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Molecular dissection of colorectal cancer
in pre-clinical models identifies biomarkers
predicting sensitivity to EGFR inhibitors
Moritz Schütte et al.#

Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours

responding to available therapies, requiring a better molecular understanding of the disease in

precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC

patients (stages I–IV) and developed a pre-clinical platform generating a compendium of drug

sensitivity data totalling 44,000 assays testing 16 clinical drugs on patient-derived in vivo

and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with

extensive omics data comparing donor tumours and derived models provides a resource for

advancing our understanding of CRC. Models recapitulate many of the genetic and tran-

scriptomic features of the donors, but defined less complex molecular sub-groups because of

the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies

novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting

sensitivity to the EGFR inhibitor cetuximab.
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C
olorectal cancer (CRC) is a clinically challenging, hetero-
geneous, disease representing the third most frequent
cancer worldwide. CRCs can be classified within distinct

molecular groups, although the clinical utility of this classification
has not been demonstrated so far1–5. Only a fraction of advanced
CRCs respond to the chemotherapeutic agents 5-fluorouracil
(5-FU), irinotecan or oxaliplatin. Antibodies targeting the
epidermal growth factor receptor (EGFR) offer therapeutic
options, but have failed in the adjuvant setting6. BRAF, KRAS
and NRAS (ref. 7) mutations are routinely used as predictive
markers of resistance to the EGFR blockade. However a
significant fraction of wild-type tumours remain unresponsive
to cetuximab targeting EGFR (refs 8,9) thus requiring novel
biomarkers predicting treatment outcomes.

Several pre-clinical studies based on in vivo or in vitro models
of CRC have been reported10–16, but without investigating their
complex molecular landscapes nor comparing directly the
different model systems.

Here we report an integrative pre-clinical approach based on
the establishment and extensive molecular characterization of a
large CRC biobank consisting of organoids and xenografts
derived from a cohort of 106 patients representative of all CRC
subtypes. Analysis of the responses of in vitro and in vivo models
to a panel of clinically relevant therapeutic agents identifies gene
signatures associated with objective drug response patterns.

Results
Establishment of the OncoTrack CRC pre-clinical platform.
The workflow of the OncoTrack (OT) study is summarized in
Fig. 1. We collected from a prospective CRC cohort of 106
patients a total of 116 resected tissue samples with matched blood
samples, comprising 89 primary tumours (ranging from stage I to
IV) and 27 metastases as donors for generating a biobank of pre-
clinical experimental models. We established in vitro and in vivo
models with a success rate of approximately 60% in both systems.
BRAF-mutated tumours engrafted with a higher efficiency (10/11
cases Fisher’s exact test P¼ 0.04), likely reflecting their aggressive
behaviour17. Here, we report the analysis of 46 patient-
derived organoid cultures (PDO) and 59 xenografts (PDX)
(Supplementary Data 1). Nineteen tumours were modelled in
both systems, out of which five PDOs were derived from a PDX
and two PDXs were established from a PDO. The topological
expression of selected CRC markers was similar between models
and their matched donor specimens (Supplementary Fig. 1a).
PDO cultures formed organized structures featuring a cell-free
lumen and proliferating KI67-positive cells, maintained after
transfer into 384-well microtiter plates (Supplementary Fig. 1b;
Supplementary Movie 1). We sequenced the genomes, exomes
and transcriptomes of the donor cohort and of their matched
untreated models, and established a drug-screening platform
testing mechanistic compounds and chemotherapeutics, used in
clinical standard of care.

Molecular landscapes of the OT tumours and derived models.
We compared the genomic and transcriptome landscapes of the
OT tumours with their derived pre-clinical models by integrating
whole genome (WGS), whole exome (WES) and RNA sequencing
data. We inferred the tumour purity from WGS data (Supple-
mentary Data 1) and excluded samples witho20% tumour con-
tent for the mutation scoring (final n¼ 101 samples/96 patients)
(Methods and Supplementary Data 2–4). We called copy
number variants (CNVs) and somatic mutations using matched
patient germline DNAs as reference. Relevant mutations were
sieved based on their expression and predicted damaging
effects (methods and Supplementary Data 3). Microsatellite-

instable (MSI) samples were near-diploid, whereas microsatellite-
stable (MSS) samples were either hyperploid (40 cases) or
hypoploid (43 cases) with pervasive loss of heterozygosity (LOH)
(Supplementary Fig. 2a). Deletions and focal amplifications were
maintained in the models (Supplementary Data 3–5), while
chromosomal instability was further accentuated (Supplementary
Fig. 2b). We detected a total of 145 gene fusions, including the
known driver event PTPRK-RSPO3 (ref. 18) (Supplementary Data
4). Novel fusions impacting CRC-relevant pathways inactivated
APC or SMAD4, or were activating fusions such as a TRIM24-
BRAF (in 196_T MSI) (Fig. 2a) predicted to trigger the con-
formational activation of the BRAF serine/threonine kinase
domain, as observed in pilocytic astrocytoma19 and melanoma20.
FDFT1-FZD3 (Fig. 2a) and truncating fusions in the negative
regulators of Wnt ZNRF3 and DACH1, were predicted to activate
the Wnt pathway. Recurrent fusions truncated the
haploinsufficient chromatin organizer CTCF and the solute
carrier SLC12A2 (NKCC1) regulating the Cl� flux in the
intestinal crypt, but their contribution to CRC pathogenesis
remain to be demonstrated. One xenograft harboured an ALK
fusion as sole driver event (Supplementary Data 4), however we
lacked the corresponding patient tumour.

The mutational profiles of the OT cohort and of the TCGA
study21 were very similar (Fig. 2b), demonstrating that our cohort
represented the breadth of the CRC genetic landscape and that
metastatic tumours did not show a biased mutation pattern.
Nonetheless, the OT cohort displayed higher frequency of
mutations in SOX9, maintaining the intestinal cell progenitors
pool, (13 versus 4% in TCGA), and in TP53 (71 versus 51% in
TCGA) (Supplementary Fig. 3a,b) (Fisher’s exact test, Benjamini–
Hochberg (BH) adjusted P¼ 0.04 and 0.02, respectively)
overrepresented in stages III and IV (Fisher’s exact test,
P¼ 0.012) and often homozygous in hyperploid tumours
(Student’s t-test, P¼ 0.0008).

The genetic profiles of the models were generally concordant
with their matched donor tumours. However, a number of
models displayed clonal and sub-clonal differences irrespective of
the tumour stage, with cases of extreme divergences such as for
118_T1 and 165_T and the sibling models derived from 227_T
(Fig. 2c; Supplementary Data 6). These differences were more
likely reflecting the intra-tumour heterogeneity (ITH) with
different mutations found in distant regions of the tumour22

sampled during model establishment than a genetic drift after
serial passages. Early and late passage cell cultures showed
virtually identical mutation patterns (Supplementary Fig. 4a,b),
as well as five PDXs derived from tumour 150_MET1
(Supplementary Data 7), supporting this hypothesis. Along
those lines, a comparable molecular analysis of breast cancer
models showed only minimal clonal selection after serial
transplantations23. Interestingly, we observed no discordances
for driver mutations in BRAF and KRAS, although 118_MET and
227_T donor had KRAS homozygous mutations, whereas their
respective models were heterozygous, reflecting ITH for CNVs.
Clonality analysis with SciClone24 identified mutation clusters
private to either patient or model, or to one of the sibling models
(Fig. 3a, Supplementary Fig. 5 and Supplementary Data 8).
Only 3% of the divergent mutations impacted cancer relevant
genes21,25 (Fig. 3a,b), similar to previously reported CRC
organoids16. For example, mutations in EGFR and MLL2 were
private to 327_T_PDO, whereas tumour 278_T and its models
diverged for mutations in FAM123B, MTOR, and for a PTCH1
frameshift mutation predicted to activate oncogenic sonic
hedgehog signalling (Fig. 3b; Supplementary Data 6). Several
discordant mutations were either redundant or functionally
equivalent. Sample 323 displayed four different mutations in
PIK3CA, with R88Q common to both models, A775S private to
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PDO, whereas G1049R was common to models and donor.
Discordant mutations in APC were all deleterious, therefore
functionally equivalent. These data indicated that pre-clinical
models might capture only part of the genetic heterogeneity of the
CRC bulk donor tumours, but retained systematically RAS/RAF
mutations.

Transcriptome landscapes of tumours and their derived models.
We analysed the global transcriptome profiles of the OT patient
tumours and derived models at several levels. Annotation with the

CRC consensus molecular group labels (CMS1 to CMS4) (ref. 2)
led to unambiguous classification for only 50/90 patient samples.
Further, this classification appeared too coarse for the models, in
particular for the organoids (Methods, Supplementary Data 9;
Supplementary Fig. 6a,b). Given that we aimed at comparing in
details the transcriptome profiles between tumours and model, we
analysed de novo the RNAseq data from 65 OT primary tumours,
excluding at this stage low purity (o40%) or metastatic samples to
minimize confounding contribution of surrounding tissues
(see methods). In a first step, we applied non-negative matrix
factorization (NMF)26 and CLICK27 algorithms. NMF identified
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Figure 1 | Experimental design of the OncoTrack (OT) study. Resected CRC patient tumours were fragmented and sampled for fuelling the sequencing

and the establishment of in vivo PDX and in vitro PDO models. Untreated original tumours, PDX and PDO samples were analysed by WGS, WES and

RNAseq for correlating the molecular information with drug sensitivity patterns. In addition, the epigenomes of the original tumours were analysed. The OT
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relevant in CRC.
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three main groups, OT_NMF1, OT_NMF2 and OT_NMF3
(Supplementary Data 10; Supplementary Fig. 7a), defined by
tumours sharing global biological features (Supplementary

Data 11). CLICK identified 13 gene signatures (OT_C1 to
OT_C13) (Supplementary Data 10; Supplementary Fig. 7b)
corresponding to co-expressed genes in specific tumour sub-
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groups, leveraging the depth of functional annotation attributed to
tumour groups (Supplementary Data 11). We rationalized the
NMF and CLICK clusters in a meta-analysis of 38 gene signatures
incorporating previous CRC molecular groups1,3–5. The mean
expression values for these 38 signatures were calculated for 90 OT
samples, now including metastases (tumour purity Z40%).
Analysis of this matrix with unsupervised hierar-
chical clustering and mclust28 identified three main molecular
groups with high stability referred to herein as ASCL2/MYC,
ECM/EMT and Entero/Goblets (Supplementary Fig. 8a–c),
respectively related to CMS2, CMS4 and CMS3 (ref. 2), albeit
with differences (Supplementary Fig. 8d). MSI samples (CMS1)
clustered within Entero/Goblets. ASCL2/MYC (OT_NMF2)
featured higher expression of ASCL2, the master regulator of
colonic crypt stem cells29, MYC and AURKA potentially
contributing to stem cell phenotypes30, and CDX2 promoting
Wnt signalling (Supplementary Fig. 9). This group showed a trend
for wild-type BRAF and MACROD2 deletions (Fisher’s exact test,
P¼ 0.01 and 0.02, respectively) and was associated with a specific
DNA methylation pattern, namely cluster_4 (P¼ 0.0057,
Chi-square test) (Supplementary Fig. 10). ECM/EMT
(OT_NMF1) was characterized by TGFb and sonic hedgehog
signalling, extracellular matrix (ECM), epithelial to mesenchymal
transition (EMT), inflammation, enteric neurons and smooth
muscle cell markers reflecting tumour invasion in the intestinal
myoenteric layer31,32. Entero/Goblets (OT_NMF3), associated
with the CIMP-High methylation pattern (Supplementary
Fig. 10), had strong features of epithelial enterocytes, entero-
endocrine and goblets cells, carbonate dehydratase activity, and
higher levels of AGR2, known to promote adenocarcinomas
growth33 (Supplementary Fig. 9). Entero/Goblets were mainly early
stage tumours whereas ASCL2/MYC and ECM/EMT were rather

late stages (Supplementary Fig. 8e). Data highlighted different
stromal and immune environments among tumours of the same
group (Supplementary Fig. 8b–8f). Entero/Goblets tumours were
associated with Th17 cytokines, where MSI cases were unique in
expressing innate immunity signatures (for example, OT_C8)
(Supplementary Fig. 11a,b). ASCL2/MYC tumours displayed
the lowest immune infiltration, in contrast to the highly
inflamed tumours of the ECM/EMT group showing a maximal
tumour purity of 50% (Methods, Supplementary Fig. 11a,b and
Supplementary Data 12).

By comparison, models defined only two main molecular
groups, either NMFa strongly enriched for Wnt and stemness
processes pointing to ASCL2/MYC, or NMFb corresponding to
colonic epithelial cells and entero/goblets (Fig. 4a, Supplementary
Fig. 12a). Both in vitro and in vivo model systems lacked ECM,
stromal components and human immune-related signatures
(Fig. 4a, Supplementary Data 12), whereas showing prominent
aurora kinase pathway/crypt progenitors, lipid metabolism and
oxidative respiration signatures (OT_C2, OT_C4 and OT_C10),
in part because of their higher tumour content. However, the two
model types exhibited significant differences (Fig. 4b). Within the
limits of the missing human stroma, the main features of the
donor tissues were preserved in PDXs where ASCL2/MYC- and
ECM/EMT-derived xenografts grouped in NMFa, whereas those
engrafted from Entero/Goblets were NMFb. PDOs showed a
more complex picture (Fig. 4c), where ASCL2/MYC-derived cells
mostly featured the NMFb pattern. Despite the limited number of
sibling models with this phenotype, data suggested heterogeneity/
plasticity in cell cultures. As a proof of principle, we combined a
Wnt reporter assay with RNAseq on PDOs derived from
151_MET1 (ECM/EMT). Data demonstrated the co-existence
of two genetically identical cell sub-populations, respectively
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presenting either high-Wnt signalling or low Wnt with epithelial
features (Fig. 4d; Supplementary Data 13).

Sibling pairs of PDX/PDO differentially expressed signatures
for hypoxia, EMT, G2M checkpoints and proliferation (Fig. 5a),
as well as stemness markers (Supplementary Fig. 13a), without a
trend for a given model type. However, PDOs had significantly
higher levels of the stem cell marker ALDH1A1 (Supplementary
Fig. 13b) and of components of carbohydrate, steroid, retinoid

and fatty acid metabolism (Fig. 5b). SCD encoding Stearoyl-CoA
desaturase-1, a key enzyme in fatty acid metabolism involved in
cancer cell survival34, and UGTs (UDP-glycosyltransferases)
triggering glucuronidation activating lipid metabolism and
mediating drug resistance35 were more active in organoids than
in 2D CRC cell lines (Fig. 5c). This might be because of metabolic
adaptation to the culture conditions or to intrinsic features of
organoids.
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Patterns of drug response in CRC-derived models. We mon-
itored the sensitivity of 94 models to 16 drugs, chemotherapeutics
and drugs targeting MEK, mTOR, VEGFR, or EGFR pathways
(Figs 1 and 6). In PDOs, we considered efficacy (Emax,), the
maximum growth inhibition reached at the highest drug con-
centration, as well as potency, the half-maximum inhibitory
concentration (IC50) relative to the reference compound staur-
osporine, which exhibited low IC50/high Emax (Fig. 6a,b;
Supplementary Data 14). Potency and efficacy were highly cor-
related for all drugs in all organoids (Supplementary Fig. 14a,b).
Potency was used to define four response categories, strong-,
moderate-, minor response or resistant (Supplementary Fig. 14c),
as shown for AZD8931 (Supplementary Fig. 14d). PDOs exhib-
ited a wide range of sensitivities upon treatment with the different
drugs (Supplementary Figs 14 and 15a). Chemotherapeutics
achieved only poor responses, particularly oxaliplatin which was
ineffective. Irinotecan was used here instead of its active deriva-
tive SN-38, given that the cells expressed CES2, essential for
metabolizing the pro-drug. Responses to irinotecan were mar-
ginal, as previously observed in organoids16, potentially because
of glucuronidation inactivating SN-38 in organoids. Multi-kinase
inhibitors (MKIs) triggered minor responses, (Fig. 6a,b). The
sensitivity profiles to linifanib, nintedanib and sunitinib were
strongly correlated, but less so to sorafenib and regorafenib, a

recently approved MKI for metastatic CRC (ref. 36), structurally
similar to each other and found together in a different cluster
(Fig. 6c). Vandetanib, targeting both VEGFR and EGFR, was the
most potent MKI but correlated strongly with EGFR blockade,
indicating that the anti-proliferative effects were likely mediated
by the EGFR pathway inhibition. Responders to EGFR blockade
were mostly KRAS/BRAF wild-type or carried BRAF-G466V
showing reduced kinase activity37 (Supplementary Fig. 16a).
EGFR blockade displayed the widest range of effects across
samples, as previously observed38 (Fig. 6a,b; Supplementary
Fig. 15a). Cetuximab was ineffective in cells at clinically relevant
concentrations (Supplementary Fig. 15b; Supplementary
Data 14), corroborating earlier reports39 and data streaming
from an independent CRC organoid cohort estimating IC50
in the mmolar range16, although biologically meaningful
concentrations of cetuximab remain in the nmolar window40.
Further, only few KRAS/BRAF wild-type CRC 2D cell lines
respond to cetuximab14. In contrast, PDOs were sensitive to
tyrosine kinase inhibitors (TKIs), in particular to afatinib, and
their response to AZD8931 was similar to earlier studies16. The
model 330_T_CELL with ERBB2 amplification was sensitive to
AZD8931 (targeting EGFR, ERBB2, ERBB3) and afatinib
(targeting EGFR, ERBB2), but less so to gefitinib targeting only
EGFR (Supplementary Fig. 16a). PDO 327_T_CELL had a rare
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EGFR mutation (A864V) and was highly sensitive to both
AZD8931 and afatinib. Treatment with MEK or mTOR inhibitors
achieved objective responses but PDOs displayed different drug
response patterns (Fig. 6a–c).

For xenografts, drug response was assessed by the relative
tumour volume of the treated PDX versus its matched untreated
control (T/C), and classified into four categories strong-,
moderate-, minor response or resistant (Fig. 6d, Supplementary
Data 14). Among chemotherapeutic agents, the outstanding
response to irinotecan was uninformative given the intense
metabolic activation of the pro-drug in the mouse41. In contrast,
the anti-metabolite drug 5-FU, that has comparable serum
pharmacokinetics in human patients and nude mice42, was the
most efficient chemotherapy in PDXs (Fig. 6d; Supplementary
Fig. 15c). The three compounds targeting angiogenesis triggered
objective responses (Fig. 6d). Mechanistically, VEGFA was
expressed in PDXs, but not the human VEGF receptors (FLT1,
FLT3, KDR), which were however replaced by the murine
compartment (Supplementary Fig. 17), supporting active VEGF
signalling via murine endothelial cells. The response pattern to
regorafenib43 correlated strongly with nintedanib targeting VEGFR,
but only weakly with Avastin, a monoclonal antibody inhibiting
human VEGFA (Fig. 6e). Interestingly, targeted inhibition of
mTOR (mTORC1/C2) correlated with nintedanib and regorafenib
response profiles (Fig. 6e), which might be mechanistically related
to the contribution of mTORC2 as a critical signalling node for
VEGF-mediated angiogenesis44. The MEK inhibitor selumetinib
displayed a response profile different to that of all other drugs.

The EGFR blockade achieved tumour growth inhibition 450%
for one third of the xenografts (Fig. 6d, Supplementary Fig. 15c,
Supplementary Data 14). Responses to TKIs targeting the
intracellular domain of EGFR and other ERBB family members
were comparable with each other but less so with the selective EGFR
antibody cetuximab, performing best in achieving a substantial
growth delay in 10% of the xenografts (Fig. 6d–f). BRAF V600E was
the most stringent independent predictor of resistance, as previously
reported45. RAS mutations appeared less specific based on the T/C
criteria, with four PDXs carrying KRAS or NRAS mutations among
the moderate responders. However, when applying the RECIST
clinical criteria, some of the responders were considered progressive
(Fig. 6f, Supplementary Fig 16b). This apparent discrepancy reflects
the fact that RECIST records whether progression exceeds 20% of
the initial tumour volume after treatment, whereas T/C compares
the relative tumour volume of the treated tumour versus its
untreated matched control, thus permitting to detect objective
tumour growth delay, even minor (Fig. 6f). Similar cases of non-
progressive KRAS mutated tumours were already reported for
patients treated with cetuximab46,47. In some cases, we could
mechanistically link the response profile to EGFR blockade to
specific mutations. 106_T_XEN carrying ERBB3-E928G and the
activating mutation ERBB2-L755S conferring sensitivity to ERBB2-
targeted drugs but resistance to EGFR inhibitors48 showed indeed
objective response to afatinib and AZD8931 but resistance to
cetuximab (Fig. 6f; Supplementary Fig. 16b). PDX 353_T_XEN
carrying an EML4-ALK fusion as sole putative driver was resistant
to all EGFR inhibitors (Fig. 6f, Supplementary Fig. 16b), but showed
exquisite sensitivity to crizotinib (Fig. 6g), approved for targeting
ALK fusions in lung cancer49. A similar fusion responding to
crizotinib was described for one CRC cell line14. ALK fusions are
found in B1% of the CRCs50. We present the first in vivo pre-
clinical data suggesting that crizotinib might represent a therapeutic
option for CRC patients with rare ALK fusions.

Comparative drug responses between PDX/PDO sibling pairs.
We compared the treatment outcomes of eight drugs for 19 pairs
of PDO/PDX siblings (Fig. 7; Supplementary Fig. 15d), although

inherent differences in the microenvironment (matrigel versus
vascularized tissues), biology of the models, oxygen levels, cata-
bolism/anabolism of the compounds in vitro and in vivo, and
criteria assessing drug sensitivity (IC50/Emax versus T/C) are
challenging this exercise. Irinotecan and cetuximab were excluded
since they were uninformative in PDXs or in PDOs. Relying on
the four response categories defined above, we called concordant
response between PDX/ PDO siblings if their responses did not
differ by more than one rank (for example, minor versus mod-
erate) (Fig. 7, blue and white areas). Despite the aforementioned
contingencies, response patterns between the two systems were
fairly concordant excepted for AZD8931 and 5-FU. For the EGFR
blockade, afatinib responses were in reasonable agreement but
less so for AZD8931 more potent in PDOs than in PDXs, despite
its low efficiency in cells (Fig. 7). This is likely to be because of
differences in the pharmacokinetic behaviour of this compound,
to biological differences between models, or to genetic hetero-
geneity. Models derived from 327_T differed for EGFR-A864V
private to PDOs and absent in PDXs, which showed high-sensi-
tivity or resistance to EGFR inhibitors, respectively
(Supplementary Fig. 15d). 5-FU was the second most discrepant
drug (Fig. 7) possibly because of its complex metabolism. 5-FU is
catabolized in vivo via the dihydrothymine dehydrogenase
(DPYD/DPD), so that only 1–3% of the initial 5-FU concentra-
tion leads to active metabolites in plasma, generating modified
nucleotides that are incorporated into the RNA and DNA via
different enzymatic reactions51. Despite the fact that PDOs do not
express DPD, the Emax was o50%, suggesting that anabolic
routes might be less efficient in vitro.

Molecular classifiers of drug response. Exploiting the high
dynamic range of RNAseq, we performed differential gene
expression analyses for identifying molecular profiles associated
with drug response profiles (see Methods). This approach was
successful for 5-FU, Avastin and EGFR inhibitors (Supple-
mentary Data 15), but failed for the other drugs in part because of
their low efficacy precluding the assessment of true responder
groups. However, we were also unable to identify common fea-
tures characterizing responders to the efficient compound BI
860585, inhibiting both mTORC1 and mTORC2, suggesting that
this drug might trigger complex cascade effects, difficult to cap-
ture in our present analysis.

For 5-FU, we focused on PDXs more comparable to the patient
situation42. Responding xenografts tended to belong to NMFb
(Fisher’s exact test P¼ 0.03) and included the MSIs (Fig. 8a).
We identified a discriminative gene signature characterized
by intestine epithelial lineage (P¼ 1� 10� 8) and HIF-1
transcription network (P¼ 1� 10� 7). Combined with recursive
feature elimination and support vector machine (SVM) algorithms,
this signature led to build a mini-classifier of 14 genes able to
segregate responders from non-responders (Methods, and Fig. 8b).
The stability of the classifier was estimated by cross-validation on
the PDX OT-cohort (Supplementary Data 16). On the OT-patient
cohort, the 5-FU classifier predicted that the best responders would
be from the Entero/Goblets molecular group, including 7/8
MSI-high samples (Fig. 8c; Supplementary Data 16). However,
the predictive power of the classifier will require further
assessments on additional cohorts treated exclusively with
5-FU. Considering inhibitors of angiogenesis, only the response
to the antibody Avastin blocking VEGFA could be associated with
a clear molecular signature, although the limited number of
responders impeded statistical assessments. Sensitive tumours
exhibited higher activity of genes involved in energy-coupled
mitochondrial transport (P¼ 1� 10� 4), whereas resistant
tumours exhibited strong colonic cell features and higher
expression of ERF (Supplementary Fig. 18a).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14262 ARTICLE

NATURE COMMUNICATIONS | 8:14262 | DOI: 10.1038/ncomms14262 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


Response patterns to EGFR inhibitors were associated with
characteristic molecular profiles, albeit different ones in PDOs and
in PDXs (Fig. 9, Supplementary Fig. 18b, Supplementary Data 15).
PDOs sensitive to afatinib featured enterocyte differentiation factors
(P¼ 1� 10� 6) such as ATOH1 and higher expression of EGF, and
GREM1, which promotes stem cell properties in colonic cells
outside of the stem cell niche52. Response to AZD8931 defined a

similar profile to afatinib, in contrast to gefitinib and vandetanib,
which were less efficient (Figs 6b and 9a,b; Supplementary Fig. 18b).
Fourteen genes were associated with resistance to all EGFR
inhibitors (Supplementary Fig. 18c–e), including RGS4, BASP1
and IGF2 known as marker of EGRF blockade insensitivity53.

In PDXs, strong responders to the EGFR blockade were mostly
from molecular group NMFa (stem/Wnt) whereas resistant ones
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were epithelial (Fig. 9c–e). Resistance to AZD8931 and to afatinib
was associated to a molecular signature enriched for develop-
mental genes (P¼ 1.03� 10� 6 and 1� 10� 9), including the
oncogene ETV5 (Supplementary Data 15) and for AZD8931,
REG4, a multifunctional mitogenic protein known as a potent
activator of the EGFR pathway in CRC (refs 54,55). Response
profiles to cetuximab showed distinctive signatures segregating
strong responders from resistant tumours, showing also a third
group of PDXs displaying moderate/minor responders that
included KRAS mutants (Fig. 9e). Resistance to cetuximab
was also associated with expression of REG4, and featured
strong epithelial (P¼ 2� 10� 9), as well as developmental
(P¼ 1� 10� 5) signatures whereas sensitive tumours featured
expression of MYC, JUN and E2F5, and of previously reported
markers of cetuximab sensitivity CEACAM7 and EREG46,56.

Sensitivity was correlated with hypoploidy (Fisher’s exact test
P¼ 0.003), and with CNV gain of MYC and AURKA (Fig. 9e),
suggesting that tumours sensitive to EGFR blockade might rely
on the MYC-AURKA axis, a relevant pathway in CRC (ref. 57).

The EGFR response signatures of PDX and PDOs shared only
a few genes, highlighting their biological differences and the
difficulties in comparing directly these systems (Supplementary
Fig. 18f,g).

Classifier of cetuximab sensitivity in KRAS-WT tumours.
Given that a fraction of patients with BRAF/KRAS/NRAS wild-
type (WT) CRCs do not benefit from cetuximab, we aimed at
identifying an independent classifier predicting cetuximab sensi-
tivity for addressing this unmet clinical need. On the basis of the
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signature shown in Fig. 9e, we built a mini-classifier of 16 genes
able to segregate responders from non-responders, using a
combination of recursive feature elimination and SVM algo-
rithms (see Methods, Supplementary Data 17, Fig. 10a,b). We
tested the stability of this mini-classifier by cross-validation on
the OT xenografts, showing an overall improved performance
over the RAF/RAS mutation status alone in predicting the out-
come of cetuximab treatment, in terms of both sensitivity and
specificity (Fig. 10c). In addition, we validated the classifier’s
predictive power on two independent CRC xenograft cohorts and
one independent human cohort. We generated RNAseq data on a
previously reported collection from EPO (n¼ 60)58 and
downloaded the informative data from Novartis PDXs (NV,
n¼ 36)12, and from a human cohort of 68 patients KF (n¼ 68)46,
all treated with cetuximab (Fig. 10c; Supplementary Table 1). On
the xenograft cohorts, the OT mini-classifier outperformed the
mutation status-based predictor for predicting responders and
achieved a sensitivity of 0.92 and 1 for KRAS/NRAS/BRAF wild
type samples on the NV and EPO xenografts, respectively.

In the Khambata–Ford (KF) cohort, the KRAS mutation status
was highly sensitive but not very specific, because of a number of
WT-KRAS tumours that did not respond to cetuximab (of note,
the BRAF status was not tested in this retrospective study),
whereas the OT mini-classifier exhibited higher sensitivity (0.83),
and specificity (0.86) (without stable disease). Overall, the OT
mini-classifier outperformed the BRAF/KRAS/NRAS status in
predicting cetuximab response, despite inherent differences
between datasets including patients from different populations
and ethnic origins (US, European and Chinese), tumour stages
and methodologies (microarrays versus RNAseq). We then
merged the EPO, NV and KF cohorts in a superset of 164
samples for testing the OT mini-classifier, showing a sensitivity of
0.94 and a specificity of 0.79 for the KRAS/NRAS/BRAF wild type
samples (Fig. 10d; Supplementary Table 2). On the basis of this
performance, we applied the OT mini-classifier to the original
OT-patient cohort (Fig. 10e), predicting that sensitive cases were
mainly found in the ASCL2/MYC group, in particular early stage
tumours (Fisher’s exact test P¼ 0.0068). Although a few sensitive
tumours belonged to the ECM/EMT group, those were showing
similarities with the ASCL2/MYC samples (Supplementary
Fig. 8f, subgroup A).

Discussion
We report here a unique CRC biobank comprising 59 xenografts
and 35 organoids tested on a panel of clinically relevant
compounds. This is the first large study providing extensive
molecular characterization of a patient donor cohort, encom-
passing all the disease stages, and representative of the typical
CRC molecular groups, with matched in vivo and in vitro models.

A key issue for evaluating the potential of pre-clinical models
relies on their capacity to retain the complex molecular and
biological characteristics of the parental tumours. We showed
that most models recapitulated the genetic landscapes of donor
tumours, whereas clonal discordances found at early passages
were attributed to ITH, reflecting the initial sampling of the bulk
tumour. We identified few discordant mutations potentially
impacting treatment outcome, (for example, EGFR, PTCH1),
suggesting that heterogeneous parts of the tumours could respond
differently to targeted drugs. This issue needs to be taken into
consideration in CRC personalized settings, requiring ideally the
establishment of multiple models recapitulating ITH, challenging
the 1� 1� 1 scheme12. Transcriptome landscapes indicated that
cellular and biological pathways were reasonably well conserved
in both model types, except for immune and stromal
environment. Xenografts are currently considered as gold

standard tools for precision medicine, whereas the potential of
organoid technologies is in early evaluation16. We found that
PDXs appeared closer to the CRC molecular groups than PDOs,
in particular those derived from the ASCL2/MYC group, but
follow-up studies are required for confirming this observation.
PDOs featured higher expression of genes involved in xenobiotic
and fatty acid processes, possibly impacting cancer cell survival34,
and may exhibit higher plasticity, displaying heterogeneous stem/
differentiated enterocyte cell populations. These differences have
a crucial impact on the choice of a suitable ex vivo model system
for compound screening, and were investigated by comparative
analyses of drug response in genetically identical PDO/PDX
sibling pairs. Striking sensitivity differences between the model
systems were seen for AZD8931 more potent in PDOs than in
PDXs. Evaluation of drug response depends on pharmacokinetic
parameters such as the concentration of active compounds at
the tumour site. Assessing the clinical relevance of potency
levels in vitro should consider clinical achievable drug plasma
concentration (Cmax or Css, maximum or steady-state
concentrations), providing these values are known from clinical
studies. Drugs exhibiting low potency in cell models, yet having
high tolerable Cmax values in patients might trigger a response
although PDOs were scored insensitive. For instance, regorafenib
reaches a Cmax value of 2.5 mg ml� 1 following a single 160 mg
dose in patients with advanced solid tumours59.

Here, we tested 11 drugs in 59 PDX models recapitulating most
of the molecular features of the donor human tumours, providing
the equivalent of phase II/III-like response data. Dissecting the
stromal human components in models, leading to more specific
signatures of the tumour cells, contributed to identify novel
classifiers of response to the clinical compounds 5-FU and
cetuximab, correlating responders with specific CRC molecular
sub-groups. We derived a novel classifier predicting cetuximab
response with high sensitivity and specificity, outperforming
current genetic biomarkers and able to predict the drug sensitivity
of RAS/RAF wild-type tumours, a group of tumours, which up to
now lacked efficient biomarkers associated with EGFR blockade
sensitivity.

We demonstrated here the power of integrative analyses for
capturing the complexity of the CRC biology. Understanding the
molecular make-up of each tumour and model is a paradigm
becoming realizable with increasingly affordable NGS protocols
and availability of powerful analysis tools. We identified clinically
relevant gene fusions, and provided the first CRC in vivo model of
ALK fusion responding to crizotinib. The OncoTrack study
provides a large biobank and data repository based on patients
and pre-clinical models with unprecedented breadth and depth,
and a compendium of drug sensitivity data, a resource that can be
exploited further for improved drug discovery and understanding
of CRC biology.

Methods
Patients. In this study we included patients with colorectal cancer aged between 18
and 100 years. The only exclusion criterium has been infectious diseases. Samples
were stored according to the current GCP guidelines. Informed consent was
obtained from all human subjects included in the study. The study was approved
by the local Institutional Review Board of Charité University Medicine (Charité
Ethics Cie: Charitéplatz 1, 10117 Berlin, Germany) (EA 1/069/11) and the ethics
committee of the Medical University of Graz (Ethic commission of the Medical
University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria), confirmed by the
ethics committee of the St John of God Hospital Graz (23-015 ex 10/11).

Nucleic acid preparations. Nucleic acid preparations were performed either using
the AllPrep DNA/RNA/Protein Mini Kit (Qiagen, 80004) or the AllPrep DNA/
RNA/miRNA Universal Kit (Qiagen, 80224). DNA extraction from blood was
carried out using the QIAamp DNA Blood Maxi Kit 10 (Qiagen, 51192). Con-
centrations were determined on Qubit Fluorometer. RNA integrity was evaluated
with Bioanalyzer 2100 (Agilent, Palo Alto, CA).
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Targeted sequencing. Targeted sequencing libraries were prepared with the
TruSeq Custom Amplicon Kit (Illumina, FC-130-1001) and Index Kit (Illumina,
FC-130-1003) following the True Seq Custom Amplicon Low Input Library Prep
protocol (October 2015). TruSeq Custom Amplicon panels were designed with
Illuminas DesignStudio. Paired-end (PE) libraries were sequenced on Miseq PE 151
dual Index.

Mutation validation with Sanger sequencing. PCR primers are listed in
Supplementary Table 3. PCR products were purified and processed by Sanger
sequencing (Eurofins MWG Operon).

Microsatellite status. Microsatellite status was analysed using the five mono-
morphic markers BAT25, BAT26, NR21, NR24 and NR27. Pentaplex PCR reac-
tions were performed using the primers given in Supplementary Table 4. PCR
reactions and capillary electrophoresis were performed by Eurofins Genomics
GmbH (Germany).

Whole genome sequencing. High coverage WGS libraries were prepared with the
TruSeq DNA Sample Prep v2 kit (Illumina, set A: FC-121-2001; set B: FC-121-
2002) following the Illumina Low Throughput (LT) Protocol (August 2011).
Paired-end libraries were sequenced on HiSeq 2,000/2,500 instruments with v3
chemistry using 2� 101 bp reads to � 50 coverage. For low coverage, WGS
libraries were prepared using Nextera Rapid Capture Exome and Expanded Exome
Kit (Illumina, FC-140-1006), but omitting the exome enrichment step. Paired-end
libraries were sequenced (2� 51 bp) on HiSeq 2,000/2,500 instruments with v3
chemistry to � 1 coverage.

Whole exome sequencing. WES was carried out on either SOLiD or Illumina
platforms. SOLiD libraries were prepared either with Sure Select XT Human All
Exon 50 MB (Agilent Technologies, 5190-0407) or with SureSelect Human All
Exon V4 (Agilent Technologies, 5190-4631). Sequencing was carried out either on
SOLiD 5500 in Frag75/ECC mode or on SOLiD Wildfire in Frag50/ECC runs using
single-end mode. For Illumina, libraries were prepared with Nextera Rapid Capture
Exome and Expanded Exome Kits (Illumina, FC-140-1006). Paired-end libraries
(2� 51 bp) were sequenced on HiSeq 2000/2500 instruments with v3 chemistry.

Whole transcriptome sequencing. RNAseq libraries were prepared using either
TruSeq RNA Sample Prep Kit v2 (Illumina, set A: RS-122-2001; set B: RS-122-
2002) with modifications preserving strand-specific information60 or TruSeq
Stranded mRNA Sample Prep Kit (Illumina, set A: RS-122-2101; set B: RS-122-
2102). For ten total RNA samples we used the Ribo-Zero Magnetic Gold Kit
(Epicentre, MRZG12324). Sequencing (2� 51 bp) was performed on HiSeq 2000/
2500 instruments with v3 chemistry.

DNA data processing. DNA reads were aligned to the human reference genome
hg19 using BWA (bwa0.7.7-r441-mem for 75/101 bp, bwa0.5.9-r16-aln for 51 bp
reads). For xenograft samples, the human and mouse DNA reads were deconvo-
luted after mapping to references from human hg19 and mouse mm9 genome
versions.

Copy number variants. Copy number variants were estimated using the BICSeq
algorithm61 and the read coverage data of tumour versus normal pairs. We inferred
ploidy using the B allele frequencies of heterozygous germline variants. For low
coverage WGS without matching blood data we used as a proxy an electronic pool
of six sex-matched normal samples.

Somatic SNVs. Somatic SNVs were detected using established pipelines based on
VarScan2 combined with RNAseq data and functional annotation of the variants
based on Ensembl v.70. Somatic indels were detected using SAMtools and
Dindel62.

RNA data processing. RNA reads were aligned to hg19 using BWA and SAM-
tools. Mapped reads were annotated using Ensembl v70. Gene expression levels
were quantified in reads per kilobase of exon per million mapped reads (RPKM).

Gene fusions. Gene fusions were detected by RNAseq using deFuse (v0.5.0) and
TopHat2-Fusion (v2.0.3). High-confidence events were selected and subjected to
visual inspection. Fusion transcripts were annotated on Ensembl gene annotation
v62. For validation, 50 ng of total RNAs were reverse transcribed and fused tran-
scripts were amplified using the dART 1-Step RT-PCR Kit (EURx #E0803-02)
using primers located upstream and downstream of the transcript breakpoints
(Supplementary Data 4). RT-PCR products were purified and processed by
capillary Sanger sequencing (Eurofins MWG Operon).

SciClone. Investigation of tumour clonality in corresponding patient, PDX,
PDO samples of the same donor was performed using the program sciClone
version 1.1 (ref. 24). As an input we utilized all SNVs scored in diploid regions.
Clustering of the data were performed by the sciClone tool based on variant allele
frequencies of all informative SNVs that have a minimum coverage of 48 reads for
patient samples and 24 reads for PDX and PDO models. Data for corresponding
patients, PDX, PDO were given simultaneously as input to the sciClone program.
We obtained informative results for 41 out of 62 samples.

Analysis of EPO cohort. For 57 of the 60 PDXs mutation information from allele-
specific RT-PCR (Custom TaqMan SNP Genotyping Assays, Applied Biosystems)
for KRAS G12, G13 and A146, for BRAF V600E and for PIK3CA E542K, E545K
and H1047R was available (ref. 58). Additionally, we generated RNAseq data and
investigated for sequencing reads carrying mutations at KRAS codons
12,13,22,61,146, BRAF codon 600, NRAS codons 12,13,61, PIK3CA codons
542,545,1047,420,88. Gene fusion detection was carried out using Tophat2.

Comparison of corresponding patient tumours and models. For the compar-
ison of SNVs/indels we applied a two-step analysis. At first, SNVs/indels were
called in patient tumour, PDX and PDO samples as described above with adequate
criteria. In a second step, for corresponding sample pairs or sample trios we
rechecked the allele frequency of SNVs/indels detected in minimally one of the
corresponding samples. SNVs/indels showing a minimum allele frequency of 2%
were considered as present in a corresponding sample if not detected in the first
step (Supplementary Data 3). A mutation was consider damaging, if either Poly-
Phen 40.7, MutationTaster 40.7 or SIFTo0.05. Unfiltered fusion candidates
detected by Tophat2 (fusions.out) and/or deFuse (results.tsv) were mutually
checked and compared between corresponding samples (Supplementary Data 4).
Copy-number variants were estimated as described above and compared between
corresponding samples.

Cancer relevant gene selection. Cancer relevant gene selection was done by
taking the overlap with 31 significantly mutated genes in the CRC TCGA study21

and 86 genes recurrently mutated in CRC from the TCGA pan-cancer analysis25.

Identification of molecular tumour groups. RPKM values of 65 primary CRC
samples (purity Z40%) were analysed with non-negative matrix factorization
NMF and the CLICK algorithms, respectively. For both methods, we selected
the most variable genes (3,529 genes, cut-off 40.5 RPKM in more than three
samples) in the 65 primary tumour samples using quantile absolute deviation
(QAD¼ P75(|Xi�median(X)|), calculated on raw and log2 transformed RPKMs.

Non-negative matrix factorization. Cluster stability was assessed by applying the
factorization step 60 times, leading to three tumour classes based on the cophenetic
score. Corresponding gene signatures were identified by differential gene expres-
sion analysis (DGEA) using the R package edgeR (v.3.6.0). Genes were filtered by
|log2(FC)|Zlog2(1.7) (fold change), FDRr0.01 and difference of mean expression
Z1. Among these, genes up-regulated in one or more of the NMF groups were
selected, resulting in 961, 20 and 146 specifying OT_NMF1, OT_NMF2 and
OT_NMF3, respectively (Supplementary Data 10).

CLICK clusters. RPKM values were log2 transformed and centred by the trimmed
mean. For gene co-expression clusters, best results were achieved with an expected
homogeneity value of 0.60 leading to a separation of � 0.085, to an overall
homogeneity of 0.753 and 13 clusters (named OT_C1 - OT_C13). A 14th cluster
was excluded since it mainly contained uncharacterized genes. On the basis of the
mean pattern obtained for each CLICK cluster, tumour samples were divided into
two groups with partitioning around medoids (pam) implemented in R63. We
selected differentially expressed genes with |log2(FC)|Zlog2(2), FDRr0.01 and
difference of mean expression 41, resulting in 838, 144, 127, 92, 101, 74, 58, 54, 52,
49, 61, 42 and 49 genes in CLICK clusters 1–13, respectively (Supplementary
Data 10).

Mean pattern matrix of primary CRCs. In addition to the OT 16 gene signatures
(OT_NMF1, OT_NMF2, OT_NMF3 and OT_C1-13), we collected signatures from
external resources: (1) 286 inflammation genes extracted from: expression arrays
‘Qiagen Human Cancer Inflammation & Immunity Crosstalk RT2 Profiler PCR
Array’, ‘Qiagen Inflammatory Cytokines and Receptors RT2 Profiler PCR Array’,
‘Qiagen Inflammatory Response and Autoimmunity RT2 Profiler PCR Array’ and
genes in the Gene ontology category ‘inflammatory response’ (Supplementary Data
10), (2) 19 published CRC groups signatures collected from 4 publications1,3–5. For
Sadanandam et al.4 and De Sousa et al.1 gene signatures, we used the provided single
list of classifier genes and assigned them to the different subtypes using centroids and
PAM. From Schlicker et al.3 we used the provided gene signatures. For Marisa et al.3

we assigned the probes to the 6 subtypes by taking a |log2(FC)|Z0.5 and Po0.0001
as cutoff on their list of 1,108 probes. We performed the conversion mapping of
Affy-133-plus-2-probeset IDs to Ensembl IDs (v70) using BioMart (Ensembl),
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obtaining a total of 38 signatures that we combined in a so-called ‘mean pattern
matrix’ integrating 70 primary CRCs and 20 metastatic samples (tumour purity
Z40%). We calculated the mean patterns for each specific signature in each of the
CRC samples (trimmed mean of log2 and Z-score transformed RPKM values)
resulting in a matrix of 90� 38 entries (the mean pattern values are shown in
Supplementary Data 12). To test the stability of hierarchical clustering the approach
pvclust (R package, v 2.0) was applied with 5,000 iterations and a sample size of 80,
85, 90, 95, 100, 105, 110, 115 and 120% (ref. 64).

Clustering of the mean pattern matrix. On the basis of the values of the mean
pattern matrix, patient tumours were clustered into subgroups using the mclust
package in R, which tested for 2 up to 15 expected clusters28. On the basis of the
Bayesian information criterion (BIC), 3 and 6 clusters were the best solutions.

Mean pattern matrix comparing CRCs with experimental models. Mean RPKM
values for each model and gene signature were calculated as described above. To
compare the models directly to the initial patient samples, we used the mean and
standard deviation of a gene in the patient tumour cohort and calculated the mean
of the Z-transformed RPKM values.

NMF groups in models. NMF was applied to the most variable expressed genes
based on the QAD (see above) resulting in 5,150 and 4,629 genes for PDX and
PDO models, respectively. On the basis of cophenetic scores we obtained two
clusters for the PDX and PDO samples, respectively. Differentially expressed genes
between the two NMF groups were identified using edgeR (Supplementary Data
10). The attribution of NMF groups for each of the PDX and PDO samples is given
in Supplementary Data 9.

Single sample Gene Set Enrichment Analysis. Single sample Gene Set Enrich-
ment Analysis (ssGSEA) was performed using GSVA package in R65. We used as
input log2 transformed RPKM values and gene sets of immune66–68 and 16 OT
signatures as referred in the text (OT_NMF1, OT_NMF2, OT_NMF3 and Click1-
13). The homogeneity of variance was fulfilled for OT_C2, OT_C7, OT_C12,
inflammation, OT_C5, OT_C13, OT_C8. The three main CRC groups were
compared using one-way analysis of variance and Tukey’s range test. For the
pairwise comparison of the sub-groups and the main groups against MSI samples a
Welch’s t-test was applied. The P values were adjusted for multiple testing using the
Benjamini–Hochberg procedure (false discovery rate—FDR). Differences between
groups of patients were considered significant with a FDRr0.01 for the 16 OT
signatures and FDRr0.05 for immune signatures.

Functional annotations. Functional annotations were achieved by gene set over-
representation analysis using the GePS Genomatix software (v3.10124 and
v3.51106).

Global gene expression profile comparison. Global gene expression profile
comparison of tumours and model systems was carried out using 90 original
patient samples, as well as untreated controls of 54 PDX and 33 PDO (Fig. 5b).
From the five xenografts that derived from 150_MET1 only the sample
150_MET1_XEN1 was included into the analysis, since all of them shared a similar
expression profile. We performed a DGEA using edgeR and compared PDX versus
patients, PDO versus patients and PDO versus PDX. To identify global differences
in gene expression we applied strict cutoffs: FDRr0.005, |log2(FC)|Zlog2(2.5) and
difference of mean expression Z2. Functional analyses of the up- and down-
regulated genes were performed using the GePS Genomatix software.

Pairwise gene expression profile comparison of models. Pairwise gene
expression profile comparison of models was applied on 17 corresponding PDO-
PDX pairs using a pre-ranked gene set enrichment analysis (GSEA, Broad Insti-
tute) (Fig. 5a). To establish the gene ranking based on the expression values for a
matching PDX X and PDO Y, the ranking score r was calculated by taking the
geometric mean of the fold change and difference of expression,

cpg ¼ log2 ðxpg þ 1Þ=ðypg þ 1Þ
� �

dpg ¼ log10 xpg � ypg

�� ��þ 1
� �

rpg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpg

�� �� � dpg
2

q
� sign cpg

� �

where g indicates a specific protein coding gene and p a specific pair of correspond-
ing PDO and PDX. Gene sets were downloaded from ConsensusPathDB69 (release
31, downloaded gene sets: Wikipathways, PID, Reactome, NetPath, KEGG) and
MSigDB (downloaded gene sets: hallmark, http://software.broadinstitute.org/gsea/
msigdb, v5.1). GSEA was performed using a java implementation of GSEA
(v 2.220) with 3,000 gene permutations and classical statistics. A FDRo0.005 was
considered as significant.

CMS classification. 90 OT CRC samples (tumour purity Z40%) were classified
into the consensus molecular subtypes (CMS) reported by Guinney et al.2

We applied the provided single-sample predictor (SSP) and random forest
(RF) CMS classifier to the 90 OT CRC samples (R package downloaded from
www.synapse.org/#!Synapse:syn2623706/wiki/). With the default parameters, 25/90
and 24/90 of the samples (28%) were unclassified using RF and SSP, respectively.
Thus, we lowered thresholds for subgroup assignments (RF: minPosterior¼ 0.4;
SSP: minCor¼ 0.1, minDelta¼ 0.03). For RF we used a minimal posterior
probability of 0.4 since it shows just a slightly lower specificity compared with the
default value 0.5 (Guinney et al.2; Supplementary Fig. 3). Applying RF and SSP
with lowered thresholds 8 and 17 samples remained unclassified, respectively
(Supplementary Data 9). The lowered thresholds were also applied on the PDX
and PDO OT cohorts.

CCLE 2D cell lines. BAM-files for 41 COAD CCLE cell lines (April 2014) were
downloaded from https://cghub.ucsc.edu/index. Gene expression values were
normalized as RPKM (see methods RNA data processing) using gene models from
Ensembl Release 73.

Drug response analysis preprocessing. Five xenografts that derived from one
CRC (150_MET1) shared highly similar global expression profiles and were
merged into one artificial single sample by taking an average of the RPKM and of
the T/C values, respectively. Four PDX (234, 372, 283 and 128) had no RNAseq
data. For cetuximab one PDX (261) was considered as outlier and excluded from
the analysis, since it was the only sample that showed a T/C value far above 100%.
Two PDOs (159,161) had no RNAseq data.

Correlation of drug sensitivity values. Drugs were pairwise and per model
system compared based on log10 normalized IC50 values for 35 PDOs and T/C
values for 53 PDXs and by calculating Spearman’s rank correlation coefficient.

Drug response gene signatures in PDX and PDO. We performed differential
gene expression (DGE) analysis using the R package edgeR per drug and
model system to identify signatures associated with drug response results based on
the four response categories: strong, moderate, minor, resistant (see below drug
response). DGE analysis was applied in different setups as follows: (a) combined
strongþmoderate versus combined minorþ resistant, (b) combined strongþ
moderateþminor versus resistant and (c): 20 most sensitive versus 20 least sen-
sitive PDX or 10 most sensitive versus 10 least sensitive PDO. Genes were filtered
by FDRr0.01, |log2(FC)|Z1 and RPKM difference Z1. In addition, (setup d), we
used the IC50 or T/C values as phenotype vector in a general linear model (GLM)
provided by the edgeR package. Genes were filtered by FDRr0.01 and dis-
persiono4. Gene signatures associated with a given drug response were generated
by combining results from setups a to d. Low expressed genes were filtered by an
expressionZ1 RPKM in minimally five PDX or three PDO samples and by a mean
expression Z0.8 RPKM for 5-FU (PDX), Avastin (PDX), vandetanib (PDO),
afatinib (PDX and PDO), AZD8931 (PDX and PDO), gefitinib (PDO) and
cetuximab (PDX) (Supplementary Data 15).

Building drug response classifiers for cetuximab and 5-FU. Of the 241 genes
making the cetuximab signature only 179 genes could be mapped to external
datasets12,46,58. The following procedure was applied to the 179 mapped genes.
RPKM values were log2 transformed and z-score normalized. Eleven genes that
showed lower mean expression between highly correlated gene pairs (Pearson
correlation Z0.8) were excluded in two iterations. For the drug response classifier a
linear support vector machine (SVM) implemented in the R package ‘e1071’ (v1.6-
7) was trained on 48 PDX of the OT cohort (14 responding and 34 resistant PDX).
To address the imbalance of the training set, a class weighted SVM was used and
the hyperparameter C was tuned for each of classes resistance and response
(Cresis, Cresp). The feature (gene) selection included feature ranking and feature size
selection. To avoid overfitting of the SVM, a SVM recursive feature elimination
(SVM-RFE) was used for feature ranking, similar to the approach of Duan et al.70

In each recursive step of our adaptation of the procedure, the hyperparameter
Cresis and Cresp were tuned via grid search with a stratified bootstrap (100
iterations), the ranking scores were calculated based on a stratified leave-n-out
resampling (200 iterations). The performance of a hyperparameter set was
evaluated using the F1-score. The calculation of the ranking score was based on the
weight vector w of a linear SVM and not w2 as described70. For the cetuximab
classifier the parameter set with the third highest F1-score was taken as optimal
solution, since it showed the highest sensitivity among the top three: Cresis¼ 0.05,
Cresp¼ 0.3, feature size¼ 16. The described procedure resulted for the 5-FU gene
signature into a mini-classifier with 14 genes. The parameter set with the eleven
highest F1-score was taken as optimal solution, since it showed the highest
sensitivity among the top results: Cresis¼ 0.007, Cresp¼ 0.02.

Validation of the cetuximab response classifier. The cetuximab response
classifier (16 genes) was validated on the OT PDX cohort, on one external human
cohort for 80 metastatic CRC patients with array expression (Affymetrix U133A
v2.0 GeneChips; Khambata-Ford et al.46) and two external PDX cohorts with 59
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and 60 models with RNASeq data (Gao et al.12, Pechanska et al.58) all treated with
cetuximab. For 68 samples of the Khambata-Ford and for 36 samples of the Gao
dataset expression and cetuximab response data were available. Ensembl gene
identifiers were mapped to u133av2 probeset IDs (Khambata-Ford) and to gene
symbols (Gao). The expression values of the external PDX cohorts were log2-
normalized and of all three external data set were z-score transformed. Four
response categories were given for the Gao and Khambata-Ford data set: complete
response (CR), partial response (PR), stable disease (SD) and progressive disease
(PD). PDX of the EPO were divided in four response categories based on given T/C
values as described in this paper. The performance of the classifier was estimated
from the number of true positive (TP), false positive (FP), true negative (TN) and
false negative (FN) predictions as well as the sensitivity, specificity and balanced
accuracy. Cross-validation on the OT PDX cohort was achieved via a 100 times
repeated 10-fold cross-validation. Performance values were averaged over the
repeats. In a second analysis, SD samples were excluded to determine their
influence on the classifier’s performance (KF: 49 samples, Gao: 32 samples).
Additionally, we tested the performance of the classifier on KRAS wild type and all-
RAS/RAF wild type samples. For the KRAS wild type, mutations in codon 12 and
13 of KRAS were considered. For the all-RAS/RAF wild type, KRAS and NRAS
mutations (G12, G13, Q22, Q61, A146), as well as BRAF mutations (V600E) were
checked. The Khambata-Ford data set provided only mutations in codon 12 and 13
of KRAS.

Cross-validation of 5-FU response. The 5-FU mini-classifier (14 genes) was
cross-validated on the OT PDX cohort via a 100 times repeated 10-fold cross-
validation. Performance values were averaged over the repeats. The performance of
the classifier was estimated from the number of true positive (TP), false positive
(FP), true negative (TN) and false negative (FN) predictions as well as the
sensitivity, specificity and balanced accuracy.

Establishment of PDO cell cultures. Upon resected sample receipt, fatty and
necrotic tissues were removed macroscopically. Remaining tissue was rinsed with
HBSS (Gibco), minced, and digested by Collagenase IV (Sigma-Aldrich), DNaseI
(AppliChem, Germany) and Dispase (StemCell Technologies, Germany) at 37 �C
for 60 min, followed by pelleting the suspension at 300 g for 3 min, re-suspension in
medium and filtration steps as in Konno et al.71. The 40–100 mm aggregates were
centrifuged at 300 g for 3 min. After depletion of red blood cells using Red Blood
Cell Lysis Solution (Miltenyi, Germany), cells were mixed with phenol-red free
growth factor-reduced Matrigel (Corning) and seeded into 24-well plates. Solidified
droplets were carefully overlaid with 500ml of culture medium as in Sato et al.72.
During the first week 1.25 mg ml� 1 Amphotericin B and 10mM of the ROCK-II
inhibitor Y27632 (Sigma-Aldrich) were added to cultures. The cultures were
passaged when the aggregates reached a diameter of approximately 800 mm.
Cellular aggregates were released from Matrigel by adding 5 ml Advanced DMEM/
F12 followed by centrifugation. Pellets were digested with TrypLE (Gibco).
Trypsinization was stopped with 5 ml Advanced DMEM/F12 and cell clusters were
re-plated on a 24-well plate. PDO cell cultures were generated from 41 patient
tumours and 5 xenografts (Supplementary Data 1). The cell cultures were routinely
tested for Mycoplasma contamination and found to be negative.

For immunohistochemistry, 2 mm de-paraffinized FFPE tissue sections of donor
tumours or PDO cultures grown for five days were stained using the primary
antibodies anti-CK7 (clone OV-TL12/30, Dako, Germany), anti-CK20 (clone
KS20.8, Dako), anti-CDX2 (clone CDX2-88, BioGenex, USA) and anti-KI67 (clone
MIB-1, Dako) for 32 min at 37 �C, ultraView DAB detection kit (Ventana, USA) on
the BenchMark XT instrument (Ventana). Counterstaining was performed with
Hematoxylin II Counterstain and Blueing Reagent (Ventana) for 4 min. For
immunofluorescence imaging, PDO cell aggregates were fixed and permeabilized
with 4% PFA/1% Triton X for 30 min, followed by treatment with 1% Triton X
overnight at 4 �C. PDO aggregates were then washed in PBS with 10% FCS.
Primary anti-Ezrin antibody (clone 3C12, Thermo Scientific) was incubated at 4 �C
for 48 h and removed by washing in PBS with 10% FCS. Secondary antibody (Alexa
Fluor488, Invitrogen) was added at 4 �C overnight and removed by washing in PBS.
Nuclei were stained with DAPI (Sigma-Aldrich) for 30 min. F-actin was stained
accordingly with TRITC-labelled Phalloidin (Sigma-Aldrich). Microscopy was
performed with a Zeiss Axiovert 400 microscope (Zeiss, Germany).

Semi-automated high-throughput drug sensitivity assays. PDO cultures were
digested with TrypLE (Gibco) to single cell suspension. Trypsinization was stopped
with Advanced DMEM/F12. We seeded 5,000 cells/well in growth factor-reduced
Matrigel into 384-well plates using a robotic platform (Tecan, Spain). Cells were
cultured for four days before compound treatment. Growth curves were deter-
mined by assaying the cell viability by luminescence (CellTiter-Glo, Promega),
using the EnVision plate reader (PerkinElmer) 30 min after the addition of the
reagents. The 384-well plate layout included appropriate Min (minimum signal,
5 mM staurosporine) and Max (maximum signal, vehicle, 0.25% DMSO) controls to
determine signal intensity cutoffs. PDO cultures were screened in two replicates
with the test compounds ranging from 60 mM to 3.05 nM with 1:3 serial dilution
steps, and cetuximab ranging from 5 mg per ml to 0.25 ng per ml with 1:3 serial
dilution steps (with maximum signal wells containing medium only). The treat-
ment duration covered two population doubling times for each cell culture strain.
Plate uniformity was validated as previously described73 and in accordance

with published Eli Lilly-NIH Chemical Genomics Center Guidelines for assay
enablement and statistical validation74. Emax values were calculated as the
percentage of inhibition at the maximum included concentration. Relative IC50

values were calculated with the four-parameter nonlinear logistic equation and
were classified into four response categories based on the tested concentration
range: resistant (45.0656 mM) and minor (from 5.0656 mM to 0.4277mM),
moderate (from 0.4277 mM to 0.0361 mM) or strong responders (r0.0361 mM). For
cetuximab the four response categories are based on the log(IC50) values and are
defined as: resistant (4� 1.483 mM) and minor (from � 1.483 mM to � 3.63 mM),
moderate (from � 3.63 mM to � 4.703 mM) or strong responders (r� 5.777mM).

Live imaging and confocal microscopy. For the time-lapse analysis, the organoid
growth in 384-well plates was monitored using a HC PL APO � 10/0.40 AN
(� 10) objective, a Hamamatsu ORCA-AG CCD camera and an inverted motor-
ized microscope (Leica DMI 6000B) coupled with an incubation system to control
the temperature and CO2 levels during the experiments. Images were taken every
15 min for 72 h using the Leica LAS AF software (Version 2.4.1). Confocal
microscopy was carried out using a Leica TCS SP5 X confocal microscope equipped
with a resonant scanner, a dry � 20 Plan Apochromatic, 0.7 AN objective, and
Leica LAS AF software (Version 2.4.1) for image capturing, and the Imaris software
(Bitplane) for image analysis.

WNT reporter assay. Wnt pathway activity was assessed by lentiviral transduc-
tion with the Cignal Lenti TCF/LEF Reporter (GFP) Kit CLS-018G (QIAGEN,
Hilden, Germany). Organoids were released from Matrigel, plated into 96well
round bottom ultra-low attachment plates (Corning) with 20 ml virus suspension.
Following transduction, organoids were re-plated in Matrigel and selected with
puromycin. After selection, organoids were released from Matrigel, digested to a
single cell suspension and sorted into GFP-high/GFP-low/GFP-negative fractions
by FACS. Ribonucleic acid was isolated from the sorted cells using the AllPrep
DNA/RNA Mini Kit (QIAGEN) and provided for RNA-Seq.

Development and characterization of PDXs. Resected tumour tissues were
transplanted to immunodeficient mice (NMRI nude or NOG, Taconic, Bom-
holdtgard, DK- Tac:NMRI-Foxn1nu, females, 6–8 weeks at start of transplantation)
using previously described methods by Fichtner et al.75 . Animal experiments were
carried out in accordance with the United Kingdom Coordinating Committee on
Cancer Research regulations for the Welfare of Animals and of the German Animal
Protection Law and approved by the local responsible authorities. EPO strictly
follows the EU guideline European convention for the protection of vertebrate
animals used for experimental and other scientific purposes. (EST 123)’ and
‘German Animal Protection law -Version July 2014’ (Tierschutzgesetz: zuletzt
geändert durch Art. 3 G v. 28.7.2014 I 1308). Further we handle our animals
according to Regulation on the protection of experimental scientific purposes or
other Purposes used animals (Tierschutz-Versuchstierverordnung- TierSchVersV:
Geändert durch Art. 6 V v. 12.12.2013 I 4145). Compliance with the above rules
and regulations is monitored by the Landesamt für Gesundheit und Soziales
(LAGeSo) which is the responsible regulatory authority monitoring the animal
husbandry based on the German Animal Welfare Act, last revised in 2014.
Approval was given after careful inspection of the site including bedding, feeding &
water, ventilation, temperature & humidity, cleaning and hygiene concepts. Mice
were monitored three times weekly for tumour engraftment for up to 3 month.
Engrafted tumours at a size of about 1 cm3 were surgically excised and smaller
fragments re-transplanted to naive NMRI nu/nu mice for further passage. Within
passage 1–3 numerous samples were cryo-conserved (DMSO-medium) for further
experiments. Tumours were passaged not more than 6 times. For confirmation of
tumour histology, tumour tissue was formalin fixed and paraffin embedded (FFPE)
and 5 mm sections were prepared. Samples were stained according to a standard
protocol for hematoxilin, eosin and Ki67 to ensure xenograft comparability to the
original specimen. Cases with changed histological pattern were sent for
pathological review and outgrowth of lymphoproliferative disorders was excluded.
In this study, no blinding was done.

In vivo drug response testing of the xenografts. Response to the selected
compounds was evaluated in early passages using the design of a preclinical phase
II study. Tumour fragments of similar size were transplanted subcutaneously to a
large cohort of mice. At palpable tumour size (50–200 mm3), mice were rando-
mized to treatment or control groups consisting of 5–6 animals each. Doses and
schedules were chosen according to previous experience in animal experiments and
represent maximum tolerated or efficient doses. Applied schedules are shown in
Supplementary Table 5. The injection volume was 0.1–0.2 ml per 20 g body weight.
Treatment was continued over a period of four weeks (4 cycles) or till tumour size
exceeded 1 cm3 or animals showed loss of 415% body weight. From the first
treatment day onwards the tumour volumes and body weights were recorded twice
weekly. At the end of the treatment period animals were sacrificed, blood and
tumour samples collected, and stored in liquid nitrogen immediately.

Animal welfare was controlled twice daily. Tumour volume was calculated from
the length and width of subcutaneous tumours (V¼ (length� (width)2)/2).
Sensitivity to the tested compounds was determined as tumour growth inhibition
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by treatment in comparison to the control (T/C) on each measurement point.
Efficacy of the tested drugs in PDX models was classified by end-point T/C
(treated/control) values expressing tumour growth delay of treated versus
untreated (control) mice, with the following categories: T/Cr10% as strong
tumour growth delay, T/C 11–25% as moderate tumour growth delay, T/C 26–50%
as minor tumour growth delay, and T/C 450% as resistant. Tumours with a T/C
o25% can be considered to represent sensitivity in terms of (partial) tumour
regression or stable disease.

For comparison, treatment response was in parallel evaluated using the
adopted, stringent clinical response criteria (RECIST)76. We calculated the relative
tumour volume (RTV) as the ratio of the tumour volume at the end of treatment/
tumour volume at the start of treatment.

The revised clinical response (RECIST) criteria taking as reference the baseline
sum diameters define:

� Complete Response (CR): Disappearance of all target lesions. RTV¼ 0
� Partial Response (PR): At least a 30% decrease in the sum of diameters of target

lesions (RTVo0.7)—Progressive Disease (PD): At least a 20% increase in the
sum of diameters of target lesions. (RTV 41.2)

� Stable Disease (SD): Neither sufficient shrinkage to qualify for PR nor sufficient
increase to qualify for PD. (RTV 0.7–1.2). As T/C and RTV are condensed
summary parameter, no standard deviation values for replicate measurements
are given in the Supplementary Data 14—these values have been determined and
are available in the raw data.

DNA methylation profiling. 500 ng genomic DNA was bisulfite converted (EZ
DNA Methylation Kit, Zymo Research) in accordance with the manufacturer’s
protocol with alternative incubation conditions (that is, 16� cycles (95 �C for 30 s,
50 �C for 60 min)). Following bisulfite conversion, 14 randomly selected samples
were quality controlled with qPCR using primers designed to anneal to genomic
and bisulfite converted DNA (Primer are listed in Supplementary Table 6). Bisulfite
converted DNA extracts showing DCt4¼ 5 between genomic and bisulfite con-
verted primer pairs were hybridized to Infinium 450 K BeadChips (Illumina) and
scanned with iScan (Illumina). Raw data (IDAT files) were pre-processed using
minfi implemented in R. DNA extracts with more than 5% low detection metrics
(Po0.05) were excluded. DNA extracts with bisulfite conversion efficiencies77

o95% and probes mapping to chromosomes X and Y were excluded. Following
DNA extract- and probe- triage, we subjected non-normalized78 methylation
values (b, the methylated fraction of cells assayed) to Singular Value
Decomposition analysis79, which revealed a significant batch effect that was
overcome by normalizing raw intensity levels using functional normalization
within minfi, according to a subsequent SVD analysis. For the purposes of counting
‘methylated’ probes, we defined methylated probes as having b40.3. We selected
the top 5% most variable probes (n¼ 22,358) using the primary colon cancer
samples, exclusively. This corresponded to a standard deviation across beta values
greater than 0.19. This probe set was then used to perform hierarchical clustering
(distance¼ ‘Euclidean’, linkage¼ ‘complete’) of primary and metastatic samples.

Data availability. The complete set of NGS data for patient tumours, matching
reference blood samples, xenografts and cell models are available upon request in
the European Genome-phenome Archive (EGA) of the EBI data repository under
Accession number EGAS00001001752. The list of established CRC PDO and PDX
models is implemented in the EPO website (www.epo-berlin.com). Academic
groups and industrial companies can have access to the PDX models at EPO and to
the PDO models at the biobank of the Charité Comprehensive Cancer Center
(https://cccc.charite.de).
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8 Charité-Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany. 9 Bayer Pharma AG, Müllerstra�e 178, 13353 Berlin, Germany. 10 UCL Cancer Institute,
University College London, London WC1E 6BT, UK. 11 Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK. 12 Center for
Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria. 13 Department of Pathology, Hospital Graz Süd-West, Göstinger Stra�e 22, 8020
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