂i = 0. The final line element is given in Eq. (36), where in an effort to reduce

clutter we have dropped the ‘hats’ on the vector and tensor perturbations.
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