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We present a prescription for computing gravitational waveforms for the inspiral, merger and ringdown of
non-spinning eccentric binary black hole systems. The inspiral waveform is computed using the post-Newtonian
expansion and the merger waveform is computed by interpolating a small number of quasi-circular NR wave-
forms. The use of circular merger waveforms is possible because eccentric binaries circularize in the last few
cycles before the merger, which we demonstrate up to mass ratio q = m1/m2 = 3. The complete model is
calibrated to 23 numerical relativity (NR) simulations starting ≈ 20 cycles before the merger with eccentrici-
ties eref ≤ 0.08 and mass ratios q ≤ 3, where eref is the eccentricity ≈ 7 cycles before the merger. The NR
waveforms are long enough that they start above 30 Hz (10 Hz) for BBH systems with total mass M ≥ 80M�
(230M�). We find that, for the sensitivity of advanced LIGO at the time of its first observing run, the eccentric
model has a faithfulness with NR of over 97% for systems with total mass M ≥ 85M� across the parame-
ter space (eref ≤ 0.08, q ≤ 3). For systems with total mass M ≥ 70M�, the faithfulness is over 97% for
eref . 0.05 and q ≤ 3. The NR waveforms and the Mathematica code for the model are publicly available.

I. INTRODUCTION

In 2015, LIGO detected the gravitational wave (GW) event
GW150914 corresponding to the merger of a binary black hole
(BBH) system [1]. Subsequently, further events from BBH merg-
ers have been detected [2, 3]. The parameters of the binaries
were inferred from the measured data using waveform models cal-
ibrated to numerical relativity (NR) simulations [4–6] under the
very reasonable assumption that the orbit of the binary was quasi-
circular [7]. This is expected because binary eccentricity decays
quickly under the emission of gravitational radiation [8].

Whilst there is no known mechanism by which a BBH system
could retain a non-negligible eccentricity in the last ∼ 4 orbits
before merger that LIGO was able to see for the high mass event
GW150914, we would like to confirm this astrophysical predic-
tion by comparing the data to general relativistic waveforms in-
cluding eccentricity. Further, several scenarios have been sug-
gested in which binaries may retain non-negligible eccentricity
for an extended time [9–20], including some where the binary
may enter the sensitive frequency band of LIGO or LISA a large
number of cycles before merger, and before this eccentricity has
decayed.

Gravitational wave data analysis using the method of matched
filtering requires accurate models of the waveforms in order to
measure source parameters. For the inspiral of eccentric binaries,
models based on the post-Newtonian (PN) approximation can be
used. PN theory for binaries in eccentric orbits is very well de-
veloped [8, 21–35], but because the approximation assumes that
the black holes are widely-separated and slowly-moving, PN can
only model the inspiral waveform.

∗ ian.hinder@aei.mpg.de

Near the merger, the waveform can only be determined using
full numerical solutions of the Einstein equations. Numerical rel-
ativity results for eccentric BBH systems were first presented in
[36, 37]. In [37], it was found that the eccentricity in equal-mass
eccentric binary waveforms becomes irrelevant a few cycles be-
fore the merger. At this point, to a good approximation, the binary
circularizes leaving the same merger waveform and a black hole
of the same final mass and spin as if the inspiral had been circular.

The first comparison between eccentric PN waveforms and NR
was performed in [38], and agreement was found between 21
and 11 GW cycles before merger. Comparisons at later times
were compromised by inaccuracy in the NR simulations. In [39]
and [40], the evolution of eccentricity in NR simulations was
compared with Newtonian and PN predictions and shown to be
broadly consistent.

While it is possible to perform NR simulations of BBH mergers
for a small number of configurations, each simulation takes sev-
eral weeks to run, and is too computationally expensive to use for
GW parameter estimation, where typically millions of waveforms
with different parameters are generated and compared to the data.
Further, the length of NR simulations is generally limited to tens
of orbits, also due to computational expense. Therefore, computa-
tionally inexpensive waveform models are required, which repro-
duce the NR waveforms to a sufficient accuracy, and which can
produce waveforms with the large numbers of orbits which may
be visible to a gravitational wave detector.

The first eccentric waveform model incorporating inspiral,
merger and ringdown (IMR) was presented in [41]. The inspiral
is based on PN, using an improved version of the “x-model” [38],
and the merger is modeled by the non-eccentric Implicit Rotating
Source model of [42] assuming that eccentricity will be negligi-
ble by the time of the merger. The complete IMR model is called
the “ax-model”. An initial comparison with two NR waveforms
showed that the model was realistic. Recently, two different mod-
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els for eccentric binary inspiral-merger-ringdown waveforms for
nonspinning BBH systems in the Effective-One-Body framework
were proposed. In [43], the foundations of an eccentric model
were presented. In [44], another model was developed, and initial
comparisons were performed with three NR simulations.

In this paper, we present a new set of 20 eccentric non-spinning
NR simulations using the Spectral Einstein Code (SpEC), which
we have made available as part of the public catalog [45] of the
Simulating eXtreme Spacetimes collaboration. The simulations
have initial eccentricities e ≤ 0.2, mass ratios q ≤ 3 and generally
start ≈ 20 cycles before the merger. The new simulations show
that the circularization shortly before merger observed in [37] for
equal-mass binaries extends to binaries with mass ratio q ≤ 3.
This justifies the use of circular merger waveforms in [41].

Independently of [41], we develop an eccentric IMR model
based on the PN x-model [38], combined with a circular merger
waveform. Our quasi-circular merger waveform, which can be
evaluated for any mass ratio q within the calibration region 1 ≤
q ≤ 4, is obtained by interpolation between several NR wave-
forms with different q. For the transition region between the ec-
centric PN portion and the circular NR portion, we use a prescrip-
tion calibrated to the new eccentric NR simulations, for which
an essential ingredient is a fit of the time between the waveform
reaching a given reference frequency and the peak of the wave-
form amplitude.

We test our model against the NR simulations, quantifying the
agreement in phase, amplitude, and faithfulness (a measure of how
close the waveforms are when observed by a gravitational wave
detector). Since the waveforms do not agree perfectly, there is an
ambiguity in the choice of PN parameters to use when compar-
ing with a given NR waveform. We choose PN parameters such
that the waveforms agree shortly before the merger, and measure
the accumulation of error at preceding times. This allows us to
be confident in the behavior of the model at the merger, and we
expect that improvements to the PN inspiral model would extend
its validity to earlier times.

The NR waveforms are available in the SXS Public Waveform
Catalog [45], and a Mathematica package EccentricIMR imple-
menting the full inspiral-merger-ringdown model is available as
open source software at [46].

In Sec. II, we identify the main features of the eccentric PN
x-model which is the basis of our IMR model. In Sec. III, we
describe the NR simulations, including the code used and the ec-
centric configurations that we simulated. We validate the wave-
forms by assessing the main sources of error, and finally we show
that the circularization observed in [37] extends to mass ratios
q ≤ 3. Sec. IV discusses the method we use to define eccentricity
in NR. Sec. V shows how the circular merger model (CMM) is
constructed by interpolating between NR waveforms. In Sec. VI,
we explain how the IMR model is constructed by combining the
PN inspiral with the CMM, and the calibration to NR simula-
tions, including the time-to-merger fit, that we use for the tran-
sition. In Sec. VII, we address issues related to computing Fourier
transforms of eccentric NR waveforms, required for computing
the faithfulness of waveforms for gravitational wave data analy-
sis. In Sec. VIII, we compare the IMR model with the NR wave-
forms, analyzing both the time-domain frequencies, phases and
amplitudes, as well as the Fourier-domain faithfulness relevant to
gravitational wave detection and parameter estimation. Finally,
Sec. IX summarizes our results, and discusses possible future im-
provements of our model.

Throughout, we use units in which G = c = 1.

II. PN INSPIRAL MODEL

In this section, we briefly review the “x-model”, an eccentric
PN inspiral model introduced in [38] and involving a change of
variables of the “n-model” presented in [31]. We begin by recall-
ing Newtonian eccentric orbits.

Consider the relative orbit of two bodies at positions ~x1, ~x2 of
masses m1 and m2. We restrict to the case where the bodies orbit
in the xy plane, since in the non-spinning case, BBH systems will
orbit in a plane due to symmetry. The separation r = |~x1 − ~x2|
satisfies

r = a [1− e cosu] (1)

where a is the semi-major axis of the orbit, e is the eccentricity,
which parametrizes the amplitude of the oscillations in r, and u
is the eccentric anomaly, an angular variable which represents the
phase of the oscillation in r. Pericenter (point of closest approach)
is at u = 0, and u = π corresponds to apocenter. The angular
velocity of the orbit is given by

φ̇ =
n
√

1− e2

[1− e cosu]
2 (2)

where n is the mean motion, defined as 2π/P , where P , the radial
period, is the time between pericenter passages. In Newtonian
dynamics, the quantities a, e, n and P are constants, which can
all be expressed in terms of the energy E and angular momentum
L; i.e. only two of them are independent. u can be determined by
solving the Kepler equation,

l ≡ 2π(t− t0)/P = u− e sinu , (3)

a transcendental algebraic equation for u, where l is called the
mean anomaly, and t0 is a time corresponding to pericenter pas-
sage. l parametrizes the time elapsed since the preceding pericen-
ter passage. Eq. 3 can be solved numerically for u, for example
by Newton’s method, at each t. Thus we can obtain r and φ̇ (and
hence ṙ and φ) at any time t. Each orbit can be parametrized by
the four independent constants a, e, φ(t̄) and l(t̄) at a time t = t̄.

The post-Newtonian quasi-Keplerian representation of eccen-
tric orbits [22–29, 32, 47, 48] is based on the above descrip-
tion, and utilizes the same quantities. However, the equations
relating these quantities contain post-Newtonian corrections, ex-
pressed as powers of v/c. For a pedagogical introduction to the
post-Newtonian Kepler problem, see [49]. In the PN description,
there are three different eccentricities, et, er and eφ, related to
each other by PN expressions. These are introduced to simplify
certain relations. Here, we express everything in terms of e ≡ et.
Relativistic eccentric orbits have the new feature of precession of
the pericenter. The azimuth of the pericenter increases by ∆φ
during one radial (pericenter to pericenter) period P , so that the
azimuthal coordinate φ increases by 2π + ∆φ during this time. n
no longer reduces to the angular velocity φ̇ in the circular limit,
and instead we introduce the quantity ω ≡ (2π + ∆φ)/P , the av-
erage angular velocity. In the relativistic circular case, ω = φ̇. For
Newtonian orbits, further, ω = n. When radiation reaction effects
are neglected, ω is a constant. The choice of PN variables (for ex-
ample n or ω) to use to expand the equations is arbitrary, and leads
to different approximants once the PN series is truncated. In [38],
it was found that expanding the equations in x = (Mω)2/3 led to
better agreement between NR and PN than expanding them in n,
as had been customary previously. The ω variable has the benefit
of agreeing with the angular velocity used as an expansion vari-
able in the quasi-circular Taylor T4 model which has been shown
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to agree well with NR in the non-spinning equal-mass case [50],
but we know of no deep reason why ω (equivalently x) should be
better than n. We expect this good agreement to deteriorate for
spinning systems or for q >> 1 [51]. We parametrize the orbit in
terms of the two dimensionless quantities x and e.

In the PN model, Eq. 1 remains unchanged, but Eqs. 2–3 are
modified by PN correction terms, expanded to 3 PN order. Rel-
ativistic orbits not only differ by pericenter precession and PN
correction terms, but the energy and angular momentum, which in
the Newtonian case are constants, also change due to the emission
of gravitational waves. In the adiabatic approximation, the fluxes
of E and L are approximated by time-averaging over a radial pe-
riod P , and are used to calculate the time derivatives of x and e.
These fluxes are used here to 2 PN order.

Hence, in order to compute an orbit subject to energy and angu-
lar momentum loss, it is first necessary to solve the pair of coupled
ODEs for ẋ and ė, then compute u using the PN Kepler equation,
from which l, r and φ are obtained.

Finally, we compute the gravitational wave using the restricted
approximation, in which the ` = 2,m = 2 spin-weight−2 spheri-
cal harmonic mode of the waveform is given to leading (quadrupo-
lar, Newtonian) order as

h22 =

∫
−2Y

2
2
∗
(θ, ϕ)h(θ, ϕ)dΩ (4)

= −4Mηe−2iφ

R

√
π

5

(
M

r
+ (φ̇r + iṙ)2

)
, (5)

h2−2 = h22∗ . (6)

Here, −2Y 2
2 (θ, ϕ) = 1

2e
2iϕ
√

5/π cos4 (θ/2), and θ and ϕ are the
spherical polar angles of the observer. The ` = 2,m = ±2 modes
dominate for small e.

For the purpose of this work, we consider the x-model as a
black box, completely defined in [38], that produces h22(t) for a
given (x0, e0, l0, φ0). The model is expected to be a good approx-
imation of the relativistic dynamics when the separation is large
and the velocity is small, and will break down close to the merger.

III. NR SIMULATIONS

A. NR methods

SpEC [52–55] is a pseudo-spectral code capable of efficiently
solving many types of elliptic and hyperbolic differential equa-
tions, with the primary goal of modeling compact-object bina-
ries. For smooth problems, spectral methods are exponentially
convergent and high accuracy can be achieved even for long simu-
lations. SpEC evolves the first order formulation [56] of the gen-
eralized harmonic formulation of Einstein’s equations [57, 58].
The damped harmonic gauge [59] is used to provide stable coor-
dinate conditions. Singularities inside BHs are dynamically ex-
cised from the computational domain using feedback control sys-
tems [60, 61] and initial conditions of low orbital eccentricity
are obtained by an iterative evolution procedure [62]. SpEC uses
h-p adaptivity1 to dynamically control numerical truncation error

1 h-p adaptivity refers to varying both the size, h, of the elements and the order,
p, of the polynomials in each element.

Case Simulation q x0 eref lref tpeak Norbs.

1 SXS:BBH:0180 1 0.0540 0.00 0.667 8720.2 26.7
2 SXS:BBH:1355 1 0.0718 0.05 -2.801 2551.6 11.9
3 SXS:BBH:1356 1 0.0582 0.07 0.931 6001.0 20.8
4 SXS:BBH:1357 1 0.0689 0.10 1.344 2889.0 12.8
5 SXS:BBH:1358 1 0.0703 0.10 -1.789 2655.9 12.1
6 SXS:BBH:1359 1 0.0711 0.10 2.727 2530.5 11.7
7 SXS:BBH:1360 1 0.0710 0.14 2.093 2372.7 11.1
8 SXS:BBH:1361 1 0.0713 0.14 1.469 2325.5 10.9
9 SXS:BBH:1362 1 0.0710 0.19 0.905 2147.2 10.2
10 SXS:BBH:1363 1 0.0711 0.19 0.500 2108.8 10.1
11 SXS:BBH:0184 2 0.0710 0.00 -0.604 3014.6 13.7
12 SXS:BBH:1364 2 0.0697 0.05 2.132 3200.3 14.2
13 SXS:BBH:1365 2 0.0696 0.06 1.926 3180.8 14.1
14 SXS:BBH:1366 2 0.0696 0.10 0.963 3073.3 13.6
15 SXS:BBH:1367 2 0.0702 0.10 -0.743 2955.3 13.3
16 SXS:BBH:1368 2 0.0709 0.10 -2.010 2850.1 13.0
17 SXS:BBH:1369 2 0.0693 0.19 -1.575 2616.7 11.9
18 SXS:BBH:1370 2 0.0710 0.19 1.691 2376.9 11.1
19 SXS:BBH:0183 3 0.0745 0.00 1.818 2811.9 13.5
20 SXS:BBH:1371 3 0.0696 0.06 -2.301 3707.5 16.2
21 SXS:BBH:1372 3 0.0696 0.09 2.963 3564.6 15.6
22 SXS:BBH:1373 3 0.0701 0.09 1.640 3451.5 15.3
23 SXS:BBH:1374 3 0.0695 0.18 -0.481 3014.9 13.5

TABLE I. Eccentric NR simulations used in this work. The columns give
the case number, the SXS catalog number, the mass ratio q = m1/m2,
where m1 and m2 are the masses of the black holes, the initial average
orbital frequency parameter x0, the eccentricity eref and mean anomaly
lref measured at a reference frequency xref = 0.075, the time since the
start of the usable waveform at which |h22| reaches its peak, and the
number of orbits.

and to increase computational efficiency [63]. Waveforms are ex-
tracted using the Reggie-Wheeler-Zerilli formalism on a series of
coordinate spherical shells and extrapolated to null infinity using
polynomial expansions in powers of the areal radius [64].

B. Configurations

We aim to simulate BBH configurations with a given initial
frequency parameter x, eccentricity e and mean anomaly l (see
Sec. II). We use the PN approximation to translate these quanti-
ties into the initial data parameters needed by SpEC, namely the
orbital angular velocity φ̇, the separation of the horizon centroids
r, and the radial velocity ṙ. This specification of initial data pa-
rameters is only an approximation, because the PN and NR quanti-
ties are expressed in different coordinate systems, and the NR ini-
tial data contains non-astrophysical junk radiation which perturbs
the parameters of the binary away from those given in the initial
data. Nevertheless, we find that this prescription gives waveforms
which agree to a good approximation with the PN (x, e, l). These
initial data parameters are not used at any point in the subsequent
analysis; all quantities are measured from the waveforms, so any
discrepancy is not important.

We perform new simulations for 20 eccentric non-spinning con-
figurations using the SpEC code. We also use 3 existing quasi-
circular non-spinning configurations already available in the SXS
Public Waveform Catalog [6]. The parameters of these configura-
tions are given in Table I. In order to assess the numerical trunca-
tion error, each configuration is run at multiple resolutions. The
error analysis is presented in Sec. III D. For each of the cases 1–
23, Table I gives the SXS catalog identification number, the mass
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ratio q = m1/m2, the orbital frequency parameter x0 measured
after the junk radiation portion of the waveform, the eccentric-
ity eref and mean anomaly lref measured at a reference frequency
xref = 0.075, the time of the peak of the amplitude of the domi-
nant mode of the gravitational wave strain |h22|, and the number
of orbits simulated. x, e and l are measured entirely from the
waveforms by fitting to PN as described in Sec. IV. xref was cho-
sen as the lowest frequency common to all the waveforms, and for
most simulations, corresponds to a time close to the start of the
simulation.
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FIG. 1. The NR configurations plotted as a function of eccentricity eref

and mean anomaly lref at the reference frequency xref = 0.075 for differ-
ent mass ratios q.

Fig. 1 shows the distribution of eccentricities and mean anoma-
lies in the parameter space. The configurations span mass ra-
tios q ≤ 3, eccentricities 0 ≤ e0 ≤ 0.2, and mean anomalies
−π < l0 ≤ π. Most of the eccentric configurations start at an
average orbital frequency parameter of x ∼ 0.07 and evolve for
between 11 and 15 orbits before merging.

C. Effects of eccentricity in waveforms

Fig. 2 shows an example of one of the eccentric waveforms,
Case #9, with eref = 0.19. The usual oscillations in the strain (top
panel) at twice the orbital frequency are modulated by an oscil-
lating envelope with a frequency lower than the orbital frequency,
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FIG. 2. An NR waveform with eccentricity eref = 0.19 (Case #9). The
top panel shows the real part and amplitude of the dominant ` = 2,m =
2 spherical harmonic mode of the strain, and the bottom panel shows the
frequency of this mode, computed as ω22 = d

dt
arg h22. The oscillations

in |h22| and ω22 are characteristic features of eccentricity.

corresponding to precession of the pericenter. These modulations
due to eccentricity persist at least up to ∼ 3 cycles before the
merger. The instantaneous gravitational wave frequency (bottom
panel) also shows oscillations due to eccentricity, where in the
quasi-circular case, the frequency would vary monotonically. The
period of the oscillations in the amplitude and instantaneous fre-
quency corresponds to the radial orbital period P , and the ampli-
tude of the oscillations is related to the eccentricity e. The phase
of the oscillations is associated with the mean anomaly, l. See
Sec. II for the definitions of these quantities.

D. Accuracy of the NR waveforms

We have verified that the NR waveforms are not dominated by
numerical truncation error due to finite resolution of the simula-
tions. The waveform phase error accumulated up to the peak of
|h22|, estimated as the difference between the highest two reso-
lutions [65], is less than 0.2 radians. The amplitude error during
the inspiral, computed as a function of phase, is typically below
1%, but in a small number of cases is as large as 5%. The unfaith-
fulness (see Sec. VII A) between the NR waveforms at different
resolutions is 1 − F < 7 × 10−4 in all cases. Some configu-
rations, for example those for higher mass ratios, were run with
higher resolution in order to attain this accuracy.
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E. Circularization

In [37], it was shown that when non-spinning equal-mass black
holes merge, the mass and spin of the resulting black hole were
independent (within numerical error) of the eccentricity of the bi-
nary for initial eccentricities e ≤ 0.4 (measured when the radial
period P ∼ 387M ). Further, the gravitational wave frequency
from binaries with different initial eccentricities was shown to be
visually indistinguishable for t > tpeak − 50M (Fig. 3 of [37]).
This provides evidence that the binary circularizes within ∼ 50M
of the merger.

Here, we study this circularization for unequal mass systems
with mass ratios up to q = 3. Fig. 3 shows the amplitude and
frequency of the gravitational wave for several eccentricities with
mass ratio q = 3. We clearly see the effect of eccentricity as
oscillations in both the frequency and amplitude of the waveform
for t < tpeak−30M . However, for t > tpeak−30M , the waveforms
are visually indistinguishable. The lower panels of Fig. 3 show
the relative difference between each eccentric configuration and
the circular case. We see that for t > tpeak − 30M , the waveform
amplitude and frequency differ by only 4% for all the different
eccentricities at fixed mass ratio q. For q = 1 and q = 2, we
find the same behavior; irrespective of initial eccentricity (up to
e0 . 0.2) and initial mean anomaly, all simulations at the same
mass ratio q show nearly identical amplitude and frequency for
t > tpeak − 30M .

We interpret this to mean that the binary has circularized by
30M before the merger, to an accuracy of 4%. Hence, when mod-
eling the waveform from eccentric binaries, there may be no need
to use an eccentric model for the merger portion, as using a circu-
lar model instead may introduce a negligible effect on observables
such as the waveform. Fig. 3 justifies the use of circular merger
waveforms in [41].

IV. MEASURING ECCENTRICITY

Given an eccentric waveform model, we may wish to use it to
measure the parameters of a GW signal. This amounts to deter-
mining (M, q, x(tref), e(tref), l(tref), φ(tref); tref) at some reference
time tref. Since there is a freedom to choose tref, we quote the pa-
rameters at a fixed value of xref. For example, in Table I, we use
xref = 0.075.

In simplified terms, the parameters of a GW source are mea-
sured by comparing the measured GW strain data to the model,
and determining the model parameters which best reproduce the
data. Note that the measured parameters are therefore PN parame-
ters. There are plausible quasi-local GR definitions for black hole
masses and spins, and we can therefore ask what bias is introduced
in these measured parameters by using an approximate PN-based
model instead of a true GR (or NR) waveform. We can determine
this by fitting the PN model to an NR waveform of known masses
and spins, and measuring the difference in the measured parame-
ters.

However, in the eccentric case, the situation is complicated by
the fact that there is no clear general relativistic definition of ec-
centricity with which to label an NR waveform (see [39] and
[66] for various possible definitions). Our approach is to define
e and l of the NR system as the PN values for which the agree-
ment between the instantaneous NR and PN waveform frequency,
ω22 = d/dt arg(h22), is maximized over a single radial period
centered on a reference time at which x = xref. This is possi-

ble because we find that the PN model we are using, with 3 PN
conservative dynamics, agrees very well with NR over one radial
period, as shown in [38]. The dominant error in our model is the
2 PN adiabatic evolution of x and e on timescales longer than one
radial period. If the agreement over one radial period were not
good, then it would be problematic to use PN to define the eccen-
tricity of an NR waveform.

We fit the PN model to the NR data as follows. First, we choose
a time window [t1, t2] in which to fit the eccentric PN model. We
then perform a least squares fit of ωPN

22 (x, e, l) to ωNR
22 to deter-

mine (x, e, l). We then perform an additional fit of φPN
22 (x, e, l, φ)

to φNR
22 to determine φ. This is the same procedure used in [38].

This fitting can be performed over any time interval, and gives
the best-fitting PN parameters over that one interval. Since the
NR and PN waveforms are not the same, the measured parameters
and the resulting waveform will depend on the choice of fitting
interval.

In Sec. VIII, we will compare the eccentric IMR model to the
NR waveforms. For this purpose, we choose to fit the PN model to
the NR waveform at x = 0.11, which typically occurs ≈ 7 cycles
before the merger. The time interval used for fitting is centered on
this point with total width equal to the radial period P . Note that
the choice of fitting window therefore depends on x and P from
the fit. We use an iterative process, starting from an initial guess
for the fitting window location and width, and update the guess
based on the result of the fit. We use the parameters measured at
this point to label the waveform. The RMS fit error in each case
is ≤ 1%, indicating that the PN model accurately describes the
waveform on a timescale of one radial period close to the merger.

For the configuration with q = 1 and e0 = 0.1 as determined by
the initial parameters (Case #6), the comparison between ωNR and
ωPN for the ` = 2,m = 2 mode, fitted across one radial period
at x = 0.11, is shown in Fig. 4. Note that this procedure for
choosing the PN parameters corresponding to an NR waveform is
not unique. For example, in [38], a longer fitting interval near the
start of the NR waveform was chosen. Our motivation in this work
is to accurately model the merger, so we choose to make the NR
and PN waveforms agree close to the merger, and then evaluate
the growth in error at earlier times.

V. CIRCULAR MERGER MODEL

As shown in Sec. III E, the eccentric NR waveforms circular-
ize before the merger, suggesting that it should be possible for an
eccentric waveform model to incorporate a circular model for the
merger. Any circular waveform model should be sufficient. For
example the Implicit-Rotating-Source (IRS) model [42] used in
[41], effective-one-body models such as SEOBNRv4 [67], or sur-
rogate models [68] formed by interpolating NR waveforms. As
shown in Fig. 4 of [41], the IRS model does not match the NR data
perfectly, and the EOB and surrogate models introduce additional
complications to our model which are not necessary for modeling
the straightforward waveform from a non-spinning BBH merger.
Hence, we created a very simple model for the merger waveform
by performing an interpolation in q of a small number of non-
eccentric non-spinning NR waveforms in the neighborhood of the
merger. The resulting circular merger model (CMM) can be eval-
uated for 1 ≤ q ≤ 4 and arbitrary φ0, corresponding to the initial
phase of the waveform. This model agrees well with non-eccentric
NR waveforms. Note that there is no attempt to ensure validity
for q > 4, and it will very likely break down for these mass ra-
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FIG. 3. Circularization of q=3 non-spinning binary black hole waveforms. Shown in the upper panels are the amplitude, A, and frequency, ω22, of the
l = 2,m = ±2 mode of the gravitational wave strain. The lower panels show the fractional deviations from the non-eccentric results A22,circ and
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FIG. 4. PN fit to NR frequency to measure eccentric parameters at x =
0.11 shortly before merger.

tios, though extension of the method to higher mass ratios should
present no difficulties.

To construct the CMM, we take three non-spinning input wave-
forms from the SXS waveform catalog [6] with mass ratios 1, 2
and 4 (SXS:BBH:0180, SXS:BBH:0184 and SXS:BBH:0182, re-
spectively), and apply a time shift such that the peak of |h22| is at
t = 0. We thus obtain hNR(t, qi) for i = 1, 2, 3. For each wave-
form, we then compute the amplitude ANR(t, qi) = |hNR(t, qi)|

and instantaneous frequency ωNR(t, qi) = d/dt arg(hNR(t, qi)),
and interpolate them to a common uniform time grid t ∈
[−100M, 80M ] with spacing 0.4M , resulting in 450 sample
points. At each time, we construct a 2nd order interpolating func-
tion in q for A and ω across the mass ratios qi. This set of 2x450
interpolants constitutes the model.

To create a circular merger waveform at arbitrary (q, φ0, tpeak),
we evaluate these interpolants at each sample time with the de-
sired q, integrate the resulting ω numerically to get φ, choosing an
appropriate integration constant, then compute the strain h from
A and φ. This constitutes the Circular Merger Model (CMM).

To test the CMM, we use additional SXS catalog waveforms
with mass ratios q = 1.5, 2.5, 3.0, 3.3, 4 (also used in [68]). Fig. 5
shows a comparison between the CMM and each of the test wave-
forms. The solid lines are the NR data, and the dashed lines are
the CMM. We see that in all cases, A and ω are visually indis-
tinguishable between the NR and CMM results, except for some
oscillations in ω at t > tpeak + 50M . The phase and amplitude
differences between NR and the CMM are also plotted, and we
see that the maximum phase error in the CMM is ∼ 0.15 radians,
and the maximum amplitude error is∼ 10% at late times, but only
∼ 3% if the low amplitude portion at the end of the ringdown is
excluded2 .

2 In fact, the test waveforms have higher numerical truncation error than the input
waveforms, and this error is comparable to the differences between the CMM
and the test waveforms.
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FIG. 5. Tests of the circular merger model (CMM) for NR waveforms which were not used to construct it. Plotted in (a) and (b) are the GW frequency
and amplitude from NR simulations (solid curves) and the CMM (dashed curves). We see good agreement. In (c) and (d) are plotted the phase and
relative amplitude differences between NR and the CMM. (e) shows the real part of the ` = 2,m = 2 mode of the gravitational wave strain, and (f)
shows the unfaithfulness between NR and the CMM (see Sec. VII A).

In order to evaluate the faithfulness of the CMM with the
NR waveforms, we have combined the inspiral of an NR test
waveform with the merger from the CMM, blended using a
transition function T (see Eq. 20) in the region t − tpeak ∈
[−100M,−80M ]. As shown in Fig. 5, the unfaithfulness in each
case is 1− F < 4× 10−4.

VI. CONSTRUCTION OF AN IMR WAVEFORM MODEL

A. Motivation and approach

We have described the eccentric PN model for the inspiral, and
a circular model for the merger, and have shown that the merger
from NR is essentially circular. We now define a method for com-
bining the PN inspiral (“x-model”) with the circular merger model
(CMM) based on a simple blending of the two models in a transi-
tion region. We will evaluate afterwards how well this has worked.

The starting point is the reference time, at which x = 0.11.



8

We choose the parameters (x0, e0, l0, φ0) at this time, tref . We
compute the waveform from PN for t < tref . We use the CMM
for t > tpeak − 30M , since we have shown that a circular model
is good after 30M before the peak. Note that we do not yet know
the time at which the peak occurs, given the time of the reference
point, ∆t = tpeak − tref .

If the PN waveform agreed well with the NR waveform for t <
tcirc, the model would now be complete, because we could match
the circular waveform frequency and phase to the PN frequency
and phase at t = tcirc. Unfortunately, the PN waveform cannot be
extended reliably up to tcirc, and it disagrees with the circular NR
waveform between tref and tcirc, so this procedure would result in
a merger waveform with a noticeable error in the time and phase
of the peak. This is not surprising, because the PN approximation
is not expected to be good so close to the merger.

Instead, we adopt a simple model for the time to merger ∆t and
fit it to the NR simulations. This model works very well, and es-
sentially guarantees that the final IMR model will have the wave-
form peak at the correct time, to within the errors in ∆t. Once
we have ∆t, we blend the eccentric PN waveform with the cir-
cular NR interpolated model between tref and tcirc. There will be
a discrepancy between the model and NR in this region, and the
validity of this model will be assessed in Sec. VIII.

B. Time to merger

We now determine ∆t = tpeak − tref given the parameters at
tref . The most general functional form would be

∆t(q, e, l) =

∞∑
ijk=0

aijkq
iej cos(kl − αijk) (7)

where we use a Taylor expansion in q and e, and a Fourier series
in l, since l is a periodic variable. In order to match the NR data,
we find that we require quadratic terms in q and e, but only the
first mode in l. Since there can be no variation with l when e = 0,
we must have ai01 = 0. The resulting model for ∆t is

∆t(q, e, l) = ∆t0 + a1e+ a2e
2 + b1q + b2q

2 +

c1e cos(l + c2) + c3eq (8)

There are 8 unknown parameters, and the model is fitted to all 23
simulations. The fitted function is

∆t(q, e, l) = 391.196 + 3.13391e− 2492.95e2 +

2.77212q − 17.92eq + 8.11842q2 +

76.4944e cos(0.626653 + l) (9)

Fig. 6 shows ∆t for each NR simulation, along with the value
obtained from the fit. The fit residual is less than ±1M , and the
essential functional dependence of ∆t(q, e, l) has been captured
by the model. We conclude that the time of the peak can be pre-
dicted from the parameters at tref to within ±1M .

C. Combining all the ingredients

Given the eccentric parameters (x0, e0, l0, φ0) at tref , we now
construct a full IMR waveform. The eccentric PN waveform is
hPN(t), such that its parameters at t = tref match the desired
model parameters. The circular merger waveform is hcirc(t), such
that the peak occurs at t = 0. The waveform is decomposed into

NR
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FIG. 6. Agreement of the time-to-merger model with NR. The time be-
tween the reference point and the peak of |h22| is shown as a circle for
each NR simulation, and a cross for the fitted model from Eq. 9.

amplitude, A, and frequency, ω, as h = Aeiφ, and φ̇ = ω. The
IMR waveform is given by

tpeak = tref + ∆t (10)
tcirc = tpeak − 30M (11)

tblend = t|x=xblend (12)
α(t) = T (t; tblend, tcirc) (13)
A(t) = α(t)APN + (1− α(t))Acirc(t− tpeak) (14)

ω(t) = α(t)ωPN + (1− α(t))ωcirc(t− tpeak) (15)

φ(t) =

∫ t

ω(t′)dt′ (16)

h(t) = A(t)eiφ(t) (17)

The start of the blending region is chosen as xblend = 0.12, and
the reference point as xref = 0.11. In words, we time-shift the
circular waveform so that its peak is in the correct place accord-
ing to the time-to-merger fit of Sec. VI B, and blend the amplitude
and frequency of the PN and circular waveforms using a transi-
tion function T (see Eq. 20) between tblend and tcirc to ensure a
smooth transition in these quantities. The phase is then computed
by integrating the frequency, leading to the final waveform.

This procedure is illustrated for Case #6 in Fig. 7, which shows
the amplitudes and frequencies from PN and the circular model,
as well as the transition region in which they are blended. The NR
waveform is shown for comparison, but no information from the
NR waveform (other than the set of fit parameters at tref) is used
in computing the model waveform.

We see in Fig. 7 that the IMR waveform ω agrees with PN and
NR before tref, and with the CMM after tcirc. There is a visible
discrepancy between the IMR and NR frequency between tref and
tcirc, though this is small. The PN waveform breaks down after
tcirc. The IMR amplitude A has a visible disagreement with the
NR amplitude, presumably due to the fact that zeroth-order PN
(restricted) waveform amplitudes are used in the model.

VII. FOURIER DOMAIN COMPARISONS OF WAVEFORMS

In this section, we discuss the comparison of waveforms from
the point of view of gravitational wave data analysis, which re-
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FIG. 7. Combining the different ingredients to produce the IMR wave-
form. The top panel shows the transition function α which is used to
blend the amplitude, A, and frequency, ω, between the eccentric PN and
circular NR waveforms. The middle and bottom panels show A and ω
from the NR simulation, the PN model fitted to it at the reference point
tref, and the circular merger model (CMM) with peak tpeak determined
from the time-to-merger fit ∆T . Between tref and tpeak, the IMR model is
constructed by blending the PN and CMM quantities using α.

quires Fourier representations of the waveforms. We investigate
the effect of eccentricity on the procedure used to ensure that
Fourier transforms of time-domain truncated waveforms are re-
liable.

A. Faithfulness

The data from a gravitational wave detector is analyzed by a
process of matched filtering against a set of template waveforms
in the frequency domain. In Sec. VIII E, we will determine how
well the eccentric IMR waveform model defined in Sec. VI agrees
with potential astrophysical sources. Given two waveforms h1(t)

and h2(t), their noise-weighted overlap is defined as [69]

(h1|h2) ≡ 4 Re
∫ fmax

fmin

h̃1(f)h̃∗2(f)

Sn(f)
df , (18)

where h̃1,2(f) are the Fourier transforms of the waveforms and
Sn(f) is the one-sided power spectral density (PSD) of the detec-
tor noise.

We examine two Advanced LIGO detector configurations. The
first, aLIGO O1, is representative of the sensitivity of LIGO dur-
ing its first observing run. The noise PSD [70] is the one which
was used to place templates for the O1 search, as described in
[71], and we restrict to a frequency range fmin = 30 Hz, fmax =
2050 Hz The second configuration, aLIGO design, is represen-
tative of the sensitivity expected for the final design configura-
tion of Advanced LIGO. The noise PSD is the zero-detuned-high-
power variant from [72], with a frequency range fmin = 10 Hz,
fmax = 8192 Hz.

The faithfulness between two waveforms is then defined as the
overlap between the normalized waveforms maximized over rela-
tive time and phase shifts

F = max
φc,tc

(h1(φc, tc) | h2)√
(h1|h1)(h2|h2)

. (19)

The faithfulness measures how similar the waveforms would ap-
pear to a gravitational wave detector when the data is analyzed
using matched filtering.

B. Fourier transforms of eccentric NR waveforms

Computation of the faithfulness, Eq. 19, requires the Fourier
transforms of the waveforms h1 and h2, which will correspond
to the IMR model waveform and the “true” astrophysical wave-
form, which we take to be the NR waveform. Hence, we need to
compute the Fourier transforms of these waveforms.

To estimate the continuum Fourier transform, we use a discrete
Fourier transform (DFT) over the available NR time interval (see,
e.g. [73]). To minimize Gibbs’ phenomena due to time-domain
truncation, the waveform is tapered by multiplying it by a variant
of the Planck taper function [74],

T (t; t1, t2) =


0 for t ≤ t1[
exp

(
t2−t1
t−t1 + t2−t1

t−t2

)
+ 1
]−1

for t1 < t < t2

1 for t ≥ t2
(20)

at both the start and end of the waveform. Specifically,

h`m(t)→ h`m(t) (21)
× T (t; trel, trel + 250M) (22)
× (1− T (t; tpeak + 60M, tpeak + 80M)) . (23)

trel is the relaxed time, after which the effects of non-astrophysical
junk radiation in the waveform can be neglected (here chosen as
500M from the start of the waveform), and tpeak is the time of
the peak in |h22|, roughly corresponding to the merger. The wave-
form is also resampled to a time step of 0.4M (higher frequency
content is not important here) and padded with zeros before com-
puting the discrete Fourier transform to ensure a sufficiently small
time step in frequency space.
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In the quasi-circular case, ω22(t) ≈ 2 φ̇, where ω22(t) is the
frequency of the dominant instantaneous GW emission from the
binary, and φ̇ is the orbital angular velocity. φ̇ increases monoton-
ically on the radiation-reaction timescale. Intuitively, h̃(ω) con-
sists of contributions from times when φ̇ ≈ ω/2. The amplitude of
the Fourier transform is |h̃22| ∼ (Mω)−7/6 to leading PN order;
i.e. it decreases with increasing ω because the binary spends more
time, and hence there is more total GW emission, at lower fre-
quency than at high frequency, and the increase in the amplitude
of emission per orbit at high frequency is not enough to dominate
over this effect.

A quasi-circular NR simulation starts with a given orbital an-
gular velocity φ̇0, and contributions to h̃(ω) for ω < 2 φ̇0, which
would be present in a real astrophysical waveform, are not present
in the NR waveform. In other words, h̃(ω) for the time-truncated
waveform is unphysical below a certain frequency, and its ampli-
tude is strongly suppressed for ω < 2 φ̇0. Hence, there is a peak at
ωpeak ≈ 2 φ̇0 in the Fourier transform of the truncated waveform.
Typically, h̃(ω) is found to be relatively free of Gibbs’ phenomena
and agrees with longer waveforms for ω > 1.2ωpeak [75].

In the eccentric case, there is no longer a single frequency
emitted at a given time, and ω22 ≈ 2 φ̇ oscillates on the orbital
timescale (see Eq. 2), so it is not clear that the minimum frequency
at which h̃(ω) is reliable can be determined using the same crite-
rion in the eccentric case as in the circular case.

In order to assess the effect of time truncation, we have run
one simulation, Case #3, starting from a lower orbital frequency
than the others, giving 40 cycles rather than the typical 20, and
∼ 6000M of evolution time, rather than the typical 2500M .

1.2 ωpeak
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FIG. 8. Fourier transforms of circular and eccentric waveforms. The ec-
centric waveform has been truncated in the time domain to two different
lengths. This allows us to assess the effect of time-domain truncation on
the Fourier transform.

Fig. 8 shows the amplitudes of the Fourier transforms of wave-
forms with eccentricities 0 and 0.1 (Case #1 and Case #3). The
eccentric waveform is plotted twice; once truncated in the time
domain 6000M before merger, and once truncated 2500M before
merger. We see that at high frequency (Mω > 2× 10−1), the ef-
fect of eccentricity on the waveform is negligible, indicating that
the merger waveform is more or less independent of eccentricity.
At intermediate frequency (4×10−2 < Mω < 2×10−1), we see
the oscillations in |h̃22| for e = 0.1 characteristic of eccentricity.
The e = 0.1 waveform appears independent of time truncation for
Mω ' 5 × 10−2. The peaks in the amplitudes of h̃ are visible
between 2 × 10−2 and ∼ 10−1, depending on the configuration,
and for ω < ωpeak in each case, the amplitude drops rapidly to
0 as ω → 0. In this case, it appears that h̃(ω) is independent of

time truncation for ω > 1.2ωpeak, as in the circular case, and we
assume this in the analysis that follows. This is only a preliminary
check of the effect of time truncation on eccentric waveforms, and
a more detailed study in future would be beneficial.

To ensure that the integral in Eq. 18 only covers the physical
part of the waveform f > 1.2fpeak, we restrict to computing the
unfaithfulness for systems for which 1.2fpeak < fmin. fpeak scales
inversely with the total mass of the system, so it is only pos-
sible to compute the unfaithfulness for systems with total mass
M > Mmin, where Mmin depends on both the length of the NR
waveform, and the particular GW detector considered. If longer
NR waveforms starting from lower frequency were available, the
unfaithfulness could be computed for lower mass systems.

VIII. MODELING RESULTS

We have described how to generate an eccentric IMR waveform
for a given e0 and l0. This model will now be tested by comparing
the waveforms from the IMR model to NR. The parameters of
the PN waveforms used in the comparison are obtained by fitting
ωPN(eref, lref) to ωNR in a one period window centered on at x =
xref = 0.11 as described in Sec. IV. The relative residual for this
fit is less than 1% in all cases.

A. Instantaneous gravitational wave frequency

Since the PN parameters of the NR waveform are determined
by fitting the instantaneous GW frequency ω22, this quantity is ex-
pected to agree the best between NR and the model, at least within
the fitting window. Fig. 9 shows ω22 as a function of time for three
of the NR simulations. In each case, the fit window is highlighted.
The top panel shows Case 53 (q = 3, e = 0), representing the
quasi-circular limit of the model. We see that at the highest mass
ratio studied here, ω22 from NR and the model agree well for the
duration of the NR waveform. The middle panel shows Case #6
(q = 1, e = 0.05). For this equal-mass case with moderate eccen-
tricity, the phase and amplitude of the oscillations in the NR ω22

are reproduced well by the model, though there is some dephas-
ing seen at early times. This shows that the radiation reaction in
the model does not perfectly capture the evolution of the advance
of pericenter, ∆φ. The bottom panel shows Case #23 (q = 3,
e = 0.09). This is the most extreme configuration studied, with
the highest eccentricity and mass ratio, and shows the limitations
of the model. The dephasing in ω22 at early times is clearly visi-
ble, as is the error between the fit window and the merger.

These three cases are examples which broadly represent the per-
formance of the model across the whole set of NR configurations.
We conclude that the model reproduces the NR ω22 well, but the
agreement, especially at early times, becomes worse with increas-
ing mass ratio and eccentricity.

B. Strain

Fig. 10 shows the real part of the strain, Re[h22] from both NR
and the model. The right panels highlight the merger and ring-
down, and while the agreement is not perfect, the model largely
agrees with NR. There is some dephasing visible at early times for
the quasi-circular q = 3 case. The equal-mass case with moder-
ate eccentricity agrees very well with NR. As for the frequency,
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FIG. 9. Gravitational wave frequency comparison between IMR model
and NR

for the case with the highest mass ratio and eccentricity, there is
noticeable dephasing at early times between the model and NR.
Again, this may be improved by using 3 PN radiation reaction
terms in the model.

C. Phase

Fig. 11 shows the phase error in the model waveform; ∆φ =
arg hNR

22 − arg hmodel
22 . For most of the waveforms, the phase error

of the circular case gives a lower bound on the error of the ec-
centric cases. For e . 0.05, the phase error oscillates between the
circular value and a value a few times larger. There is no apprecia-
ble effect of eccentricity on the secular growth of the phase error
for these eccentricities, suggesting that the effect of eccentricity
on the error in the adiabatic evolution is negligible. For higher
eccentricities, this is no longer the case, and eccentricity appears
to increase the secular phase error.

We expect that adding higher order radiation reaction terms to
the model, as in [41], will decrease the phase error.
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FIG. 10. Gravitational wave strain comparison between IMR model and
NR. Top: quasi-circular case with q = 3; some dephasing is visible.
Middle: an eccentric equal-mass case, which shows excellent agreement.
Bottom: q = 3 with the highest eccentricity configuration, which shows
the worst agreement of all the cases.

D. Amplitude

Fig. 12 shows the relative difference in the amplitude, A =
|h22|, between the NR and model waveforms. Note that we plot
A(φ) instead of A(t), so that phase and amplitude errors are de-
coupled. The amplitude error varies between 4% and 13%.

The IMR model incorporates 0 PN restricted waveforms;
i.e. the expression for the waveform in terms of the orbital quan-
tities, Eq. 5, is given by the quadrupole formula. State-of-the-
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FIG. 11. Phase difference between IMR model and NR

art quasi-circular models use waveforms which are 2.5 PN accu-
rate. In the quasi-circular case, it has been shown (e.g. in [50])
that the use of lower order waveforms primarily affects the ampli-
tude rather than the phase, so it is not surprising to see relatively
large amplitude error here, even in cases where the phase errors
are fairly small.

E. Faithfulness

Figs. 13 and 14 show, for each mass ratio q, the unfaithful-
ness between the model and each NR waveform for the two ad-
vanced LIGO detector configurations aLIGO O1 and aLIGO de-
sign (see Sec. VII A). The unfaithfulness is plotted only for the
source masses for which the entire NR waveform is in the sensi-
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FIG. 12. Amplitude difference between IMR model and NR

tive frequency band of the detector. The unfaithfulness gets higher
as either eccentricity or mass ratio increases.

For aLIGO O1, with a low frequency cutoff of 30 Hz, the model
has an unfaithfulness of less than 3% for q = 1 across the entire
mass range covered by the NR waveforms, or M ≥ 80M�. For
q = 3, the highest eccentricity waveforms have unfaithfulness less
than 3% only for slightly higher masses, namely M > 90M�. By
extrapolating the results in Fig. 13 to lower mass, it appears that
the unfaithfulness of the highest eccentricity waveforms would
probably exceed the 3% target for masses . 70M�.

For aLIGO design, with a low frequency cutoff of 10 Hz, the
model has faithfulness 3% for all mass ratios and eccentricities
for which the NR waveform is entirely in band, however most
of the NR waveforms are too short to compute unfaithfulness for
M . 180M�. In general, for a given total mass, the unfaithful-
ness with aLIGO design is greater than with aLIGO O1, so it is
reasonable to expect that at masses ≈ 70M�, the highest eccen-
tricity waveforms would also exceed the unfaithfulness target of
3%.
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FIG. 13. The unfaithfulness, 1−F , for the aLIGO O1 detector configura-
tion, between the eccentric IMR model and the NR simulations, as a func-
tion of the total binary mass. Masses for which the NR waveform starts
at a frequency higher than the detector’s fmin are omitted from the plot.
The horizontal line shows the 3% unfaithfulness target, and the vertical
line shows 70M�, roughly corresponding to the mass of GW150914.

Longer NR waveforms, reaching lower frequencies (for which
the entire waveform is in the sensitive band of the detector for
lower mass systems) will be necessary to accurately assess the
performance of the model for lower mass systems with aLIGO
design. Improvements to the model would be needed to reach
acceptable levels of faithfulness for M ∼ 70M� (corresponding
to GW150914) for high eccentricities, with the maximum usable
eccentricity being lower for aLIGO design than for aLIGO O1.
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FIG. 14. The unfaithfulness, 1 − F , for the aLIGO design detector con-
figuration, between the eccentric IMR model and the NR simulations, as
a function of the total binary mass. Masses for which the NR wave-
form starts at a frequency higher than the detector’s fmin are omitted
from the plot. The horizontal line shows the 3% unfaithfulness target,
and the vertical line shows 70M�, roughly corresponding to the mass of
GW150914.

F. Comparison with quasi-circular models

We now compare the eccentric IMR model with existing quasi-
circular (e = 0) models currently used by LIGO for estimating the
parameters of gravitational wave sources.

Two such models are SEOBNRv4 [67] and IMRPhenomD [5,
76]. These models have been compared with a large number of
quasi-circular NR waveforms, and the unfaithfulness is found to
be < 1 % for aLIGO design in almost all cases. For aLIGO O1,
which is less sensitive at all frequencies, the unfaithfulness will be
even lower. The analogues of Fig. 14 are Fig. 2 of [67] and Fig. 15
of [5].
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In the quasi-circular (e = 0) case, the new eccentric model
presented here has an unfaithfulness < 1 % for aLIGO O1 for
M > 60M� (corresponding to the minimum mass for which we
are able to compute unfaithfulness given the length of the NR
waveforms), but the unfaithfulness is larger for larger eccentric-
ities.

The quasi-circular models incorporate higher order PN radia-
tion reaction, as well as additional features designed to increase
the accuracy of the dynamics, whereas the eccentric model uses
simple PN for the inspiral. Further, the quasi-circular models have
been tested and calibrated against NR waveforms with much lower
initial frequencies. As a result, we expect the low frequency be-
havior of the quasi-circular models to be superior to the eccentric
model in the quasi-circular limit.

However, as we have shown, the eccentric model is faithful to
the NR data for the last ∼ 20 cycles before the merger, when the
eccentricity is . 0.1 at a time ≈ 7 cycles before the merger.

IX. CONCLUSIONS

We have presented 23 new publicly-available non-spinning NR
BBH simulations with initial eccentricities ranging from 0 to 0.2
and mass ratios from 1 to 3, including the merger and the pre-
ceding 20 gravitational wave cycles. When considered as sources
for gravitational wave detectors, the NR waveforms start below
30 Hz for systems of total mass M > 80M�, and below 10 Hz
for systems of total mass M > 230M�.

We have demonstrated that the circularisation of eccentric bi-
nary black hole systems in the last few cycles before the merger
first reported in [37] for equal-mass systems extends to systems
with mass ratio up to q = 3.

We have shown that an existing PN model for the inspiral can
be fitted to the NR data over one radial period shortly before the
merger, and have quantified how the error in the PN model grows
at earlier times. The results depend on mass ratio and eccentric-
ity, with higher mass ratios and eccentricities generally showing a
larger error at early times.

For all the NR waveforms, the PN model remains accurate to
within about half a gravitational wave cycle across the entire NR
waveform, but this is unlikely to be the case for longer NR wave-
forms.

Using the fact that the NR waveforms circularize shortly before
the merger, we have shown that the merger can be represented
using a circular model. A simple circular model was built from
a small number of circular NR waveforms by interpolating them
in the mass ratio q. A full IMR model was then constructed by
blending the PN inspiral model with the NR-interpolated circular
model. The combination relies on knowing the time ∆t(q, e, l)
between a reference point (x = 0.11) in the PN waveform and the
peak of the merger waveform, and we have derived an accurate
empirical fitting formula for ∆t from the NR waveforms.

We have compared the IMR model with all the NR simulations.
For flow = 30 Hz, and a detector configuration, aLIGO O1, corre-
sponding to the first observing run of advanced LIGO, the eccen-
tric model has a faithfulness of≥ 97% with the corresponding NR
waveform for systems of total mass M ≥ 85M� for all the NR
simulations (eref ≤ 0.08, q ≤ 3), and for systems of total mass
M ≥ 70M�, the faithfulness is over 97% for eref . 0.05 and
q ≤ 3.

The availability of eccentric IMR waveform models such as the
model presented in [41], and the model presented here, which has
been calibrated to and validated against NR simulations, is the first
step towards measuring the eccentricity of binary black hole merg-
ers through their gravitational wave emission. We have shown that
the merger can be accurately represented by a simple combination
of eccentric PN and circular NR results.

Note, however, that the present model has been validated only
for the last ∼ 20 cycles before the merger, corresponding to the
finite length of the NR simulations used. For systems of suffi-
ciently high mass that this is the only part of the waveform which
is in the sensitive band of the detector, for example sources similar
to GW150914, the model may be useful for parameter estimation.
For systems where longer waveforms are required, i.e. lower mass
systems for which both the merger and more of the early inspiral
is in the sensitive band of the detector, the model is probably not
sufficiently faithful to the general relativistic waveform for reli-
able results to be obtained.

The model has been calibrated to NR simulations with param-
eters in the range (eref ≤ 0.08, q ≤ 3), but it can be evaluated
outside its range of calibration. The model is not a small-e expan-
sion, so in principle it may be evaluated for any e < 1. However,
the PN approximation, which is an expansion in v/c, will break
down for high eccentricities if the velocity becomes too large at
pericenter. The circular merger model, as described here, can only
be reliably evaluated within its calibration range q ≤ 4, but by in-
cluding more NR simulations, an extension to higher mass ratio
would be straightforward.

The simulations and model presented here are restricted to the
case of non-spinning binaries. For interesting applications to grav-
itational wave data, the model will need to be extended to include
the effects of spin, otherwise it’s possible that the effects of ec-
centricity and spin could be confused. We also model only the
dominant ` = 2,m = ±2 spherical harmonic modes. While the
effects of sub-dominant modes are likely more important for ec-
centric systems than for circular systems, we expect the effects
to be small for the moderate eccentricities studied here. Finally,
while our model is fully 3 PN accurate in the conservative dynam-
ics, the radiation reaction terms are implemented only up to 2 PN,
in contrast to the model of [41] which is 3 PN in both the conser-
vative and radiative effects, and also contains improvements for
high mass ratios based on the test-mass limit. We expect that the
performance of our model during the early inspiral (when aligned
just before the merger) would be improved with these modifica-
tions, but we leave that to future work.
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D70, 104011 (2004), arXiv:gr-qc/0407049.
[33] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah, Phys.

Rev. D77, 064035 (2008), arXiv:0711.0302.
[34] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah, Phys.

Rev. D77, 064034 (2008), arXiv:0711.0250.
[35] K. G. Arun, L. Blanchet, B. R. Iyer, and S. Sinha, Phys. Rev. D80,

124018 (2009), arXiv:0908.3854 [gr-qc].
[36] U. Sperhake et al., Phys. Rev. D78, 064069 (2008),

arXiv:0710.3823 [gr-qc].
[37] I. Hinder, B. Vaishnav, F. Herrmann, D. Shoemaker, and P. Laguna,

Phys.Rev. D77, 081502 (2008), arXiv:0710.5167 [gr-qc].
[38] I. Hinder, F. Herrmann, P. Laguna, and D. Shoemaker, Phys. Rev.

D82, 024033 (2010), arXiv:0806.1037 [gr-qc].
[39] A. H. Mroue, H. P. Pfeiffer, L. E. Kidder, and S. A. Teukolsky,

Phys. Rev. D82, 124016 (2010), arXiv:1004.4697 [gr-qc].
[40] C. O. Lousto, J. Healy, and H. Nakano, Phys. Rev. D93, 044031

(2016), arXiv:1506.04768 [gr-qc].
[41] E. A. Huerta et al., Phys. Rev. D95, 024038 (2017),

arXiv:1609.05933 [gr-qc].
[42] B. J. Kelly, J. G. Baker, W. D. Boggs, S. T. McWilliams, and J. Cen-

trella, Phys. Rev. D84, 084009 (2011), arXiv:1107.1181 [gr-qc].
[43] T. Hinderer and S. Babak, (2017), arXiv:1707.08426 [gr-qc].
[44] Z. Cao and W.-B. Han, Phys. Rev. D96, 044028 (2017),

arXiv:1708.00166 [gr-qc].
[45] https://www.black-holes.org/waveforms/catalog.php.
[46] https://github.com/ianhinder/EccentricIMR.
[47] A. Gopakumar and B. R. Iyer, Phys. Rev. D56, 7708 (1997),

arXiv:gr-qc/9710075.
[48] A. Gopakumar and B. R. Iyer, Phys. Rev. D65, 084011 (2002),

arXiv:gr-qc/0110100.
[49] E. Poisson and C. Will, Gravity: Newtonian, Post-Newtonian, Rela-

tivistic (Cambridge University Press, 2014).
[50] M. Boyle, D. Brown, L. Kidder, A. Mroué, H. Pfeiffer, M. Scheel,
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[67] A. Bohé et al., Phys. Rev. D95, 044028 (2017), arXiv:1611.03703
[gr-qc].

[68] J. Blackman, S. E. Field, C. R. Galley, B. Szilágyi, M. A. Scheel,
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