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A B S T R A C T

We envision the molecular evolution process as an information transfer process and provide a quantitative
measure for information preservation in terms of the channel capacity according to the channel coding theorem
of Shannon. We calculate Information capacities of DNA on the nucleotide (for non-coding DNA) and the amino
acid (for coding DNA) level using various substitution models. We extend our results on coding DNA to a
discussion about the optimality of the natural codon-amino acid code. We provide the results of an adaptive
search algorithm in the code domain and demonstrate the existence of a large number of genetic codes with
higher information capacity. Our results support the hypothesis of an ancient extension from a 2-nucleotide
codon to the current 3-nucleotide codon code to encode the various amino acids.

1. Introduction

The fundamental biochemical processes in the cell such as replica-
tion, transcription, translation as well as cell signalling can be envi-
sioned as information transfer processes. For some of these processes
there is an original information carrying message stored in a biological
entity (the DNA) that needs to be transferred to following generations
through a noisy medium characterised by mutations. In the end the
coding part of the DNA needs to be decoded to a protein, i.e the
biological message which is originally stored in DNA needs to be
transcribed into RNA and then translated into an amino acid sequence,
two processes which might cause errors as well.

The paradigm of information transfer in biological systems brings
into mind an analogy with communication systems (Fig. 1) where the
message is coded into a waveform or a signal which carries the
information coded in a way that it is compact, to save on material
and energy, and robust to noise to prevent loss of information. The
information carrying signal then is transferred over the noisy channel
to be received at a receiver and decoded to recover the information.

This analogy was established by several researchers in the past in
works as early as Jukes and Gatlin (1971), Yockey (1978), Román-
Roldán et al. (1996), Battail (2004) and Konopka (2006). A key
element of the analogy is the ability to quantify the information which
is provided by the entropy as an information measure (Shannon,
1948). Numerous publications in the literature have studied the
entropy of the DNA (Schneider and Spouge, 1997), across the species,
at protein binding sites (Schneider, 2000, 2010), etc. The reader is
referred to the paper by Fabris (2009) for a critical review and

summary of earlier work and formulation of the information theory
framework for various related problems. Some other works study the
problem from purely coding theory point of view and try to discover
hidden coding structures (May et al., 2004; Battail, 2004). Only a few
works (Gong et al., 2011; Balado, 2013), however, attempted at a full
analysis of the information transfer processes in the genome such as
protein coding, to derive its fundamental limits.

Calculation of the fundamental limits of transfer of information is
very important for the understanding of biological evolution over
generations as well as the functioning of biological processes to decode
the information stored in DNA. In particular, it can tell us the expected
time or number of generations after which vital information about an
organism would be lost during molecular evolution. It can also provide
us insight into understanding the existing natural genetic (codon-
amino acid) code and where it stands among all possible codes, in
particular, whether nature tried to optimize the information capacity in
choosing the natural code among a very large number of possible codes.

Although various previous publications build on the communica-
tions system analogy, most fail to address this problem, partly due to
the over-idealisation of the analogy. In a typical communication system
the messages are encoded and transmitted over noisy channels which
are to be received, decoded and reconstructed as close as possible to the
original message. It must be underlined that a full analogy with a
communication system fails in the sense that the encoder is lacking in a
biological system. In the case of protein coding, the decoded message is
not a DNA but an amino acid sequence. In this case, one can at best talk
of a hypothetical information source already coded in the form of a
nucleotide sequence.
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In this article, utilizing the Coding Theory of Shannon, we develop
theoretical limits of information preservation in non-coding and amino
acid coding DNA in terms of the channel capacity. The channel noise is
characterised by various mutation models widely accepted in the
literature. The quantification of the information preservation capacity
brings us to the discussion of the optimality of the natural genetic
(codon-amino acid) code. This question was posed in the past by
several researchers but the analyses were not done in terms of channel
capacity. Furthermore, considering other possible codes only a very
limited part of the entire space of codon-amino acid codes were
explored. With this publication, we propose an “intelligent” search
algorithm optimizing the channel capacity to find an optimal genetic
code and to understand where the natural code stands with respect to
an optimal code.

The rest of this article is organised as follows: the next section
provides the fundamentals of entropy as a measure of information and
of Shannon's coding theory and define channel capacity. We give
channel capacity results on non-coding DNA and protein coding DNA
in Section 2.2 and 2.3, respectively. The optimality of the natural
codon-amino acid encoder is studied in Section 3. Conclusions and
future research directions are provided in Section 4.

2. Methods

2.1. Information capacity

As in previous works on application of information theory in
biology, we quantify (the lack of) information with entropy, following
the definition of Shannon (1948):

∑H p p p( ) = − log ,
i

i i2
(1)

where pi is the probability of the i-th source symbol in the dictionary of
possible symbols. As an example: for the observed human nucleotides
distribution of p = [0.29 0.21 0.21 0.29]A C G T[ , , , ] (Yamagishi and
Shimabukuro, 2008), the entropy is calculated to be
H p( ) = 1.9815 < 2A C G T[ , , , ] . If the nucleotides were uniformly distributed,
the entropy would have achieved the highest value of 2 for a dictionary
of size 4. Similarly, the entropy of the codon distribution in humans is
H p H p( ) = 5.7936 < 3 × ( ) = 5.9445codons A C G T[ , , , ] using the frequencies
reported in Nei and Kumar (2000). If all codons were equiprobably
distributed it would have achieved the maximum value of 6. The fact
that the entropy of codons is less than 3 times the entropy of
nucleotides indicates a statistical dependency between the nucleotides
in the codon.

Referring back to Fig. 1, the capacity of a channel is defined as the
maximum of the mutual information between the input and the output
of the channel.

∑C I X Y H Y H Y X p x y p x y
p x p y

= max ( ; ) = max( ( ) − ( | )) = max ( , )log ( , )
( ) ( )p p p x y,X X X

(2)

where H Y X( | ) is the conditional entropy of the output Y, given input X
and the maximum is taken over all possible input distributions pX. The
Channel Capacity provides a measure of the maximum information one
can transmit over a channel, the channel being characterised by

p Y X p X Y p X( | ) = ( , ) ( ), the distribution of the noise in the channel.
The analytic calculation of the Channel Capacity is not easy other

than for a limited number of special cases such as the Gaussian
channel, binary symmetric channel and binary erasure channel (Cover
and Thomas, 2005). However, a numerical algorithm exists for
calculating the channel capacity in the other cases, which is called
the Blahut-Arimoto algorithm (Blahut, 1972; Arimoto, 1972). The
Blahut-Arimoto algorithm searches iteratively the optimal input dis-
tribution leading to the highest mutual information between the input
and the output, which is a convex optimisation problem.

A communication channel is characterised by the noise in the
channel. In the case of the DNA channel, the noise is generated by
mutations. Mutations can be insertions, deletions or single nucleotide
substitutions. In our analyses we consider only substitutions since they
are the prevalent source of errors. We consider the non-coding DNA
channel and coding DNA channel, which also includes the translation
into amino acids, separately.

2.2. Non-coding DNA

We first calculate the information capacity for non-coding DNA. In
this case, the nucleotides are considered as independent messages and
the communication has a rate of 2 bits due to the four letter alphabet.
For the nucleotide channel, various substitution models have been
proposed in the literature. The simplest such model is the Jukes-Cantor
model, which assumes the same probability of error or mutation rate
for each nucleotide (Jukes, 1969). Hence, the substitution matrix is
characterised with only one parameter, the nucleotide substitution rate
q. The Jukes-Cantor rate matrix is given in

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
Q

q q q q
q q q q
q q q q
q q q q

=

−3
−3

−3
−3

JC

(3)

where the row and column indices are A C G T, , , . Then, the transition
probability matrix P Y X( | ) for a finite time interval t can be obtained as
(Nei and Kumar, 2000)

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
P Q t

p p p p
p p p p
p p p p
p p p p

= exp( ) =

1 − 3
1 − 3

1 − 3
1 − 3

JC JC

(4)

where p qt= (1 − exp( − 4 ))/4. For m generations we have
P Y m X P Y X( ( )| ) = ( | )m. From (2), the channel capacity after m genera-
tions or m cascaded channels in Fig. 1 is

C I X Y m H Y m H Y m X= max ( ; ( )) = max[ ( ( )) − ( ( )| )]m
p p (5)

Since the channel is symmetric, a uniform input X leads to a uniform
output Y(m). The first term is maximized for the uniform case and is
simply log| |, where | | is the cardinality of X. The second term is
independent of the input and corresponds to the entropy of a row of the
substitution probability matrix (the entropy of all the rows are the
same). Using these simplifying arguments, the capacity for each
generation is calculated without the need for the Blahut-Arimoto
algorithm.

The results are given in Fig. 2 which show the exponential decline of
information capacity of the non-coding DNA channel with increasing
number of generations. The results show clearly that information
(capacity) vanishes exponentially over generations and that the time
scale is given by the mutation rate.

In the biological context, the substitution rates for the so called
transversions(purine-pyrimidine substitutions) and transitions(purine-
purine or pyrimidine-pyrimidine substitutions) are observed to be
different due to the different chemical properties of purines (Adenine
and Guanine) and pyrimidines (Cytosine and Thymine). A substitution

Fig. 1. A generic communications system.

E.E. Kuruoglu, P.F. Arndt Journal of Theoretical Biology 419 (2017) 227–237

228



model, which takes care of this effect, exists due to Kimura (1980). The
Kimura rate matrix has two parameters and is given by

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
Q q

K K
K K

K K
K K

=

−(2 + ) 1 1
1 −(2 + ) 1

1 −(2 + ) 1
1 1 −(2 + )

.KM

(6)

Due to the symmetry of the matrix, we can invoke the same
arguments as in the case of the Jukes-Cantor model and calculate the
capacity from C I X Y m H Y m H Y m X= max ( ; ( )) = max [ ( ( )) − ( ( )| )]m p p . The
capacity curves are given in Fig. 3. The curve of the case K=1
corresponds to the Jukes-Cantor model and is included to provide a
comparison. Increasing K indicates the dominance of transitions. In
the limit of very large K, practically all substitutions are transitions and
interchange between A and G or C and T, practically reducing the code
to a 1-bit code rather than a 2-bit code.

These results show clearly the diversity in the capacity curves when
one moves from equiprobable substitutions to unequal substitution
rates for transitions and transversions.

The diversity in the capacity provided by Kimura model over Jukes-
Cantor model might tempt one to look into more complex mutation
models. We have therefore considered also the Felsenstein model
(Felsenstein, 1981). The Felsenstein substitution rate matrix is given
by:

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

Q

π π π π π π
π π π π π π
π π π π π π
π π π π π π

=
−( + + )

−( + + )
−( + + )

−( + + )

F

C G T C G T

A A G T C T

A C A C T T

A C G A C G

(7)

where π π π π+ + + = 1A C G T .
In this case, there is no symmetry anymore in the substitution

matrix and there is no simplified way of calculating the capacity unlike
in the Jukes-Cantor and Kimura cases. Therefore, the capacity is
calculated using the Blahut-Arimoto algorithm. The obtained capacity
curves for two different substitution vectors π π π π[ ]A C G T are given in
Fig. 4. As can be seen from the figure, although more diversity is
obtained with the Felsenstein model, the difference in the capacity
curves are limited.

Although for long, the non-coding part of DNA was seen as junk,
now we have increasingly more knowledge about the function of parts
of non-coding RNA as key regulators in translational and transcrip-
tional control. In particular, studies have shown that long non-coding
RNAs play a critical regulatory role in diverse cellular processes such as
chromatin remodeling, transcription, post-transcriptional processing
and intracellular trafficking (Ponting et al., 2009). The channel capacity
of non-coding DNA can provide us an intuition on to what extend these
functions can be preserved. It must be noted, however, that unlike the

Fig. 2. Channel capacity for Jukes-Cantor non-coding DNA channel for various values of mutation rate in units of generation length.

Fig. 3. Channel capacity for Kimura non-coding DNA channel for various values of transitions/transversions rate ratio K. q=0.001.
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coding DNA, these functions seem to be performed locally, that is the
location information along the DNA sequence is important. The
channel capacity calculations do not take such information into
account and a second order/multivariate analysis is needed to calculate
a location dependent capacity.

2.3. Coding DNA

In the case of non-coding DNA, the capacity analysis is straightfor-
ward since there is no obvious encoding structure. In the case of
protein-coding DNA, considering the communication channel to have
as input codons and as output amino acids, the presence of an encoder
is clear. There are 64 codons (each codon being made of 3 nucleotides,
4 = 643 ) which are mapped to 20 amino acids and some are used as
stop markers. There is redundancy in the codon-amino acid mapping
and this redundancy is used as an error correcting mechanism. The
mapping between codons and amino acids is given in Fig. 5. This
mapping can also be represented in matrix form as in Eq. (8).

One can define three different channels for this problem. The
codon-codon channel, the codon-amino acid channel and the amino
acid-amino acid channel. In Bouaynaya and Schonfeld (2007) and
Gong et al. (2011), Bouyanaya et al. study the information transfer
process between DNA and amino acids, underlining the breakdown of

the communications system analogy and propose modelling the
process with an amino acid-amino acid channel. That is, both the
transmitted (X) and received (Y) signals are amino acids assuming a
virtual protein source to DNA encoder. They characterised the com-
munication channel using first the PAM250 matrix due to Dayhoff et al.
(1978) and then by an amino acid transition matrix they constructed
based on the assumption of Jukes-Cantor, equal-parameter nucleotide
substitution matrix and they calculated the protein channel capacity.

Our approach differs from that of Bouyanaya et al. in that we
underline that the mutations happen on the codons rather than on
amino acids and therefore the codon substitution matrix needs to be
propagated over generations, and not the amino acid substitution
matrix. However, one should keep in mind that the ”meaning” of the
message is in amino acids.

Using the Kimura nucleotide substitution model, we generate the
corresponding codon (three-nucleotide) 64×64 substitution matrix. We
propagate the message in the form of codons over generations and then
decode the received codon to an amino acid and calculate the capacity
based on this channel and decoder.

3. Results and discussion

It is curious that the natural genetic code (mapping) is not uniform.
While most of the amino acids are coded by 2 different codons, some
are coded by 6, 4, 3 or 1 codons. A natural question to ask is whether

Fig. 4. Channel capacity for Felsenstein non-coding DNA channel for two values of mutation rate and comparison with Kimura channel. Kimura parameter: K=2, Felsenstein
parameters: π = [0.3 0.2 0.2 0.3]1 , π = [0.35 0.15 0.05 0.45]2 .
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Fig. 6. The degenerate (extreme) genetic code (codon to amino acid map). 1: Alanine, 2:
Arginine, 3: Asparagine, 4: Aspartate, 5: Cysteine, 6: Glutamate, 7: Glutamine, 8:
Glycine, 9: Histidine, 10: Isoleucine, 11: Leucine, 12: Lysine, 13: Methionine, 14:
Phenylalanine, 15: Proline, 16: Serine, 17: Threonine, 18: Tryptophan, 19: Tyrosine, 20:
Valine, 21: STOP.

Fig. 7. The uniform-3 genetic code (codon to amino acid map). 1: Alanine, 2: Arginine,
3: Asparagine, 4: Aspartate, 5: Cysteine, 6: Glutamate, 7: Glutamine, 8: Glycine, 9:
Histidine, 10: Isoleucine, 11: Leucine, 12: Lysine, 13: Methionine, 14: Phenylalanine, 15:
Proline, 16: Serine, 17: Threonine, 18: Tryptophan, 19: Tyrosine, 20: Valine, 21: STOP.

Fig. 8. The uniform-42 genetic code (codon to amino acid map). 1: Alanine, 2: Arginine,
3: Asparagine, 4: Aspartate, 5: Cysteine, 6: Glutamate, 7: Glutamine, 8: Glycine, 9:
Histidine, 10: Isoleucine, 11: Leucine, 12: Lysine, 13: Methionine, 14: Phenylalanine, 15:
Proline, 16: Serine, 17: Threonine, 18: Tryptophan, 19: Tyrosine, 20: Valine, 21: STOP.

Fig. 5. The natural genetic code (codon to amino acid map). 1: Alanine, 2: Arginine, 3:
Asparagine, 4: Aspartate, 5: Cysteine, 6: Glutamate, 7: Glutamine, 8: Glycine, 9:
Histidine, 10: Isoleucine, 11: Leucine, 12: Lysine, 13: Methionine, 14: Phenylalanine,
15: Proline, 16: Serine, 17: Threonine, 18: Tryptophan, 19: Tyrosine, 20: Valine, 21:
STOP. We indicated the amino acids with numbers in the table to emphasize the fact that
names are only labeling and should not affect our search for optimal codes in the sequel.
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the natural genetic code is optimal in the information preservation, or
channel capacity sense. To have an understanding of the space of
possible codon-amino acid mappings, we have constructed a number of
alternatives to the natural code:

1. an extreme-1 code where each amino acid is coded by only 1 codon

and the remaining 44 codons are stop codons (Fig. 6).
2. a uniform code in which all amino acids are coded by 3 codons (and

the stop codon by 64 − 20 × 3 = 4) which we will call the uniform 3
code (Fig. 7).

3. an almost uniform code in which the amino acids are coded by 4 or 2
codons, which we will call the uniform 4-2-code (Fig. 8).

4. a code obtained from the natural code by flipping C and G and A and
T, for which transitions on the 3rd nucleotide would change the
amino acid for 2-fold degenerate codons. We will call this the flipped
natural code (Fig. 9).

5. similarly flipped version of the uniform 4-2 code (Fig. 10).

We have calculated the channel capacities for the natural amino
acid code as well as the alternative codes using the Blahut-Arimoto
algorithm, which are presented in Fig. 11. Several observations can be
made on this figure: The channel capacity of the natural code is
surpassed only by a uniform 4-2 code which has the same transitions-
transversions structure as the natural code for K > 1. The extreme-1
code has the lowest channel capacity irrespective of the value of K. The
flipped natural code has a higher channel capacity when K < 1, in
which case transversions rather than transitions on the 3rd codon do
not change the amino acid for 2 fold degenerate codons. The uniform-3
code has one of the lower channel capacity curves and surpass the
natural code only for very small K. These observations tell us that the
natural code favours a transitions dominant substitution model. It
seems to be better than most alternative codes, however, falls slightly
behind a uniform 4-2 code. This final observation emphasizes the fact
that the natural code is not necessarily the optimal code at least in
terms of channel capacity or information preservation or robustness to
mutations.

These observations make us ask the question why the natural code
was preferred to any other code. This question was asked before by
several researchers including Crick who proposed the “frozen accident”
model (Crick, 1968). The “frozen accident” model was questioned by
various researchers in the literature who noted the “superiority” of the
natural code to alternatives. For example, Freeland and Hurst (1998)
generated randomly 1,000,000 different configurations and taking
account of the mutation biases as in the Kimura model and using a
mean square distance measure concluded that “the genetic code is one
in a million”.

Other researchers use the polar requirement, a measure of hydro-
phobicity as the error measure and try to find/produce codes that
minimize this cost function (e.g. Freeland et al., 2003). This group of
work can be categorized as defending the “physicochemical theory”; the
reader is referred to an interesting review by Tlusty (2010). Other work
also attempt to define a “code fitness” measure (see Novozhilov et al.,
and references therein) based on distance functions weighted with
substitution statistics and defined through the changes in synthesized
proteins. The problem with such work is that substitution matrices
such as PAM are employed which leads to a tautology (and the claim of
the optimality of the natural code) since these matrices are the result of
the natural genetic code (Di Giulio, 2001). For other references on the
topic the reader is referred to Massey (2015).

Our approach is different from previous work in a number of
aspects. Rather than using MSE (mean square error) on specific
biochemical properties such as hydrophobicity, we use an information
theory based measure which captures information on all statistics
rather than only the second order statistics. The use of an MSE
measure intrinsically makes a Gaussian distribution assumption which
is not necessarily suggested by the nature of the data. The searches
made in the literature seem to be random picks of codes from the space
of possible codes such as in Freeland and Hurst (1998) which
generated 1,000,000 different configurations but as noted in Santos
and Monteagudo (2009), the explored code structures are rather rigid.
Considering that there are 21 ≅ 4 × 1064 84 configurations, this is a very
limited sample to draw any conclusions from. In contrast, we propose

Fig. 9. The flipped natural genetic code (codon to amino acid map). 1: Alanine, 2:
Arginine, 3: Asparagine, 4: Aspartate, 5: Cysteine, 6: Glutamate, 7: Glutamine, 8:
Glycine, 9: Histidine, 10: Isoleucine, 11: Leucine, 12: Lysine, 13: Methionine, 14:
Phenylalanine, 15: Proline, 16: Serine, 17: Threonine, 18: Tryptophan, 19: Tyrosine, 20:
Valine, 21: STOP.

Fig. 10. The flipped uniform-42 genetic code (codon to amino acid map). 1: Alanine, 2:
Arginine, 3: Asparagine, 4: Aspartate, 5: Cysteine, 6: Glutamate, 7: Glutamine, 8:
Glycine, 9: Histidine, 10: Isoleucine, 11: Leucine, 12: Lysine, 13: Methionine, 14:
Phenylalanine, 15: Proline, 16: Serine, 17: Threonine, 18: Tryptophan, 19: Tyrosine, 20:
Valine, 21: STOP.
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an intelligent search algorithm which learns through its search and
searches at increasingly more promising parts of the space for
solutions. The only other work which uses a learning intelligent
algorithm is reported in Santos and Monteagudo (2009), however,
they utilize a genetic algorithm rather than simulated annealing and
the MSE measure on polar requirement as their cost function as
opposed to the information theory based measure we use. The reader is
referred to Sella and Ardell (2006) and the references therein for
detailed accounts of past research on the “optimality” of the natural
code.

Firstly, we start with a more realistic estimate of the available
different configurations. We would like to partition m=64 labelled
“items” (codons), to n=21 unlabelled non-empty “sets” (amino acids),
unlabelled since we can rename the amino acids without loosing any
biological meaning. This a classical problem in combinatorial mathe-
matics and is called Stirling numbers of the 2nd kind. The number of
configurations can be calculated using the formula:

∑S m n
n

C n i n i( , ) = 1
!

( − 1) ( , )( − )
i

n
i m

=0 (9)

where C n i( , ) is the combinatorial (n,i). We calculate
S(64, 21) = 2.9 × 1064. We should also divide this by 4! since the order
of A,C,G,T is arbitrary in constructing the matrix which gives
1.23 × 1063. This number despite being much smaller than 2164, is still
too large a number to test all configurations.

We start by doing a limited search around the natural code
searching all configurations of Hamming distance 2 to the natural
code. We basically move a single 1 in the matrix in Eq. (8) to a new
position in the same column (hence changing only two entries in the
matrix), which amounts to remapping a codon to a new amino acid and
calculate the channel capacity for all such generated new configura-
tions. While doing this we ensure that all amino acids are encoded by at
least one codon. Disregarding the case of rows with a single 1, 62 × 20 = 1240 such configurations (Hamming distance 2 neighbours

of the natural code). Below in Fig. 12, we provide the histogram of the
capacities of all such configurations: The natural code is one of the best
but not the best among its neighbours in terms of capacity. We can also
construct a higher capacity code at Hamming distance 4 from the
natural code with a simple observation. We have already shown the
superiority of an 4-2 code above. When we look at the natural code, we
see that the codons are mostly coded in groups of 4 or 2 to an amino
acid with redundancies mostly at the third codon position and less at
the first codon position, with the exceptions of Isoleucine (ATA, ATC,
ATT), Methionine (ATG), Tryptophan (TGG) and the STOP codons
(TAA, TAG, TGA). To keep the 4 and 2 redundancies, let's construct a
neighbouring code to the natural code by moving TGA from STOP to
Tryptophan and ATA from Isoleucine to Methionine as depicted in

Fig. 11. Comparison of the Kimura channel capacities versus K (q=0.001) for various synthetic genetic codes and the natural genetic code. The values at 100th generation are plotted.

Fig. 12. Histogram of capacities (Kimura model) the genetic codes at Hamming distance
2 from the natural code. The natural code has capacity 1.3219. K q= 2, = 0.001.

Fig. 13. A genetic code 4-Hamming distance from the natural code (codon to amino acid
map). 1: Alanine, 2: Arginine, 3: Asparagine, 4: Aspartate, 5: Cysteine, 6: Glutamate, 7:
Glutamine, 8: Glycine, 9: Histidine, 10: Isoleucine, 11: Leucine, 12: Lysine, 13:
Methionine, 14: Phenylalanine, 15: Proline, 16: Serine, 17: Threonine, 18:
Tryptophan, 19: Tyrosine, 20: Valine, 21: STOP.
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Fig. 13. The resulting code is at Hamming distance 4 from the natural
code. As can be seen in Fig. 14, the channel capacity curve of this code
is slightly above that of the natural code.

We can state that there are slightly more optimal codon-amino acid
maps in the vicinity of the natural code. Either nature did not care to
optimize the code even further or (more likely) there are hidden costs
of some changes which we did not include in our considerations. For
instance stop codons also play a vital role in the Nonsense Mediated
Decay (NMD) pathway, having one less stop codon certainly affects the
ability to detect nonsense errors during transcription. Further, it might
be disadvantageous to have more than 1 codon coding for the start
protein start (Met).

As mentioned above although several attempts exist to search for an
optimal code, only random non-exhaustive searches have been made
covering far less than a statistically meaningful space. The searches
were not intelligent (that is not learning while progressing) leading to
non-conclusive results. To search for a global optimum, we propose to
use a non-convex optimisation algorithm, namely Simulated Annealing
algorithm (Kirkpatrick et al., 1983), to do an intelligent search of the
optimal code. The Simulated Annealing algorithm has had success in a
wide variety application areas where the optimisation problem at hand
is NP-hard, that is not solvable in polynomial time. These application
areas include the traveling salesman problem, graph partitioning,
scheduling in operations research, VLSI circuit design in electronics,
optimal source coder design in telecommunications, etc (Kirkpatrick
et al., 1983; Kuruoglu and Ayanoglu, 1993).

Simulated Annealing is motivated by experimental solid state
physics where solids are first heated to a very high temperature and
then cooled down slowly so that all electrons settle to their lowest
energy states. The algorithm is motivated by the earlier ideas of Ulaby
and Metropolis on chemical process modelling and is formulated by
Kirkpatrick et al. in Kirkpatrick et al. (1983). Simulated Annealing
proceeds with a series of random walks, namely Metropolis loops
during which new configurations are proposed. If the new configura-
tion leads to a better cost or energy (in our case the channel capacity), it
is accepted. Unlike the steepest descent type of algorithms, simulated
annealing occasionally accepts also worse configurations with certain
probability given by Boltzmann statistics. This provides hill-climbing
potential and the algorithm can avoid being stuck in local minima. The
Boltzmann statistics provides the analogy with the modelling of the
electron distribution in solid state physics. After each Metropolis loop,
the temperature in the acceptance ratio is dropped, so less and less
proposals with higher cost are accepted. It has been proved that if a
logarithmic cooling schedule is applied the algorithm converges to the
global optimum. However, a logarithmic cooling scheme can get
infinitely slow and suboptimal schemes such as a geometric cooling
scheme is applied. For detailed information on the simulated annealing

algorithm, one is referred to van Laarhoven and Aarts (1987). A brief
sketch of the algorithm is given below:

Simulated Annealing Algorithm

• Let M M= 0, where M0 is the natural code matrix,

• While T T> min,
– T T αα← × < 1
– Pick a random neighbour, M N M← ( )new , where the neighbour set

N(. ) includes all 2-Hamming distance codes from the code M
– If P C M C M T( ( ), ( ), )≥new random (0, 1), where C(. ) is the channel

capacity and P(. ) is the Boltzmann function,
* then move to the new state M M← new

• Output: the final code M and the channel capacity C.

We have run the simulated annealing algorithm with geometric
cooling scheme with a cooling coefficient of α = 0.99. The starting
configuration has been selected as the natural code. The new config-
urations are randomly selected by moving a 1 to a 0 in the amino acid-
codon matrix. That is, changing the mapping of one codon from one
amino acid to another amino acid making sure that there is at least one
codon assigned to each amino acid. We have assumed uniform input
distributions for the codons hence bypassing the Blahut-Arimoto
algorithm. This choice was made since we do not have any prior
information about the codon distribution and wanted to see the
information preservation capability of the codes when no particular
codon was emphasized by the nature.

Fig. 15 gives the evolution of capacity with progress of the
simulated annealing algorithm to find the optimal code. It is interesting
to note that the algorithm started with a strong drop in the capacity
value (the algorithm accepted a worse code) and wild oscillations as
expected in a simulated annealing run (the “temperature” is high in the
beginning), then on the average improving the channel capacity by
moving to “better” codes. Initially the changes are fast, reducing slowly
and then saturating to significantly better codes or high capacity with
small oscillations around the “near-optimal” codes. The initial drop of
the capacity and the long time needed to recover the capacity in the run
indicates that the natural code is already at a good point being better
than most of its competitors although clearly being behind a large
number of codes. The algorithm was rerun with different parameters
such as lower initial temperature which lead to avoiding the initial
drastic drop in the capacity and with smaller temperature coefficient
leading to faster convergence. Various other starting points were
chosen as well such as the “extreme” code or the “uniform 4-2″ code
all leading to similar if not identical final result. The result of such a run
starting with the extreme code is given in 16. It is interesting to note
that in contrast to the case with the natural code as the starting point
this Simulated Annealing run starts with a rapid increase in the

Fig. 14. Comparison of channel capacities for the natural genetic code and a constructed genetic code at Hamming distance 4 from the natural code. Kimura channel (K=2,q=0.001),
100 generations.
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capacity values as expected since the extreme code is a degenerate code
with only one codon mapping to each amino acid.

The best configuration found in the simulations is given in Fig. 17
although some other codes exist with almost the same capacity value. It
is very interesting to note that as in the case of the natural code, the
codons producing the same amino acid are close in the table and have
ambiguities in the nucleotides. The ambiguities in this optimal code are
in the first (10 of them), second (8) and third (13) places. This is in
contrast with the ambiguities seen in the natural code which are mostly
at the third position (20) with some ambiguities also at the first
position (2) but not at the second (0) position.

We provide a comparison of capacity profiles of this near optimal
code with the natural code in Fig. 18. To give a scale of comparison, the
capacity curves of the degenerate code (one codon synthesizing one
amino acid) and a random 4-2 code are also plotted on the same figure.
The figures show the channel capacity values at a certain number of
generations for various values of the parameter K in the Kimura model
corresponding the ratio of transitions/transversions. It can be seen that
the near-optimal code obtained by the Simulated Annealing algorithm
has significantly higher information capacity than the natural code. The
difference is at the same scale as the difference between the natural
code and the degenerate code and hence can be considered very
significant. It is also worth noting that it is also significantly higher

than the random 4-2 code discussed before constructed with ambi-
guities in the third place as in the case of the natural code.

These observations need a discussion on the biological significance.
In particular, they underline clearly that the natural codon-amino acid
code/map is far from being optimal although being better than most
possible codes. The natural code can be “one in a million” (Freeland
and Hurst, 1998); however, considering that there are more than 1063

possible configurations, being one in a million is not selective enough,
it would mean still 1057 competitors. There are many other codes that
have far better information preservation capabilities.

This observation may indirectly give support to three hypotheses.

1. that the genetic code co-evolved to a point that it would have been
too disruptive to change anymore (Crick, 1968; Sella and Ardell,
2006), so its evolution was stopped prematurely.

2. that it is not completely an accidental code in that it is indeed an
error-correcting code better than a large number of competitors
(Ardell and Sella, 2002)

3. that at some point in the past the codons were composed of 2
nucleotides only and the third nucleotide was acquired afterwards.
This may be the reason why the natural code does not seem to be
optimized for 3-codons and that almost all redundancies are in the
third position (Sella and Ardell, 1973; Santos and Monteagudo, 2009).

Fig. 15. The capacity of the code during the evolution of Simulated Annealing algorithm. The capacity value of the natural code is 1.38. Initial temperature is 0.1, temperature
coefficient is 0.99.

Fig. 16. The capacity of the code during the evolution of a fast run of Simulated Annealing algorithm with the extreme code as the initial code. The capacity value of the extreme code is
0.79. Initial temperature is 0.01, temperature coefficient is 0.95.
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Another biological problem to be discussed is whether the use of
channel capacity as the optimality criterion of the protein code is
justified. A higher capacity code definitely preserves the genetic
information better over the generations; however, it also means less
possibility for diversity. The error-correcting mechanism in the coding
DNA is a sword with two edges. A completely preserved information
would not allow diversity and selection.

The results we present are based on the Kimura substitution model.
Other models such as the Felsenstein, HKY, TamuraNei model (Nei
and Kumar, 2000) provide better approximations to the biological
reality of nucleotide substitutions. They for instance can model
stationary nucleotide distributions which are different from
(1/4, 1/4 /, 1/4, 1/4) (Nei and Kumar, 2000). We have done preliminary
simulation studies also with the Felsenstein model, which is one step
higher in complexity compared to the Kimura model; however, we have

observed that in terms of the relative channel capacities of alternative
genetic codes, it did not lead to a significant changes.

In this paper, we have restricted our attention only to substitution
type mutations. Although a full picture should include also insertion
and deletion type mutations, this choice was motivated by two issues:
the dominance of substitution type of mutations and the difficulty of
calculating the channel capacity for deletion/insertion channels. This is
indeed still an open problem in information/coding theory and is the
subject of current research and only upper bounds for the channel
capacity in these cases are known (Mitzenmacher, 2009; Fertonani
et al., 2011).

Another point worth discussing is whether we could in principle
also have used other cost functions besides the channel capacity. The
simplest alternative is the mean squared error or other moments such
as mean absolute deviations or nonlinear functions of the difference
between the codons in subsequent generations. Although much simpler
measures, these functions give only limited statistics. E.g. the mean
squared distance provides us only the second order statistics of the
errors. On the contrary, the channel capacity being based on mutual
information carries information on all orders of statistics and hence is
far more fundamental and informative.

4. Conclusions

In this paper, we have provided a complete modelling of the
evolution process borrowing an analogy with communications, in terms
of Shannon's coding theorems. Our model is different from previous
work in that we consider a codon-amino acid channel rather than
amino acid-amino acid or codon-codon channels as studied by
researchers in the literature. We use the channel capacity as a measure
of information preserving capability of the code and use it as a cost
function to test the optimality of the natural protein (codon to amino
acid) code. Given this cost function, we demonstrate the suboptimality
of the natural code without any space for doubt. Its channel capacity is
significantly below that of various other codes. Unlike previous work,
we have extended our search space (close to 60 million tested config-
urations, that is almost 2 orders of magnitude higher than those
reported in the literature) but more importantly we have done our
search not “blindly” but “intelligently” using a non-convex learning/
optimisation algorithm, namely Simulated Annealing. The method has
indicated a large number of mappings different from the natural code
and with redundancies in all three nucleotide positions while the
natural code has redundancies mostly in the third place and never in
the second place. This observation may be interpreted as a support for
the hypothesis that once the codons were formed of 2-nucleotides only
and that the third nucleotide was acquired later. The presented
formulation, which places the information capacity as a measure of

Fig. 17. The uniform-42 genetic code (codon to amino acid map). 1:Alanine, 2:Arginine,
3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,
10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline,
16:Serine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP.

Fig. 18. Comparison of Channel capacity of Natural, Near-Optimal, Degenerate, Random 4-2 codes on Kimura codon-amino acid channel for various values of mutation rate at N
generations.
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the robustness of the genetic code, provides a mathematical framework
for studying further biological questions.
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