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Abstract—Social graphs derived from online social interactions
contain a wealth of information that is nowadays extensively
used by both industry and academia. However, due to the
sensitivity of information contained in such social graphs, they
need to be properly anonymized before release. Most of the
graph anonymization techniques that have been proposed to
sanitize social graph data rely on the perturbation of the original
graph’s structure, more specifically of its edge set. In this
paper, we identify a fundamental weakness of these edge-based
anonymization mechanisms and exploit it to recover most of the
original graph structure.

First, we propose a method to quantify an edge’s plausibility in
a given graph by relying on graph embedding. Our experiments
on three real-life social network datasets under two widely known
graph anonymization mechanisms demonstrate that this method
can very effectively detect fake edges with AUC values above 0.95
in most cases. Second, by relying on Gaussian mixture models
and maximum a posteriori probability estimation, we derive an
optimal decision rule to detect whether an edge is fake based
on the observed graph data. We further demonstrate that this
approach concretely jeopardizes the privacy guarantees provided
by the considered graph anonymization mechanisms. To mitigate
this vulnerability, we propose a method to generate fake edges as
plausible as possible given the graph structure and incorporate
it into the existing anonymization mechanisms. Our evaluation
demonstrates that the enhanced mechanisms not only decrease
the chances of graph recovery (with AUC dropping by up to
35%), but also provide even better graph utility than existing
anonymization methods.

I. INTRODUCTION

The last decade has witnessed the rapid development of
online social networks (OSNs). Leading companies in the busi-
ness have attracted a large of number of users. For instance,
Facebook has more than 2 billion monthly active users [[1],
and over 400 million users are using Instagram everyday [2].
This has resulted in an unprecedented scale of social graph
data available. Beyond OSNs, a number of human activities,
such as mobility traces [3] and email communication [4]],
can also be modeled as graphs. Both industry and academia
could benefit from large-scale graph data: The former can use
graph data to construct appealing commercial products, e.g.,
recommendation systems [S]], while the latter can use graph
data to gain a deeper understanding of many fundamental so-
cietal questions, such as people’s communication patterns [6],
information propagation [/] and epidemiology [8]. Due to
these potential benefits, there exists a strong demand for OSN
operators to share their social graph data.

As graph data can reveal very sensitive information, such
as identity and social relations, it is crucial to preserve a
high degree of anonymity in the graph, and thus to sanitize

the original graph data before releasing them. The most
straightforward approach is to replace each user’s name/ID
with a randomly generated number. However, Backstrom et
al. [9] have demonstrated that this approach fails to pro-
tect users from being identified. Based on these findings,
researchers have developed more sophisticated anonymization
mechanisms, such as [10], [11], [12]], [13] (see [14] for a
survey). In general, these mechanisms modify the original edge
set of the graph, e.g., by adding fake edges between users, such
that the resulting anonymized graph satisfies certain predefined
privacy criteria. For instance, Liu and Terzi [10] adopt the
notion of k-anonymity and construct a k-degree anonymous
graph in order to prevent re-identification via users’ degrees.
In another example, Sala et al. [11] propose to add noise
to representative statistical properties of the graph, thereby
perturbing the edge set, to provide a certain level of differential
privacy.

However, when modifying the original edge set, these
mechanisms do not take into account key characteristics of the
underlying graph, such as the higher structural proximity be-
tween friends than between strangers in the social graph [15].
By exploiting this vulnerability, we can detect implausible fake
edges created between users with low structural proximity,
recover part of the original graph structure and eventually
jeopardize users’ privacy.

Contributions. In this paper, we identify a fundamental
weakness of existing graph anonymization mechanisms and
study to which extent this allows for the reconstruction of
the original graph. In order to best illustrate the wide ap-
plicability of our approach, we concentrate on two of the
most widely known anonymization mechanisms, which follow
the notions of k-anonymity [10] and differential privacy [L1],
respectively. We demonstrate that fake edges created by these
anonymization mechanisms can be easily detected due to the
low structural proximity between the nodes they connect, and
that this vulnerability jeopardizes the original anonymization
mechanisms’ privacy guarantees. Then, we develop enhanced
graph anonymization mechanisms to generate plausible edges
that preserve initial privacy criteria and provide as much - or
even more - utility than the original anonymization schemes.

Edge plausibility. In order to evaluate whether a given edge in
an anonymized graph is plausible, we measure the structural
proximity between the two users it connects. In the context of
link prediction [[15], structural proximity is normally measured
by human-designed metrics. However, these metrics only



capture partial information of the proximity. Instead, we rely
on a state-of-the-art graph embedding [16], [17] method to
map users in the anonymized graph into a continuous vector
space, where each user’s vector comprehensively reflects her
structural properties in the graph. Then, for each edge in the
anonymized graph, we define its plausibility as the similarity
between the vectors of the two users it connects, and postulate
that lower similarity implies lower edge plausibility.

Graph recovery. We illustrate the effectiveness of our plausi-
bility metric in differentiating fake edges from original ones,
first without fixing a specific decision threshold. Therefore, we
adopt the ROC curve that reports the true-positive and false-
positive rates for a whole range of thresholds, and its related
AUC (area under the curve) as our evaluation metrics. The
experimental results on three real-life social network datasets
demonstrate that our approach achieves excellent performance
(corresponding to AUC values greater than 0.95) for both
anonymization mechanisms in most cases. The ROC curve
also shows that our edge plausibility measure significantly
outperforms traditional structural proximity metrics.

Given the empirical Gaussian distributions of original and
fake edges’ plausibility values, we fit the edges’ plausibility
into a Gaussian mixture model (GMM), and rely on the
maximum a posteriori probabilities (MAP) resulting from our
GMM to concretely decide whether an edge is fake. Evaluation
results show that our approach achieves strong performance,
with both precision and recall above 0.8 in multiple cases.

Privacy damage. The two anonymization mechanisms we
study follow different threat models and privacy definitions. In
order to precisely quantify the concrete privacy impact of our
graph recovery, we propose privacy loss measures tailored to
each mechanism. As the first anonymization mechanism relies
on the assumption that the adversary is aware of her victims’
degrees in a social graph, we define the corresponding privacy
loss as the closeness of the users’ degrees between the original,
anonymized and recovered graphs. For the differential privacy-
based anonymization mechanism, we measure the magnitude
and entropy of noise added to the statistical measurements
of the graph. Experimental results show that the privacy
provided by both mechanisms significantly decreases, which
concretely demonstrates the extent of the threat on existing
graph anonymization mechanisms.

Enhancing graph anonymization. We take the first step towards
enhancing the two considered anonymization mechanisms with
respect to the weakness we discovered. The main idea is that,
when adding fake edges, we perform statistical sampling to
select potential fake edges that follow a similar distribution as
the edge plausibility in the original graph. Experimental results
show that our enhanced anonymization mechanisms decrease
the performance of our graph recovery by up to 35%, and more
importantly preserve better graph utility compared to existing
anonymization mechanisms.

Note that we concentrate on fake added edges (and not
on deleted edges) in this paper, since most of the graph
anonymization mechanisms, including the two we study [10],

[L1], mainly add edges to the original social graph to preserve
as much graph utility as possible.

In summary, we make the following contributions:

o We discover a fundamental weakness of existing graph
anonymization mechanisms, and propose an edge plausi-
bility metric to exploit this weakness in order to recover
the original graph from the anonymized graph. Extensive
experiments on three real-life social network datasets
demonstrate the effectiveness of our approach.

o We propose metrics to evaluate the privacy loss caused by
our graph recovery, which demonstrate the privacy threat
in existing graph anonymization mechanisms.

e We propose solutions to enhance existing graph
anonymization mechanisms, with respect to the weakness
we discovered. Our enhanced anonymization mechanisms
decrease the performance of our graph recovery and
preserve better graph utility.

II. PRELIMINARIES

In this section, we, first, introduce the notation used
throughout the paper, second, describe the two anonymization
mechanisms we concentrate on, and third, present the threat
model.

A. Notation

A social graph is defined as an undirected graph G = (U, &).
The set U4 contains all users (nodes) and a single user is
denoted by w. All the edges in G are represented by the
set £ = {{u,v'}|u,v’ € U and u # v'}. An anonymization
mechanism, denoted by .4, is a map which transforms G to
an anonymized graph G4 = (U,E4) following the privacy
criteria of 4. By this definition, we only consider graph
anonymization mechanisms that do not add new nodes but only
modify edges. This is in line with most of the previous works
in this field [LO], 18], [L1l, [12], [13]. We further use x(u)
to represent u’s friends in G, ie., k(u) = {v'|{u,v'} € £}.
Accordingly, x4 (u) represents u’s friends in G 4.

B. Graph Anonymization Mechanisms

Next, we briefly introduce the two graph anonymization
mechanisms, namely k-DA [10] and SalaDP [11], that we
concentrate on in this paper. For more details, we refer the
interested readers to the original papers. Note that, to fully
understand these two mechanisms, we have also inspected
the source code of SecGraph [19]], a state-of-the-art software
system for evaluating graph anonymization which includes an
implementation of both k-DA and SalaDP.

k-DA [10]. The k-DA mechanism follows the notion of k-
anonymity in database privacy. The mechanism assumes that
the adversary has prior knowledge of its target users’ degrees
in a social graph, i.e., numbers of friends, and uses this
knowledge to identify the targets from the graph. To mitigate
this privacy risk, k-DA modifies the original social graph such
that, in the resulting anonymized graph, each user shares the
same degree with at least £ — 1 other users.
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Fig. 1: A schematic view of our graph recovery attack (red lines in the graph represent fake added edges).

k-DA takes two steps: First, it utilizes dynamic program-
ming to construct a k-anonymous degree sequence. Second,
the mechanism adds edges[l_-] to the original graph in order to
realize the k-anonymous degree sequence. By calculating the
differences between the original degree sequence and the k-
anonymous degree sequence, k-DA maintains a list that stores
the number of edges needed for each user, namely the user’s
residual degree. When adding an edge for a certain user, k-DA
picks the new adjacent user with the highest residual degree.

SalaDP [11]]. SalaDP is one of the first and most widely known
mechanisms to apply differential privacy in the field of graph
anonymization. The statistical metric that SalaDP concentrates
on is the d K-2 series. The d K'-2 series of a graph G counts, for
each pair (4, j) of node degrees 4 and j, the number of edges in
G that connect nodes of these degrees. In the literature, dK-2
series is also referred to as joint degree distribution, and we
will provide a formal definition in Section [VI]

SalaDP also takes a two-step approach to anonymize a
social graph. First, the mechanism adds Laplace noise to each
element in the original dK -2 series, and obtains a differentially
private dK -2 series. Then, it adds (and deletes a tiny fraction
of) edges to guarantee that the resulting anonymized graph
follows the new dK -2 series. The authors of [11] do not state
explicitly how edges should be added to the original graph. By
checking the source code of SecGraph, we find that SalaDP
adds fake edges among users in a random mannerE] Similar to
k-DA, SalaDP’s major operation on modifying a social graph
is also edge addition. In Section [[V] we will provide statistics
on the proportion of edges added and deleted on the original
social graph for SalaDP as well as for k-DA.

From the above description, we can see that neither of the
anonymization mechanisms take into account users’ structural
proximity when adding fake edges between them. The main
hypothesis we investigate in this paper is that we can ef-
fectively separate the fake edges added by such mechanisms
from the original edges by using a suitable measure of edge
plausability that encodes the structural properties of connected
users. We introduce our edge plausability metric in Section [[II]

C. Threat Model

The adversary’s goal is to detect fake edges in G4 and
partially recover the original graph to eventually apply privacy

n its relaxed version, k-DA also deletes a small fraction of edges, but its
major operation is still adding edges.
2Line 252 of SalaDP. java in src/anonymize/ of SecGraph.

attacks on the recovered graph. In this paper, our main focus
lies on the reconstruction of the original graph.

To perform the graph recovery, we assume that the adversary
only has access to the anonymized graph G4 and that she
knows the used anonymization mechanism .A. In particular,
this means that the adversary does not know any information
about the original graph G, such as G’s graph structure, or any
statistical background knowledge related to this graph. Fig-
ure (1| depicts a schematic overview of the attack which takes
as input only the anonymized graph. Besides the adversary,
an OSN operator can also apply our graph recovery attack
to check whether there are any potential flaws in G 4 before
releasing it.

III. EDGE PLAUSIBILITY

To verify our hypothesis that an edge is fake if the users
it connects are structurally distant, we first need to quantify
two users’ structural proximity in a social graph. Previous
work on link/friendship prediction in social networks [15]]
provide numerous proximity metrics, such as embeddedness
(number of common friends), Jaccard index and Adamic-Adar
score. However, these metrics are manually designed and only
capture partial information of structural proximity.

The recent advancement of graph embedding [[16l], [[17]], also
known as graph representation learning, provides us with an
alternative approach. In this context, users in a social network
are embedded into a continuous vector space, such that each
user’s vector preserves her neighborhood information. If two
users share similar neighborhoods in a social network, their
vectors will be closer to each other than those with very
different neighborhoods. In this sense, a user’s vector is able to
reflect her structural property in the network. Moreover, graph
embedding follows a general optimization objective which is
not related to any downstream prediction task which, in our
case, is fake edge detection. Among other advantages, this
method does not need any prior knowledge, or training data, on
whether an edge is fake. This complies with our assumptions
on the adversary’s knowledge and allows for a larger scope
of application. In the end, for an edge in the anonymized
graph, we can define its two users’ structural proximity as
the similarity of their vectors, and use this similarity as the
edge’s plausibility.

In this section, we will first introduce the procedure of graph
embedding and then present our edge plausibility metric.



A. Graph Embedding

The goal of graph embedding is to learn a map f from users
in the anonymized graph G4 to a continuous vector space:

f:U—RY

where d, as a hyperparameter, represents the dimension of
each user’s vector. The state-of-the-art optimization framework
for learning f is inspired by Skip-gram [20]], [21], an ad-
vanced natural language processing model on word embedding
(word2vec). Formally, graph embedding can be represented as
the following objective function:

arg max H H P(u'|u) (1)
f w€U uw'eN (u)

Here, the conditional probability P(u’|u) is modeled with a
softmax function, i.e.,

exp(f(u) - f(u))
> exp(f(v) - f(u)

veU

P |u) = (2)

where f(u') - f(u) is the dot product of the two vectors, and
N(u) is a set that represents u’s neighborhood in G,4. To
define N (u), one approach would be to include those that are
within a certain number of steps from u in G 4, i.e., a breadth-
first search. However, the authors of [17] have demonstrated
this approach is neither efficient nor effective in the context of
graph representation learning. Instead, we follow [[16] and [17]]
and use random walks to define the neighborhood of each user.
Concretely, we start a random walk from each user in G4 for
a fixed number of times ¢, referred to as the walk times. Each
random walk takes [ step, referred to as the walk length. For
each user u, her transition probability to the next user in the
random walk, denoted by Pr(u’|u), is uniformly distributed
among all her friends, i.e.,

if u' € ka(u),

1
Pr(ulu) = 4 Tra(@)]
r(elu) {O otherwise.

The above procedure eventually results in a set of truncated
random walk traces. Given these traces, each user’s neighbor-
hood includes the user that appear before and after her in all
random walk traces. Similar to the vector dimension (d), walk
length and walk times (I and ¢) are also hyperparameters. We
will choose their values through cross-validation.

By plugging into (I), and applying the log-likelihood
transformation, we obtain the final objective function:

arg}rcnaxz D (F)f(u)log)y - exp(f(v)f(u) 3)

u€U u'e€N (u) veU

Objective function [3] implies that, if two users share similar
neighborhoods in G 4, then their learned vectors will be closer
than those with different neighborhoods. This results in each
user’s vector being able to preserve her neighborhood and to
eventually reflect her structural property in G 4. To optimize

3Following [16] and [[17], we select 10 users before and after the considered
user in the random walk trace to be part of the considered user’s neighborhood.

TABLE I: Statistics of the datasets.

[[ Enron [ Facebookl [ Facebook2

36,692 63,731 4,039
183,831 817,090 88,234

Number of users
Number of edges

@]), we rely on stochastic gradient descent (SGD). However,
the term log > ., exp(f(v) - f(u)) requires summation over
all users in G4 during each iteration of SGD, which is
computationally expensive. Therefore, in order to speed up
the learning process, we apply negative sampling [21].

B. Quantifying Edge Plausibility

Given the learned vectors from graph embedding, we define
an edge’s plausibility as the cosine similarity between its
two users’ vectors. Formally, for an edge {u,u'} € &4, its
plausibility is defined as

() — @1

F @2 [1f ()2
where ||f(u)l||2 is the La-norm of f(u). Consequently, the
greater the (cosine) similarity between two users’ vectors is,
the more plausible the edge that connects them is. Note that,
as f(u) € R?, the range of s4(u,u’) lies in [-1, 1].

IV. EVALUATION

In this section, we evaluate the effectiveness of our edge
plausibility metric on differentiating fake edges from original
ones without fixing the threshold for deciding whether the
edge is fake a priori. This notably enables us to compare our
plausibility metric with previous nodes’ structural similarity
metrics. We will present how one can optimize the decision
rule given the actual data distribution in Section

We first describe the experimental setup. Then, we present
the general evaluation results. In the end, we study the sen-
sitivity of the hyperparameters involved in graph embedding
for defining edge plausibility.

A. Experimental Setup

Dataset. We utilize three datasets for conducting experiments.
The first dataset, referred to as Enron, is a network of Email
communications in the Enron corporation [22[], while the
second [23] and the third [22]] ones contain data collected from
Facebook, which we refer to as Facebookl and Facebook?2,
respectively. Note that Enron and Facebookl are the two
datasets used in SecGraph [19]. Table [[] presents some basic
statistics of the three datasets. As we can see, these datasets
have different sizes (number of users and edges), which allows
us to evaluate our approach comprehensively.

Other structural proximity and distance metrics. To
demonstrate the effectiveness of our plausibility metric, which
is essentially a structural proximity metric, we also experiment
with three classical structural proximity metrics in social
networks, namely embeddedness, Jaccard index and Adamic-
Adar score. For an edge {u,u’'} € £4, these metrics’ formal
definitions are as follows:

Embeddedness : |r.4(u) N k4 (u')]



TABLE II: General prediction results (AUCs) for different datasets, distance metrics, and anonymity levels.

I Enron I Facebook | I Facebook?2
Cosine | Euclidean | Bray-Curtis || Cosine | Euclidean | Bray-Curtis Cosine | Euclidean | Bray-Curtis
k-DA (k = 50) 0.960 0.950 0.958 0.967 0.964 0.964 0.975 0.946 0.974
k-DA (k = 75) 0.955 0.938 0.954 0.969 0.969 0.966 0.957 0.923 0.954
k-DA (k = 100) 0.940 0.922 0.939 0.965 0.965 0.962 0.939 0.901 0.937
SalaDP (e = 10) 0.823 0.767 0.820 0.930 0.847 0.923 0.971 0.910 0.974
SalaDP (e = 50) 0.855 0.792 0.857 0.942 0.893 0.939 0.974 0.885 0.974
SalaDP (e = 100) 0.863 0.818 0.866 0.960 0.933 0.957 0.982 0.891 0.982

TABLE III: Proportion of added and deleted edges in existing
anonymization schemes with different privacy guarantees.

I Enron [ Facebookl [ Facebook2

Added Deleted | Added Deleted | Added Deleted
k-DA (k = 50) 22.1% 9.8% | 4.1% 1.9% |33.7% 15.0%
k-DA (k = 75) 30.6% 13.6% | 63% 2.9% |47.1% 20.0%
k-DA (k = 100) || 43.7% 20.0% | 8.8% 4.0% |63.1% 26.5%
SalaDP (e = 10) |[|218.8% 0.2% |120.9% 1.7% |22.5% 4.9%
SalaDP (e = 50) || 1442% 13% | 53.5% 09% |16.8% 3.6%
SalaDP (e = 100) || 60.8% 3.8% | 20.4% 2.7% |147% 2.9%

lka(u) N ra(u)l
lka(u) Uka(u)l

Z 1

17
vER A (u)Nk4(u') og |/€A(’U)|

Jaccard index :
Adamic-Adar score :

Recall that cosine similarity is adopted for measuring edge
plausibility. We also experiment with two other vector simi-
larity (distance) metrics, namely Euclidean distance and Bray-
Curtis distance. They are formally defined as follows:

Euclidean : || f(u) — f(u')||2

S 1 ()i = f()i]
i |f ()i + F)i
Here, f(u); is the i-th element of vector f(u).

Evaluation metrics. In this section, we use the ROC curve and
the resulting area under the curve, namely AUC, as measures
to evaluate the effectiveness of our plausibility metric. The
ROC curve is a 2D plot with X-axis representing the false-
positive rate and Y-axis being the true-positive rate (recall).
Different points on the curve correspond to different plau-
sibility thresholds. Therefore, the ROC curve does not rely
on any optimized threshold for making predictions. It instead
shows the trade-off between true positives and false positives.
A higher ROC curve indicates stronger prediction perfor-
mance. Moreover, there exists a conventional standard [24]
for interpreting the AUC value resulting from the ROC curve:
AUC = 0.5 is equivalent to random guessing and AUC > 0.9
implies excellent prediction.

Bray-Curtis :

Parameters in anonymization mechanisms. We rely on
SecGraph to perform k-DA and SalaDP on the three datasets.
Both anonymization mechanisms involve a privacy parameter.
For k-DA, we need to choose the value k, i.e., the minimal
number of users sharing a certain degree for all possible
degrees in G 4. Greater k implies stronger privacy protection.
In our experiment, we choose k£ to be 50, 75 and 100,

respectively, to explore different levels of privacy protection.
For SalaDP, the privacy parameter is e which controls the
noise added to dK-2 series: the smaller € is, the higher its
privacy provision is. Following the choices of [L1] and [19],
we experiment with three different € values: 10, 50 and 100.

As stated before, we concentrate on detecting fake added
edges because both k-DA and SalaDP’s principal operation
when generating the anonymized graph is adding fake edges
to the original graph. By running the two anonymization
mechanisms on our datasets, we discover that this is indeed the
case. From Table we observe that both k-DA and SalaDP
only delete a small proportion of the edges in most cases.
Especially for SalaDP, the largest deletion rate is only 4.9% on
the Facebook?2 dataset when ¢ is set to 10. On the other hand,
k-DA deletes relatively more edges. However, in the worst
case, only 26.5% of edges are deleted from the Facebook2
dataset when k£ = 100. Meanwhile, a much larger proportion
of edges are added, from up to 63.1% for k-DA to up to
218.8% for SalaDP. This demonstrates that just identifying
fake added edges can already help recover most of the original
graph structure.

Hyperparameter setting. There are mainly three hyperpa-
rameters in the graph embedding phase: walk length (1),
walk times (¢) and vector dimension (d). For both k-DA and
SalaDP, we choose [ = 100 and ¢ = 80. Meanwhile, we set
d = 128 for k-DA and d = 512 for SalaDP. These choices
are selected through cross-validation, which we will discuss
in Section For reproducibility purposes, we will make
our source code publicly available upon request.

B. Prediction Results

Table [lI] presents the AUC values of using our edge plau-
sibility to differentiate fake edges from original ones (the
Cosine column). In most of the cases, we achieve excellent
performances with AUC values above 0.95. Especially, for the
SalaDP-anonymized Facebook2 dataset (¢ = 100), the AUC
value is 0.982. The only case when our edge plausibility does
not achieve an excellent performance is when applying SalaDP
on the Enron dataset where the AUC values are between
0.83 and 0.86. However, we emphasize that, for a classical
classification task, such AUC is already considered good.

Regarding the privacy parameters, we observe that the
performance of our approach is not significantly influenced
by them. For instance, when applying k-DA to anonymize the
Enron dataset, if £ is set to 50, the AUC value is 0.96, while if
k = 100 (i.e., the privacy protection increases), the AUC value
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Fig. 2: ROC curves of our edge plausibility metric and other proximity metrics for the k-DA-anonymized Facebookl dataset.
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Fig. 3: ROC curves of our edge plausibility metric and other proximity metrics for the SalaDP-anonymized Facebook1 dataset.

is still 0.94. Similarly, when applying SalaDP with ¢ = 100
on the Facebook?2 dataset, our AUC is 0.98. Decreasing € to
10 only reduces the AUC by 0.01. This demonstrates that our
plausibility metric is quite robust to different privacy parameter
values.

The AUC values for other vector similarity (distance)
metrics are presented in Table |lI| as well. Cosine similarity
outperforms Euclidean distance and Bray-Curtis distance for
k-DA-anonymized graphs, even though the performance gain
is quite small. On the other hand, for SalaDP-anonymized
graphs, we can observe that cosine similarity outperforms
Euclidean distance by around 10%, while Bray-Curtis distance
is still very close to cosine similarity. This shows that cosine
similarity (as well as Bray-Curtis distance) is a suitable metric
for measuring edge plausibility.

Figures [2] and [3] present the ROC curves of our plausibility
metric (with cosine similarity) as well as three other structural
proximity metrics for k-DA and SalaDP anonymized Face-
book1 dataset. We observe that our plausibility metric signifi-
cantly outperforms these traditional metrics. For instance, for
a false-positive rate of 0.1, we achieve a 0.93 true-positive
rate on the k-DA anonymized Facebookl dataset (kK = 50)
while embeddedness only achieves a 0.56 true-positive rate.
For a false-positive rate of 0.01, we reach a true-positive rate
of 0.59 while the result for embeddedness is only 0.17. It also
appears that embeddedness outperforms the other two metrics
for k-DA while Jaccard index is rather effective for SalaDP.
The ROC curves for Enron and Facebook?2 are depicted in the

appendix.

In general, these results fully demonstrate the effectiveness
of our edge plausibility metric on differentiating fake edges
from original edges in anonymized graphs.

C. Hyperparameter Sensitivity

There are mainly three hyperparameters, [, ¢ and d, involved
in our edge plausibility metric. We study their sensitivity by
relying on the AUC values. Here, [ and ¢ are directly related to
the size of the random walk traces, which essentially relate to
the amount of data used for learning embedding vectors. For
both anonymization mechanisms, we observe that increasing
[ and ¢ increases the AUC values. However, the increase is
smaller when both of these values are above 60. Therefore,
we set [ = 100 and ¢ = 80. The corresponding plots are
depicted in the appendix.

Meanwhile, we observe interesting results for the vector di-
mension d: different anonymization mechanisms have different
optimal choices for d (Figures [4 and [3). It appears that when
detecting fake edges on k-DA-anonymized graphs, d = 128
is a suitable choice for all datasets. On the other hand, for
SalaDP, d = 512 is able to achieve a stronger prediction. We
confirm that the vector dimension is indeed a subtle parameter,
as was observed in other data domains, such as biomedical
data [25]. In conclusion, our default hyperparameter settings
are suitable for our prediction task.
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V. GRAPH RECOVERY

In Section [[V] we utilize ROC curves and AUCs to evaluate
the general effectiveness of our edge plausibility metric. In
this section, we rely on a probabilistic model, namely the
Gaussian mixture model (GMM), and a maximum a posteriori
probabilities (MAP) estimator to decide whether an edge is
fake given the plausibility data distribution. We first describe
the GMM and MAP estimation in our context, and then present
the evaluation results.

A. Methods

Figure [6] depicts the histograms of the plausibility of both
fake and original edges for the k-DA-anonymized Facebookl
dataset. Interestingly, both of them follow Gaussian distri-
butions, with different means and standard deviations. The
plausibility of the original edges is centered around 0.6, while
the plausibility of the fake edges is centered around 0.05. Also,
the standard deviation for the plausibility of the fake edges is
relatively larger than that of the original edges. Similarly, we
observe different Gaussian distributions for the plausibility of
fake and original edges on the SalaDP-anonymized Facebookl
dataset (Figure[7) as well as on Enron and Facebook? datasets
under both anonymization mechanisms (see the appendix).

Given that a general population (plausibility of all edges)
consists of a mixture of two subpopulations (plausibility of
fake and original edges) with each one following a Gaussian
distribution, we can fit the general population with a Gaussian
mixture model (GMM). With the fitted GMM, we can obtain

each edge’s posterior probability of being fake or original
given its plausibility. If the former is higher than the latter,
then we predict the edge to be fake, and vice versa (MAP
estimation). This means, GMM and MAP estimation provide
us with an optimal approach for determining whether an edge
is fake given the observed data. Moreover, fitting GMM does
not require any prior knowledge on which edges are fake and
which are original, meaning that the process is unsupervised.

Gaussian mixture model. To formally define our GMM, we
first introduce two random variables, namely B and S. B
represents whether an edge is original (B = 0) or fake (5 = 1),
while S represents the plausibility of an edge. The probability
density function of our GMM is formally defined as:

p(S=sa(u,u))= D wilN(salu,u)|ps00).

i€{0,1}

The GMM is parameterized by 6 parameters: wq, (g, 0g, W1,
w1 and oq. Here, wy (wy) is the prior probability of an edge
being original (fake), i.e., wg = P(B = 0) (wy = P(B =
1)). Meanwhile, the other 4 parameters are related to the two
Gaussian distributions for the plausibility of fake and original
edges, respectively. N (s4(u,u')|pi,04) for i € {0,1} is the
density function of a Gaussian distribution:

1
W eXP(—Zf‘?(SA(U’ u/) = 1))

Parameter learning. To learn the 6 parameters of the GMM,
we adopt the expectation maximization (EM) algorithm, which
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consists of two steps: the expectation (E) step and the max-
imization (M) step. The E-step calculates, for each edge in
G4, its posterior probability of being fake or original given
its plausibility value. The M-step updates all the 6 parameters
based on the probabilities calculated from the E-step following
maximum likelihood estimation. The learning process iterates
over the two steps until convergence. Here, convergence means
that the log-likelihoods of two consecutive iterations differ less
than a given threshold (we set it to 0.001 in our experiments).
In addition, the initial values of the 6 parameters are set
randomly before the learning process starts. Next, we describe
the two steps of EM in detail.

E-step. At each iteration ¢, for each {u,u'} € £4, we evaluate
the following posterior probabilities.
WP N (5.4 (u,u) s, o)

> w N (s 4w, w) i, o)
i€{0,1}
“)

PO (B=0|s.4(u,u))=

W DN (s 4(u, ) l?, 0\7)
5> wi PN (54w, w) i, o)
1€{0,1}
(5)

Formulas [4] and [3] are essentially direct applications of Bayes
rule, and wgq), ,ugq) and al(q) (for i € {0,1}) reflect these
parameters’ values at the gth iteration.

P (B=1s 4 (u,o))=

M-step. After obtaining P9 (B=i|s4(u,u’)) for all edges in
G 4 from the E-step, we apply maximum likelihood estimation

to update all the 6 parameters. Concretely, for i € {0,1}, we
perform the following computation.

S PO(B=i|sa(u,u'))salu,u’)
(gH) {u,u’'}e€4
S S (= TR

{u,u’}ESA

5> PO (B=ilsau,u)(salu, w)-p")?

Slat) {u,u'}€€4
v > PO (B=ilsa(u,u))
{u,u’}e€a
@)
> PO(B=ilsa(u,u'))
w(q—&-l) _ {u,u'}€€A ]
: €4l ®

From Formulas[6|and[7] we can see that, when updating /i and
oo (11 and o1), each edge {u,u'} contributes its plausibility
s.4(u,u") proportionally to the edge’s posterior probability of
being original (fake). Meanwhile, the process for updating
the prior probability, i.e., Formula [§] is a summation over all
edges’ posterior probabilities normalized by the total number
of edges in G 4, i.e., |E4].

Fake edge detection. After the GMM has been learned, we

compute for each edge {u,u'}, its posterior probabilities of
being original and fake:

woN(SA(% U')|H0,UO)
> wiN (sa(u,w')|pi,o)’

i€{0,1}

P(B=0|s4(u,u))= 9)




TABLE IV: General prediction results (precision and recall) with GMM and MAP estimation for different anonymization
levels. Prec. represents Precision, Rec. represents Recall. (B) denotes the baseline results.

i Enron i Facebook1 i Facebook?2
Prec. Prec.(B) Rec. Rec.(B) Prec. Prec.(B) Rec. Rec.(B) Prec. Prec.(B) Rec. Rec.(B)
k-DA (k = 50) 0.705 0.196 0.867 0.241 0.546 0.042 0.768 0.059 0.775 0.285 0.980 0.361
k-DA (k = 75) 0.773 0.262 0.849 0.287 0.593 0.061 0.858 0.088 0.796 0.369 0.952 0.441
k-DA (k = 100) 0.801 0.354 0.858 0.379 0.625 0.084 0.878 0.119 0.801 0.460 0.931 0.535
SalaDP (e = 10) 0.725 0.691 0.933 0.889 0.945 0.552 0.827 0.433 0.948 0.118 0.684 0.085
SalaDP (e = 50) 0.632 0.594 0.947 0.889 0.895 0.351 0.786 0.308 0.890 0.146 0.804 0.132
SalaDP (e = 100) || 0.520 0.387 0.932 0.860 0.494 0.172 0.944 0.329 0.873 0.135 0.829 0.128
wiN (s (u, u')| 1,01 TABLE V: Users’ degree differences in G, and .
P(B:1|S_A(u, ul)): ( .A( ) )|,LL ) ) (10) g g g.A g’R

> wiN (sau, w')|pio0)’

1€{0,1}

and pick the one that is maximum (MAP estimate): If P(B=
1sa(u,u’)) > P(B=0|sa(u,u’)), we predict {u,u'} to be
fake, and vice versa. In the end, we delete all the predicted
fake edges, and obtain the recovered graph Gz from G 4.

B. Evaluation

We train GMMs for all the datasets under both anonymiza-
tion mechanisms. As we now make a concrete prediction
on whether an edge is fake, we adopt two classical binary
classification metrics, i.e., precision and recall, for evaluation.
To further demonstrate the effectiveness of our approach, we
build a baseline model that consists in randomly sampling the
same number of edges as our MAP estimator predicts to be
fake and in classifying them as fake.

Table presents the prediction results. We first observe
that, in most of the cases, our approach achieves a strong pre-
diction. For instance, for the SalaDP-anonymized Facebookl
dataset (e = 10), the precision is 0.948 and the recall is 0.827.
Another interesting observation is that, when the privacy level
increases, i.e., higher k for k-DA and lower e for SalaDP,
our prediction precision increases. The main reason for that is
that higher privacy criteria normally leads to more added fake
edges (see Table . On the other hand, we do not observe
a similar trend for recall. In most of the cases, our approach
outperforms the random baseline significantly. For instance,
our precision is 0.546 for the k-DA-anonymized Facebookl
dataset (k = 50), while the precision for the baseline is only
0.042. We also note that, in our worst prediction, i.e., the
SalaDP-anonymized Enron dataset, our results are still better
than the baseline, but the performance gain is rather small.

VI. PRIVACY LOSS QUANTIFICATION

As shown in Section [V| we can achieve high performance
in detecting fake edges, meaning that the recovered graph
Gr is more similar to the original graph G compared to G 4.
As fake edges help G 4 satisfy certain privacy guarantees, we
expect that, by inferring Gr from G 4, these guarantees will
be violated. In this section, we first define two metrics tailored
to each anonymization mechanism for quantifying the privacy
loss resulting from our graph recovery. Then, we present the
corresponding evaluation results.

[[ Enron [ Facebookl [[ Facebook2

Ar |2l Ar | DAl Br | Ba
k-DA (kK = 50) [[0.990|1.222(/0.499|0.541 || 6.589 | 8.216
k-DA (k = 75) 1.367|1.705 || 0.752 1 0.875 || 8.815 |11.755
k-DA (k = 100)|/2.019 [2.377|[1.035| 1.231 || 11.565| 16.018

TABLE VI: Average noise with SalaDP before (¢ 4) and after
recovery (Cr).

[ Enron ][ Facebookl [ Facebook2

Cr | Ca R | Ca R | CA
SalaDP (e = 10) |{4.958|12.004 || 7.982 | 16.033 || 3.672 | 5.690
SalaDP (e = 50) || 4.224| 7.121 || 7.731| 9.471 || 3.489 | 4.445
SalaDP (e = 100) || 4.432| 5.282 || 6.048 | 6.415 || 3.422[4.018

A. Privacy Loss Metric

k-DA. k-DA assumes that the adversary only has knowledge
of her targets’ degrees, and uses this knowledge to re-identify
them. This implies that, if the users’ degrees in Gr are more
similar to those in G compared to G4, then the adversary
is more likely to achieve her goal. Therefore, we propose to
compute users’ degree difference between G 4 and G, as well as
between Gr and G to measure the privacy loss caused by our
graph recovery for k-DA. Formally, we define users’ degree
difference between G4 and G as

2 s (u)] = [ra(u)]
uel

A =
A |u| ’

and define users’ degree difference between G and Gr, de-
noted by Ag, similarly. A4 (Ag) is the mean value of all
users’ degree differences between G and G4 (GRr).

Note that our algorithm also deletes some users’ original
edges when recovering G (i.e., the false positives). Therefore,
if the adversary relies on the users’ exact degrees (as assumed
in k-DA) to de-anonymize them, she might fail. However, a
sophisticated adversary can apply some extra heuristics such
as tolerating some degree differences for finding her targets.
In this case, A being smaller than A 4 can still provide the
adversary a better chance to achieve her goal. Therefore, we
believe our metric is appropriate for measuring privacy loss
resulting from our graph recovery for k-DA.

SalaDP. To quantify the privacy loss for the SalaDP mecha-
nism, we consider the noise added to the dK -2 series of the
original graph G. Formally, the dK-2 series of G, denoted by



TABLE VII: Average entropy with SalaDP before (¢ 4) and
after recovery (Cr).

[[ Enron ][ FacebookI [| Facebook2

HRr | Ho || HR | Ha || Hr | Ha

SalaDP (e = 10) || 1.095|1.381{{2.275|3.112 || 1.926 | 2.022
SalaDP (e = 50) || 0.556|1.865 || 1.754|2.852 || 2.000 | 2.238
SalaDP (e = 100) || 0.180 | 2.029 || 1.243 | 2.515 || 1.999 | 2.209

D(G), is a set, with each element V; ;(G) in D(G) represent-
ing the number of edges that connect nodes of degrees ¢ and
j in G. Semantically, V, ;(G) is defined as follows.

Vi (9) = [{u, '} {u, '} €€ A Jr(u) =i A r(u)|=5)]

Accordingly, V; ;(G4) and V, ;(Gr) represent the corre-
sponding numbers in G4 and Gg, respectively. Then, we
introduce ¢; ;(G,G4) = V;;(Ga) — V;;(G) to denote the
noise added to V; ;(G) when transforming G to G4, and
Gij(G,Gr) = Vi,;(Gr) — V;;(G) to represent the (lower)
noise resulting from our graph recovery. Since SalaDP is
a statistical mechanism, we sample 100 anonymized graphs
{G4,}129 by applying SalaDP to G 100 times and produce 100
noise samples {¢; ;(G,G%)}1% for each element in D(G).

We define two metrics for quantifying the privacy loss. In
the first metric, we compare the difference of average noises
added to the dK-2 series of G by G4 and by Gr. Concretely,
for each V,;(G) in D(G), we first calculate the average
absolute noise added to V;;(G), denoted by (; j(G,GA).
over the 100 Salloa(l)DP gragh samples described above, i.e.,
Gii(G,Ga) = Zim1 163 (G.64)1 Kl"’ojo(g’g“"‘)‘. Then, we compute the overall
noise difference by graph anonymization as

1
Ca= D@ Z

Vi,;(G)ED(G)

We analogously compute the average added noise (r after our
graph recovery.

For the second approach, we consider the uncertainty intro-
duced by the added noise. Several works in the literature, such
as [26l], explore the connection between differential privacy
and the uncertainty of the output produced by a differentially
private mechanism. In general, higher uncertainty implies
more privacy. We measure the uncertainty of noise added by
SalaDP by estimating its empirical entropy. To this end, we
calculate the Shannon entropy over the frequencies of elements
in {¢; ;(G, Q;\) %g? (the 100 noise samples described above),
denoted by I:I,] (G,GA4). In the end, to obtain the overall
empirical entropy for the anonymization, we average over all
dK-2 series elements:

- 1

Hy = H; (G,GA).

>

Vi,;(G)eD(G)

We compute the overall empirical entropy resulting from our
graph recovery similarly, and denote it by Hr.

B. Evaluation

k-DA. Table presents the results of the users’ degree
differences. We observe that, in all cases, Ay is smaller than
A 4. This indicates that the adversary has a better chance to
identify her targets from G than from G 4, and demonstrates
that our attack clearly decreases the privacy provided by k-DA.
It also appears that our graph recovery gains least benefits for
the adversary on Facebookl, i.e., Ax is closer to A 4. This is
essentially due to the fact that the original Facebookl dataset
already preserves a high k-degree anonymity, as we can see
from the small fraction of edges added by k-DA ( Table [II).

SalaDP. Table presents the average noise added to the
dK-2 series of the original graph G by the anonymized and
recovered graphs. In all cases, (r is smaller than ( 4, showing
that our recovery mechanism reduces the average noise privacy
metric for SalaDP. Further, we can observe that the relative
reduction of the average noise with our recovery attack in
general decreases with increasing e: the added noise is already
much smaller (for larger €) and cannot be reduced much more.

Table presents the average entropy of the noise added
to the dK -2 series of the original graph after applying SalaDP
and after the recovery with our approach. Note that, while one
would expect higher entropy for smaller values of ¢, this does
not hold true in practice because the SalaDP mechanism is not
necessarily optimal with respect to the added uncertainty. Still,
across all values for €, and across all datasets we can observe
a reduction of the empirical entropy, and therefore a reduction
of this privacy metric. The relative reduction, however, varies
between the values of € and, as for the average noise above,
between the datasets.

For now, it seems unclear how these various factors im-
pact the relative reduction of empirical entropy. Analyzing
the impact of these parameters on the relative reduction of
empirical entropy (and average noise in the case of network
structure) could provide further insights into the recoverability
of anonymized graphs. Such work is, however, orthogonal to
the work presented in this paper and provides an interesting
direction for future work.

Note that, while our recovery mechanism does indeed
reduce both privacy metrics (the average noise and the un-
certainty of the added noise), it cannot violate the differential
privacy of SalaDP since differential privacy is known to be
closed under post-processing [27]. We can instead offer two
potential explanations. First, the noising mechanism used in
SalaDP might not be optimal with regard to entropy, thus
allowing for its reduction without breaking differential privacy.
Second, the generation of the anonymized graphs from the
noised dK-2 series generated by SalaDP adds additional
entropy that we are able to reduce with plausibility metric
(Section [LI)).

VII. ENHANCING GRAPH ANONYMIZATION MECHANISMS

We have so far demonstrated a fundamental vulnerability
of the current graph anonymization mechanisms due to over-
looking the structural plausibility of fake edges when creating



Number of edges
S mN W v N

|
-0.2 0.0 0.2 0.4 0.6 08 1.0
Edge plausibility

-0.2 0.0 0.2 0.4 0.6
Edge plausibility

(a) d = 128 (b) d = 512

Fig. 8: Edge plausibility distributions in the original Face-
bookl dataset for two embedding vector dimensions: (a)
d =128, and (b) d = 521.

them. In this section, we take the first step towards mitigating
this weakness by generating more plausible edges. We start
by presenting our solutions for enhancing the two graph
anonymization mechanisms, then evaluate the performance
of fake edge detection as well as the graph utility with the
enhanced mechanisms.

A. Methods

As discussed in Section both k-DA and SalaDP cre-
ate fake edges without considering their plausibility. This is
essentially what makes our fake edge detection possible. To
improve the anonymization mechanisms, intuitively, we should
add fake edges that are more similar to edges in the original
graph G with respect to edge plausibility.

Figure [§] depicts the edge plausibility distribution for the
original Facebookl datasetﬂ Note that for k-DA, we set the
vector dimension d to be 128, while, for SalaDP, we have
d = 512. These choices are made following the hyperparame-
ter sensitivity study in Section [V} We observe that both edge
plausibility empirical distributions follow a Gaussian distribu-
tion. If we are able to modify the current graph anonymization
mechanisms such that the plausibility of the added fake edges
is more likely to come from the same Gaussian distribution,
then it should be harder to discover these fake edges, i.e., our
fake edge detection’s performance will decrease.

The general procedure for our enhanced graph anonymiza-
tion mechanisms works as follows. We first apply maximum
likelihood estimation to learn the Gaussian distribution for
edge plausibility in G, denoted by N (s(u,u’)|u,0), where
s(u,u") represents {u,u’}’s plausibility in G. Then, we con-
duct the same process as in k-DA and SalaDP. A loop is
performed through all the users where, in each iteration, if a
user u needs m fake edges, we construct a candidate set 7y (u)
for her which includes all the potential users that could share
a fake edge with her. Different from the original approaches
of k-DA and SalaDP for choosing m users out of ~(u),

we compute the plausibility between users in ~(u) and UE

represented as a set A(u) = {s(u,v)[v € v(u)}. Then, for

#We map all users in G into vectors and compute all edges’ plausibility in
G following the same procedure as for G 4 (Section ‘ The distributions for
Enron and Facebook?2 are in the appendix.

5The plausibility is computed over users’ vectors learned from G.

TABLE VIII: General prediction results (AUCs) with our
enhanced anonymization mechanisms.

[[ Enron [ Facebookl [ Facebook2

k-DA (k = 50) 0.677 0.628 0.939
k-DA (k = 75) 0.728 0.676 0.927
k-DA (k = 100) 0.753 0.702 0.896
SalaDP (e = 10) 0.724 0.853 0.723
SalaDP (e = 50) 0.794 0.895 0.723
SalaDP (e = 100) 0.806 0.890 0.719

each plausibility s(u,v) in A(u), we calculate its density using
the previously learned N (s(u,u')|p,0), and treat the density
as the weight of the user v in (u). Next, we perform a
weighted sampling to choose m users out of v(u) and add
edges between these users and u. In the end, we obtain our new
anonymized graph Gr under the enhanced mechanisms. As
our solutions do not involve any modifications of the privacy
parameters of k-DA and SalaDP, Gr does not change the
privacy guarantees provided in the original algorithms. We
will make the source code for the aforementioned enhanced
versions of k-DA and SalaDP publicly available.

Note that, as presented in Section |H|, for a user u, SalaDP
chooses m users in y(u) in a random manner, while k-DA
picks the users with the highest residual degrees. However,
the reason for k-DA to take this approach is to efficiently
construct the anonymized graph, thus is not related to any
privacy guarantee. Through experiments, we discover that our
enhanced k-DA can also build the anonymized graph in a
similar time.

B. Evaluation

Fake edge detection. After obtaining G, we perform the
same process as described in Section [II] to compute the
plausibility of all edges in Gx. Then, we calculate the AUC
values when using plausibility to differentiate between fake
and original edges in Gr. The results for both enhanced
anonymization mechanisms are presented in Table

First of all, the AUC values drop in all cases compared to
the results in Table [[I} Especially for the k-DA-anonymized
Facebook1 dataset (k = 50), AUC drops by 35%, to 0.63.
This can be also observed from the histograms in Figure [0}
by plausibility, fake edges are hidden quite well among the
original edges. On the other hand, the performance drops
for SalaDP-anonymized datasets are smaller, but still quite
significant. Moreover, given that the plausibility histograms
(Figure [I0) show that the two Gaussian distributions of
Gr largely overlap, the Gaussian mixture model approach
described in Section [V] will not help much with fake edge
detectionﬂ Our experiments with the GMM approach only
achieved around 27% precision for SalaDP (¢ = 100) with
Facebook1, which represents a decrease of almost 50% for
around the same recall. When applying our enhanced k-DA
mechanism on the Facebook2 dataset, the experimental results
drops, but less than for Facebookl. This may be due to the

Note that the corresponding histograms for Enron and SalaDP datasets are
depicted in the appendix.



x10% x10%

x10%

8| mmm All edges -~ 81 mmm Al edges
7 Original edges - = 7 Original edges
0 Fake edges [ L " Fake edges
[ 6
o ™ o
° °
s = L 05
[ u
S] o
=4 i 4
o [ o
Q = Q5
£3 u £
=] 3, [
22 = = =2
u
1 - - 1 =
0 — = ° -
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.2 0.0 0.2

Edge plausibility

(a) k-DA (k = 50)

Edge plausibility

(b) k-DA (k = T75)

8
| ] B All edges ]
L 5 7 Original edges u
" Fake edges |
= U6 -
=)
hel
5
- e -
o
4
8
- g 3
B 22 - B
3 1 n
- L
- o ol —
0.6 0.8 10 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Edge plausibility

(¢) k-DA (k = 100)

Fig. 9: Plausibility distributions of fake, original, and all edges in the enhanced k-DA-anonymized Facebookl dataset.

x10° x10°

x103

=
N

m Al edges
Original edges
Fake edges

N

w
Iy
=)

N

=)
o
©

I
w

Number of edges
5
{1

Number of edges
S
]

o
w
L
o
N

=)
=)
|
=)
=)
[

0.0 02 0.4 06 08 10 =02 00 02
Edge plausibility

(a) SalaDP (e = 10)

mm All edges 1.0 g ™= Alledges
Original edges i Original edges
Fake edges " Fake edges

o 0.8 -
o
°
9]
L 4w 0.6
o
o
2
0.4
£
=]
=z
0.2 -
-
0.0 = —
0.6 0.8 1.0 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Edge plausibility

(b) SalaDP (¢ = 50)

Edge plausibility

(c) SalaDP (e = 100)

Fig. 10: Plausibility distributions of fake, original, and all edges in the enhanced SalaDP-anonymized Facebookl dataset.

dataset’s small size (4,039 users) and the large k value, which
leads to a large number of fake edges compared to the original
number.

It is worth noting that all the edges added by our en-
hanced anonymization mechanisms still have relatively smaller
plausibility than the original edges. Given that our weighted
sampling follows the original plausibility distribution in G,
this implies that not many potential fake edges are normal
with respect to plausibility. In consequence, it is rather hard to
make fake edges totally indistinguishable from original edges.

Graph utility. The main motivation for OSNs or any data
holder to share their graph data is to allow third parties to
conduct research or build appealing applications. Therefore, a
graph anonymization mechanism needs to take into account
graph utility, i.e., how well the anonymized graph preserves
the structural properties of the original graph. To show that our
enhancing technique is an improvement over the current graph
anonymization mechanisms, we also evaluate G£’s utility.
There exist many graph properties that can be used to
evaluate graph utility [19]], [28]]. For the sake of conciseness,
we focus on three of them: degree distribution, eigencentrality
and triangle count. The degree distribution is a general struc-
tural property of graphs, and is essentially a list with each
element representing the proportion of users with a certain
degree. Eigencentrality is a classical measure to evaluate the
influence/importance of each user in a graph. It assigns a
centrality score for each user based on the eigenvector of
the graph’s adjacency matrix. Triangle count summarizes the

number of triangles each user belongs to in a graph, thus
reflecting the connectivity of the graph [28]]. We compute the
three properties for G, G4 and G, and calculate the cosine
similarity between G’s and G 4’s properties as well as between
G’s and G £’s properties [19]. Higher similarity implies that the
two graphs are more similar with respect to the property, and
thus that higher utility is preserved.

Table [IX] presents the evaluation results. First of all, we
obtain a strong similarity between Gr and G for all graph
properties, i.e., Gr preserves high utility. For instance, the
cosine similarity for triangle count is above 0.96 in most of
the cases for our enhanced SalaDP mechanism. On the other
hand, the lowest cosine similarity (degree distribution) is still
approaching 0.7 when applying enhanced k-DA (k = 100)
to anonymize the Facebook2 dataset. More importantly, we
observe that, in most cases, G preserves more graph utility
than G 4. For instance, the eigencentrality’s cosine similarity
between Gr and G is 0.985 while the similarity between G 4
and G is of only 0.836 for the k-DA anonymized Facebookl
dataset (kK = 50). This is due to the fact that the fake edges
added by our enhanced mechanisms are more structurally
similar to the original edges, thus preserve more utility.

In conclusion, our enhanced graph anonymization mecha-
nisms can keep the same privacy properties as the original
mechanisms, make the anonymized graph less vulnerable to
graph recovery, and preserve better graph utility.



TABLE IX: Graph utility comparison of original and enhanced anonymization mechanisms.

I Degree distribution I

Eigencentrality I Triangle count

Enron Facebookl | Facebook2 Enron Facebookl | Facebook2 Enron Facebookl | Facebook2

GA Gr | Ga 67 [ Ga GFr || Ga Gr | Ga Gr [ Ga GF || Ga Gr | Ga Gr | Ga GF

k-DA (k = 50) 0.999 0.999[0.999 0.999[0.891 0.887/0.899 0.983[0.836 0.985[0.710 0.854(/0.799 0.9910.757 0.961]0.836 0.923
k-DA (k = 75) 0.999 0.999(0.999 0.999 |0.808 0.802(/0.869 0.971 [0.807 0.973|0.692 0.810(|0.747 0.984 |0.673 0.932|0.809 0.906
k-DA (k= 100) [/0.999 0.999|0.999 0.999 |0.730 0.695 || 0.854 0.957|0.775 0.972{0.687 0.791 ([ 0.709 0.969 [0.619 0.909 | 0.805 0.901
SalaDP (e = 10) [|0.876 0.955[0.867 0.901[0.612 0.833[0.901 0.901{0.795 0.956[0.979 0.990 [[ 0.809 0.993[0.849 0.985[0.991 0.966
SalaDP (e = 50) [/0.963 0.974]0.994 0.994|0.726 0.867 || 0.908 0.929|0.831 0.979[0.994 0.991 || 0.816 0.981|0.856 0.976|0.989 0.972
SalaDP (e = 100){{ 0.998 0.993(0.998 0.998 | 0.897 0.903 || 0.904 0.936 |0.874 0.988 |0.996 0.996 || 0.802 0.873|0.905 0.974|0.981 0.980

VIII. RELATED WORK social graph. Narayanan and Shmatikov [41] propose a gen-

The rapid development of online social networks has raised
serious concerns about their users’ privacy. Researchers have
studied this topic from various perspectives, such as infor-
mation inference [29], [30], scam detection [31]], [32], user
identity linkage [33l], [34], and social graph anonymization.
This paper falls into the domain of graph anonymization.

One class of graph anonymization mechanisms follows
the concept of k-anonymity in database privacy. Liu and
Terzi [10] propose the first mechanism in this direction, i.e.,
k-DA. Meanwhile, Zhou and Pei [18]] propose k-neighborhood
anonymity, where each user in the anonymized graph will
share the same neighborhood, i.e., the sub-social network
among her friends, with at least & — 1 other users. The
authors adopt minimum BFS coding to represent each user’s
neighborhood, then rely on a greedy match to realize k-
neighborhood anonymity. Other k-anonymity based mecha-
nisms include [35], [36].

Another class of graph anonymization mechanisms is in-
spired by differential privacy. Besides SalaDP, multiple so-
Iutions have been proposed [37], [38], [13]. For instance,
the authors of [38] present a 2K-graph generation model to
achieve differential privacy, where noise is added based on
smooth sensitivity. Xiao et al. [13] encode users’ connection
probabilities with a hierarchical random graph model, and
perform Markov chain Monte Carlo to sample a possible graph
structure from the model while enforcing differential privacy.

In contrast to the above two classes, Mittal et al. [12]
propose a random walk based mechanism. We also experiment
with this mechanism, and discover that with only 4-step walk,
92% of the original edges in the Facebookl dataset are re-
placed with fake ones, thus substantially degrading the graph’s
original utility. Therefore, it becomes nearly impossible to
recover the original graph, and, by carrying out our attack
against this mechanism, we achieve a low AUC of around
0.7. Besides the above, other graph anonymization techniques
include [39], [40].

Note that, due to space constraints, we only consider the
two most widely known anonymization mechanisms k-DA and
SalaDP to study the possibility of recovering the original graph
from the anonymized graph. In the future, we plan to apply
our approach to more anonymization mechanisms.

Besides anonymization, graph de-anonymization has been
extensively studied as well. Backstrom et al. [9]] are among
the first to de-anonymize users in a naively anonymized

eral framework where they assume that an attacker has an
auxiliary graph and tries to map users in the auxiliary graph
to the anonymized graph for de-anonymization. Narayanan
and Shmatikov’s approach relies on an initial seed mapping
between the auxiliary graph and the anonymized graph, and
a self-reinforcing algorithm to match users. Inspired by [41]],
multiple de-anonymization attacks have been proposed, such
as [3l, [42], [43], [44], [45]. Evaluating if, and to what
extent, our graph recovery attack can further help improve de-
anonymization attacks is an interesting line of future research.
It could further demonstrate the concrete privacy impact of the
approach proposed in this work.

IX. CONCLUSION

In this paper, we identify a fundamental vulnerability of
existing graph anonymization mechanisms that do not take
into account key structural characteristics of social graphs
when generating fake edges. We propose an edge plausibility
metric based on graph embedding to exploit this weakness:
our extensive experiments show that, using this metric, we
are able to recover the original graph to a large degree from
graphs anonymized by the k-DA and SalaDP mechanisms. Our
graph recovery also results in significant privacy damage to the
original anonymization mechanisms, which we quantify using
privacy metrics suited to the respective anonymization mech-
anisms. To mitigate this weakness, we propose enhancements
for k-DA and SalaDP that take into account the plausibility
of potential fake edges before adding them to the graph. Our
evaluation shows that these enhanced mechanisms significantly
reduce the performance of our graph recovery and, at the same
time, provide better graph utility.

In addition to the future directions we already discussed
throughout the paper, there are two other directions we plan
to pursue. First, we concentrate only on identifying fake added
edges in this paper. The detection of deleted edges is another
interesting direction to pursue. One solution would be to rely
on link prediction methods. However, as social networks typ-
ically exhibit power law node degree distributions, the search
space for potential deleted edges is very large. Second, we
measure an edge’s plausibility solely based on its two users’
structural proximity. It is unclear if, and which, additional edge
properties might also contribute to its plausibility. Taking into
account these additional properties may further increase the
performance of our graph recovery.
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Fig. 11: ROC curves of our edge plausibility metric and other proximity metrics for k-DA and SalaDP anonymized Enron and
Facebook?2 datasets.
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Fig. 12: Sensitivity of the AUC with respect to the walk length and walk times for k-DA and SalaDP anonymized datasets.
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Fig. 13: Plausibility distributions of fake, original, and all edges in k-DA and SalaDP anonymized Enron and Facebook2
datasets.



Fig. 14: Plausibility distributions of fake, original, and all edges in enhanced k-DA and SalaDP anonymized Enron and
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Fig. 15: Edge plausibility distributions in the original Enron and Facebook2 datasets.
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