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S1: Methods 

Large single crystals of La2-xBaxCuO4 with x=9.5%, 11.5% and 15.5% (~4 mm diameter), 

grown by transient solvent method, were studied here. These crystals belonged to the same 

batch of samples as reported in an earlier work (7), and were cut and polished along the ac 

surface.  

Laser pulses at 800-nm wavelength, 100-fs duration and 5 mJ energy were split into 2 parts 

(99%, 1%) with a beam splitter. The most intense beam was used to generate Terahertz (THz) 

pulses by optical rectification in LiNbO3 with the tilted pulse front technique(8). These THz 

pulses had energies of ~3 µJ. The pulses were collimated and focused at an incidence angle of 

20o  onto the samples. The THz pulses were s-polarized (i.e., perpendicular to the plane of 

incidence), corresponding to the direction perpendicular to the Cu-O planes (parallel to the c 

axis, see Fig. S1).  

The THz beam spot diameter at the sample position was 2.5 mm, corresponding to a 

maximum attainable field strength of ~80 kV/cm. The incident field strength was adjusted 

using a pair of wire grid polarizers.  

After reflection from the sample surface, the THz pulse was then electro-optically sampled in 

a 0.2-mm-thick GaP crystal using the 1% fraction of the 800-nm beam.  

This measurement procedure returned the quantity )(, tE samplereflected , with t being the electro-

optic internal time delay. The incident field was measured after reflection from a gold reference, 

i.e. )(, tE goldreflected . The frequency-dependent reflectivity R was then derived after computing the 

Fourier transforms of the time domain THz fields as  � = |�|� = ���	
�	�
	�,�����	(�)/
��	
�	�
	�,����(�)��. 
Linear reflectivities were recorded at the lowest achievable field strengths while nonlinear 

reflectivities were taken at higher field strengths (20 kV/cm < E < 80 kV/cm). Incident pulses 

with central frequency of �����=0.45 THz was used for the measurements in x=9.5% and 

11.5% doping. The “weight” of the third harmonic component in the nonlinear reflectivity 

(800 GHz and 1.5 THz, red and blue shaded regions in figure 2 and 4 in main text), therefore 

could be obtained by subtracting normalized linear reflected electric field (with gold) taken at 

low fields from the normalized nonlinear electric field taken at high fields (i.e. the integrated 

�������	��−����	�� = �� !"#$,%&%#'%$ (
�)&#*,%&%#'%$ ( − �� !"#$,#'%$ (

�)&#*,#'%$ ( 	in the frequency range between 800 GHz 

and 1.5 THz). Note that for the x=15.5% sample in order to obtain a clear third harmonic 

signal without interference from the reflectivity edge at the plasma frequency (1.4 THz), THz 
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pulses with �����=0.7 THz, was used. Hence for this case, a similar procedure explained 

earlier was used, albeit for the frequency range 1.7 THz-2.3 THz. The THz field transient and 

the corresponding spectrum was to obtain the measurements are shown in Section S3. 

Equivalent results were obtained by subtracting the reflected high field signal at high 

temperatures (field-independent) from that measured in the reported ranges (field-

dependent).(i.e. the integrated	������	,, − ������	,,≫,./ ∝ 	 �,−�,≫,./, where �,≫,./ is 

field-independent) . 

 

 
Figure S1 – (A) Schematic crystal structure of La2-xBaxCuO4 indicating the c axis stacked Cu-O planes. (B) 
Schematic representation of the experimental geometry. 

 

S2: Linear optical properties of La2-xBaxCuO4 - x=9.5% & x=11.5% 

As shown in Fig. S2, the linear reflectivity of the x=9.5% sample shown in Fig. S1 displays a 

temperature dependent red shift of the Josephson plasma resonance.  

The corresponding imaginary part of the optical conductivity, 1�(�), is also displayed. This 

was determined by Kramers-Kronig transformation, after merging the THz frequency 

reflectivity data reported here with the high frequency spectra reported in the literature for the 

same batch of samples(7). The superfluid density �1�(1 → 0) plotted in Fig. 2 was computed 

from the data shown here. 
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Figure S2 – (A) Temperature dependent reflectivity of x=9.5% doped sample measured in the linear regime (i.e. 
E=8kV/cm) (B) The corresponding 1�extracted through a Kramers-Kronig transformation. The superfluid 
density �1�(1 → 0) is shown in the inset. 

The THz reflectivity of the x=11.5% sample in the linear regime, measured in a different 

experimental setup (based on a photoconductive antenna for THz generation) is shown in 

Fig. S3. We find indications of a Josephson Plasma edge at approximately 150 GHz(29). This 

feature is observed to disappear as T approaches Tc=13 K.  

 

 

Figure S3: THz reflectivity in the linear regime of x=11.5% sample. 

S3: Simulation of the nonlinear optical properties from the sine-Gordon equation 

A Josephson junction with semi-infinite layers stacked along the 4 direction (with 

translational invariance along the y direction) was modeled with the one-dimensional sine-

Gordon equation(16, 17). The Josephson phase evolution in each stack ),(1, txii +θ , (with x 

being the propagation direction) is described by: 
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The damping factorγ  is a fitting parameter used to reproduce the experimental observations. 

For simplicity, i.e. we redefine ),(),(1, txtxii θθ =+ .  

 

The Josephson phase evolution and the reflected field (Er) are computed through the sine-

Gordon equation along with the following boundary conditions at the vacuum-sample 

interface(12, 14). 

 

                 5E7(t) + E:(t);<=>? = E@(x, t)|<=B? = H? D
EFGH√J

KL(<,M)
KM |<=B?,                            (S2) 

																	5H7(t) + H:(t);<=>? = H@(x, t)|<=B? = −H?λO KL(<,M)K< |<=B?.                                 (S3) 

 

Here Ec denotes the field propagating inside the superconducting cuprate, H? = Φ?/2πDλO, 
where Φ? is the flux quantum TΦ? = U�

�	V, λO is the field penetration depth and D is the 

distance between adjacent superconducting layers. The equilibrium Josephson Plasma 

Resonance is an input parameter in the simulations, which is chosen to be that measured in 

linear spectrum, i.e. ωOX? = 0.5	THz and ωOX? = 1.4 THz for x=9.5% and 15.5% doping, 

respectively. 

The THz field impinging (Ei) on the superconductor at the boundary ] = 0 was taken as the 

digitized experimental field reflected from the gold reference, Egold (Fig. S4). For fields in 

vacuum (] < 0), the Maxwell’s equations imply 

 

                                         E7 − E: = E_
@` (H7 + H:) = H7 + H: .                                      (S4) 

By combining Eq. (S3) with Eq. (S1) and (S2) we obtain the boundary condition 

 

                                
�√J
aH E7(t)|<=>? =

KL(<,M)
EFGb KM |<=B? − √ε

KL(<,M)
K</dF |<=B?.                           (S5) 

 

After solving the Josephson phase through Eq. (S1) and Eq. (S5), the reflected field is 

obtained from Eq. (S4). The reflectivity is then computed as the ratio between the Fourier 

transforms of the reflected field and the input field as 

R(ω) = |E:(ω)/E7(ω)|� . 
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 Figure S4 – (A) The incident THz field in time domain and (B) its frequency spectrum for the experiments on 
x=9.5% doping. The linear reflectivity of the sample at T=5 K is also shown. (C-D) The corresponding THz 
fields used for x=15.5% doping. 

 

S4: Third Harmonic generation with frequency filtered pulses 

The nature of the third harmonic generation in the bulk superconducting state was further 

investigated using THz pulses that were filtered to less than 10%. Intense half cycle THz 

pulses, generated from optical rectification in LiNbO3 using tilted pulse front technique (8), 

were shaped to narrow band multi-cycle pulses, with central frequency of ωfghf~0.5 THz, by 

utilizing commercial frequency filters. These pulses had maximum field strengths of 

~15 kV/cm and could therefore only be used to repeat a fraction of the experiments reported 

in the main text. 

In Fig. S5A we show the frequency spectrum of the incident and the reflected THz pulses 

from the x=9.5% sample at T=5 K. In the reflected spectrum, a dip at 0.5 THz is observed, 

which corresponds to the Josephson Plasma Edge. In addition, a peak is observed at ~1.4 THz 

(inset), which corresponds to the third harmonic of the incident frequency. This feature is 
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clearly captured by dividing the Fourier transform of the reflected field by the incident field 

(Fig. S5B).  

 

 
Figure S5 – (A) Fourier transforms of the incident and reflected THz fields from the x=9.5% sample at T=5 K. 
The inset shows a zoom in the 1 THz -1.8 THz frequency range. (B) Corresponding ratio Ereflected/Eincident 
evidencing a third harmonic peak at ~1.4 THz. 

 

S5: Nonlinear response of Pair Density Wave – Two π/2 Josephson Junction model 

In this section, we describe the two-site model which was utilized to compute the nonlinear 

response of the pair density wave (PDW). Such a PDW state could be modeled as a three 

dimensional array of Josephson junctions(18) (represented in Fig. S6). The total energy of 

such Josephson junctions with the intra-stripe, inter-stripe, and inter-layer couplings	i, ij and 

ijj could be written as 

 

�
�
�� = ∑ −il,m cosqrl,mD − rl,mBDD s + ij cosqrl,mD − rlBD,mD s − i cosqrl,m� − rlBD,m� s +
																												ij cosqrl,m� − rl,mBD� s − ijj cosqrl,mD − rl,m� s − tul,mD ul,m� ,           

                   

 

where rl,mD  and ul,mD  are the superconducting phase and the charge at site (], v)	in ith layer and 

t is the inter-layer capacitive energy. Usually	i	~	i′ ≫ i′′ and for the case ijj = 0, the ground 

state minimizing this energy is indeed a stripe phase configuration with rl,mDy = T] + D
�V z and 

rl,m�y = vz.  
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In the following we assume i = ij = i? and for simplicity we consider two z/2 Josephson 

Junctions at sites �	 = 	1, 2 (four lattice points). In order to study the fluctuation dynamics 

induced by the external driving �({), we expand the phases at each lattice point around the 

stripe order as r�� = r�|y+ }r��  where ~ represents the layer index. The energy of the two site 

model is therefore: 

�
��>��
	 = −i cos(}rDD − }r�D) − i cos(}rD� − }r��) − � 5tu�Du�� − (−1)�ijj sin(}r�D − }r��);
�=D,�

. 

We emphasize the unusual nature of the inter-layer Josephson coupling energy [the term 

‘ijj sin(}r�D − }r��)’], which arises due to the frustration nature of the PDW, is crucial 

towards observing the third harmonic nonlinearity.  

 

Fig. S6 – (A) Schematic representation of the Pair Density Wave and the corresponding simplified version 
involving two z/2 Josephson Junctions. (B) The effective potential (�	

) used to simulate the nonlinear 
dynamics i = 4, ijj = 0.5 and t = 1. 

 

The equation of motion of the inter-layer phase difference �� = }r�D − }r�� and its conjugate 

variable (u�D − u��) are  

��� = ����&	�'�$
��(� − ����&	�'�$

��(� = t(u�D − u��), 
 

u�D� − u��� = − ����&��'�$
�q��(�s + ����&��'�$

�q��(�s = (−1)�i(�D − ��) − (−1)�2i′′cos	(��), 
where the approximation sinq}rD� − }r��s � q}rD� − }r��s was made, since the in-plane 

fluctuations are small due to large i. The equations of motion could be rewritten as 
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                              �D� = −ti(�D − ��) + 2tijj cos(�D) − ��D� + �({)                               (S6) 
                              ��� = 		ti(�D − ��) − 2tijj cos(��) − ���� + �({)                                (S7) 
 
 

where � is the damping constant and �({) is a uniform external driving. For an applied 

electric field �({) = �?sin	(�����{), �({) = �� ({)~�?cos	(�����{)  
The energy conserving part of the equations can be derived from an effective potential, 

                     �	

(�D, ��) = ��
� (�D − ��)� + tijj sin(�D) − tijj sin(��)                        (S8)    

The first term in Eq. (S8) represents the in-plane elastic energy while the other terms 

represent the frustrated inter-layer Josephson energy. These terms makes the effective 

potential slightly curved (Fig. S6) and this result in two important features. 

1) The equilibrium state is one with the phase at each lattice site has a small tilt angle 

T�D = −�� � ���
� V	on top of the collinear configuration. 

2) In the presence of an external applied field	�({), �D and �� is driven in-phase by 

�({) = �� ({), while the curved shape of the potential �	

 induces small out-phase 

motions. Such dynamics therefore confirms the existence of two collective modes 

�? = (�D + ��)/2 and �� = (�D − ��)/2. 

Assuming that �? ≪ ��, one could rewrite Eq. (S6) and Eq. (S7) as: 

 

  �?� = −2tijj sin(�?) sin(��) − ��D� + �({) � −2tijj�?�� − ��?� + �({),       (S9)   

��� = 2tijj cos(�?) cos(��) − 2ti�� − ��D� � 2tijj − 2ti�� − tijj�?� − ���� . (S10) 

 
 

It is evident from Eq. (S9) that the applied field �({) excites �?. In addition to its response at 

the excitation frequency �����, �? undergoes plasma oscillation at ���? = �2tijj�/i. These 

plasma oscillations arises only when �� ≠ 0. 

Also, it is clear from Eq. (S10) that �� is excited only through �?� term, hence �� has a 

response at 2�����. Therefore, in the Fourier space, we may approximate �?by a single 

mode �?(�����). The �� mode may be approximated with two frequency components  

��(0) and ��(2�����). 
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Now the total current is given by 

 

               �({) = ijjcos	(�D) − ijjcos	(��) � −2ijj�?({)��({) + ���
� �?�({)��({)              (S11) 

In the Fourier space, the same equation reads as: 

�(�) � −2ijj�?q�����s��(0) + i
jj
3 �?�q�����s��q2�����s 

						−2ijj�?q�����s��q2�����s + ���
� �?�q�����s��(0)                        (S12) 

 
The contributions to the third harmonic generation (current response at 3ω�a�) could be 

divided into two terms: 

1) A term proportional to the �?�q�����s��(0). This term can exist only when	�� ≠ 0. 

Or in other words, when there is finite superfluid tunneling between the layers which 

occurs at � < ��.  
2) The term proportional to �?q�����s��q2�����s which arises from the nonlinear 

coupled dynamics of the PDW state. Such contributions would be present even when 

�� = 0 and hence could be postulated to explain the experimental observation of third 

harmonic generation (THG) at � > �� in the stripe ordered state.  

We have numerically integrated Eq. (S6) and (S7) with an initial steady state until { = 300. 

Note that the time coordinate was normalized with �����. The computations were performed 

with i = 4, ijj = 0.5, t = 1,	� = 0.2 and �, ¡ = 1. The parameters were chosen so as to 

match the experiments	(	���? = 0.15	�¢4, 	�, ¡ = 0.45	�¢4, 	£¤¥H	£"¦!" = 0.35). The driving is 

taken as �({) = 	�? exp(− (
>
©)�
�ª©� ) cos(�����{) with {� = 100 and «� = 5. 

The power spectrum of the current response for driving amplitudes of �? 	= 	0.05 and 

�? 	= 	0.5 is shown in in Fig. S7. The strength of the driving amplitude corresponds to tens of 

kV/cm for �? = 0.5. A third harmonic response is observed for the larger amplitude of 

driving.  Further, the contribution to the THG from the two terms discussed above is shown in 

Fig. S7(B). It could be noted that the significant contribution to THG arises from the novel 

dynamical coupling of the collective modes of the PDW. However, we note the presence of 

the term proportional to �?�q�����s��(0). This is due to the limitation of our model which 
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does not have a clear phase transition below which the static ��	mode (the finite static tilting 

of the phases) vanishes (�� = 0).  

 

Fig. S7 – (A) The computed current response in the linear (�? 	 = 	0.05) and nonlinear (�? 	 = 	0.5) regimes. A 
clear response at the third harmonic of the driving field is observed in the nonlinear excitation regime. (B) The 
contribution of the different terms discussed in the text to the third harmonic intensity. 

S6: Nonlinearities from quasiparticles –First principle DFT calculations 

In this section an estimate for a second contribution to the third harmonic We quantify the 

third harmonic generated from the free carrier motion in the anharmonic Bloch bands. 

Specifically, the deviation of the band dispersion from a parabola (¬ � ­�	®� + ­¯	®¯) results 

in third harmonic emission.  

An applied electric field imparts a finite momentum to the free carriers, following which they 

explore various Bloch states while acquiring group velocities °�({) depending on the band 

curvature. Radiation emerges as the charges are accelerated and hence as  

 

 �±'%�( 
�
 = �

�
 ²u		°�({)³ = u	 �´)(
)�
   , (S13) 

   

with u	 the number of mobile charge carriers within the band and °�({) the group velocity.  

To obtain the time dependent group velocity we use the known relation involving the time 

dependent momentum change ®({) and the dispersion relation ϵ(k) which finally give:   

 

 °�({) = D
· 	¸¹

(`)
¸` º»(
)	  . (S14) 
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Lastly, starting from a Drude model the time dependence of the momentum (®({)) is given by 

  

 
�»(
)
�
 = 	

· 	�({) − 2 »
(
)
¼    , (S15) 

   

with ½	the electron charge, E(t) the time dependent electric field and � the mean free time of 

the electrons.   

Experimental and material specific parameters were computed in the following fashion: 

1) We computed ®({) with parameters E(t) and mean free time, similar to what is 

observed in the experiments.  

2) We performed computations of the electronic structure of La1.92Ba0.08CuO4 (LBCO) to 

determine the band structure ϵ(k).  
3) We combined the two steps and perform a Fast Fourier Transformation (FFT) of the 

resulting ¾°�({)/¾{, which gives the spectrum of emitted light. 

 

Since the applied THz field is polarized along the c-axis of LBCO, the free carriers would 

accelerate along the ¿ − À direction parallel to the reciprocal c* vector (the Brilloun-zone of 

LBCO is shown in Fig. S8(A)). The k(t) for a single Gaussian pulse with Á = 0.45	�¢4,  
���l = 65	®�/ÃÄ, �Å¢Æ = 3	ÇÈ and � = 70	ÁÈ was computed from Eq. (S15) 

(Fig. S8(B)). The resulting momentum oscillations are small with a maximum amplitude not 

exceeding 10% of c*. Consequently, the electron oscillations are confined close to the center 

of the Brillouin zone.  

We compute the electronic band structure of LBCO by performing first principle 

computations in the framework of DFT. For our calculations, we use DFT as expanded with 

an augmented plane wave plus local orbital (APW+lo) basis as implemented in the ELK 

code(30). As approximation for the exchange correlation functional we use the generalized 

gradient approximation corresponding to Perdue, Burke and Ernzerhof(31) (PBE) and to 

improve the description of correlation effects of the Cu d-electrons we employ a DFT+U 

scheme(32). For the latter, we use a U=5eV and J=0 and apply the fully localized limit for the 

double counting correction term. As a structural input of our computations we use the data 

provided for LBCO in Ref [(33)] and treat the chemical doping by fractional site occupation 
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of La(Ba) using the virtual crystal approximation (VCA). Finally, we perform several 

convergence tests on the band structure of LBCO and assume convergence if ∆¬(®) Ê
0.1Ä½�, which we obtain for the numerical parameters given under Ref. [(34)]. 

Fig. S8(C) shows the dispersion of the bands in the closest vicinity of the Fermi level, two 

valence and one conduction band, along the ¿ − À direction within the Brillouin zone. Please 

note, the large separation of the valence and conduction band in the order of 2	½�, which is 

three order of magnitude larger compared to the THz pulse frequency. Consequently, the 

amount of carries generated by THz field in these bands is expected to be small.  

 

Figure S8 – (A) Brillouin Zone of LBCO x=9.5% doped sample indicating the high symmetry points. (B) The 
®({) excited along the Γ-Z direction by an electric field E(t), which frequency spectra is shown in (D). (C) The 
electronic band structure along Γ-Z direction indicating three bands (one conduction and two valence bands). 
The fat band color coding indicates the weighted symmetry of the bands. (D) The computed current response and 
applied electric pulse. The former clearly indicates a weak third harmonic contribution. 

We also analyze the symmetry of the bands plot the band characters by as fatbands plot in 

Fig. S8(C). The character of conduction band is ¾lm whereas the valence bands exhibit a 

combination of ¾¡� + Ç¡. Considering, in this respect the dipole transition matrix elements 

between these bands we find them vanishing since the combination of symmetries does not 

obey the dipole transition rules (∆Ì = 1, ∆Ä = 0,Í1). Consequently, beside the large energy 

separation also band character strongly suppresses transitions and the generation of movable 
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charge carriers. Note that also indirect tunneling transitions, which are according Ref. [(21)] 

given by the square of the dipole transition matrix elements, become strongly suppressed. 

Consequently, even without explicitly computing the quantitate amount of carriers we 

anticipate a negligible amount of total emitted harmonics.  

Independent of the only small amount of available charge carriers we compute the relative 

magnitude of the third harmonic generated light by evaluating Eq. (S13) after fitting the 

dispersion relation with a polynomial expression. We further sum the contribution of from the 

three bands considering the same electron/hole content in each. The resulting emitted light 

spectrum after the FFT is displayed in Fig. S8(D). We find a strong component at the 

fundamental, whereas the third harmonic component is 3-4 orders of magnitude smaller. 

Please, note that increasing the amount of charge carriers will leave the relative size of the 

generated light unchanged since u	 equally scales all components independent of the 

frequency.  

 

S7: Nonlinearities from charge order – Negligible contribution 

In this section we present our argument against the charge density wave (CDW) as the cause 

of the observed nonlinearities. Although de-pinning a charge density wave can, in principle, 

generate radiation at the Third-Harmonic (22), we show here that it is highly unlikely under 

the experimental conditions.  

The frequency dependence of the cubic dielectric constant for a sliding CDW scales as - 

¬(�)~����� ����>Î , where ���� and ���� are the field strength and the frequency of the applied 

electric field (22). Starting from this formula, even considering the larger fields used in our 

experiment (100 kV/cm in the present work vs V/cm in Ref. (22)) and considering the 

appropriate frequency difference (0.5 THz in the present work vs 1 Hz - 8 KHz  in Ref. (22)), 

one finds that the Third Harmonic from a CDW should be atleast thirteen orders of magnitude 

weaker in our experiment.  

Physically, this is understood by considering that the total kinetic energy acquired by a 

confined particle in an electromagnetic field scales with 1/ω
2. Hence, the velocity of a 

charged particle is between sixteen and twenty orders of magnitude larger at 10 KHz and 1Hz 

than at 1 THz. The lower energy results in a smaller cubic anharmonicities and explains the 

difference discussed above.  
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